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Abstract: Despite the widespread use of chain-ladder models, so far no theory was available to test
for model specification. The popular over-dispersed Poisson model assumes that the over-dispersion
is common across the data. A further assumption is that accident year effects do not vary across
development years and vice versa. The log-normal chain-ladder model makes similar assumptions.
We show that these assumptions can easily be tested and that similar tests can be used in both models.
The tests can be implemented in a spreadsheet. We illustrate the implementation in several empirical
applications. While the results for the log-normal model are valid in finite samples, those for the
over-dispersed Poisson model are derived for large cell mean asymptotics which hold the number
of cells fixed. We show in a simulation study that the finite sample performance is close to the
asymptotic performance.
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1. Introduction

“Can we trust chain-ladder models?” is a central question in non-life insurance claim reserving.
It hinges on the model assumptions: if these are violated the answer would be “no”. For example,
the popular over-dispersed Poisson chain-ladder model assumes a fixed variance to mean ratio across
the run-off triangle. If this is false then distribution forecasts are bound to fail. Yet, there is no statistical
theory available to test for a violation of this assumption.

We show that testing for a violation of central assumptions is straightforward in two popular
chain-ladder models: over-dispersed Poisson and log-normal. While the over-dispersed Poisson model
assumes a fixed variance to mean ratio, the log-normal model imposes a common variance of the
log data. Further, both models assume a chain-ladder structure. That is, accident year effects do not
vary by development year and vice versa. We show that these assumptions are not only testable,
but testable with standard tools that can easily be implemented in a spreadsheet.

The over-dispersed Poisson model arguably owes its special status to the ubiquitous chain-ladder
technique. Kremer (1985) showed that this deterministic technique so commonly used in claim
reserving is replicated by maximum likelihood estimation in a Poisson model. However, integer
support and the implicit assumption that the variance equals the mean cannot be reconciled with
insurance claim data. This explains the need for the over-dispersed Poisson model which relaxes both
of these assumptions. Unlike the Poisson model, the over-dispersed Poisson model is moment-based
and does not come equipped with a distributional framework. Despite this shortcoming, distribution
forecasts are needed and bootstrapping (England 2002; England and Verrall 1999) is in widespread use.
Yet, so far we do not have a statistical theory for the bootstrap in this setting.

Recently, Harnau and Nielsen (2017) proposed a distributional framework that incorporates the
moment assumptions of the over-dispersed Poisson model. This framework allows for a compelling
asymptotic theory that does not require a large array but rather large cell means. The practical
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implication is that for a run-off triangle with a large, potentially unknown, number of payments,
we can use a fixed sample size Gaussian distribution theory. They derive parameter distributions,
tests for model reduction, such as the absence of calendar effects, and closed form distribution
forecasts. Their assumptions accommodate, among others, many compound Poisson distributions.
In insurance, these have the interpretation that each cell of aggregate incremental claims is the sum
of a Poisson number of claims each with a random individual claim amount. The asymptotic theory
then does not assume that we have many such cells, but rather that the mean of the Poisson number
of claims is large. We stress that while Harnau and Nielsen (2017) largely use terminology from the
age-period-cohort literature, the theory immediately applies to the reserving literature by renaming
age, period, and cohort effects to development, calendar, and accident effects.

Modeling aggregate incremental claims as log-normal rather than over-dispersed Poisson is also
common. Kremer (1982) introduced a log-normal model with multiplicative mean structure mirroring
the over-dispersed Poisson chain-ladder model. While this model does not replicate the classic
chain-ladder technique, it is easily estimated by least squares. Recently, Kuang et al. (2015) derived
explicit expression for the estimators in the log-normal model. These have interpretation as a geometric,
rather than the classic arithmetic chain ladder. Other contributions for the log-normal model are
discussed in the excellent overview of stochastic reserving models by England and Verrall (2002).

We are of course not the first to question the validity of the assumptions in these models.
Yet, so far the problem was dealt with by specifying more flexible models. For example, Hertig (1983)
considers a log-normal model that allows the log data variance to vary by development year.
The double-chain-ladder model by Martínez Miranda et al. (2012) has, conditional on the incurred
counts, an approximate over-dispersed Poisson structure where the over-dispersion varies by accident
year. The “distribution-free” model by Mack (1993) has separate variance parameters for each
development year. We note that while this model also replicates the classical chain-ladder point
forecasts, it differs from the over-dispersed Poisson model and so far lacks a distributional framework
that would allow for a rigorous statistical theory. Thus, while it is a popular model, we do not consider
it further in this paper.

While using more flexible models seems sensible when assumptions are violated, we should not
be too quick to dispose of well-known simple models. Particularly for forecasting, such simpler models
may be advantageous. A statistical framework for misspecification testing is thus needed. The tests
may corroborate the initial modeling choice of the expert, draw attention to an issue, or confirm the
suspicion that the model is not well suited for the task. Whichever scenario the expert encounters,
the misspecification tests can help to make an informed choice.

The test statistics we propose in this paper are well known in an analysis of variance (ANOVA)
context. There, the researcher is usually presented with several samples and wants to test for treatment
effects. The data are often assumed to be independent Gaussian. The first step is to test for common
variances across samples. This is done with a Bartlett test based on an easily computed likelihood
ratio statistic. Then, given common variances, a standard F-test can be used to test for different means
between the samples, indicating a treatment effect.

The difference to the ANOVA application is that we generally have data for only one sample,
often a run-off triangle. We thus reverse engineer the ANOVA situation by splitting the data
into several artificial sub-samples. This idea has a long history in the econometric literature.
For instance, Chow (1960) proposed a test for structural breaks that involved splitting the sample
at the known breakpoint. In the (weak) instrumental variable literature, Angrist and Krueger (1995)
proposed a split-sample procedure with the objective to break the bias of the instrumental variable
estimator towards the ordinary least squares estimator. Figure 1 shows examples of how we could
split run-off triangles into sub-samples.
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Figure 1. Examples for splits of run-off triangles into two (a), three (b) and four (c) sub-samples.
Sub-samples are denoted by I`. Accident years i are in the rows, development years j in the columns.

In Section 2, we give a precise definition for the conditions that both the data set as well as the
artificial sub-samples must meet. We note that while we do not provide guidance on how to chose the
sub-sample structure in this paper, the choice does not affect the size of the proposed tests under the
null hypothesis.

In a log-normal model, taking logs yields Gaussian data such that we can directly apply the
Bartlett and F-test from the ANOVA scenario. While the finite sample distribution of the Bartlett test
statistic has no closed form, it does not have nuisance parameters and critical values could easily be
simulated. However, Bartlett (1937) suggests a χ2 approximation to the exact distribution that allows
us to sidestep simulations. For a special case with just two sub-samples, we can also apply an F-test
for the hypothesis for common variances of the log data ; while Bartlett and F-tests are not identical,
simulations indicate that they give similar information. Next, we show that an F-test for common
mean parameters is not only straightforward but also independent of the Bartlett test. These results
are collected in Section 3.

In the over-dispersed Poisson model, the asymptotic framework by Harnau and Nielsen (2017)
catapults us into a finite dimensional Gaussian world. Therefore, the results developed for the
log-normal model carry over. We can now asymptotically use a Bartlett test as a test for common
over-dispersion across sub-samples. Similarly, an F-test for common mean parameters across
sub-samples is asymptotically F-distributed and asymptotically independent of the dispersion
parameter tests. We stress again that the asymptotic theory does not require a large triangle but rather
large means of the cells in the triangle. As for the log-normal model, we could simulate critical values for
the Bartlett test; however a χ2 approximation can still be justified. We show all this in Section 4.

The Bartlett test is easily implemented and makes an empirical application straightforward.
The same is true for an F-test on the means. We illustrate the testing procedure, splitting the data,
estimating the sub-models, Bartlett testing for common dispersion parameters, and F-testing for
common mean parameters, in Section 5 with several empirical applications.

We clear up remaining questions about the power of the tests and the performance of
approximations in a simulation study based on a run-off triangle. First, it would not take much to
simulate critical values of the Bartlett test statistic under the null, rather than to use a χ2 approximation.
However, we show in a simulation study that this approximation works so well that simulating critical
values seems superfluous. Second, we produce power curves under several alternatives for the test for
common variances of the log data in a log-normal model. Third, we find that the asymptotic results for
the over-dispersed Poisson model are well approximated in finite samples, at least in our simulations.
The simulation study is in Section 6.

Finally, we discuss some open questions for future research such as how to choose the sub-sample
structure and whether one can select between over-dispersed Poisson and log-normal model. With this,
Section 7 concludes the paper.
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2. Data and Sub-Samples

Our aim is to test model specification by using statistics that are usually employed to test for
common parameters across separate samples. However, we are presented with just a single sample,
such as a run-off triangle. Thus, we artificially construct separate samples by splitting the data at
hand into sub-samples. Many intuitive splits can be accommodated by the theory, for example,
all sub-samples in Figure 1. Here, we define precisely the permissible structures for data and
sub-samples, illustrated on an example of a run-off triangle.

