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Abstract: The relevance of critical illness coverage and life insurance in cause-specific mortality
conditions is increasing in many industrialized countries. Specific conditions on the illness and on
death event, providing cheapest premiums for the insureds and lower obligations for the insurers,
constitute interesting products in an insurance market looking to offer appealing products. On the
other hand, the systematic improvement in longevity gives rise to a market with agents getting
increasingly older, and the insurer pays attention to this trend. There are financial contracts joined
with insurance coverage, and this particularly happens in the case of the so-called insured loan.
Insured loans are financial contracts often proposed together with a term life insurance in order
to cover the lender and the heirs against the borrower’s death event within the loan duration.
This paper explores new insurance products that, linked to an insured loan, are founded on specific
illness hypotheses and/or cause-specific mortality. The aim is to value how much the insurance costs
lighten with respect to the traditional term insurance. The authors project cause-specific mortality
rates and specific diagnosis rates, in this last case overcoming the discontinuities in the data. The new
contractual schemes are priced. Numerical applications also show, with several graphs, the rates
projection procedure and plenty of tables report the premiums in the new proposed contractual forms.
The complete amortization schedule closes the work.

Keywords: cause-specific mortality; critical illness; forecasting cause-specific mortality;
diagnosis rates

JEL Classification: G22; G23; I13

1. Introduction

In many industrialized countries, the progressive ageing process of the population determines
a significant incidence of diseases, which strongly increase with age. Today’s individuals are
expected to live longer than previous generations, but some of these extra years of life may not
necessarily be healthy. There are two outlooks of ageing and morbidity that contradict each
other. The Morbidity Compression Hypothesis predicts that health problems will occur at higher ages,
given a rectangularization of the health profiles (Schoder and Zweifel 2011). On the contrary, the
Morbidity Expansion Hypothesis predicts the gradual medicalization of society as the longevity improves
(Gruenberg 1977; Olshanksy et al. 1991; Doblhammer and Kytir 2001). The debate on the topic is
ongoing. In either case, the morbidity phenomenon calls for deep consideration, particularly from the
insurance perspective.

The financial impact of diseases due to costs for healthcare, rehabilitation, as well as temporary
and permanent assistance has led to a variety of supplementary insurance for health in current health
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systems. Various classes of products have been developed by the insurance industry to specifically
fulfil the needs of an ageing population facing health risks, and this insurance market sector is growing
in many countries. While the insurance market moves towards an increasing segmentation, in order
to get the competitive advantages deriving from a deep knowledge of the consumer, the general
guidelines indicate to pay attention to the consumer’s protection and to the improvement of the quality
of life. Policies like Critical Illness match these two aspects. In this sense, it is interesting to also
consider coverage in case of specific cause of death, also in light of the increasing availability of data
concerning these events.

Our focus is centered on the impact this subject has on financial contracts such as loans, in which
a relevant role is held by the exposition to long-term biometric risks such as mortality and morbidity
of the borrower. Both critical illness and disability insurance can reveal themselves as usefully
inserted in the contractual structure of the insured loans; an example for all can be found in the
Government of Canada (2017) webpage, in which Critical Illness Insurance and Disability Insurance
are considered within credit or loans.

Generally, the loan contract, in its standard form, can concern the guarantee of the repayment
provided by an insurance company in case of the borrower’s death during the loan duration due to any
cause. The insured loan is protected against default in the sense that if default occurs, the insurance
company will pay the lender what is owed. In this work, we propose more detailed coverage within
the loan contract, lowering the pricing structure.

The European supervisory authorities’ attention is focused on topics connected to the
socio-demographic dynamics, particularly when setting guidelines in designing insurance coverage at
adult and old ages.

Already in 2013, the Basel Committee on Banking Supervision addressed Mortgage
insurance issues, especially with regards to market structure and policy implementation (see
Basel Committee on Banking Supervision 2013, p. 1), following the global financial crisis’ impact. It
drew attention—among other things—to the need for a regulatory system able to ensure flexibility
in the loan-to-value dimension (known in banking practices as LTV), coupled with effective and
harmonious risk management, obtainable via targeted standards.

In the Basel Committee on Banking Supervision (2013), the Joint Forum essentially discussed
about various risk elements, which, because of their impact on such contracts, can easily trigger
“stress in the worst tail events”. It was from this perspective that the document proposed a series of
recommendations for policymakers and supervisors.

