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Abstract: This work addresses crucial questions about the robustness of the PSDization process for
applications in insurance. PSDization refers to the process that forces a matrix to become positive
semidefinite. For companies using copulas to aggregate risks in their internal model, PSDization
occurs when working with correlation matrices to compute the Solvency Capital Requirement (SCR).
We examine how classical operational choices concerning the modelling of risk dependence impacts
the SCR during PSDization. These operations refer to the permutations of risks (or business lines)
in the correlation matrix, the addition of a new risk, and the introduction of confidence weights
given to the correlation coefficients. The use of genetic algorithms shows that theoretically neutral
transformations of the correlation matrix can surprisingly lead to significant sensitivities of the SCR
(up to 6%). This highlights the need for a very strong internal control around the PSDization step.

Keywords: solvency II; risk aggregation; positive semi-definite; Rebonato–Jäckel

1. Introduction

When measuring the insurer’s exposure to numerous risks, and especially to assess their
own funds requirement (or Solvency Capital Requirement in insurance, denoted further by SCR,
and representing the 99.5th percentile of the aggregated loss distribution), one of the most sensitive
steps is the modelling of the dependence between those risks.

This is of course a major question, which, as such, has recently attracted attention from
the scientific community. See, for instance, the works by Georgescu et al. (2017), Cifuentes and
Charlin (2016), Bernard et al. (2014), Clemente and Savelli (2013), Cheung and Vanduffel (2013),
Clemente and Savelli (2011), Devineau and Loisel (2009), Filipovic (2009), Sandström (2007),
Denuit et al. (1999), and references therein. This aggregation step allows for taking into account
mitigation, or the potentiality of those individual risks occurring simultaneously. According to the
European Directive Solvency II (EIOPA (2009)), there are two main approaches to compute aggregated
risk measures considering the dependence structure between risks. In the first case, this aggregation is
performed through a variance–covariance approach via the Standard Formula, below

SCR =
√

∑
i∈J1,nK

∑
j∈J1,nK

ρij × SCRi × SCRj, (1)
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where SCRi is the 99.5th percentile of the random loss Xi associated to risk i, and ρij is the linear

correlation such that ρij = Cov(Xi, Xj)/
√

Var(Xi)Var(Xj). This technique was shown to be valid for

elliptical loss distributions, which is not the case in general1.
Another possibility for insurers is to calculate the SCR thanks to their internal model, once the

latter has been approved by supervisors. In this case, insurers usually work with copulas for the
aggregation of risk factors in order to obtain the full distribution of losses. Copulas can indeed model
most general situations of dependence, as shown by the well known Sklar’s theorem. In practice,
internal models require the implementation of these successive steps:

1. calibration of marginal distributions for each risk factor (e.g., equity, interest rates);
2. modelling the dependence between risk factors through a copula;
3. aggregation of risks, leading to the entire distribution of the aggregate loss (sometimes an

intermediate step links the risk factors to their associated loss thanks to proxy functions,
see Section 5.1). Taking the 99.5th percentile of this distribution allows the evaluation of the SCR.

The aggregation thus requires a correlation matrix as an input, whatever the technique (at least
when copulas are Gaussian or Student, which is the case for several insurance companies using
an internal model). The dimensions of this matrix can be huge in practice (e.g., 1000×1000,
i.e., with around 500,000 different values), depending on the modular structure chosen (for instance,
the dimensions of correlation matrices remain low in the Standard Formula, see Section 2.1). The matrix
includes numerous correlation coefficients that can result from empirical statistical measures, expert
judgments or automatic formulas. As a matter of fact, it is thus rarely2 positive semidefinite (PSD):
this is what is commonly called a pseudo-correlation matrix. Unfortunately, this matrix cannot be used
directly to aggregate risks. Indeed, both variance–covariance and copula aggregation techniques require
the correlation matrix to be PSD (that is with all eigenvalues ≥ 0) for the following main reasons:

• Coherence: it is a well-known property that correlation matrices are PSD. Negative eigenvalues
indicate that a logical error was made while establishing the coefficients of the matrix. For instance,
consider the case of a 3×3 matrix: if the coefficients indicate a strong positive correlation between
the first and second risk factors, a strong positive correlation between the second and third risk
factors, but a strong negative correlation between the first and third risk factors, this will generate
a negative eigenvalue corresponding to the coherence mistake made.

• Prudence: taking more risk could decrease the insurer’s SCR if there exists one negative
eigenvalue associated to an eigenvector with positive coefficients. For instance, consider the loss
vector (100 Me, 10 Me, 40 Me) and the correlation matrix

ρ =

ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

 =

 1 −0.9 −0.5
−0.9 1 −0.5
−0.5 −0.5 1

 .

Using the variance–covariance approach, the riskiest situation in terms of losses (106.20 Me;
16.20 Me; 44.81 Me) leads to a lower SCR (70.48 Me against 74.16 Me).

• Ability to perform simulations: in the copula approach, the input correlation matrix has to be
PSD to apply Choleski decomposition. This is necessary for Gaussian or Student vectors, which
are the most common cases for such tasks in practice.

1 As the Committee of European Insurance and Occupational Pension Supervisors (CEIOPS, now EIOPA) admitted in its
Solvency II calibration paper of April 2010 (SEC-10-40).

2 In the case of few risk factors, common sense would lead to building positive semidefinite (PSD) matrices (even without
being aware of the PSD requirements). However, when dealing with higher dimensions, it is much more difficult to obtain a
PSD matrix and, in practice, a PSDization algorithm is very often necessary. Matrices used in Appendix A) are therefore to be
considered only as examples in low dimensions to illustrate some of the effects due to PSDization and not to be considered
as realistic situations.
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Using PSD correlation matrices is therefore crucial, which explains why it is explicitly required by
the Delegated Rules of the Solvency II regulation (EIOPA (2015), see Appendix XVIII). Accordingly,
insurers apply algorithms on their pseudo-correlation matrix in order to make it become PSD: this
is the so-called PSDization process. Most common algorithms can be separated into three categories:
Alternating Projections, Newton and Hypersphere algorithms. One focuses in this paper on the
Rebonato–Jäckel algorithm, which belongs to the latter family (see Section 3 for further details about
the motivation of this choice).

Considering this framework, the impact on the SCR of standard operations on the correlation
matrix should be verified. Our interest lies in studying operational choices such as weighting
the correlation coefficients during PSDization (to reflect the confidence experts may have on these
coefficients), switching some columns of the matrix (i.e., reordering the risks before aggregation),
or adding one dimension (which can correspond to an additional business line with low materiality on
the overall SCR). To the authors’ knowledge, the impact of such operations on the PSDization step has
not been studied formally in the literature before. Numerical examples support the main idea of this
work: transformations of the matrix, with low or null theoretical impact on the SCR, sometimes lead to
unexpected changes of this global SCR. For large insurance companies, this is all the more important
since a 1% change of SCR can cost millions of euros in terms of capital. This would strongly affect the
Return On Equity index, an essential profitability indicator for investors.

The publication is organized as follows: Section 2 introduces the pseudo-correlation matrices to
be considered hereafter. Section 3 describes most common PSD algorithms, and motivates our choice.
With the help of some significant examples, Section 4 illustrates to which extent PSDization leads
to modifying the initial pseudo-correlation coefficients. The cases of higher risk matrix dimensions,
weighted correlation coefficients and risk permutations are studied. Finally, real-life sensitivities are
assessed in Section 5 thanks to the use of genetic algorithms and simulations, and provide some
interesting results concerning the aforementioned operations and their impact on the global SCR of
the company.

2. Pseudo-Correlation Matrices under Study

2.1. Correlation Matrices of the Standard Formula

Before studying the algorithms which enable a matrix to be PSD when using an internal model,
one must check that the matrices defined by the standard formula are already PSD. As a reminder,
the Standard Formula given by the regulation states that risks should be aggregated in a bottom-up
approach, with a tree-based structure. This means that individual SCRs first have to be assessed,
each one corresponding to a module (Life, Non Life, and so on). Solvency II texts then define several
correlation matrices for each level of aggregation. Table 1 shows that the eigenvalues of these matrices
are all positive, meaning that they are PSD. Except for the global matrix that can be found in the
Directive, all matrices are described in the Delegated Acts (see references in the first column of Table 1).

Table 1. Eigenvalues of correlation matrices in Solvency II regulation (the matrices are available in
EIOPA (2015), with further details concerning the corresponding article or appendix in the table).