For the theory in this paper, we assume that data are a generalized trapezoid as defined
by Kuang et al. (2008). This flexible format allows for different numbers of accident and development
years, and can accommodate missing past and future calendar years. Run-off triangles are a special
case with as many accident as development years and only future calendar years missing. For accident
year i and development year j, we count calendar years k with an offset so k = i + j− 1. Generalized
trapezoids are characterized by the index set

I = {(i, j) : Il ≤ i ≤ Iu, Jl ≤ j ≤ Ju, Kl ≤ k ≤ Ku},

where Il and Iu, Jl and Ju, and Kl and Ku are the smallest and largest accident, development and
calendar year indices available, respectively. We denote the number of cells in I by n. The run-off
triangle in Table 1, taken from Taylor and Ashe (1983), are a generalized trapezoid with Il = Jl = Kl = 1,
Iu = Ju = Ku = 10 and n = 55.

Table 1. Insurance run-off triangle taken from Taylor and Ashe (1983) as an example for a generalized
trapezoid. Entries are aggregate incremental paid amounts for claims of accident year i and development
year j. Calendar years k = i + j− 1 are on the diagonals increasing from the top left.

i, j 1 2 3 4 5 6 7 8 9 10

1 357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948
2 352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046 -
3 290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405 - -
4 310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286 - - -
5 443,160 693,190 991,983 769,488 504,851 470,639 - - - -
6 396,132 937,085 847,498 805,037 705,960 - - - - -
7 440,832 847,631 1,131,398 1,063,269 - - - - - -
8 359,480 1,061,648 1,443,370 - - - - - - -
9 376,686 986,608 - - - - - - - -

10 344,014 - - - - - - - - -

We also assume that each sub-sample is a generalized trapezoid. We denote sub-samples
by I1, . . . Im. The sub-samples should be disjoint so Is ∩ It = ∅ and their union should be the
original sample so ∪`I` = I . All sub-samples of the examples in Figure 1 are generalized trapezoids.
For instance, the sub-sample I2 in Figure 1c is specified by Il

2 = Jl
2 = 2, Iu

2 = Ju
2 = 5, Kl

2 = 6, Ku
2 = 9

and n2 = 10.
The purpose of the generalized trapezoid assumption is to ensure parameter identification later

on. We note that this assumption is often more restrictive than needed. Examples for arrays that do
not fall into the generalized trapezoid category are arrays with missing cells and disconnected arrays
such as the combination of sub-samples I1 and I3 in Figure 1b. However, for many of these arrays
identification may still be given and then the theory developed below will still be valid.

3. Log-Normal Model

Given data and sub-samples, we can specify a log-normal model, define estimators, and provide
the theory for specification testing. The idea is to start with a model that allows parameters to vary
across sub-samples and then to test for reductions to a model with common parameters. The latter,
most restrictive, model is commonly used in claim reserving. If we reject a reduction to this model, it is
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likely misspecified. Estimation is done by least squares. The first hypothesis is that log data variances
are common across sub-samples; we can test this with a Bartlett test. The second hypothesis is for
common linear predictors and can be assessed with an independent F-test.

3.1. Model and Hypotheses

The unrestricted model allows both log data means and variances to vary across sub-samples.
For this model, we assume that the aggregate incremental claims Yij,` for accident year i, development
year j, and sub-sample ` are independent log-normal with

MLN : log(Yij,`)
D
= N(µij,`, σ2

` ), µij,` = αi,` + β j,` + δ` ∀(i, j) ∈ I`, ` ∈ {1, . . . , m}.

While we focus on linear predictors µij,` with accident and development year effect, the theory in
this paper allows for more general or restrictive linear predictors. For example, we could incorporate
calendar year effects as in Zehnwirth (1994) or Kuang et al. (2011).

The first hypotheses restricts log data variances to be common across sub-samples I`.
The remaining assumptions are maintained; thus, linear predictors are still allowed to vary across
sub-samples. We write the hypothesis as

Hσ2 : σ2
` = σ2 ∀` ∈ {1, . . . , m}.

The model that arises by imposing this restriction is

MLN
σ2 : log(Yij,`)

D
= N(µij,`, σ2).

The second hypothesis nests the first but also restricts linear predictors to be common across
sub-samples. The hypothesis is

Hµ,σ2 : σ2
` = σ2 and µij,` = µij = αi + β j + δ ∀` ∈ {1, . . . , m}.

Under this hypothesis, all parameters are common across sub-samples I`. Thus, we can feasibly
drop the sub-script ` and write the model under this hypothesis as

MLN
µ,σ2 : log(Yij)

D
= N(µij, σ2).

This is the log-normal geometric chain-ladder model.
We can also think about the hypotheses on the original scale. Mean and variance parameters on

the log-scale map into median and coefficients of variations on the original scale. Taking the model
MLN

µ,σ2 under Hµ,σ2 as an example,

log(Yij)
D
= N(µij, σ2) =⇒ Median(Yij) = exp(µij),

SD(Yij)

E(Yij)
=
√

exp(σ2)− 1.

Thus, the separation between mean and variance on the log-scale translates to separation between
median and coefficient of variation on the original scale. Hence, we can alternatively think of Hσ2 as
the hypothesis of common coefficients of variation and of Hµ,σ2 as further imposing common median
parameters.

3.2. Estimation

We estimate on the log-scale with standard estimators, least squares for log data means and
residual sum of squares for log data variances. Since the theory for testing developed below is adapted
from a Gaussian framework, estimation on the log-scale is intuitive. Before specifying the estimators,
we briefly discuss identification.
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The identification problem is that

µij = αi + β j + δ = (αi + a) + (β j + b) + (δ− a− b)

for any a, b. Thus, the levels of accident and development effects are not identified. However, the linear
predictors µ are identified (Kuang et al. 2008). These are thus invariant to the identification constraints
imposed on the individual effects. Therefore, it does not matter whether we impose ad-hoc constraints
such as αIl

`
= β Jl

`
= 0 or non ad-hoc constraints as suggested by Kuang et al. (2008). We choose to

discuss estimation based on the latter, which has the advantage that it allows for straightforward
counting of degrees of freedom. By way of example, we apply the identification by Kuang et al. (2008)
to a run-off triangle with I = {(i, j) : 1 ≤ i, j, k ≤ I}. Defining the first difference operator as ∆,
the idea is to re-write

µij = µ11 +
I

∑
s=2

1(i≤s)∆αs +
I

∑
t=s

1(j≤s)∆βs.

Then, µij = x′ijξ where the design vector xij = (1, 1(i≤2), . . . , 1(i≤I), 1(j≤2), . . . , 1(j≤I), )
′ and

the identified parameter vector is ξ = (µ11, ∆α2, . . . , ∆αI , ∆β2, . . . , ∆β I)
′. We denote the number

of parameters as p = length(ξ). The identification method can be extended to generalized trapezoids
as well as to linear predictors with calendar year effects.

3.2.1. Estimation in Unrestricted Model MLN

For the unrestricted model MLN , we estimate linear predictors as

µ̂LN
ij,` = x′ij,` ξ̂

LN
` where ξ̂LN

` =

(
∑

ij∈I`
xij,`x′ij,`

)−1{
∑

ij∈I`
xij,` log(Yij,`)

}
.

With degrees of freedom d f` = n` − p`, we estimate log data variances by

σ̂2,LN
` =

RSS`

d f`
where RSS` = ∑

ij∈I`
{log(Yij,`)− µ̂LN

ij,` }
2. (1)

3.2.2. Estimation with Common Variances in MLN
σ2

Imposing the restriction of common log data variances Hσ2 does not require re-estimation as the
estimators from MLN can be re-used. The estimators for the linear predictors µij,` are identical to those
of MLN . The log data variance in MLN

σ2 is estimated by

σ̄2,LN =
m

∑
`=1

d f`
d f.

σ̂2,LN
` =

RSS.

d f.
(2)

where d f. = ∑m
`=1 d f` and RSS. = ∑m

`=1 RSS`.

3.2.3. Estimation with Common Variances and Linear Predictors in MLN
µ,σ2

Under the hypothesis HLN
µ,σ2 , which imposes common log data mean and variance parameters,

both estimators change. We drop the `-subscript indicating the sub-sample since estimation is done
over the full sample I . With that, we write the estimators for the linear predictors in MLN

µ,σ2 as

µ̂LN
ij = x′ij ξ̂

LN with ξ̂LN =

(
∑

ij∈I
xijx′ij

)−1{
∑

ij∈I
xij log(Yij)

}
.

We estimate the log data variance σ2 under this hypothesis, defining d f = n− p, by
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σ̂2,LN =
RSS
d f

where RSS = ∑
ij∈I
{log(Yij)− µ̂LN

ij }2.

3.2.4. Remarks

Least squares estimation for the identified parameter vector ξ is maximum likelihood estimation
in the log-normal model. Kuang et al. (2015) derive a representation of the least squares estimators
that is interpretable as a geometric chain-ladder, in contrast to the classic, arithmetic, chain-ladder.

For many regression models, there is little difference between scaling the residual sum of squares
by the degrees of freedom or the number of observations; the former yields an unbiased estimator
for σ2, the latter the maximum likelihood estimator. However, the scaling does matter here due to
the large parameter to observation ratio. By way of example, the Taylor and Ashe (1983) data has
n = 55 observations but only d f = 36 degrees of freedom so that σ̂2,LN is some 50% larger then the
rival estimator RSS/n. This is amplified for the sub-samples.