Within the context of insured loans, the European Standardized Information Sheet (ESIS) grants
borrowers information warranties, which ought to characterize their engagement with lenders. It
must be pointed out, however, that several questions inherent to insurance policies, contractual
transparency, or the interest of the various counterparts remain open. Addressing them is even more
urgent if one is to tackle the connection with discrete mortality causes or diseases occurring during the
contract’s duration.

In February 2017, the European Insurance and Occupational Authority (EIOPA) took upon itself
the duty of addressing, among other things, financing constraints, “in view of removing barriers to
investments in [ . . . ] loans” (see EIOPA 2017). The results of these initiatives will be made available
in 2018.

The potential increasing achievement of new products connected to the lengthening of human
life, and in particular to its consequences in terms of critical illness and disability covers, is triggering a
new push in the scientific research. Many are contributing to improving the insurer’s costs valuations
in this field. Baione and Levantesi (2014) met the lack of data in critical illness presenting a parametric
model for pricing health insurance, and Fellingham et al. (2015) proposed moving from parametric to
non-parametric techniques for the cost estimation in healthcare, highlighting their higher flexibility.
Hambel et al. (2017) deepened the reasons, inducing only a restrained appealing of long-term life
insurance, pinpointing that the core of the question is the high costs of a policy revision in the event
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of a health shock. Pitacco (2016) pointed out that the analysis of the sensitiveness of the premium
structure to the biometric bases is a useful tool in designing new long-term care policies. The growing
flurry of topics referring to health and illness—specifically oriented towards pricing questions—seems
to leave out the interesting flexibility of covers referred to the human health, in particular developing
their practical potentiality inside popular financial contracts.

In this paper, we will focus on new products tailored to the specific profile of the insured in the
terms discussed above, with the aim of protecting lenders and borrowers in the event a borrower ever
stopped making payments for serious specific diseases or for specific mortality. The paper focuses on
the insured loan product design when the borrower is a private person.

The aim of the paper is the pricing of the proposed products. The results will be considered within
the insured loan amortization schedule, stressing the amount of the reduction in prices with respect to
the standard insured loan contracts. The content of the paper can be also a useful tool for practitioners
in the insured loan contract structuring process.

Note that the pricing procedure must be carefully handled. The structural breaks in the
cause-specific mortality time series indicate the difficulty in predicting cause-specific mortality rates,
as widely explained in Haberman and Villegas (2014). To perform this phase, the mortality rates must
be adjusted and projected.

The paper is organized as follows. Section 2 introduces the mathematical structure of the main
characteristics of the standard insured loan contract. Financial and actuarial details are analyzed. In
Section 3 we design new insured loan contracts, “specialized” according to specific death cause or
specific illness. Within this Section, the products are introduced and formally described. In Section 4,
the procedure for fitting and projecting the cause-specific death rates is illustrated with figures, and
the new products are priced. The results are illustrated in several tables and discussed in Section 4.2.
Section 5 is an outlook on some new perspectives for going forward in the development of the
research. In the Appendix A, we provide some results collected in tables and graphs concerning the
empirical application.

2. Standard Insured Loan Contract

In the standard amortization method, the borrower refunds the lender, paying instalments at
periodic intervals. Usually the amortization schedule spreads over a time interval large enough to
consider the operation affected by the insolvency risk due to all the events related to the duration of
the human life, whatever the age at issue of the borrower is. For these reasons, it is efficient to insert an
insurance policy into the contract for covering the risk that the debtor dies before having completely
extinguished the debt. Broadly speaking, if the borrower dies before the contract expiry, the insurer
pays to the lender the outstanding loan balance evaluated at that time. The loan becomes an insured
loan, and the insolvency risk due to the debtor’s eventual death is cut down.

In Coppola et al. (2009), a wide financial analysis of the insured loan is developed: formulas for
single and periodic premiums, benefits, and reserves are provided within the cash flow analysis. In
that paper, the authors deepen the risk analysis aspects, dwelling in particular on the Model Risk and
the Mortality Risk (the first due to the randomness in the choice of the mortality rate set and the second
due to the random deviations of deaths from the expected values), considering a pooling technique
rather unfeasible in the specific matter at hand.

Following Coppola et al. (2009), supposing the borrower/insured’s debt is one monetary unit, we
can write:

∑n−1
k=0 Pk A1

x:k| = 1, (1)
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where Pk is the instalments paid by the insured at the beginning of each year and A1
x:k|

(Bowers et al. 1997) is the actuarial present value of a k-year pure endowment of 1 monetary unit
paid in case of life by an insured aged x, given by the following expression:

A1
x:k| = v(0, k)k px. (2)

In Formula (2), k px is the survival probability of an insured aged x at inception to be alive at
time k, and v(o, k) is the value in t = 0 of 1 at time k. The annual anticipated payments Pk include
the principal repaid Ck, the interest paid Ik on the outstanding balance Dk−1 valued at time k− 1, the
actuarial premium covering the outstanding loan balance at the beginning of each year, if the death
occurs before the expiration date. That circumstance implies a temporal misalignment between the
premium payments and the debt repayments.