Module Dimension λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12 PSD

Global (App. IV) 5 1.92 1.16 0.75 0.75 0.40 Yes
Market up (Art. 164) 6 2.47 1.18 1.00 0.68 0.50 0.15 Yes
Market down (Art. 164) 6 2.89 1.00 0.87 0.57 0.50 0.15 Yes
Life (Art. 136) 7 2.18 1.51 1.07 0.81 0.70 0.57 0.12 Yes
Health SLT (Art. 151) 6 2.04 1.43 1.00 0.81 0.58 0.12 Yes
Health non SLT (App. XV) 4 3 0.5 0.5 0.5 Yes
Health (Art. 144) 3 1.68 0.81 0.5 Yes
Non Life (Art. 114) 3 1.25 1 0.75 Yes
Prem. Reserve (App. IV) 12 4.91 1.45 1.09 0.97 0.73 0.68 0.61 0.48 0.38 0.33 0.20 0.12 Yes
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2.2. Notations and Correlation Matrices under Study

Throughout the paper, Gxy indicates the initial pseudo-correlation matrix to be PSDized, where
x refers to the matrix dimension and y is the number of the example. When using weights to apply
to the correlation coefficients during PSDization, a weighting matrix Hxy is defined. Then, we denote
by SPA

xy the PSDized matrix obtained from Gxy using the Alternated Projections algorithm; SN
xy the

PSDized matrix with the Newton algorithm; Sxy the PSDized matrix with the Hypersphere algorithm
and SH

xy the PSDized matrix with the Hypersphere algorithm using a weighting matrix H. The use
of a weighting matrix enables the adjustment in terms of importance of one or several correlation
coefficients with respect to other coefficients when making the correlation matrix PSD. This is very
useful for insurance companies, since some coefficients can have a bigger impact on the final capital
requirement, and the aim would be that PSDization modifies these coefficients as little as possible.
It must be noted that some algorithms (Newton, Hypersphere) can be extended to use constraints on
the correlation coefficients, such as ρmin

ij ≤ ρij ≤ ρmax
ij . However, these extensions are left for future

research for two main reasons: very few practitioners use them, and they cause non-trivial theoretical
and practical issues (there could be no solution, i.e., PSDized matrix, according to the constrained set).

Our examples are built with the same simple idea: assess the impact of PSDization combined to
classical operational choices on various situations to reflect the real world. We thus consider correlation
matrices of various dimensions, with positive and negative eigenvalues, and with a high heterogeneity
regarding their individual correlation coefficients (positive, negative, far or close to extreme values
−1 or +1). The seven examples studied all along the paper are listed in Appendix A, including the
10-dimension correlation matrix that has been created manually. This example was designed with the
aim of having a certain coherence with the reality of risk aggregation in insurance. The first risk factor,
say X1, refers to the risk that interest rates decrease (X2 represents the risk of interest rates increasing).
X3 corresponds to unexpected high expenses, X4 relates to the incorrect assessment of the level of
expenses, and X5 is the risk of spreads increasing. The risk that market stocks drop is given by X6,
X7 accounts for the longevity risk, X8 is the mass lapse risk, X9 corresponds to the underwriting risk
(premium and reserve risk as in the standard formula, see (CEIOPS 2010, p. 118), which could also be
modelled by two different risk factors in internal models) in the Health business line; and X10 is the
underwriting risk in short-term disability.

Correlation coefficients were determined either by statistical measures built on historical data
on financial markets, or by expert opinions. To read the matrix appropriately, the linear correlation
between X1 and X2 is the coefficient ρ12 (or ρ21), located on line 1 column 2 (of course, the coefficient
equals −1 in this case). Finally, our pseudo-correlation matrix looks like

G101 =



1 −1 −0.28 0 0.63 −0.47 0.25 0.75 0 0
−1 1 0.77 0.5 −0.38 0.88 0.25 0.75 0.25 0.25
−0.28 0.77 1 0.25 0.25 0.17 −0.25 0.25 0.5 0.5

0 0.5 0.25 1 0.25 0.25 0 0.5 0.5 0.5
0.63 −0.38 0.25 0.25 1 0.83 0.25 0.75 0 0
−0.47 0.88 0.17 0.25 0.83 1 0.75 0.75 0 0
0.25 0.25 −0.25 0 0.25 0.75 1 0.5 0.25 0.25
0.75 0.75 0.25 0.5 0.75 0.75 0.5 1 0.25 0.25

0 0.25 0.5 0.5 0 0 0.25 0.25 1 0.75
0 0.25 0.5 0.5 0 0 0.25 0.25 0.75 1


.

Table 2 sums up the eigenvalues of our seven pseudo-correlation matrices: note that none of the
considered matrices is PSD. However, some of them are not very far from having this property.
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Table 2. Eigenvalues in our examples, before PSDization.

Example # Dimension Notation λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 PSD

1 3 G31 1.90 1.39 −0.29 No
2 3 G32 1.91 1.44 −0.35 No
3 4 G41 2.17 1.27 0.88 −0.32 No
4 4 G42 1.95 1.74 0.96 −0.64 No
5 5 G51 2.80 1.98 1.16 −0.17 −0.77 No
6 5 G52 2.44 1.97 1.67 −0.19 −0.88 No
7 10 G101 3.93 2.72 2.00 1.14 0.74 0.57 0.25 −0.03 −0.55 −0.77 No

3. Selection of an Adequate Algorithm for PSDization

PSDization algorithms aim to build the nearest PSD matrix to an initial non-PSD matrix, where
the notion of “nearest” is detailed in the sequel. This section briefly presents the main families of
PSDization algorithms, and justifies our choice to work with the Hypersphere (or Rebonato-Jäckel)
algorithm. Interesting recent works on this topic and more details can be found in (Cutajar et al. 2017).

3.1. Families of Algorithms

3.1.1. Alternating Projections

The Alternating Projections (AP) algorithm, introduced by Higham (2002), leads to the nearest
correlation matrix under the W-norm, defined by

∀A ∈ Rn×n, ‖A‖W = ‖W
1
2 AW

1
2 ‖2,

where ∀A ∈ Rn×n, ‖A‖2
2 = ∑(i,j)∈J1;nK2 a2

ij = tr(AAT). This norm is also called the Frobenius norm,
and W ∈ Rn×n is a square matrix with positive coefficients.

The AP algorithm corresponds to a linear optimization, projecting alternately the matrix obtained
at each step on two convex closed subsets of the matrix space Rn×n. It enables in particular to show
the uniqueness of the solution under this type of norm.

However, the W-norm does not in general correspond to the norm insurers may be interested
in. The H-norm, defined by ∀A ∈ Rn×n, ‖A‖2

H = ∑(i,j)∈J1;nK2 hija2
ij, where H ∈ Rn×n offers more

flexibility to weight coefficients according to their materiality on the SCR, or according to the confidence
level one has in the coefficients. The W-norm and the H-norm only coincide when W is diagonal
(W = diag(wi)i∈J1;nK) and H is a rank-1 matrix (H = [(wiwj)

1
2 ]). Thus, the AP algorithm lacks

flexibility in that it does not enable the use of another general matrix to weight freely each individual
correlation coefficient.

3.1.2. Newton Algorithm

Newton algorithms with such applications were introduced by Qi and Sun (2006). They were
initially designed for the traditional 2-norm, and are therefore computationally quicker than the
Alternating Projections. However, their extension to the most general case (i.e., H-norm) requires
optimization techniques such as the Uzawa method. Unfortunately, the Uzawa method implies
optimization within optimization, and makes the overall algorithm much more time-consuming, as
well as much more complex to interpret.

3.1.3. Rebonato–Jäckel Algorithm

Belonging to the family of Hypersphere algorithms, the Rebonato–Jäckel method was initially
introduced in Rebonato and Jäckel (1999). Since then, it has been extensively studied in literature,
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and many publications have proved its efficiency in reaching a robust solution. Its wide success is due
to the following theorem (see the proof in (Jäckel 2002)): any correlation matrix ρ can be written as

ρ = BBT ,

where the coefficients of the matrix B ∈ Rn×n can be written as:{
∀(i, j) ∈ J1; nK× J1; n− 1K, Bij = cos(θij)∏

j−1
k=1 sin(θik),

∀i ∈ J1; nK, Bin = ∏n−1
k=1 sin(θik).

In addition, the angular vector θ is unique if:{
∀(i, j) ∈ J1; nK× J1; n− 1K, θij ∈ [0, π],
∀i ≤ j, θij = 0.