3.3. Testing for Common Variances

We show how to test for common log data variances, that is for Hσ2 in MLN using a Bartlett test.
In a special case with two sub-samples, we can use an F-test instead of a Bartlett test.

The Bartlett test (Bartlett 1937) was designed to test for common variances across several Gaussian
samples. Thus, it is directly applicable to the log sub-samples. We only give a rough overview of the
theory; for a more detailed derivation in contemporary terminology see Jørgensen (1993, pp. 94–96).
The test rests on the independent χ2-distribution of σ̂2,LN

` in MLN . Rather than deriving a test in the
Gaussian model for log(Yij,`), Bartlett (1937) considers a joint χ2 model for the variance estimators.
In this χ2 model, the log-likelihood ratio statistic for the hypothesis Hσ2 is

LRLN = d f. log(σ̄2,LN)−
m

∑
`=1

d f` log(σ̂2,LN
` ) (3)

for σ̂2 and σ̄2 as defined in (1) and (2), respectively. Define now the Bartlett distribution Ba(·) such

that LRLN D
= Ba(d f1, . . . , d fm) under the hypothesis. Considering LRLN as a function of the estimators

so LRLN = LR(σ̂2,LN
1 , . . . , σ̂2,LN

m ), the Bartlett distribution is characterized by

P{Ba(d f1, . . . , d fm) ≤ y} =
∫

A(y)

m

∏
`=1

dG`(x`) (4)

where G`(·) is the χ2
d f`

cdf and A(y) = {(x1, . . . , xm) : LR(x1, . . . , xm) ≤ y}. Likelihood theory

tells us that Ba(d f1, . . . , d fm) and thus LRLN approaches a χ2
m−1 as min(d f1, . . . , d fm) goes to infinity.

However, Bartlett (1937) goes a step further and suggest to divide LRLN by

C = 1 +
1

3(m− 1)

(
m

∑
`=1

1
d f`
− 1

d f.

)
.

Comparing LRLN/C rather than LRLN to a χ2
m−1 substantially improves the quality of the

approximation and makes it useful even in rather small samples. That is, under Hσ2 ,

BLN =
LRLN

C
D≈ χ2

m−1. (5)

The Bartlett correction factor C improves the order of magnitude of the error term. This idea
has been shown to apply generally to likelihood ratio tests; see, for instance, Lawley (1956)
and Barndorff-Nielsen and Cox (1984).

While using an asymptotic approximation for the Bartlett test is appealing, we could also
simulate critical values of the exact distribution. This is feasible because the exact distribution of
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LRLN , Ba, is free of nuisance parameters. However, if Ba/C is sufficiently close to χ2
m−1, simulating

the critical values may be unnecessary even for rather small degrees of freedom. Looking ahead,
we confirm in a simulation study in Section 6.1 that the asymptotic approximation indeed works
very well.

As an alternative to the Bartlett test, we can test the equality of dispersion parameters across two
sub-samples with an F-test that is not equivalent to a Bartlett test. The F-test follows quickly given
independence and distribution of the log data variance estimators σ2,LN

` in (1). Under Hσ2 ,

FLN
σ2 =

σ2,LN
2

σ2,LN
1

D
= Fd f2,d f1 (6)

so that we can use a (two-sided) F-test to test the hypothesis; see, for example, Snedecor and Cochran
(1967, chp. 4.15). We can write LRLN as a function of FLN

σ2 . With r = d f2/d f1,

LRLN = LR(FLN
σ2 ) = d f1 log

(
1 + rFLN

σ2

1 + r

)
+ d f2 log

{
1 + (rFLN

σ2 )−1

1 + r−1

}
. (7)

This mapping is not monotone. Intuitively, the Bartlett test is one-sided compared to a two-sided
F-test. Thus, we would expect LR to be increasing both for small and large FLN

σ2 . We can now find
scenarios in which the F-test and the Bartlett test lead to different decisions: for example, with d f1 = 1
and d f2 = 2 an equal-tailed 5% F-test just about rejects the null for a draw FLN

σ2 = 0.025, while a 5%
Bartlett test does not reject with LR(0.025) = 4.23 and a (simulated) exact critical value of 4.91.
This leaves the question which test should be used; we investigate this in Section 6.2.

Usually, a drawback of both F and Bartlett test is their sensitivity to departures from Gaussianity
of the log data log(Yij,`). Box (1953) goes as far as comparing the Bartlett test to a test for Gaussianity
and argues in favor of robust tests, prioritizing robustness over other qualities such as power.
However, sensitivity to non-Gaussianity is not necessarily undesirable for an application to insurance
claim-reserving since distribution forecasts of the log-normal model would also be invalid if the data is
not log-normal. Besides, we find F-test and Bartlett test appealing for their simplicity and because they
carry over to over-dispersed Poisson models as we will see later. Thus, we do not consider methods to
improve robustness to departures from Gaussianity such as made by Shoemaker (2003) for F-tests.

3.4. Testing for Common Linear Predictors

Now that we know how to test for common variances, we turn to testing for common linear
predictors. The idea is to test sequentially: first for common variances, then for common linear
predictors. We show how to use an F-tests for the latter and prove that this test is independent of
Bartlett and F-tests for common variances. Thus, size control is not an issue.

If we take the model with common variances MLN
σ2 as given, then testing for Hµ,σ2 amounts to

testing for common linear predictors. Since standard Gaussian theory applies,

FLN
µ =

(RSS− RSS.)/(d f − d f.)

RSS./d f.

D
= Fd f−d f.,d f.

under the hypothesis. Thus, we can use a (one-sided) F-test to test for a reduction from MLN
σ2 to MLN

µ,σ2 .
Unlike the dispersion Bartlett and F-tests, this F-test is equivalent to the corresponding exact Gaussian
likelihood ratio test. However, a χ2 approximation to the likelihood ratio test may not work well due
to rather few degrees of freedom. Thus, we prefer the F-test since it is easier to implement.

A sequential test approach for common variance and common linear predictors is sensible. This is
because we can show the tests are independent. We formulate the independence result in a theorem;
all proofs are in Appendix A.

Theorem 1. In model MLN
µ,σ2 , the test statistic FLN

µ is independent of FLN
σ2 and LRLN .
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In applications, we would first conduct a, say, 5% Bartlett test for Hσ2 . Conditional on non-rejection
of the hypothesis, we can conduct an F-test for Hµ,σ2 at 5% critical values and be assured that it truly
has a 5% size if the hypothesis is correct.

4. Over-Dispersed Poisson

The over-dispersed Poisson model is appealing because it naturally links to the classic chain-ladder
technique, unlike the log-normal model. Harnau and Nielsen (2017) developed an asymptotically
framework in which the over-dispersed Poisson model is asymptotically Gaussian. Using their results,
we show that finite sample results from the log-normal model hold asymptotically in the over-dispersed
Poisson model. The structure of this section reflects the similarities between the log-normal and
over-dispersed Poisson model. After setting up the model, we specify the estimators; these are based on
a Poisson quasi-likelihood, thus replicating the chain-ladder. Before we can proceed, the over-dispersed
Poisson model needs another ingredient, a sampling scheme for the asymptotic theory that we take
from Harnau and Nielsen (2017). Then, we show that we can use test for common over-dispersion
with a Bartlett test. Finally, we can use an F-test to test for common mean parameters. We prove that
this F-test is independent of the over-dispersion test.

4.1. Model and Hypotheses

We set up a model that allows over-dispersion and mean parameters to vary across sub-samples,
and specify hypotheses for common over-dispersion, and common mean parameters. This mirrors the
process from the log-normal model. The key assumption of the over-dispersed Poisson model involves
infinitely divisible distributions: to justify it we provide an example that is appealing for insurance
claim-reserving.

We adopt the assumptions for the over-dispersed Poisson model from Harnau and Nielsen (2017).
One assumption is distributional and allows for an asymptotic theory, the other imposes the desired
over-dispersed Poisson chain-ladder structure. Specifically, we assume that aggregate incremental
claims Yik,` are independent across (i, k) ∈ I` and ` = {1, . . . , m} with non-degenerate infinitely
divisible distribution, at least three moments, and non-negative support. The second assumption
imposes a log-linear mean and common over-dispersion within the sub-sample:

MODP : E(Yij,`) = exp(µij,`), µij,` = αi,` + β j,` + δ`,
var(Yij,`)

E(Yij,`)
= σ2

`

for all (i, j) ∈ I` and ` ∈ {1, . . . , m}.
The first hypotheses imposes common over-dispersion parameters across sub-samples. It matches

the hypothesis from the log-normal model:

Hσ2 : σ2
` = σ2 ∀` ∈ {1, . . . , m}.

The remaining assumptions are maintained. We can write the model under this assumption as

MODP
σ2 : E(Yij,`) = exp(µij,`),

var(Yij,`)

E(Yij,`)
= σ2.

The second hypothesis again nests the first and imposes common linear predictors. The hypothesis is

Hµ,σ2 : σ2
` = σ2 and µij,` = µij = αi + β j + δ ∀` ∈ {1, . . . , m}.