The following subsection is concerned with the financial structure of Pk, observing that the
actuarial premium and the loan instalment can be paid together to one counterparty (i.e., a bank) or
separately to the lender and to an Insurance Company. These two circumstances will not have any
consequence on the financial cash flows we are going to describe. The financial description will be
developed in a deterministic environment, even if the stochastic approach for depicting the evolution
in time of the interest rate curve could be easily implemented within a numerical application.

Insured Loan: Installment and Actuarial Premium Analysis

Let us consider that the borrower (aged x) will repay 1 monetary unit to the lender in n years by
means of n constant instalments paid at the end of each year, at a given fixed annual rate of interest i or
a variable one ih. For simplicity, we will present the payment components in the fixed rate hypotheses.
The constant annual payment amount Rh = R (h = 1, 2, . . . , n) and the outstanding loan balance Dh
valued at the end of year h are, respectively:

Rh = R =
1

an|
Dh =

an−h|
an|

, (3)

with an|, as usual, being the present value of a periodic (annual) constant unitary income at the end of
each period for n periods, at a fixed periodic interest rate. By means of the insurance component, if the
borrower dies during the contract duration, the insurer will repay to the lender the obligations still
due by the borrower at that time. We will assume that this payment will be done at the end of the year
in which the eventual death occurs. If the death event happens at time t, h− 1 < t ≤ h, what is due to
the lender consists of the outstanding balance at time h− 1 plus the annual interest on this sum. The
value Bh of the benefit payable at time h if the insured-borrower aged x at issue dies during the h-th
year and the probability of this event are, respectively (cf. Coppola et al. 2009):

Bh =
1

an|

..
an−h+1| h−1/1qx, (4)

where
..
an−h+1| refers to the anticipated case.

The constant actuarial premium which the borrower/insured pays at the beginning of the first m
years (0 < m ≤ n, 0 ≤ h < m− 1) if alive, is given by:

/mPx,h = /mPx =
1

an|
/mπx, (5)

in which:

/mπx =
1

..
ax,m|

∑n−1
j=0 j/an−j| j/1qx.
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If kx is the curtate future lifetime of the insured aged x at issue, in the case of anticipated constant
annual payments, the flow Xh at the beginning of year h is given by the following scheme:

Xh =


−/mPx,h kx ≥ h 0 ≤ h ≤ m− 1

0 kx ≥ h h ≥ m
1

an|

..
an−h+1| h− 1 ≤ kx < h 1 ≤ h ≤ n

, (6)

with h = 0, 1, . . . , n; Pn = 0.

3. Cause of Death and Diagnosis Event: Impact on Loan Repayment

The cost of funding health care for the elderly is continuously growing due to the increasing life
expectancy. The topic is studied here within the insured loan financial structure.

There are two basic points which we will develop:

(1) if a critical illness is diagnosed, the affected individual could be unable to completely or partially
perform the engagements in his working activity, and in the specific case of the onset during the
loan duration, this could involve the inability to fulfil the obligation as expected. In the basic
critical illness insurance (cf. Haberman and Pitacco 1998), the insurer pays a lump sum upon the
occurrence or diagnosis of the pre-specified dread diseases. Typically, the contractual options
within the critical illness general scheme are the Stand Alone and the Accelerated. The first covers
the insured just in case of diagnosis of illnesses, while the second guarantees payments in case of
illness and in case of death.

(2) within the traditional insured loan contract (setting the coverage in case of the borrower’s death),
we will study the case of a death-specific cause. In the basic n-year term insurance, insertable in the
loan amortization process, the insurer pays the benefit if the insurer dies within the n (or h ≤ n)
years of the loan duration, with no specifications about the death cause. In the following, the
n-year term insurance will be studied with regard to a specific death cause.

Both cases appear tailor-made contractual forms providing lower costs for the insured and the
insurer. Our idea is to propose an insured loan form in which the insurance coverage involves critical
illness diagnosis and/or cause-specific death.

This paper focuses on insured loans in which such cause-specific insurance products are included,
in order to explore new scenarios tending to personalize the loan contractual forms.

The aim of the analysis will be the pricing of the actuarial insurance coverage we propose and
next the drawing up of the amortization schedule in which the annual instalment includes both the
actuarial premium and the financial repayment process.