The Hypersphere algorithm thus consists of looking for the solution matrix under the
abovementioned form. It offers several advantages; in particular, it is simple to use, easily
understandable, and is the most widely used algorithm in the bank and insurance sectors. Moreover,
it allows the use of the H-norm and converges fairly quickly. However, its main weakness lies in that
it sometimes converges to a local minimum, and therefore does not guarantee that the output is the
nearest PSDized correlation matrix. This drawback has to be kept in mind, since it may have other side
effects. Let us mention for instance the fact that the order in which risk factors are considered in the
correlation matrix matters, although it should not (see Sections 4 and 5).

3.2. Choice of the Algorithm for the Rest of the Paper

To check the robustness when performing PSDization with these algorithms, one first compares the
distances between the initial pseudo-correlation matrix and its PSDized version in the three different
cases. Of course, the lower this distance is, the better the algorithm. We use the Frobenius-norm
(see Section 3.1.1), since it is common to all algorithms.

Results about PSDized versions for each example are detailed in Appendix B: note that the PSDized
correlation matrices are the same when the dimension remains low, whatever the algorithm considered.
More precisely, the three algorithms give very similar results with PSDized versions of G31, G32, G41,
G42, G51, and G52 (same coefficients, up to 10−4). On the contrary, the PSDized versions of G101 are
slightly different depending on the algorithm used. As an illustration, we get the following distances:

||SPA
101 − G101||2 = ||SN

101 − G101||2 = 1.211 ≤ ||S101 − G101||2 = 1.213.

In this example, it seems that the first two algorithms give better results. The Rebonato-Jäckel
algorithm is likely to have selected a locally-optimal solution. Despite not being the best technique in
this particular case, we will use the latter for three main reasons in coming analyses: (i) distances do
not seem to be significantly different from one method to another; (ii) the Rebonato-Jäckel algorithm
enables the easy introduction of confidence weights to the individual correlation coefficients in practice
(through the H-norm), which is a key point; and (iii) the Rebonato-Jäckel algorithm is fast and easy to
interpret. Indeed, experts know that some initial coefficient values can be particularly reliable, or they
can anticipate that some of them will have a significant impact on the global SCR.

3.3. One PSDization Example: The 10-Dimensional Matrix

Trying to replicate the conditions in which insurers use PSDization algorithms, it is clearly more
appropriate to consider the H-norm. Indeed, it makes it possible to integrate confidence weights given
to correlation coefficients during the PSDization process. PSDization of G101 using the Rebonato-Jackël
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algorithm and the weighting matrix H101 (see Appendix A) leads to a new correlation matrix SH
101

(disclosed in Appendix C), with the eigenvalues below

λ ∈ {3.70; 2.49; 1.83; 1.05; 0.64; 0.27; 0.02; 0.00; 0.00; 0.00}.

The three last values equal 10−5, which is the lower bound defined in the algorithm. This means
that the three negative eigenvalues of G101 (see Table 2) have been replaced by the lowest possible
value. One then measures the standardized distance between the initial pseudo-correlation matrix
G101 and its PSDized version SH

101:

DH
101 =

||SH
101 − G101||H
||G101||H

= 19.7%.

It thus seems that PSDization globally had a great impact on the pseudo-correlation matrix. Some
coefficients were strongly modified, see for instance ρ65 (fictional correlation between equity and
spreads). Indeed, ρ65 equals 0.83 at the beginning in G101, but is close to 0.54 after PSDization in SH

101.
Such an example highlights the need for insurers to check all the modifications, in order to gain control
and monitor their internal model.

4. Sensitivity of the Matrices to PSDization

In this section, we would like to illustrate how the correlation matrix can be modified when
performing PSDization by the Rebonato-Jackël algorithm, with toy examples. We specifically investigate
how the coefficients of G31 (Appendix A) change during the sole PSDization, and also look at
the evolution of individual correlation coefficients when considering other classical operations for
practitioners: permutations of some coefficients before PSDization, change of matrix dimension (before
PSDization), or weights given to the correlation coefficients during PSDization. For this purpose,
we consider the following initial weighting matrix

Hinit =

 1 0.1 0.9
0.1 1 0.5
0.9 0.5 1

 .

These operations mainly correspond to the decisions that actuaries have to make when developing
internal models for risk aggregation. Note that the impact on the capital requirement can be
substantially different from the impact in terms of matrix norm, according to the respective importance
of the loss marginals. This impact will be studied in Section 5.

4.1. Impact of Permutations

To study how permutations of risks defining the correlation matrix impact the standard PSDization
process, we first consider the permutation σ such as1 2 3

↓ ↓ ↓
2 3 1

 .

As a result, Table 3 shows the obtained modifications of the correlation coefficients:
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Table 3. Modification of initial correlation coefficients due to permutations of risks.

Coefficient Before PSDization Direct PSDization PSDization after Permutation

ρ12 −0.9 −0.585 −0.605
ρ13 −0.5 −0.473 −0.476
ρ23 −0.5 −0.437 −0.411

Examining the coefficients, we notice that they are significantly modified: first by the PSDization
process itself, but also by the permutation of risks. This last result is surprising, since there
should be no theoretical impact with this operation. However, because our algorithm presents local
minima issues, the choice of the order of risk factors (arbitrarily made by the insurer) matters when
performing PSDization.

To figure out more comprehensively the impact of permutations, it would be best to look at the
exhaustive list of permutations for a given pseudo-correlation matrix. Remember that a D-dimensional
matrix admits D! permutations, and let us consider the example G51. Figure 1 shows the Frobenius
distance to the initial matrix for the 5! permutations of G51, knowing that this distance between G51

and SH
51 initially equals 1.68 without any permutation. The Frobenius norm is clearly not the norm that

the algorithm optimizes, but it simply illustrates to which extent the solution matrix SH
51 is modified.

Two remarks can be made here. First, the distances follow a block pattern caused by the order of the
permutations. Second, the permutations do not always lead to an increase in the distance to the initial
pseudo-correlation matrix.

0 20 40 60 80 100 120

1.
4

1.
5

1.
6

1.
7

Permutation

Fr
ob
en
iu
s-
D
is
ta
nc
e

Figure 1. Impact of permutations on the Frobenius norm, in the case of G51 and H51.

4.2. Adding a Risk: Increase the Matrix Dimension

Another arbitrary element chosen by the actuaries of the company is the number of risk factors to
be aggregated. In some cases, it may be necessary to model many risk factors, according to the use of
the internal model that is made by the business units (need to model many lines of business when
modelling the reserving loss factor for instance). These choices have to be made for risk factors that are
not material at Group level, even if they can be important for the concerned subsidiaries. Nevertheless,
these choices will impact the final SCR through the modification brought to the overall correlation
matrix during PSDization. Still based on the same example, let us consider the following case:
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 1 −0.9 −0.5
−0.9 1 −0.5
−0.5 −0.5 1

 →


1 −0.9 −0.5 0.1
−0.9 1 −0.5 0.1
−0.5 −0.5 1 0.1
0.1 0.1 0.1 1

 .

As can be noticed, the correlation is low between the added and the other risks.
Direct PSDization obviously gives the same results, whereas correlation coefficients are slightly

modified after PSDization when introducing the new risk (see Table 4). Changes to these coefficients
are difficult to anticipate, but it seems that the impact is lower in this case than with permutations.
A natural question would be to understand whether the value of the correlation coefficient that was
added is key to explaining the modifications obtained in the PSDized correlation matrix. Figure 2
shows this impact on the Frobenius norm, with a new risk with correlation coefficients that vary
from 0.1 to 1. Results are intuitive: the higher the coefficients added, the wider the Frobenius norm.
PSDization is indeed a whole process that takes into account every coefficient, including the one that
was added.

Table 4. Modification of initial correlation coefficients due to the addition of a new risk.

Coef. Before PSDization Direct PSDization PSDization with Higher Dimension

ρ12 −0.9 −0.585 −0.577
ρ13 −0.5 −0.473 −0.471
ρ23 −0.5 −0.437 −0.435

2 4 6 8 10

1.
70

1.
75

1.
80

1.
85

1.
90

1.
95

Empty dimension - different correlation

Fr
ob
en
iu
s-
di
st
an
ce

Figure 2. Impact of adding a new dimension on the Frobenius norm (through modified PSDized
coefficients), with various correlation coefficients corresponding to the new risk.
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4.3. Impact of Confidence Weights

Finally, the choice of the weights associated to the terms of the correlation matrix, which somewhat
represents the confidence level given by experts to the individual correlation coefficients, can also have
a significant impact on the PSDized matrix. To illustrate this, still keeping in mind the example G31

with the initial weights listed in Hinit, we consider the new following weights:ω11 ω12 ω13

ω21 ω22 ω23

ω31 ω32 ω33

 =

 1 0.2 0.8
0.2 1 0.4
0.8 0.4 1

 .