Dropping the superfluous ` subscript, we write the model under this hypothesis as the familiar

MODP
µ,σ2 : E(Yij) = exp(µij),

var(Yij)

E(Yij)
= σ2.
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The model under this hypothesis in a run-off triangle replicates the chain-ladder. Thus, MODP
µ,σ2 is

the model we would ideally like to use.
We can motivate the assumption of an over-dispersed infinitely divisible distribution for the

aggregate incremental claims by a compound Poisson story. We can think of the aggregate incremental
claims Y as a random Poisson number of claims N each with an independent random claim amount X
so the Y = ∑N

s=1 Xs are compound Poisson. Compound Poisson distributions are infinitely divisible.
The over-dispersion σ2 simplifies to E(X2)/E(X). Thus, it is common across the data set if the same is
true for the claim amount distribution. If the claim amount distribution varies across sub-samples,
so does the over-dispersion.

4.2. Estimation

With the model and hypotheses in place, we move on to estimation. The estimators match those
in Harnau and Nielsen (2017). Means are estimated by Poisson quasi-likelihood, over-dispersion
parameters by Poisson log-likelihood ratios. By estimating means by Poisson quasi-likelihood,
we match the classic arithmetic chain-ladder forecasts in run-off triangles as Kremer (1985) showed.
Just as the results for the log-normal model, the theory in this section is invariant to the identification
scheme since the statistics are functions of the identified linear predictors. We choose the same
identification scheme as in the log-normal model, matching the notation.

4.2.1. Estimation in Unrestricted Model MODP

We estimate linear predictors by Poisson quasi-likelihood

µ̂ODP
ij,` = x′ij,` ξ̂

ODP
` where ξ̂ODP

` = arg max
ξ`∈Rp`

∑
ij∈I`
{Yij,`(x′ij,`ξ`)− exp(x′ij,`ξ`)}.

The over-dispersion parameter estimators are Poisson quasi log-likelihood ratios; looking ahead,
this is justified by their asymptotic χ2 distribution. Specifically, the estimator for σ2

` is the Poisson
deviance divided by the degrees of freedom. The deviance is the log-likelihood ratio against a saturated
model with as many parameters as observations and perfect fit. Specifically for deviance D`,
the estimator for σ2

` is

σ̂2,ODP
` =

D`

d f`
where D` = 2 ∑

ij∈I`
Yij,`{log(Yij,`)− µ̂ODP

ij,` }.

4.2.2. Estimation with Common Variances in MODP
σ2

In the model with common variances we can, as in the log-normal model, compute estimators from
those for the unrestricted model. Estimators for the linear predictors µij,` are unchanged. The estimator
for the over-dispersion parameters is the degree of freedom weighted average

σ̄2,ODP =
m

∑
`=1

d f`
d f.

σ̂2,ODP
` =

D.

d f.

where D. = ∑m
`=1 D` and, as before, d f. = ∑m

`=1 d f`.

4.2.3. Estimation with Common Variances and Linear Predictors in MODP
µ,σ2

In the model with common linear predictors and over-dispersion parameters, we estimate over
the full sample. Dropping the ` subscript,

µ̂ODP
ij = x′ij ξ̂

ODP where ξ̂ODP = arg max
ξ∈Rp

∑
ij∈I
{Yij(x′ijξ)− exp(x′ijξ)}

and
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σ̂2,ODP =
D
d f

where D = 2 ∑
ij∈I

Yij{log(Yij)− µ̂ODP
ij }.

4.3. Sampling Scheme

The asymptotic theory requires a sampling scheme. The challenge is that the number of
observations n grows with the number of parameters: new accident or development years would
demand their own parameters. Harnau and Nielsen (2017) circumvent this problem. They propose
a sampling scheme that requires the means of the cells in the data set I to grow proportionally. This is
reminiscent of multinomial sampling as used, for example, by Martínez Miranda et al. (2015) in
a Poisson model. Crucially, the number of observations n, thus the number of parameters, remains
fixed. We adopt their sampling scheme and motivate it by a compound Poisson example.

The sampling scheme stipulates that the aggregate mean E(Y..) = E(∑ij∈I Yij) over the
array grows in such a way that the skewness skew(Yij,`) vanishes while keeping the frequencies
E(Yij,`)/E(Y..) fixed. The requirement on the skewness is somewhat unconventional and is motivated
by a limit theorem proved by Harnau and Nielsen (2017, Theorem 1).

For intuitive appeal, the skewness in the compound Poisson example from Section 4.1 vanishes as
the expected number of claims grows. More precisely, considering once again aggregate incremental
claims Y = ∑N

s=1 Xs with N being the random Poisson number of claims and Xs the random claim
amounts, the skewness of Y vanishes if the mean of the number of claims N grows for a fixed claim
amount distribution Xs.

4.4. Asymptotic Testing for Common Over-Dispersion

Having set up the model and sampling scheme, we turn to the asymptotic theory. We show that
the asymptotic distribution of the Bartlett test and the two-sample F-test for common over-dispersion
match the finite sample distribution of the test for common log data variance in the log-normal
model. We can justify a χ2 approximation to the distribution of the Bartlett test through a sequential
asymptotic argument.

To test for common over-dispersion across sub-samples in the over-dispersed Poisson model,
we can proceed just as is the log-normal model. This is because the asymptotic distribution of σ̂2,ODP

`
matches the exact distribution of σ̂2,LN

` in the log-normal model (Harnau and Nielsen 2017, Lemma 1):

σ̂2,ODP
`

D→
σ2
`

d f`
χ2

d f`
. (8)

Therefore, to test Hσ2 , we merely replace the estimators from the log-normal model with the
over-dispersion estimators and compute

LRODP = d f. log(σ̄2,ODP)−
m

∑
`=1

d f` log(σ̂2,ODP
` ). (9)

Since the theory for the variance tests in the log-normal model hinged on the distribution of the
log data variance estimators alone, we can immediately jump to the main result of the paper.

Theorem 2. In the over-dispersed Poisson model with common over-dispersion MODP
σ2 of Sections 4.1 and 4.3,

LRODP converges to the Bartlett distribution Ba(d f1, . . . , d f`) from (4). Further, the F-statistic FODP
σ2 =

σ̂2,ODP
2 /σ̂2,ODP

1 is asymptotically Fd f2,d f1 distributed.

In Section 6.3 below, we show that finite sample approximations to the asymptotic results in
Theorem 2 work well. To make the χ2 approximation for the Bartlett test work we can use a sequential
asymptotic argument. In the log-normal model, the χ2 approximation followed through large degree
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of freedom asymptotics. In the over-dispersed Poisson model, we first let the aggregate mean E(Y..)

grow such that LRODP/C is distributed Ba. Then, we can increase the sub-sample dimension and thus
the degrees of freedom so Ba becomes χ2. Then, under Hσ2 , we can expect

BODP =
LRODP

C
D≈ χ2

m−1. (10)

A simultaneous double asymptotic theory for large E(Y..) and degrees of freedom would have
to wrestle with the complication that the number of mean parameters grows with the dimension of
the sub-samples. Hence, such a generalization is by no means trivial and the simulations in Section 6
make it seem unnecessary.

4.5. Asymptotic Testing for Common Linear Predictors

We show how to F-test for common mean parameters. We also prove asymptotic independence
of this F-test and tests for common over-dispersion.

As in the log-normal model, we can use a sequential testing strategy, first testing for Hσ2 , then for
Hµ,σ2 . Harnau and Nielsen (2017, Theorem 4) showed that under Hµ,σ2 and thus in MODP

µ,σ2 , an F-statistic
has an asymptotic F-distribution:

FODP
µ =

(D− D.)/(d f − d f.)

D./d f.

D→ Fd f−d f.,d f. . (11)

Thus, we can use a (one-sided) F-test to test for a reduction from MODP
σ2 to MODP

µ,σ2 . If we compare
to the test in the log-normal model, we simply replaced the residual sum of squares RSS with Poisson
quasi-deviances D. The difference is that the F-distribution is now asymptotic and not exact.

To justify a sequential testing approach, it is useful to show that the test is independent of the
Bartlett and F-test for common dispersion, just as it was for the log-normal model.

Lemma 1. In the over-dispersed Poisson model MODP
µ,σ2 of Sections 4.1 and 4.3, FODP

µ is asymptotically

independent of FODP
σ2 and LRODP.

Therefore, under Hµ,σ2 the distribution of FODP
µ is asymptotically unaffected by conditioning on

non-rejection of tests for common over-dispersion. We confirm in simulations below that this result
holds approximately in finite samples. Hence, size control is not an issue in sequential testing, just as
for the log-normal model.

5. Empirical Applications

To illustrate implementation of the theory we take it to the data. A run-off triangle first analyzed
by Verrall et al. (2010) is appealing for a log-normal application: Kuang et al. (2015) raised the question
of misspecification for this model on this data. As an over-dispersed Poisson example, we chose the
data set by Taylor and Ashe (1983) in Table 1 which has become a sort of benchmark data set for this
model. Verrall (1991), England and Verrall (1999), and Pinheiro et al. (2003) all use this data, to name
but a few. Finally, the data by Barnett and Zehnwirth (2000) seem to require a calendar effect for
modeling; we take this opportunity to demonstrate that we can easily test for specification in a model
with an extended chain-ladder structure that includes a calendar effect. We use the R (R Core Team 2016)
package apc (Nielsen 2015) for the empirical applications and simulations below.