New Proposals for Insured Loans

In what follows, we pose the borrowed capital equal to 1 at time 0 while the amount the insurer
will pay under the specified contractual conditions is the amount still owed; that is, the residual debt
valued at the time of the benefit payment in case of the borrower’s death. Note that all of the contracts
in the following are designed considering the main aim of the operation, which is the resolution of the
debt in case of the borrower’s insolvency. This implies contracts built according to the amortization
schedule, and consequently the analysis needs a discrete approach.

In what follows, we will present and briefly describe the three new contractual forms we introduce.
According to the notation in Haberman and Pitacco (1998), in what follows we will indicate by paa

x the
probability that a person aged x is healthy at age x + 1, and by

h paa
x = paa

x paa
x+1 . . . paa

x+h−1

the probability of being healthy at least until age x + h.
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Death-Specific Insured Loan—SpeIL

The idea is to design a product in which the loan is saved in case of the borrower’s death for a
specific cause. The death cause is precisely defined in the contract (e.g., ischemic heart disease, stroke,
lower respiratory infections, and chronic obstructive lung disease). If q(c)x+h is the probability that an
individual aged x + h dies within one year because of a specific cause, we can write that

h/1q(c)x = h paa
x q(c)x+h

is the probability that an individual aged x at issue dies between ages x + h and x + h + 1 due to a
specific cause.

The value of the insurer’s obligations ASpeIL valued at time 0 is given by:

ASpeIL = ∑n−1
h=0

..
an−h|

an|
v(0, h + 1)h/1q(c)x , (7)

in which v(0, h + 1) is the discount factor for valuing in t = 0 one monetary unit in h + 1. The equation
involving the insured’s obligations is:

ASpeIL = ∑n−1
h=0 Phv(0, h)h px,, (8)

where Ph is the premium the insured pays at the beginning of year h.

Standard Critical Illness Loan (Stand Alone)—SCILsa

Here the insurance protection inserted in the loan concerns the coverage of the risk of suffering a
particular specified disease.

The equation concerning the insurer obligations follows:

ASCILsa = ∑n−1
h=0

..
an−h|

an|
v(0, h + 1)h/1w(d)

x , (9)

in which, if w(d)
x+h is the probability that the insured aged x + h checks a specified diagnosis d during

the year h, h + 1, we can write that

h/1w(d)
x = h paa

x w(d)
x+h

is the probability that a person aged x at the issue time is healthy at age x + h and checks the diagnosis
d between the ages x + h, x + h + 1 (cf. Haberman and Pitacco 1998).

The insured’s obligations are given by the equation:

ASCILsa = ∑n−1
h=0 Phv(0, h)h paa

x . (10)

Standard Critical Illness Loan (Accelerated)—SCILa

In this case, the insurer will pay the amount if the insured suffers a specified disease or dies from
any cause of death. The premium flow provides an accelerated benefit, covering the policyholder both
in case of a specified critical illness and in case of death from any cause. The following equation holds:

ASCILa = ∑n−1
h=0

..
an−h|

an|
v(0, h + 1)(h/1q̃x), (11)

in which:

h/1q̃x = h paa
x

(
q(c)x+h + w(d)

x+h

)
.
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Concerning the insured’s obligations, we can write:

ASCILa = ∑n−1
h=0 Phv(0, h)h paa

x . (12)

4. Numerical Applications

4.1. Data Source

The empirical analysis we perform in this section aims to develop the amortization schedules
for loans covered in case of death and/or critical illness of the borrower, as clarified in Section 3.
We will determine the global instalment periodically due by the debtor/insured, inclusive of both
the payment amount for repaying the loan and the actuarial premium for the insurance coverage.
We will assume different loan durations (10–20 years) and that the debtor/insured was a 40 and
60 year-old person in 2014. The study will be done referring to different cohorts (males, females,
smokers, non-smokers) in order to point out how the different basic characteristics impact the contract
pricing. The valuations referring to the two cohorts of smokers and non-smokers can provide useful
information towards the aim of loading strategies. Due to the availability of the data, we will refer
to the U.K. population and will consider the major causes of death according to the diagnosis rates
ranging from 1950 to 2009. The diagnosis rates for a Stand Alone cover and for a Full Accelerated
cover can be downloaded from the Continuous Mortality Investigation Bureau (CMI WP 14 2005;
CMI WP 18 2005; CMI WP 50 2011; CMI WP 58 2011), and concern in particular cancer and circulatory
system diseases (Brett and Toit 2007). Data concerning mortality disaggregated for causes of death are
available at the Mortality Database administered by the World Health Organization (WHO 2009). The
aggregated data (all causes) can be obtained from the Human Mortality Database (Wilmoth et al. n.d.),
containing relevant demographic information such as the number of deaths for many countries over
the last 50 years for five-year age groups; data concerning death for any cause and/or diagnosis
(accelerated from) are available in the CMI Working Paper 14. The aggregated death (and survival)
probabilities were obtained by means of a Poisson Lee–Carter model (Renshaw and Haberman 2003).