The PSDized matrix is now given in Table 5:

Table 5. Modification of initial correlation coefficients due to the introduction of weights.

Coef. Before PSDization PSDized (Initial Weights) PSDization with New Weights

ρ12 −0.9 −0.585 −0.642
ρ13 −0.5 −0.473 −0.463
ρ23 −0.5 −0.437 −0.381

Clearly, correlation coefficients significantly vary. It illustrates that, as expected, the lower the
weight, the further the modifications are from the initial coefficient. An increased weight on some
correlation coefficients clearly leads to an increased importance in the PSDization process, and thus less
modification for them (so as to minimize the Frobenius norm). To generalize and better understand to
which extent the weights could impact the correlation coefficients after PSDization, Figure 3 shows the
Frobenius norm between the solution SH

51 and the initial matrix G51, with weights varying from H51 to
a limit weighting matrix given by

Hlimit =


1 0.5 0.5 0.5 0.5

0.5 1 0.2 0.5 0.5
0.5 0.2 1 0.6 0.6
0.5 0.5 0.6 1 0.1
0.5 0.5 0.6 0.5 1

 .

This limit weighting matrix is used for illustration purposes only. It corresponds to increasing
linearly by +0.4 the lowest weights of the matrix H51, while decreasing the highest weights by
the same factor. Figure 3 shows that the Frobenius norm decreases as the weighting matrix is
distorted towards the limit Hlimit, and a closer analysis reveals that this phenomenon is mainly
due to the correlation coefficients ρ24, ρ25, ρ34 and ρ35 of G51 (and their transposed coefficients), which
exhibit lesser modifications than with the initial weighting matrix since their weights are significantly
increased: from 0.1 to 0.5 and respectively from 0.2 to 0.6.
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Figure 3. Impact of weights on the Frobenius norm, in the case of the example G51.

4.4. Summary and Comments on the Other Two Algorithms

To put it in a nutshell, Figure 4 shows the impact of permutations and weights (the two most
prominent operations) on the Frobenius norm, in the conditions stated above. It shows that the impact
on the norm is more important when weights vary than when the order of risk factors is changed.
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Figure 4. 3D plot: impact of permutations and weights on the Frobenius norm (with G51 and H51).

In addition, it must be noted that low dimensions are used in this publication so as to keep
computation time at an acceptable level, but when dimensions increase, the initial matrix can be farther
from the PSD target. Indeed, Gerschgorin’s circle theorem states that ∀G ∈ Cn×n, ∀λ ∈ Spec(G),
∃i ∈ J1; nK such as λ ∈ {z ∈ C, |z− gii| ≤ ∑

j 6=i
|gij|}. In particular, if G is a pseudo-correlation matrix

of dimension n× n, its eigenvalues λ belong to the interval [2− n; n]. To illustrate this practically,
a matrix G100 of size 100× 100 was randomly generated (defined as the symmetric part of an initial
matrix with 10,000 valuesbetween −1 and 1, and diagonal coefficients forced to 1). The matrix thus
obtained has 43 negative eigenvalues, where the lowest one equals −6.74. In this case, G100 must
be significantly transformed to become PSD: for all three algorithms, the most modified coefficient
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changes from 0.96 to 0.10. Nevertheless, the AP and the Newton algorithms still give overall better
results than the Rebonato–Jäckel algorithm:

||SPA
100 − G100||2 = ||SN

100 − G100||2 = 28.969 ≤ ||S100 − G100||2 = 29.015.

Furthermore, according to the authors’ observations, permutations do not affect the PSD solution
when using the AP or the Newton algorithms, whatever the dimension of the correlation matrix.
The previously observed sensitivity to permutations is due to the convergence of the Rebonato–Jäckel
algorithm to a local minimum. Since a PSD matrix remains PSD after permutations, and since the
norms studied do not change under permutation, the PSD solution should remain the same before and
after permutation (provided that the algorithm used reaches the absolute minimum). It is therefore
expected that the known extensions of the Newton algorithm to integrate weights would not generate
a significant sensitivity to permutations.

Finally, let us mention that our conclusions about the addition of a new risk dimension apply
to all algorithms. Adding a new dimension modifies the eigenvalues, and can thus require further
transformations to become PSD. However, the ability to use weights can help reduce this impact. For
example, when adding an empty dimension to G51 with a 10% correlation between the initial and the
added risk factors, the ability to set weights associated to this new dimension to 0 (instead of 1 for all
other correlation coefficients) enables the Rebonato–Jäckel algorithm to reach the nearest solution:

||SH
51ed − G51ed||H = 0.991 ≤ ||SPA

51ed − G51ed||H = ||SN
51ed − G51ed||H = 0.996.

After these illustrations, we can now move on to the analysis of such transformations on the
capital requirement.

5. Analysis of Solvency Capital Requirement Sensitivity

The importance of PSDization on the final correlation matrix (to be used to assess the insurer’s
own funds requirement) has now been highlighted. The correlation coefficients chosen by the experts,
or even those defined by statistical means can be significantly modified. The aim of this section is to
provide some real-life sensitivities concerning the computation of the global SCR thanks to internal
models. We would like to see SCR as a function of the main parameters in the actuary’s hand.

To carry this out, genetic algorithms are used to find a range [min, max]3 of values to which the
SCR belongs; given a copula, realizations of risk factors, and proxy functions (more details later).
The implemented algorithms are detailed in Appendices D.1 and D.2, respectively, for the case of
permutations and weights. They correspond to an adaptation of the Rebonato-Jackël algorithm that
incorporates these operations. At the end, the range is obtained for a given pseudo-correlation matrix G,
a given weighting matrix H, and possibly a given permutation σ. Hence, we want to evaluate the
function g such that g : (G, H, σ)→ g(G, H, σ) = SCR(PSDH(σ.G)), where σ.G stands for the effect
of σ on the risk factors represented in G, and PSDH(G) represents the nearest (from G) PSD matrix
obtained using the Rebonato-Jackël algorithm with weights H. The considered permutation σ was
presented at the beginning of Section 4.1.

3 Be reminded that the genetic algorithms must be seen as “clever” sensitivities rather than fully convergent optimization
algorithms. There is no guarantee that the convergence to a minimum is obtained.
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5.1. Loss Factors or Risk Factors?

It must first be stated that estimating the loss generated by the occurrence of some given risk
is a difficult task. It is easier to describe the behavior of risk factors through marginal distributions.
For instance, if the interest rates rise, the potential loss for the insurer depends on impacts on both
assets (e.g., value of obligations drops) and liabilities (contract credited rates may vary, which should
modify expected lapse rates). To compute the loss associated to the variation of some risk factors,
one thus needs a (very) complex transformation. In practice, to save computation time, simple
functions (polynomial form) approximate these losses. However, the insurer can sometimes directly
evaluate the loss related to one given loss factor: this is the case for example when considering the
reserve risk, which can be modeled by classical statistical methods (bootstrap). The insurer’s total loss,
P, thus reads

P = 11R6=∅ f ((Xi)i∈R) + 11P 6=∅ ∑
i∈P

Xj,

where f is a given (proxy) function, Xi and Xj are random variables, P is the set of loss factors andR
is the set of risk factors.

For our next analysis, Table 6 gives the different functional forms depending on the risk dimension
and the risk factors Xi. For the sake of simplicity, one considers that all our marginals (Xi and Xj)
follow the same distribution but with different parameters. This common distribution is lognormal
LN (µ, λ), since it is widely used in insurance for prudential reasons. Table 7 sums up the parameters
involved in the eight different cases under study: vectors Xa

k (where k refers to the dimension of the
vector) will be used to compute the global loss in the case of loss factors aggregation (meaning that
R = ∅), whereas vectors Xb

k will be the input of proxy functions defined in Table 6 for risk factors
aggregation (P = ∅). We distinguish these two configurations to see whether taking into account
proxy functions gives very different SCR sensibilities as compared to only aggregate risk factors.