5.1. Log-Normal Chain-Ladder

Kuang et al. (2015) employ a log-normal chain-ladder model for data in a run-off triangle first
analyzed by Verrall et al. (2010). They remark that the largest residuals congregate within the first five
accident years, indicating a potential misspecification. Verrall et al. (2010) used the data to illustrate a
model that makes use of the number of reported claims that is also available; we do not make use of
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this information. The data relate to a portfolio of motor policies from the insurer Royal & Sun Alliance.
We show this triangle in Table A1.

We take the remarks about misspecification by Kuang et al. (2015) as an opportunity to apply the
specification tests for common log data variance and mean parameters. To do so, we first specify the
sub-samples. Then, we set up the unrestricted model and test the hypotheses. Figure 2 summarizes
the results.

Figure 2a shows how we split the data I , a run-off triangle with ten accident and development
years. We split into two sub-samples: I1 contains the first five and I2 the last five accident years.
Choosing this specific structure seems intuitive given Kuang et al. (2015) remarks about the location of
large residuals.

i, j 1 5 10

1

I1

5

I2

10

(a) Sub-sample structure

σ̂2,LN
` d f` σ̄2,LN d f. σ̂2,LN d f

I1 0.095 26
I2 0.027 6
I 0.082 32 0.075 36

BLN = 2.79 pχ2
1
= 0.09

FLN
σ2 = 0.28 pF6,26 = 0.12

FLN
µ = 0.24 pF4,32 = 0.91

(b) Estimation and test results

Figure 2. Log-normal chain-ladder model for Verrall et al. (2010) data. Sub-sample structure shown in
(a), estimation and test results in (b).

Given the sub-samples, we specify the unrestricted independent log-normal model

MLN : log(Yij,`)
D
= N(αi,` + β j,` + δ`, σ2

` ).

We first consider the hypothesis Hσ2 : σ2
1 = σ2

2 for a reduction to

MLN
σ2 : log(Yij,`)

D
= N(αi,` + β j,` + δ`, σ2).

Figure 2b shows the relevant estimates and test results. Since we have just two sub-samples,
we can test the hypothesis either with a Bartlett test or an F-test for common variances. The two test
give a rather similar indication. The Bartlett statistic BLN has a χ2 p-value of 0.09 and the F-statistic
FLN

σ2 a two-sided F p-value of 0.12.
If we take the variance test results as an indication not to reject Hσ2 , we can take MLN

σ2 as our
primary model and test for Hµ,σ2 . That is, we test for a reduction to

MLN
µ,σ2 : log(Yij)

D
= N(αi + β j + δ, σ2).

Based on the F-statistic FLN
µ , we cannot reject this hypothesis with a p-value of 0.91. Thus, we do

not find compelling evidence against a reduction to MLN
µ,σ2 .

Alternatively, we could make use of the information that there is not just a discrepancy between
the sub-samples when it comes to residuals, but that those in I1 are larger. With this information,
we could alternatively have conducted a one-sided F-test for a one-sided hypothesis Hσ2 : σ2

1 > σ2
2 .

This test yields a p-value of 0.06, a much closer call. Note that we cannot evaluate one-sided hypotheses
with a Bartlett test.
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5.2. Over-Dispersed Poisson Chain-Ladder

The Taylor and Ashe (1983) data in Table 1 has served many times as an empirical application for
over-dispersed Poisson chain-ladder models. Thus, it seems only appropriate to investigate the model
specification. We summarize results in Figure 3.

i, j 1 5 10

1
I1 I3

I2
5

I4

10

(a) Sub-sample structure

σ̂2,ODP
` d f` σ̄2,ODP d f. σ̂2,ODP d f

I1 31903 6
I2 168293 3
I3 104493 6
I4 17592 6
I 68038 21 52862 36

BODP = 6.78 pχ2
3
= 0.08

FODP
µ = 0.46 pF15,21 = 0.93

(b) Estimation and test results

Figure 3. Over-dispersed Poisson chain-ladder model for Taylor and Ashe (1983) data. Sub-sample
structure shown in (a), estimation and test results in (b).

Figure 3a shows the chosen sub-sample structure. We split the sample after the fifth accident,
development, and calendar year into four sub-samples. Unlike in the case of the Verrall et al. (2010)
data above, we do not have information indicating a specific sub-sample structure. While arbitrary,
we find the chosen structure appealing because all sub-samples are run-off triangles themselves and
of relatively similar size. Further, we hope that splits after each of the three time-scales increases our
chances to find breaks. We point out that the specific sub-sample structure has no effect on the size of
the tests if the hypothesis is true.

Figure 3b shows estimates and test results. The unrestricted model is the over-dispersed Poisson
model discussed in Section 4.1 so that

MODP
σ2 : E(Yij,`) = exp(µij,`),

var(Yij,`)

E(Yij,`)
= σ2

` .

Looking at evidence for varying over-dispersion, we test for Hσ2 with a Bartlett test. While we
can see quite a bit of variation in the dispersion estimates, ranging from σ̂2,ODP

4 = 17,592 to
σ̂2,ODP

2 = 168,293, the test does not convincingly reject the hypothesis with a p-value of 0.08.
Even though relative deviations from the degree of freedom weighted average σ̄2,ODP = 68,038
are less stark, it seems to us that making a decision by eyeballing alone would be difficult in this case.

If the Bartlett test results convince us that a reduction to MODP
σ2 is sensible, we can test for common

linear predictors. Given an F-statistic of FODP
µ = 0.46, we cannot reject this simplification with a p-value

of 0.93.
Overall, the target over-dispersed Poisson model for the Taylor and Ashe (1983) data survives

both misspecification tests at a 5% level for this sub-sample structure. Thus, we may be more confident
now to model it with an over-dispersed Poisson chain-ladder model.

We could also opt to repeat the test for other sub-sample structures, adjusting the size to take into
account that tests for different sub-sample structures on the same data are generally not independent.
For example, retesting for the split into two sub-samples consider above and shown in Figure 1a.
For this structure, a Bartlett test statistic of BODP = 2.89 yields a p-value of 0.09 and an F-test statistic
of FODP

µ = 0.63 a p-value of 0.64. Further, we can test for a split into three sub-samples after calendar
years four and seven, similar to the structure in Figure 1b. For this structure, we get BODP = 1.27
with a p-value of 0.53 and FODP

µ = 1.84 with a p-value of 0.11. Controlling the overall size of the
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thrice repeated sequential tests with a Bonferroni correction, we would reject if any p-value was below
5%/3 ≈ 0.017. This is not the case so the model survives this battery of tests as well.

5.3. Log-Normal (Extended) Chain-Ladder

As a final empirical application, we look at a run-off triangle first considered
by Barnett and Zehnwirth (2000). We show this data in Table A2. These data are known to be modeled
best with a predictor with not just accident and development, but also calendar effects. We look at
a model with and without calendar effects. Barnett and Zehnwirth (2000) and also Kuang et al. (2011)
consider a log-normal model for this data and we follow them in this choice. As before, we split the
data, specify the model, and test for the hypotheses. The results are summarized in Figure 4.

i, j 1 5 11

1
I1

I2
5

I3

11

(a) Sub-sample structure

σ̂2,LN
` d f` σ̄2,LN d f. σ̂2,LN d f

I1 0.0002 6
I2 0.0013 6
I3 0.0015 9
I 0.0011 21 0.0068 45

BLN = 6.06 pχ2
2
= 0.05

FLN
µ = 11.20 pF20,16 = 0.00

σ̂2,LNe
` d f e

` σ̄2,LNe d f e
. σ̂2,LNe d f e

I1 0.0003 3
I2 0.0013 5
I3 0.0016 8
I 0.0013 16 0.0014 36

BLNe = 2.06 pχ2
2
= 0.36

FLNe
µ = 1.13 pF20,16 = 0.41

(b) Estimation and test results

Figure 4. Log-normal chain-ladder (LN) and extended chain-ladder (LNe) model for Barnett and
Zehnwirth (2000) data. Sub-sample structure shown in (a), estimation and test results in (b).

Figure 4a shows the sub-sample structure we choose. Given the apparent need for calendar effects,
we aim to maximize power for varying dispersion parameters along the same time dimension and
split the run-off triangle, this time with eleven accident and development years, after periods five and
eight into three sub-samples.

The top of Figure 4b shows estimation and test results for a model without calendar effect.
This model is given by

MLN : log(Yij,`)
D
= N(αi,` + β j,` + δ`, σ2

` ).

A Bartlett test for the hypothesis Hσ2 of common log data variances has a χ2 p-value of (just under)
0.05. We may consider this as evidence against Hσ2 . For comparison with the model with calendar
effect considered next, we still compute an F-test for the hypothesis Hµ,σ2 . We point out that this test is
not strictly a test for common linear-predictors if we are not comfortable to accept MLN

σ2 as a model.
The statistic FLN

µ = 11.20 has a 0.00 p-value so that we reject Hµ,σ2 . Thus, MLN
µ,σ2 is not well specified.

At the bottom of Figure 4b we show results for a model with calendar effects γ for calendar years
k = i + j− 1. The model is

MLNe : log(Yij,`)
D
= N(αi,` + β j,` + γk,` + δ`, σ2

` ).

The theory for specification tests is not affected by this change and thus still valid. A Bartlett
test for Hσ2 in this model yields a χ2 p-value of 0.36 so we may feel comfortable to impose common
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log data variances and take MLNe
σ2 as given. An F-test for common linear predictors leaves us with

a p-value of 0.41. Thus, reducing the model to MLNe
µ,σ2 seems sensible. Therefore, we cannot reject the

specification of the model with calendar effect.
If we directly compare the two models, we can see that the calendar effect has a substantial

impact on the specification tests. While the model with calendar effect seems to be well specified,
the model without this effect raises red flags for both a test for common variances and common linear
predictors. The test for common linear predictors is much more strongly affected by dropping the
calendar effect than the Bartlett test. This indicates that the shift in log data variances is smaller than
that in linear predictors.

We look at the shift in linear predictor in two ways. First, we can directly test for for dropping the
calendar effects from the well specified MLNe

µ,σ2 . A standard F-test for the hypothesis Hγ : γk = 0 ∀k

yields a p-value of 0.00, consistent with the rejection of the model without calendar effects MLN
µ,σ2 above.

Alternatively, we can test for a reduction from MLNe
σ2 : log(Yij,`)

D
= N(αi,` + β j,` + γk,` + δ`, σ2)

to MLN
σ2 , corresponding to the hypothesis Hγk,` : γk,` = 0 ∀k, `. This reduction allows for breaks

in linear predictors between sub-samples. Interestingly, an F-test cannot reject Hγk,` (p-value 0.92).
As an intuition, we recall that the chain-ladder predictor without calendar effects can accommodate
a constant trend in calendar years, but not deviations from that trend. Thus, allowing for separate sets
of linear predictors on the sub-samples implicitly allows for three different calendar trends. While
still less flexible than the model with an effect for each calendar year, this seems to be good enough.
Note, however, that the Bartlett flags the reduction from MLN to MLN

σ2 (but not from MLNe to MLNe
σ2 ).

Overall, the analysis suggests that calendar effects are needed in this data set for two reasons for
this sub-sample structure: to capture the structure of the linear predictors themselves, and, to a lesser
extent, to achieve homogeneous variance across the log data.

We note that for this data, repeating the tests for different sub-samples structures does affect the
results. Indeed, considering sub-samples similar to before, the specification of the log-normal extended
chain-ladder model is rejected. Specifically, splitting the data into two sub-samples after the fifth
accident year, a Bartlett test yields a p-value of 0.017 and an F-test a p-value of 0.004. Considering four
sub-samples with splits after the fifth calendar year, the fifth development year and the sixth accident
year, the p-value of the Bartlett test is 0.03 and that of the F-test 0.05. Again controlling the size of
the repeated tests with a Bonferroni correction, we would reject the null hypothesis if we can find
a p-value below about 0.017. This is the case for the F-test and a knife-edge decision for the Bartlett test
in the two sub-sample scenario. Thus, for this data we may want to consider a different model or at
least be somewhat more skeptical of its results.

6. Simulations

The developed theory begs several questions that we answer in a simulation study.
First, we argued that we can sidestep simulating critical values of the Bartlett distribution Ba and
instead approximate these by a Bartlett corrected χ2 critical value. We show that this works very well.
Second, we compute power curves of Bartlett and F-test for common log data variances under several
alternatives in a log-normal model to get a better understanding for the tests’ behavior. Third, we show
that an asymptotic approximation in an over-dispersed Poisson model resembles the asymptotic
distribution closely, both under the null and the considered alternatives. Finally, we derived above
that F-tests for common linear predictors in the over-dispersed Poisson model are asymptotically
independent of tests for common over-dispersion. We confirm that the size of the former test seems
unaffected by conditioning on the results of the latter, even in finite samples.

6.1. Performance of Bartlett test χ2 Approximation

The theory tells us that the distribution of Ba/C, which is the exact distribution of the Bartlett
statistic BLN in the log-normal model, is close to a χ2 for large degrees of freedom. We show that the
approximation works very well for a range of degrees of freedom.
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We draw realizations from the adjusted Bartlett distribution Ba(d f1, . . . , d fm)/C as follows.
For ` = 1, . . . , m, we draw independent χ2 distributed V` with d f` degrees of freedom and compute
s` = V`/d f` and s̄ = ∑m

`=1 d f`/d f.s`. Then, {d f. log(s̄)−∑m
`=1 d f` log(s`)}/C is Ba/C distributed.

Figure 5a shows the upper 10% probability spectrum of a pp-plot for the adjusted Bartlett
distribution Ba(d f1, . . . , d fm)/C against a χ2

m−1. We show plots for the tuples (26, 6), (3, 5, 8), (6, 6, 9),
and (6, 3, 6, 6) encountered in the empirical applications above. The plots are based on 107 draws for
each tuple. The plots seem indistinguishable from the 45-degree line, even though we zoomed in to
the upper 10% of the spectrum.

0.9 0.925 0.95 0.975 1
P( 2 q)

0.9

0.925

0.95

0.975

1

P(
Ba

/C
q)

(26, 6)
(3, 5, 8)
(6, 6, 9)
(6, 3, 6, 6)

(a) Degrees of freedom from empirical applications

0.9 0.925 0.95 0.975 1
P( 2 q)

0.9

0.925

0.95

0.975

1

P(
Ba

/C
q)

(13, 3)
(1, 2, 4)
(3, 3, 4)
(3, 1, 3, 3)

(b) Half the empirical degrees of freedom

Figure 5. pp-plots for the adjusted Bartlett distribution Ba/C against χ2 for varying degrees of freedom.
(a) and (b) show results for degrees of freedom corresponding to the empirical applications and half
those degrees of freedom, respectively.

Figure 5b is constructed in the same way as Figure 5a, except the degrees of freedom are halved
and rounded down. Now, we can see some deviations from the 45-degree line. As expected, we can
see convergence to the 45-degree line as the degrees of freedom increase.

In Table 2, we take a closer look at the approximation at α = 1%, 5%, 10% critical values cα of
a χ2

m−1 specifically. The table shows P(Ba/C > cα), corresponding to the true size of a Bartlett test in
a log-normal model if we use the χ2 approximation rather than simulated critical values.

Table 2. P(Ba/C > cα) where cα is the χ2 α critical value. Results are in %. Degrees of freedom shown
as (d f1, . . . , d fm).

(13, 3) (1, 2, 4) (3, 3, 4) (3, 1, 3, 3) (26, 6) (3, 5, 8) (6, 6, 9) (6, 3, 6, 6)

α = 10% 9.94 9.05 9.86 9.20 9.98 9.93 9.97 9.92
α = 5% 4.93 4.22 4.85 4.37 4.98 4.92 4.97 4.92
α = 1% 0.95 0.69 0.92 0.76 0.99 0.95 0.98 0.96

While we can see some differences for some of the halved critical values, we would argue that the
approximation for the degree of freedom tuples from the empirical applications is so good that using it
is reasonable and should not affect the modeling decision.

6.2. Rejection Frequencies of Tests for Common Variance in Log-Normal Model

As a supplement to the behavior of the tests for common log data variance under the null
hypothesis in the log-normal model given in Section 3.3, we now also take a look at power. We simulate
the three sub-sample structures from the empirical applications and consider rejection frequencies
of the tests used in the corresponding applications. We find that the Bartlett and F-test for common
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variance have very similar power, at least in this simulation. Further, we see that the power does not
necessarily decrease with the number of sub-samples.

For the sub-sample structures from the empirical applications (see Figure 1), we simulate

MLN : log(Yij,`)
D
= N(µij,`, σ2

` ). Thus, we simulate for m = 2, 3, 4 sub-samples. Before specifying the
parameter values, we point out that the distribution of tests in this model depends only on ratios σ2

s /σ2
t ,

the degrees of freedom d f`, and the number of sub-samples m. To see this, we first re-write

LRLN = d f. log(σ̄2,LN)−
m

∑
`=1

d f` log(σ̂2,LN
` ) =

m

∑
`=1

d f` log

{
d f`
d f.

(
`

∑
s=1

RSSs

RSS`

)}
. (12)

Now, under MLN , RSS`
D
= σ2

` χ2
d f`

independently. Thus, the distribution of LRLN is invariant

to common changes in levels of σ2
` as well as to µij,`. Therefore, we can normalize the smallest σ2

`

to unity and set µij,` = 0 without loss of generality. The distribution of the F-statistic FLN
σ2 shares

these properties.
For each sub-sample scenario, we consider a range of values for the log data variance ratios

σ2
s /σ2

t . For m > 2 sub-samples there is more than one ratio such that we cannot effectively visualize
all combinations. We thus consider the following special case. For each sub-sample structure,
we the compute the spacing of the estimates from the corresponding empirical application. That is,
we order the empirical estimates σ̂2

(1) < · · · < σ̂2
(m) and compute the m spacing-coefficients

x` = (σ̂2
` − σ̂2

(1))/(σ̂
2
(m) − σ̂2

(1)). We note that x(1) = 0 and x(m) = 1. The spacings (x1, . . . , xm)

in the empirical examples are (1, 0) (Verrall et al. 2010), (0, 0.76, 1) (Barnett and Zehnwirth 2000),
and (0.09, 1, 0.58, 0) (Taylor and Ashe 1983). The log data variance for the `-th subset is then

σ2
` = σ2

(1) + x`(σ2
(m) − σ2

(1)). (13)

To trace out power curves, we vary the largest ratio σ2
(m)/σ2

(1) from one, corresponding to Hσ2 :

σ2
` = σ2, to twenty in 0.5 increments. As noted above, we can set σ2

(1) = 1 without loss of generality.