Table 6. Polynomials used as proxy functions to obtain the overall insurer’s loss.

Dimension Functional Form under Consideration

3 P = f ((Xi)i∈[1,3]) = 0.5X2
1 + 2X4

2 + 0.3X3 + 10X1X2

4 P = f ((Xi)i∈[1,4]) = 5X1 + 0.02X2
2 + 2000X3 + 5X3/2

4
5 P = f ((Xi)i∈[1,5]) = X1 + 0.1X2

2 + 50X3 + X1/2
4 − 1.2X5

10 P = f ((Xi)i∈[1,10]) = 0.5X3
1 + 0.4X3

2 + 3X2
3 + 2X2

4 + ∑7
i=5 X2

i + 0.5X2
8 + ∑10

i=9 Xi

Table 7. Marginals for each risk factor and corresponding 99.5th percentile.

Name Dim. Parameters X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Xa
3 3 (µ, λ) (6,0.5) (5,0.5) (4,0.1)

Q99.5 1463 538 71

Xb
3 3 (µ, λ) (6,0.8) (3,0.1) (12,2)

Q99.5 3167 26 28,110,637

Xa
4 4 (µ, λ) (6,0.5) (5,0.5) (4,0.1) (3,0.9)

Q99.5 1463 538 71 204

Xb
4 4 (µ, λ) (1,5) (2,4) (3,3) (1,4)

Q99.5 1,065,704 2,20,426 45,592 81,090

Xa
5 5 (µ, λ) (6,0.5) (5,0.5) (4,0.1) (4,0.9) (3,0.3)

Q99.5 1463 538 71 555 43

Xb
5 5 (µ, λ) (1,3) (2,2) (1,1) (2,4) (1,3)

Q99.5 6170 1276 36 220,426 6170

Xa
10 10 (µ, λ) (6,0.5) (5,0.5) (5,0.2) (6,0.1) (4,0.3) (5,0.6) (5,0.5) (5,0.4) (5,0.3) (6,0.3)

Q99.5 1463 538 248 522 118 696 538 416 321 874

Xb
10 10 (µ, λ) (1.2,2) (2,1.5) (0.3,2.5) (2,2) (1.5,2) (3.5,1) (1.5,2) (2.5,2) (5,2) (6,2)

Q99.5 573 352 845 1276 774 435 774 2104 25,633 69,679
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5.2. Variance–Covariance or Copula Approach, Pros and Cons

Except for the PSDization step itself; which generates different results, another important choice
lies in the aggregation approach. Here, one would like to detail the reasons for choosing one of them
(i.e., copula or variance–covariance). Let us consider the simplest framework: the loss P only depends
on loss factors (no need to apply proxy functions that link risk factors to loss factors). It is then possible
to model this loss as follows: P = ∑i∈P Xi.

Individual loss factors have to be modeled and estimated by the actuaries for internal models, or
come from standardized shocks if using the Standard Formula. Fortunately, it is likely that extreme
events corresponding to the 99.5th percentile of every loss factors do not occur at the same time: there
is thus a mitigation effect, which generally implies

q99.5%(P) ≤ ∑
i∈P

q99.5%(Xi).

As already mentioned in Section 1, the regulation states that the variance–covariance approach
can be used to aggregate risks, with the given correlation matrices. This method has some advantages,
but also some drawbacks (Embrechts et al. 2013). Of course, it is the easiest way to aggregate risks:
the formula is quickly implemented (which allows for computing sensitivities without too much
effort), and easy to understand. However, it does not provide the entire distribution of the aggregated
loss, knowing that the insurer is sometimes interested in other risk measures than the unique 99.5th
percentile. Moreover, this approach is not adequate for modelling nonlinear correlations, which are
common when considering the tails of loss distributions. It means that it is very tricky to calibrate
the correlation matrix so as to ensure that we can effectively estimate the 99.5th percentile of the
aggregated loss. In their paper, Clemente and Savelli (2011) and Sandström (2007) discussed this and
proposed a way to modify the Solvency II aggregation formula in order to consider skewed marginal
distribution. Finally, the variance–covariance approach is too restrictive since it does not allow the
correlation of risk factors, but only the correlation of losses. This makes the interpretation of scenarios
generating a huge aggregated loss very difficult.

For all these reasons, internal models are generally developed using copulas: they enable the
simulation of a large number of joint replications of risk factors, before applying proxy functions
(most of the time). With this technique, insurers obtain the full distribution of P, and thus richer
information among which is the quantile of interest (Embrechts and Puccetti (2010), Lescourret and
Robert (2006)). Common copulas in the insurance industry (Gaussian and Student copulas) are based
on the linear correlation matrix, the marginals being the risk and loss factors. This is linked to the main
property of copulas: they allow the definition of the correlation structure and the marginals separately.
For example, aggregation with the Gaussian copula can be simulated with the following steps:

• simulation of the marginals stand-alone (stored in the vector X ∈ Rn×B, where n stands for the
number of risk factors and B the number of random samples);

• simulation of a Gaussian vector Y through the expression Y = TZ, where T represents the
Choleski decomposition of the correlation matrix ρ = (ρij)(i,j)∈J1,nK and Z is an independent
Gaussian vector of size n;

• ordering X in the same order as Y to ensure that ∀j ∈ {1, ..., B}, ∀i ∈ {1, ..., n}, q(Xij) = q(Yij)

(q(x) stands for the quantile corresponding to x).

5.3. Results Using a Simplified Internal Model

Applications presented hereafter were designed to consider a wide range of operational situations
in which the insurer aims to estimate its global SCR.

For a given PSD correlation matrix SH
xy, and given values for the vector of risk factors (simulated

with lognormal distributions), one performs Q = 131,072 = 217 simulations for the aggregation of risk
factors (dependence structure). As a matter of fact, there are two sources of uncertainty explaining
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the variation of SCR values (SCR = (SCRq)q=1,...,Q). First, the genetic algorithm itself is likely to
have reached different local solutions depending on the simulation. Second, the simulation of the
Gaussian or Student vectors to model the correlation through copulas may change. In order to focus
the study on correlation, it must be noted that marginals were simulated initially and then kept fixed.
Roughly, it can be assumed that the confidence interval of the global SCR is similar to that of a Gaussian
distribution (SCRq ∼ SCR ∼ N (m, σ)) because of the Central Limit Theorem and of the independence
of the simulations of each SCR, i.e.,

P(|SCR−m| < 1.65 σ) = 90%,

where σ stands for the standard deviation of SCR, and m its mean. Of course, the estimation of
these parameters is made simple using their empirical counterparts, denoted by m̂ = (1/Q)∑q SCRq

and σ̂2 = (1/(Q− 1))∑q(SCRq − m̂)2. Table 8 summarizes the estimated quantities for each case in
our framework.

Table 8. Mean and standard deviation of the global Solvency Capital Requirement (SCR) (Q = 217

simulations).

Gaussian Copula Student Copula
(3 degrees of freedom)

Loss factors Xa
k Risk Factors Xb

k Loss Factors Xa
k Risk Factors Xb

k

Example Dim. k m̂ σ̂ m̂ σ̂ m̂ σ̂ m̂ σ̂

SH
31 3 2566 0.06% 12,119,354 0.16% 2576 0.11% 12,473,296 0.32%

SH
32 3 2694 0.08% 13,808,174 0.19% 2813 0.20% 14,641,263 0.86%

SH
41 4 3319 0.10% 3,532,563 0.10% 3379 0.16% 3,555,426 0.33%

SH
42 4 2809 0.14% 3,563,414 0.31% 2997 0.29% 3,578,124 0.35%

SH
51 5 2605 0.09% 9359 0.68% 2677 0.18% 9411 0.59%

SH
52 5 3139 0.13% 8303 0.28% 3260 0.32% 8531 0.99%

SH
101 10 5825 0.26% 4,174,500 0.73% 6717 0.31% 4,234,635 1.14%

Then, we study the impact of our transformations (permutation, weights varying, and higher
dimension) as compared to this standard deviation σ̂. More precisely, we consider one operation,
perform the same number of simulations, and store the minimum and maximum values of the
vector (SCRq)q=1,...,Q. This way, it is possible to define a normalized range (NR) for these values,
as expressed below:

NR =
max(SCR)−min(SCR)

m̂
. (2)

If NR is lower than (2× 1.65× σ̂), the transformation is said to have a limited impact on the SCR.
Otherwise, it is considered as a significant impact. The worst cases correspond to situations where NR
is greater than (2× 2.89× σ̂). The multiplier 2 enables us to take into account the fact that there are
two sources of uncertainty (genetic algorithm and simulated dependence structure). All the results are
stored in Table 9.