For each degree of freedom scenario and for each ratio σ2
(m)/σ2

(1), we draw 106 sub-samples.

For each draw, we compute the test statistics used in the corresponding empirical application, FLN
σ2

as in (6) and BLN as in (5). We note that for m = 3, we compute only the Bartlett test statistic for the
model with calendar effect BLNe to make the plot less cluttered. Thus, the degrees of freedom for σ̂2,LN

`
in the three scenarios are (26, 6), (3, 5, 8) and (6, 3, 6, 6). We use χ2 critical values for the Bartlett tests.

Figure 6 shows rejection frequencies at 5% critical values.
We can see that all tests have the right size under Hσ2 , that is for σ2

(m)/σ2
(1) = 1. The power of

two-sided F-test and Bartlett test in the two sub-sample scenario is very similar with a slight advantage
for the Bartlett test. Thus, the choice between the two test may mostly depend on taste. Comparing
Bartlett tests across scenarios, we see that the power for m = 4 sub-samples is larger than that for
m = 3 sub-samples. Thus, fewer sub-samples do not necessarily imply higher power. Intuition comes
from the degree of freedom weighting. For m = 3 sub-samples, if we drop the variance with the
smallest degree of freedom the larger two variances are relatively homogeneous. Meanwhile, for m = 4
sub-samples there is still plenty of variation left among the largest three variances. Thus, since the test
attributes more weight to the better estimates with higher degrees of freedom, the scenario with m = 3
sub-samples is a rather tough case.

We indicated the σ2
(m)/σ2

(1) ratios we found in the individual empirical applications by vertical
lines. We recall that the spacing of intermediate variances is taken from the empirical applications.
Therefore, suppose that the empirical estimates are the truth such that Hσ2 is violated. Then we can
read of the power against this scenario directly from the plot. For example, in the application to the
Verrall et al. (2010) data, the F-test would have a power of about 35% while the Bartlett test power
would be closer to 40%.
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Figure 6. Power curves for log-normal dispersion tests based on sub-sample structures from empirical
applications. Empirical maximum to minimum ratios indicated by horizontal lines. BZ is short for
Barnett and Zehnwirth (2000), VNJ for Verrall et al. (2010), and TA for Taylor and Ashe (1983).

6.3. Performance of Over-Dispersed Poisson Model Asymptotics

The theoretical results for the over-dispersed Poisson model are asymptotic, rather than exact as
in the log-normal model. We show that an asymptotic approximation works well. Tests for common
over-dispersion have the right size under the null. The power under the alternative in finite samples
is close to the asymptotic power. Further, F-tests for common linear predictors conditional on
non-rejection of over-dispersion tests are very close to F distributed in finite samples.

6.3.1. Rejection Frequencies of Tests for Common Over-Dispersion

We can use the rejection frequencies from the log-normal simulations as a benchmark for those
in the over-dispersed Poisson model. To see this we recall that as the overall mean E(Y..) → ∞,

the over-dispersion estimator σ̂2,ODP
`

D→ σ2
` χ2

d f`
/d f` in the over-dispersed Poisson model MODP.

This matches the exact distribution of σ̂2,LN
` in MLN . Thus, asymptotically, the distribution of LRODP

in MODP and LRLN in MLN are identical for identical ratios σ2
s /σ2

t . The same holds for FODP
σ2 and FLN

σ2 .
We simulate for the same three sub-sample structures as in the log-normal simulations. For the

simulation design, we set-up an unrestricted model MODP that satisfies the assumptions in Section 4.1.

For the distribution of the cells we choose compound Poisson-gamma so Yij,` = ∑
Cij,`
s=1 Xs,` where

Cij,`
D
= Poisson{exp(µij,`)} independent of the i.i.d. gamma distributed Xs,` with scale σ2

` − 1 and
shape (σ2

` − 1)−1. We note that the parametrization for the linear predictors µij,` and the level of the
over-dispersion σ2

` matters in finite samples. This is in contrast to the log-normal model. The reason
is that the finite sample distribution of σ̂2,ODP

` in MODP is generally not σ2
` χ2

d f`
/d f`. Thus, for each

considered scenario, we set the linear predictors µij,` to the estimates µ̂ODP
ij,` from the data in the

corresponding empirical application. Similarly, we set the smallest over-dispersion σ2
(1) = σ̂2,ODP

(1) .

We again vary the ratios σ2
(m)/σ2

(1) from one to twenty, using the exact same spacing x` from (13) in

the log-normal simulations so σ2
` = σ2

(1) + x`(σ2
` − σ2

(1)). The only difference is that now σ2
(1) = σ̂2,ODP

(1) .

Therefore, asymptotically, the power for a common σ2
(m)/σ2

(1) is identical in over-dispersed Poisson

and log-normal models. We draw 106 sub-samples for each over-dispersion ratio σ2
(m)/σ2

(1) and
sub-sample structure.

Figure 7a shows the rejection frequencies at 5% critical values for the four test statistics from the
empirical applications as in the log-normal model but now computed based on σ̂2,ODP

` .
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(b) Gap to asymptotic rejection frequencies

Figure 7. Power gap for log-normal dispersion tests based on sub-sample structures from empirical
applications. Empirical maximum to minimum ratios indicated by horizontal lines. Rejection frequencies
shown in (a), gap to asymptotic rejection frequencies in (b).

For σ2
(m)/σ2

(1) = 1 we are under the null; we can see that the rejection frequencies are very close

to 5% so the tests have the correct size. Under the alternative where σ2
(m)/σ2

(1) > 1, the ordering of
the rejection frequencies matches that in the log-normal simulations (Figure 6). Generally, the plot is
reassuringly reminiscent of its equivalent in the log-normal simulations.

Figure 7b shows the gap to the asymptotic rejection frequencies that arises in the finite sample
simulations. The simulation set-up implies that this is the difference between rejection frequencies in
log-normal and over-dispersed Poisson simulations. Thus, the plots shows the impact of the asymptotic
approximation in the over-dispersed model. Since the difference under the alternative is positive
throughout, the power in the over-dispersed model is lower than in the log-normal model. We next
interpret the plots under the alternative in turn for the three sub-sample scenarios.

For m = 2, the power gap of Bartlett and F-test initially increases with σ2
(m)/σ2

(1), hitting 10pp

(percentage points)for the F-test at σ2
(m)/σ2

(1) ≈ 7.5, before it decreases. The initial increase relates
to the asymptotic theory by Harnau and Nielsen (2017) which assumes fixed dispersion parameters.
Since we keep σ2

(1) constant, the remaining dispersion parameters grow with the ratio. Thus, we would
require larger cell-means to achieve the same asymptotic approximation quality. The later decrease
reflects the upper bound of one for the power: even as the asymptotic approximation becomes worse,
the difference between dispersion parameters becomes so large that it is easily caught. For m = 4,
the power gap is increasing throughout the considered range for σ2

(m)/σ2
(1). The intuition for the

increase again comes from the asymptotic theory. We do not see a decrease since the power is still
quite far from unity, staying below 80% even for the largest maximum to minimum ratio. Meanwhile,
for m = 3, the power gap is essentially zero so that the finite sample power matches the asymptotic
power. The intuition for this follows because the dispersion to mean ratio is small. As a rough indication,
dividing the largest considered dispersion 20 · σ̂2,ODP

(1) by the mean over all cells n−1 ∑ij Yij yields 0.8% for
the Barnett and Zehnwirth (2000) simulations compared with 70% and 56% for the Verrall et al. (2010)
and Taylor and Ashe (1983) simulations, respectively.

We again indicate the power at the particular alternative generated by taking the estimates in
the empirical applications as true values by vertical lines. Figure 7b shows that for these alternatives,
the power for all asymptotic approximations is within 5pp of their asymptotic power.
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6.3.2. Independence of Test for Common Linear Predictors

We move on to evaluate the quality of a finite sample approximation to the asymptotic
independence in Lemma 1. Specifically, we consider the finite sample distribution of FODP

µ as in
(11) given that a tests for common over-dispersion did not reject. Arguably, this is the most interesting
case since it matches the natural order of the two specification tests.

We simulate under the null Hµ,σ2 , that is for a model with common linear predictors and
over-dispersion MODP

µ,σ2 . As before, cells Yij are compound Poisson-gamma. We consider three scenarios,

setting the parameters to the estimates for MODP
µ,σ2 in the three empirical examples. We draws 106

triangles per scenario.
For each draw, we compute tests based on the sub-sample structure of the corresponding empirical

application. We first conduct a Bartlett test for Hσ2 at 5% critical values. If we do not reject Hσ2 based on
this test, we keep the triangle, otherwise we throw it out. Since we simulate under the null hypothesis,
we thus keep about 95% of the draws. Only for the draws we keep do we compute the F-statistic for
common linear predictors FODP

µ .
Figure 8 shows a pp-plot for the FODP

µ against Fd f−d f.,d f. for the triangles that survived
Bartlett testing.
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Figure 8. Distribution of FODP
µ conditional on non-rejection of a 5% Bartlett test.