5.3.1. Impact of Permutations on the Global Solvency Capital Requirement

Of the 14 examples under study (seven pseudo-correlation matrices Gxy times Gaussian or Student
copula, see Table 9), the permutation systematically has a very strong impact on the global SCR. This
change can represent up to 6.7% in practice, although it should have no theoretical impact. This is
mainly due to the PSDization process, which leads to the selection of different local minima after a
permutation is made. This highlights two phenomenona: the need to control the bias induced by the
initial choice of the insurer concerning the order of risk factors, and the need to initially define PSD
correlation matrices (revisiting experts’ opinions, and identifying incoherent correlation submatrices).



Risks 2018, 6, 36 16 of 23

Table 9. Sensitivities of the global SCR to transformations on the correlation matrix (permutation, two different cases for weighting the correlation coefficients,
and addition of a new risk), depending on copula, and type of aggregation (risk factors/loss factors). Column ‘Imp.’ describes the strength of the impact of the
transformation under study: ‘0’ refers to a limited impact (NR < 2× 1.65σ̂, see (2)), ‘+’ means a significant impact (NR ∈ [2× 1.65σ̂, 2× 2.89σ̂]), and ‘++’ a very strong
impact (NR > 2× 2.89σ̂).

Gaussian Copula Student Copula

Loss Factors Xa
k Risk Factors Xb

k Loss Factors Xa
k Risk Factors Xb

k

k Operation SCRmin SCRmax NR Imp. SCRmin SCRmax NR Imp. SCRmin SCRmax NR Imp. SCRmin SCRmax NR Imp.

G31 3 Permut. 2562.64 2572.78 0.4% ++ 2565.31 2589.81 0.95% ++
W Sensi1 2564.11 2577.68 0.53% ++ 12,081,399 12,120,187 0.32% 0 2575.71 2608.43 1.27% ++ 12,326,216 12,469,140 1.16% +
W Sensi2 2560.19 2565.96 0.23% + 12,072,651 12,135,251 0.52% 0 2565.05 2575.55 0.41% + 12,382,841 12,486,700 0.84% 0

initial: final: initial: final: initial: final: initial: final:
dim+1 2593.96 2568.93 0.99% ++ 12,132,660 12,249,386 0.96% ++ 2576.77 2578.86 0.08% 0 12,435,526 12,568,778 1.07% +

G32 3 Permut. 2635.26 2758.19 4.66% ++ 2726.01 2891.99 6.09% ++
W Sensi1 2627.97 2665.76 1.44% ++ 12,447,404 12,829,070 3.07% ++ 2705.99 2749.83 1.62% ++ 13,758,628 14,050,626 2.12% 0
W Sensi2 2675.38 2693.56 0.68% ++ 12,765,514 12,971,883 1.62% ++ 2784.25 2803.88 0.70% + 14,133,464 14,656,943 3.70% +

dim+1 2709.62 2694.79 0.55% ++ 13,127,451 13,249,432 0.93% + 2802.37 2805.6 0.12% 0 14,704,558 14,623,516 0.55% 0

G41 4 Permut. 3293.26 3356.76 1.93% ++ 3354.11 3429.74 2.25% ++
W Sensi1 3121.05 3232.06 3.56% ++ 3,516,332 3,532,352 0.46% + 3288.28 3325.72 1.14% ++ 3,515,774 3,541,524 0.73% 0
W Sensi2 3297.22 3320.04 0.69% ++ 3,520,161 3,532,792 0.36% + 3360.15 3378.96 0.56% + 3,517,889 3,541,680 0.68% 0

dim+1 3228.74 3323.74 0.17% 0 3,529,310 3,534,685 0.15% 0 3364.13 3572.28 6.19% ++ 3,533,674 3,541,166 0.21% 0

G42 4 Permut. 2759.38 2824.89 2.37% ++ 2909.99 3011.72 3.50% ++
W Sensi1 2814.42 2905.75 3.25% ++ 3,519,944 3,551,629 0.90% 0 2995.14 3060.68 2.19% ++ 3,509,471 3,555,086 1.30% +
W Sensi2 2803.70 2828.836 0.90% ++ 3,540,453 3,565,096 0.70% 0 2933.73 2996.47 2.14% ++ 3,521,590 3,555,627 0.97% 0

dim+1 2814.497 2801.376 0.47% + 3,564,593 3,561,905 0.08% 0 2996.24 2999.27 0.10% 0 3,549,029 3,529,009 0.56% 0

G51 5 Permut. 2607.65 2627.15 0.75% ++ 2658.80 2700.28 1.56% ++
W Sensi1 2637.39 2662.24 0.94% ++ 8541.412 8931.55 4.57% ++ 2697.89 2745.08 1.75% ++ 8768.985 9148.675 4.33% ++
W Sensi2 2607.38 2616.21 0.34% + 9201.858 9328.433 1.38% 0 2660.28 2674.21 0.52% 0 9136.763 9394.289 2.82% +

dim+1 2615.5 2626.37 0.42% + 9333.50 9336.61 0.03% 0 2670.86 2665.32 0.21% 0 9457.66 9409.49 0.51% 0

G52 5 Permut. 2952.79 3152.47 6.76% ++ 3113.23 3300.16 6.00% ++
W Sensi1 2929.41 3088.92 5.45% ++ 8230.70 8649.88 5.09% ++ 3148.10 3241.26 2.96% ++ 8444.65 8834.73 4.62% +
W Sensi2 3120.47 3141.46 0.67% + 8180.51 8323.61 1.75% ++ 3100.95 3248.25 4.75% ++ 8339.17 8579.71 2.88% 0

dim+1 3139.02 3145.94 0.22% 0 8291.98 8337.67 0.55% 0 3264.48 3228.87 1.09% + 8473.53 8680.028 2.44% 0

G101 10 Permut. 5767.08 5887.43 2.09% ++ 6657.96 6837.03 2.69% ++
W Sensi1 5716.66 5864.03 2.58% ++ 4,096,899 4,166,343 1.69% 0 6631.49 6737.25 1.60% + 4,077,298 4,225,148 3.62% +
W Sensi2 5765.11 5816.17 0.89% + 4,086,983 4,181,583 2.31% 0 6633.39 6728.64 1.44% + 4,104,747 4,240,035 3.29% +

dim+1 5800.75 5811.27 0.18% 0 4,226,948 4,192,248 0.82% 0 6701.83 6753.39 0.76% 0 4,224,386 4,362,900 3.27% 0
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To have a more comprehensive view of this impact, Figure 5 illustrates it on the total loss
distribution (rather than the sole 99.5th percentile), with G52, H52 and considering the aggregation
of loss factors. The red curve corresponds to the loss distribution after applying the permutation
(1 7→ 5; 4 7→ 1; 5 7→ 4) to G52 in the case of a Gaussian copula, whereas the blue one corresponds to
the permutation (2 7→ 3; 3 7→ 4; 4 7→ 5; 5 7→ 2).

Figure 5. Illustration of the impact of the permutation on the loss distribution, with a focus on the right
on the area around the capital requirement (99.5 percentile).

5.3.2. Impact of the Modification of Weights on Solvency Capital Requirement

Our sensitivities relate to weighting coefficients varying in a given range. This range is defined
by weights between Hmin = [0](i,j)∈J1,nK2 and Hmax = [1](i,j)∈J1,nK2 . This sensitivity is denoted by ‘W
Sensi1’ in Table 9. Of the 28 examples analyzed here, (seven pseudo-correlation matrices Gxy, times
(Gaussian or Student copula), times (risk or loss factors)), 17 cases have a very strong impact on the
SCR. The range [SCRmin; SCRmax] can represent more than 5.4% of the SCR, which is really huge
in practice.

The same analysis with stronger constraints (weights belonging to an interval of width 0.2 around
the initial weights, i.e., Hmin = H − [0.1](i,j)∈J1,nK2 and Hmax = H + [0.1](i,j)∈J1,nK2 , see ‘W Sensi2’
in Table 9) shows that of 28 examples, seven cases have a very significant impact on the final SCR,
with a range likely to represent more than 4.7% of the SCR. Furthermore, this shows the necessity to
properly define correlation coefficients at the very beginning.

5.3.3. Impact of Adding a Dimension to the Correlation Matrix

In practice, the insurer’s global loss often incorporates some negligible loss factor. In the simple
case where there are only loss factors affecting the global loss, it means that

P = ∑
j∈P ,j 6=n+1

Xj + ε Xn+1,
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where ε thus tends to 0. The limit case would be ε = 0, which means that the (n+1)th risk factor would
have no impact on the insurer’s loss, but still plays a role through its presence in the correlation matrix
and its impact in the PSDization process. The correlation between this risk factor and others is set to 0.1
(as in Section 4.2). We measure the SCR value before and after adding this dimension.

Of the 28 examples analyzed (see ‘dim+1’ in Table 9), almost one third (nine cases exactly) lead
to a statistically significant impact on the final SCR (strong or very strong impact on SCR). However,
except in one specific case involving an impact value around 6%, most of the impacts seem to be lower
than with other operations. Once again, it is important to realize that this transformation should have
no theoretical impact. Of course, it suggests that it would be worth conducting deeper analysis on
this aspect, especially on the addition of more than one dimension and on the modification of the
correlation coefficients of the added risk factor.

6. Conclusions

Insurers using internal models, as well as supervisors, wonder quite rightly about the robustness
of their PSDization algorithm. Our study shows and highlights the importance of PSDization
through quantified answers to very practical questions on a series of real-life examples. Of the
98 (3×28 + 14) examples based on various configurations (different copulas and ways to consider
risks, see Table 9), approximately one half (exactly 47) have significant impacts on the global SCR
(up to 6%) when studying sensitivities to our three tuning parameters (weights given to individual
correlation coefficients, permutations, and addition of a fictive business line). It can be noted that
permutations always lead to a significant variation of the overall SCR, with a normalized range
(see Equation (2)) often greater than in other cases. Adequate sensitivities should therefore be
performed when using the Rebonato–Jäckel algorithm since there is to the authors’ knowledge no
way to know a priori which would be the most adapted choice of risk order for a given company.
Knowing that these transformations are either theoretically neutral, or should have a limited impact
on the global capital requirement, this underlines that practitioners’ choices are fundamental when
performing risk aggregation in internal models. Moreover, the use of proxy functions do not seem to
change conclusions: SCR sensitivity is similar when considering only loss factors. A strong control
of PSDization by supervisors thus makes sense, and a good understanding of the behaviour of the
PSDization algorithm is required.

The following best practices were identified: (i) develop a sound internal control framework
on both the triggers generating negative eigenvalues (e.g., expert judgments) and the PSDization
step itself, and (ii) assess the need for adding a new risk (e.g., new business line) in terms of its
impact on the correlation matrix and thus on the global SCR. Regarding the former point, independent
validations and systematic reviews of the modifications brought to the correlation matrix by the
algorithm should be analyzed, and a wide number of sensitivities has to be implemented to challenge
the results. Concerning the dimension of the risk matrix, there seems to be a compromise to find:
adding business lines allows for increasing granularity when describing the correlation between risks,
but tends to cause more disturbance on the individual correlation coefficients during PSDization.
As usual, the best choice lies in an intermediate dimension.

Finally, this work could be extended in several ways, among which the definition of algebraic tests
to anticipate inconsistencies in the experts’ choices; and a deeper understanding of the permutations
leading to the minimum or maximum values of the SCR. In particular, if these permutations show
some similar features, it would be possible to define best practices when ordering risk factors.

Acknowledgments: This work is partially supported by BNP Paribas Cardif (Paris, France), through the Research
Chair “Data Analytics and Models for Insurance” (DAMI). We thank Hansjörg Albrecher and Léonard Vincent
(University of Lausanne, Switzerland) for useful suggestions, and would also like to thank three anonymous
referees for their constructive comments.



Risks 2018, 6, 36 19 of 23

Author Contributions: V. Poncelet conceived the experiments; C. Saillard designed and performed the
experiments; X. Milhaud and C. Saillard analyzed the data and contributed reagents/materials/analysis tools;
X. Milhaud and C. Saillard wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analysis, or interpretation of data; and in the writing of the manuscript.

Appendix A. Pseudo-Correlation Matrices under Study

Let us present the pseudo-correlation matrices, but also the weighting matrices coming from
expert judgments to be taken into account during PSDization.

Example 1:

G31 =

 1 −0.9 −0.5
−0.9 1 −0.5
−0.5 −0.5 1

 H31 =

 1 0.9 0.8
0.9 1 0.1
0.8 0.1 1

 .

Example 2:

G32 =

 1 −0.6 0.5
−0.6 1 0.9
0.5 0.9 1

 H32 =

 1 0.1 0.1
0.1 1 0.9
0.1 0.9 1

 .

Example 3:

G41 =


1 0.9 −0.5 −0.7

0.9 1 0.2 0.1
−0.5 0.2 1 0.1
−0.7 0.1 0.1 1

 H41 =


1 0.9 0.2 0.9

0.9 1 0.2 0.1
0.2 0.2 1 0.1
0.9 0.1 0.1 1

 .

Example 4:

G42 =


1 0.1 −0.8 0.75

0.1 1 0.2 0.1
−0.8 0.2 1 0.9
0.75 0.1 0.9 1

 H42 =


1 0.1 0.9 0.2

0.1 1 0.1 0.1
0.9 0.1 1 0.9
0.2 0.1 0.9 1

 .

Example 5:

G51 =


1 −0.8 −0.9 −0.9 0.2
−0.8 1 0.9 −0.7 0.6
−0.9 0.9 1 0.2 −0.6
−0.9 −0.7 0.2 1 −0.1
0.2 0.6 −0.6 −0.1 1

 H51 =


1 0.9 0.1 0.9 0.1

0.9 1 0.6 0.1 0.1
0.1 0.6 1 0.2 0.2
0.9 0.1 0.2 1 0.1
0.1 0.1 0.2 0.1 1

 .

Example 6:

G52 =


1 0.7 −0.8 −0.8 0.2

0.7 1 0.8 −0.6 0.6
−0.8 0.8 1 0.2 −0.6
−0.8 −0.6 0.2 1 0.8
0.2 0.6 −0.6 0.8 1

 H52 =


1 0.1 0.9 0.9 0.1

0.1 1 0.1 0.9 0.1
0.9 0.1 1 0.1 0.9
0.9 0.9 0.1 1 0.1
0.1 0.1 0.9 0.1 1

 .

Example 7:

G101 =



1 −1 −0.28 0 0.63 −0.47 0.25 0.75 0 0
−1 1 0.77 0.5 −0.38 0.88 0.25 0.75 0.25 0.25
−0.28 0.77 1 0.25 0.25 0.17 −0.25 0.25 0.5 0.5

0 0.5 0.25 1 0.25 0.25 0 0.5 0.5 0.5
0.63 −0.38 0.25 0.25 1 0.83 0.25 0.75 0 0
−0.47 0.88 0.17 0.25 0.83 1 0.75 0.75 0 0
0.25 0.25 −0.25 0 0.25 0.75 1 0.5 0.25 0.25
0.75 0.75 0.25 0.5 0.75 0.75 0.5 1 0.25 0.25

0 0.25 0.5 0.5 0 0 0.25 0.25 1 0.75
0 0.25 0.5 0.5 0 0 0.25 0.25 0.75 1


.
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H101 =



1 0.3 0.9 0.3 0.9 0.9 0.3 0.3 0.3 0.3
0.3 1 0.9 0.3 0.9 0.9 0.3 0.3 0.3 0.3
0.9 0.9 1 0.3 0.3 0.9 0.3 0.3 0.3 0.3
0.3 0.3 0.3 1 0.3 0.3 0.3 0.3 0.3 0.3
0.9 0.9 0.3 0.3 1 0.9 0.3 0.3 0.3 0.3
0.9 0.9 0.9 0.3 0.9 1 0.3 0.3 0.3 0.3
0.3 0.3 0.3 0.3 0.3 0.3 1 0.3 0.3 0.3
0.3 0.3 0.3 0.3 0.3 0.3 0.3 1 0.3 0.3
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1 0.3
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1


.

Appendix B. PSDized Matrices without Weighting Coefficients

To be noted that except for the highest dimension under consideration (dimension 10), the three
algorithms give the same solution.

Examples 1 and 2: SPA
31 = SN

31 = S31, and SPA
32 = SN

32 = S32, where

S31 =

 1 −0.725 −0.371
−0.725 1 −0.370
−0.371 −0.370 1

 , S32

 1 −0.436 0.343
−0.436 1 0.695
0.343 0.695 1

 .