To be able to tell a difference from the 45-degree line, we limit our attention to the upper 10%
of the probability spectrum since. This is also the most interesting range for testing. Even in this
spectrum, each plot is very close to the 45-degree line. Therefore, under Hµ,σ2 , we can be reassured
that an F-test for common linear predictors has the correct size in finite samples even if we apply it
only conditionally on non-rejection of a test for common over-dispersion.

6.4. Remark

We note that all simulations are for tests that consider the correct sub-sample structure under
the alternative. Of course, this does not seem realistic in applications. However, for tests computed
on a given sub-sample structure, it appears we would generally be able to choose a true, different,
sub-sample structure against which the tests would at best have limited power. For example, say we
compute the tests on the two sub-samples with a split after the fifth accident year in Figure 1a while
really there are three sub-samples with an additional split after the fifth development year. Then,
we could choose parameterizations for the three true true sub-samples to balance out the variation
between the two incorrectly chosen sub-samples, thus minimizing power. Therefore, it seems to us that
such simulation results would be almost entirely driven by our chosen parametrization and provide
little insight beyond that. We believe the real answer to this problem must come from a theory that is



Risks 2018, 6, 25 22 of 25

agnostic to the sub-sample structure as discussed below. However, we stress again that the size of the
tests under the null hypothesis is not affected by the chosen sub-sample structure.

7. Discussion

Some questions are left open for future research. For example, it is not clear how to best choose
the sub-sample structure and the number of sub-samples. Further, the question arises whether we can
somehow select between the over-dispersed Poisson and log-normal model. Finally, a misspecification
test for independence of the cells would be a useful addition to the modeling toolkit.

So far, we chose the sub-sample structures somewhat arbitrarily if potentially informed by prior
knowledge of the data. While the size of the tests under the null is not affected by the sub-sample
structure, the power of the tests under the alternative is affected both by the chosen number of
sub-samples and their structure. In applications, the expert may consider choosing a range of
sub-samples structures and conducting tests for each, adjusting the size based on the number of
tests to account for multiple testing as shown in the empirical applications. For future research,
it would be useful to derive a theory that is agnostic to the number of sub-samples and their structure
while still directly controlling size. It might be fruitful to look for ideas in time-series econometrics
which has been concerned with tests for parameter breaks for a long time. In this literature, Chow (1960)
had proposed a test for parameter breaks that required knowledge of the breakpoint. By now, there
are several test available that are agnostic with respect to the number of breaks, related to the number
of sub-samples in our problem, and the position of breaks, akin to the sub-sample structure. Examples
include Andrews’ test (Andrews 1993), generalizations of Chow tests (Nielsen and Whitby 2015),
and indicator saturation (Hendry 1999). However, these tests are designed for data with a single
time-scale and results are generally based on long time-series. In contrast, we are confronted with data
with three interlinked time-scales and the arrays are often small with a large number of parameters
that is growing with the array size. Thus, the known results do not carry over and a it appears that
a new theory is needed.

Since we have seen two models in this paper, log-normal and over-dispersed Poisson,
a natural question is when we should choose which model. As we have seen, the log-normal
model assumes a fixed standard deviation to mean ratio while the over-dispersed Poisson model
considers the variance to mean ratio to be fixed. Making use of recent results for generalized
log-normal models by Kuang and Nielsen (2018), a class of models that includes the log-normal but
is more general, Harnau (2018) proposes a test to distinguish between (generalized) log-normal and
over-dispersed Poisson models based on this discrepancy.

Finally, a misspecification test for the assumption that the cells in the array are independent
would be useful. This is an assumption that both the log-normal and the over-dispersed Poisson model
impose. In contrast, the “distribution free” model by Mack (1993) relaxes this somewhat, assuming
independence only across accident years.
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Appendix A

Appendix A.1. Proof of Theorem 1

The proof relies on two properties. First, RSS − RSS., the numerator of FLN
µ , reduces to

a comparison of least squares fitted log-means ∑m
`=1 ∑ij∈I`(µ̂

LN
ij − µ̂LN

ij,` )
2, and is therefore, in the

Gaussian framework at hand, independent of the residual sum of squares RSS1, . . . , RSSm.
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Second, the denominator of FLN
µ , the aggregated residual sum of squares RSS. and the relative

contributions π1, . . . , πm for π` = RSS`/RSS. are mutually independent. To see this, we first recall that
under the hypothesis RSS1, . . . , RSSm are independent σ2χ2. The proof is unaffected by setting σ2 = 1.
Thus, let X1, . . . Xm be independent χ2. Recall that the sum of independent χ2’s is χ2. Let S` = ∑`

s=1 Xs

and V` = S`−1/S`. We note that we can map V2, . . . , Vm to the frequencies X1/Sm, . . . , Xm/Sm. For the
special case with m = 2, Johnson et al. (1995, p. 212) note the independence of S2 and V2. The general
case for independence of Sm and V2, . . . , Vm can be proved by induction. Here, we partially replicate
the (originally Danish) argument from Andersson and Jensen (1987, p. 180). We show the induction
step from m− 1 to m. Suppose V2, . . . , Vm−1, Sm−1 and Xm are independent. Then Sm = Sm−1 + Xm

and Vm = Sm−1/Sm. Sm and Vm match the setting for the special case with m = 2 from above and
are thus independent. Hence, V2, . . . , Vm and Sm are independent, completing the induction step.
Independence of V2, . . . , Vm and Sm implies independence of π1, . . . , πm and RSS.,

Taken together, RSS− RSS., RSS., and π1, . . . , πm, are mutually independent. Now, we can write
the test statistics for the dispersion parameters as functions of the relative contributions π`:

LRLN = LR(π1, . . . , π`) =
m

∑
`=1

d f`

[
log
(

d f`
d f.

)
− log(π`)

]
, FLN

σ2 =
d f1

d f2

π2

π1
.

Thus, FLN
µ is independent of FLN

σ2 and LRLN .

Appendix A.2. Proof of Theorem 2

This follows from (8), independence of d` across ` due to disjoint sub-samples made up of
independent Yij, the continuous mapping theorem, and the results discussed in Section 3.

Appendix A.3. Proof of Lemma 1

Once we show that D− D., D. and D1/D., . . . , Dm/D. are asymptotically mutually independent,
the result follows from the proof of Theorem 1 since the asymptotic distribution of the deviances in
the over-dispersed Poisson model matches the exact distribution of the residual sum of squares in the
log-normal model.

We can set σ2 = 1 without loss of generality. Then, to prove mutual independence, we build on
the insight of Harnau and Nielsen (2017) that asymptotics for the over-dispersed Poisson model match
standard exponential family asymptotics. Thus, D− D. and D1, . . . , Dm are asymptotically equivalent
to quadratic forms (Johansen 1979, Theorem 7.8) of asymptotically Gaussian projections on orthogonal
subspaces (Johansen 1979, Theorem 7.6). Thus, independence and hence Lemma 1 follows.

Table A1. Insurance run-off triangle taken from Verrall et al. (2010, Table 1) as used in the empirical
application in Section 5.1 and the simulations in Section 6.

i, j 1 2 3 4 5 6 7 8 9 10

1 451,288 339,519 333,371 144,988 93,243 45,511 25,217 20,406 31,482 1729
2 448,627 512,882 168,467 130,674 56,044 33,397 56,071 26,522 14,346 -
3 693,574 497,737 202,272 120,753 125,046 37,154 27,608 17,864 - -
4 652,043 546,406 244,474 200,896 106,802 106,753 63,688 - - -
5 566,082 503,970 217,838 145,181 165,519 91,313 - - - -
6 606,606 562,543 227,374 153,551 132,743 - - - - -
7 536,976 472,525 154,205 150,564 - - - - - -
8 554,833 590,880 300,964 - - - - - - -
9 537,238 701,111 - - - - - - - -

10 684,944 - - - - - - - - -
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Table A2. Insurance run-off triangle taken from Barnett and Zehnwirth (2000, Table 3.5) as used in the
empirical application in Section 5.1 and the simulations in Section 6.

i, j 1 2 3 4 5 6 7 8 9 10 11

1 153,638 188,412 134,534 87,456 60,348 42,404 31,238 21,252 16,622 14,440 12,200
2 178,536 226,412 158,894 104,686 71,448 47,990 35,576 24,818 22,662 18,000 -
3 210,172 259,168 188,388 123,074 83,380 56,086 38,496 33,768 27,400 - -
4 211,448 253,482 183,370 131,040 78,994 60,232 45,568 38,000 - - -
5 219,810 266,304 194,650 120,098 87,582 62,750 51,000 - - - -
6 205,654 252,746 177,506 129,522 96,786 82,400 - - - - -
7 197,716 255,408 194,648 142,328 105,600 - - - - - -
8 239,784 329,242 264,802 190,400 - - - - - - -
9 326,304 471,744 375,400 - - - - - - - -

10 420,778 590,400 - - - - - - - - -
11 496,200 - - - - - - - - - -
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