Examples 3 and 4: SPA
41 = SN

41 = S41, and SPA
42 = SN

42 = S42, where

S41 =


1 0.711 −0.398 −0.573

0.711 1 0.122 0.003
−0.398 0.122 1 0.152
−0.573 0.003 0.152 1

 , S42 =


1 0.068 −0.481 0.444

0.068 1 0.165 0.133
−0.481 0.165 1 0.566
0.444 0.133 0.566 1

 .

Examples 5 and 6: SPA
51 = SN

51 = S51, and SPA
52 = SN

52 = S52, where

S51 =


1 −0.508 −0.830 −0.585 0.140

−0.508 1 0.651 −0.360 0.350
−0.830 0.651 1 0.148 −0.409
−0.585 −0.360 0.148 1 −0.221
0.140 0.350 −0.409 −0.221 1

 S52 =


1 0.483 −0.544 −0.697 0.225

0.483 1 0.392 −0.392 0.282
−0.544 0.392 1 0.060 −0.337
−0.697 −0.392 0.060 1 0.513
0.225 0.282 −0.337 0.513 1

 .

Example 7: In this example, the PSDized versions of the initial pseudo-correlation matrix differ
depending on the algorithm used:

SPA
101 = SN

101 =



1 −0.681 −0.310 −0.008 0.574 −0.241 0.158 0.390 0.017 0.017
−0.681 1 0.596 0.434 −0.010 0.684 0.233 0.390 0.269 0.269
−0.310 0.596 1 0.295 0.144 0.256 −0.222 0.293 0.480 0.480
−0.008 0.434 0.295 1 0.210 0.276 0.024 0.508 0.487 0.487
0.574 −0.010 0.144 0.210 1 0.520 0.308 0.710 −0.001 −0.001
−0.241 0.684 0.256 0.276 0.520 1 0.625 0.674 0.019 0.019
0.158 0.233 −0.222 0.024 0.308 0.625 1 0.537 0.226 0.226
0.390 0.390 0.293 0.508 0.710 0.674 0.537 1 0.245 0.245
0.017 0.269 0.480 0.487 −0.001 0.019 0.226 0.245 1 0.760
0.017 0.269 0.480 0.487 −0.001 0.019 0.226 0.245 0.760 1


;

S101 =



1 −0.671 −0.313 −0.018 0.563 −0.243 0.159 0.396 0.010 0.010
−0.671 1 0.592 0.422 −0.110 0.676 0.233 0.392 0.262 0.262
−0.313 0.592 1 0.296 0.146 0.259 −0.223 0.294 0.479 0.479
−0.018 0.422 0.296 1 0.217 0.281 0.025 0.507 0.486 0.486
0.563 −0.110 0.146 0.217 1 0.521 0.310 0.704 −0.000 −0.000
−0.243 0.676 0.259 0.281 0.521 1 0.625 0.669 0.018 0.018
0.159 0.233 −0.223 0.025 0.310 0.625 1 0.535 0.224 0.224
0.396 0.392 0.294 0.507 0.704 0.669 0.535 1 0.249 0.249
0.010 0.262 0.479 0.486 −0.000 0.018 0.224 0.249 1 0.761
0.010 0.262 0.479 0.486 −0.000 0.018 0.224 0.249 0.761 1


.
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Appendix C. PSDized Matrices with Weighted Coefficients

Since the only method that allows to integrate weights when looking for the closest PSDized
matrix is the Rebonato–Jäckel algorithm, we have here seven results from our seven examples:

Examples 1 and 2:

SH
31 =

 1 −0.848 −0.505
−0.848 1 −0.029
−0.505 −0.029 1

 , SH
32

 1 −0.278 0.187
−0.278 1 0.892
0.187 0.892 1

 .

Examples 3 and 4:

SH
41 =


1 0.844 −0.401 −0.707

0.844 1 −0.029 −0.329
−0.401 −0.029 1 0.216
−0.707 −0.329 0.216 1

 , SH
42 =


1 0.041 −0.614 0.041

0.041 1 0.129 0.144
−0.614 0.129 1 0.763
0.041 0.144 0.763 1

 .

Examples 5 and 6:

SH
51 =


1 −0.822 −0.795 −0.811 0.132

−0.822 1 0.834 0.353 0.155
−0.795 0.834 1 0.371 −0.412
−0.811 0.353 0.371 1 −0.193
0.132 0.155 −0.412 −0.193 1

 SH
52 =


1 0.569 −0.714 −0.776 0.310

0.569 1 0.049 −0.555 0.206
−0.714 0.049 1 0.213 −0.610
−0.776 −0.555 0.213 1 0.339
0.310 0.206 −0.610 0.339 1

 .

Example 7:

SH
101 =



1 −0.709 −0.294 −0.016 0.547 −0.313 0.116 0.366 0.012 0.012
−0.709 1 0.647 0.389 −0.158 0.660 0.236 0.355 0.291 0.291
−0.294 0.647 1 0.326 0.006 0.251 −0.226 0.334 0.468 0.468
−0.016 0.389 0.326 1 0.200 0.299 0.034 0.496 0.479 0.479
0.547 −0.158 0.006 0.200 1 0.539 0.355 0.719 −0.008 −0.008
−0.313 0.660 0.251 0.299 0.539 1 0.582 0.657 0.029 0.029
0.116 0.236 −0.226 0.034 0.355 0.582 1 0.561 0.220 0.220
0.366 0.355 0.334 0.496 0.719 0.657 0.561 1 0.257 0.257
0.012 0.264 0.468 0.479 −0.008 0.029 0.220 0.257 1 0.769
0.012 0.264 0.468 0.479 −0.008 0.029 0.220 0.257 0.769 1



Appendix D. Genetic Algorithms Used in This Paper

Appendix D.1. Algorithm with Permutations

(Genetic algorithm for permutations). Process to follow:

1. (Creation of the initial population): simulate a random population of N permutations, with the
identity: {σk ∈ Sn|k ∈ J1; NK}. We have chosen to use N = 6 for stability purposes and
computational feasibility.

2. (Ranking of the population): use the function which associates to each permutation the adequate
SCR (for fixed marginals, fixed weighting matrix, given loss function and copula) to rank the
individuals of the population.

3. (Reproduction of two individuals): for any couple (σ1, σ2) ∈ S2
n, create two new individuals by

the following permutation composition: σ′ = σ1 ◦ σ2 and σ′′ = σ2 ◦ σ1. If the two permutation
commute, compose one of them by any transposition σ′ ← τ ◦ σ′.

4. (Mutation): the mutation of a permutation corresponds to its composition by a random
transposition τ = (k, k + 1).

5. (Evolution of the population): the population evolves without any of its individuals disappearing,
which enables us to obtain at the end of the algorithm both a minimum and a maximum
(not corresponding necessarily to the absolute extrema—but only the results of the simulation).

6. (End of the algorithm): ends when a maximum number of iterations is obtained (5).
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Appendix D.2. Algorithm with Confidence Weights

(Genetic algorithm for weights). Process to follow:

1. (Creation of the initial population): simulate a random population of N weighting matrices
between Hmin and Hmax initially chosen: {Hk ∈ [−1; 1]n×n|k ∈ J1; NK}. We have chosen to use
N = 8 for stability purposes and computational feasibility.

2. (Ranking of the population): use the function which associates to each weighting matrices the
adequate SCR (for fixed marginals, given loss function and copula) to rank the individuals of
the population.

3. (Reproduction of two individuals): for any couple (H1, H2) ∈ ([−1; 1]n×n)2, create two new
individuals H’ et H” in the following manner (with H[,j] designating the j-th column of the matrix
H, and E(x) the integer part of x):{

∀j ≤ E( n
2 ), H′[, j] = H1[, j], H′′[, j] = H2[, j],

∀j > E( n
2 ), H′[, j] = H2[, j], H′′[, j] = H1[, j].

4. (Mutation): the mutation of a weighting matrix corresponds to the random modification of
a coefficient of the matrix H considered. The mutation consists in simulating a random coefficient
between 0 and 1.

5. (Evolution of the population): the population evolves without any of its individuals disappearing,
which enables us to obtain at the end of the algorithm both a minimum and a maximum
(not corresponding necessarily to the absolute extrema—but only the results of the simulation).

6. (End of the algorithm): ends when the maximum number of iterations is obtained (5).
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