4.2. Actuarial Premiums

We will consider the specific death cause and/or illness cause “cancer and circulatory system
illness”, taken from International Classification of Diseases (ICD). To develop the actuarial analysis,
we need to determine the adjusted mortality indexes for each cohort and specified illness and project
them along the loan duration. The procedure we will perform is quite complex, and consists of
three basic steps concerning, respectively, the survival probabilities, the diagnosis probabilities, and
the cause-specific death probabilities. In the following, we synthetically present the procedures for
each point.

The Survival Probabilities

We chose to describe the annual mortality rates by means of the Poisson log-bilinear Lee–Carter
Model (Renshaw and Haberman 2003) and project the mortality indexes of the model by an ARIMA
process. According to Alho (2000), the basic Lee–Carter model, as in (Lee and Carter 1992), is not well
suited to the construction of projected lifetables. Moreover, Alho observes that, due to the smaller
absolute number of deaths at older ages, the logarithm of the observed force of mortality is much more
variable at older ages than at younger ones. Considering also that the number of deaths is a counting
random variable, according to Brillinger (1986), the Poisson assumption appears to be plausible. In
order to circumvent the problems associated with the Ordinary Least Square (PLS) method, we can
write (cf. Brouhns et al. 2002):

Dx,t ∼ Poisson(Ex,t(mx,t)) with mx,t = exp(αx + βxkt) (13)
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where the parameters are subject to the constraints ∑
t

kt = 0, ∑
x

βx = 1, as in the Lee–Carter basic

model (Lee and Carter 1992). The force of mortality is thus assumed to have the log-bilinear form:
ln(mx,t) = αx + βxkt. The meaning of the parameters αx, βx, and kt is essentially the same as in the
classical Lee–Carter model (Lee and Carter 1992).

Considering that the main drawback of the OLS estimation via Singular Value Decomposition
(SVD) is that the errors are assumed to be homoscedastic, here we estimate αx, βx, and kt maximizing
the log-likelihood:

L(α, β, k) = ∑x,t[Dx,t(αx + βxkt)− Ex,texp(αx + βxkt)] + constant. (14)

The Diagnosis Probabilities

The diagnosis rates represent the principal end product of a program of work carried out by the
CMI 2011 Critical Illness Committee to develop tables of critical illness diagnosis rates based on recent
UK insured lives experience, together with sufficient supporting information to enable appropriate
practical use by actuaries involved in this business (CMI, Working Paper 58). The diagnosis rates,
divided by age, sex, smokers, and non-smokers for durations of 5 years, are available for “cancer and
circulatory system illness” in CMI publications, 2005. Here such probabilities are just used for pricing
the standard critical illness covers.

The Cause-Specific Death Probabilities

As mentioned above, the death cause we consider is “cancer and circulatory system illness”. Once
the cohort under consideration is specified, we first provide the calculation of the annual mortality rates,
attainable as the ratio between the number of deaths and the number of survivors at the beginning
of each year (cf. WHO 2009). After the model parameters estimation, we will project the mortality
indexes by an ARIMA process following Haberman and Villegas (2014) and Villegas (2015). It is crucial
to observe that the ICD changed three times between 1950 and 2009, from ICD 7–8, ICD 8–9 and ICD
9–10; this is due to the changes in science and technology and to the refining of the classification itself.
This circumstance implies that data are not directly comparable each other when referring to these
three different periods. As the authors show, it is possible to smooth mortality rates across the various
classifications. Following this paper, in order to mitigate the discontinuities in the mortality time series
(referred to the cause “cancer and circulatory system illness”), we assume that the number of deaths
Dxt of individuals aged x at time t are independent Poisson responses following the form:

Dxt ∼ Poisson(extµxt).

Let:
S =

{
s1, s2, . . . , sj

}
be the times at which coding changes occur. In order to account for the coding changes, we assume as
in Haberman and Villegas (2014) and Villegas (2015) that the force of mortality is given by:

logµxt = ax + bxkt + ∑k
i=1 δ

(i)
x f i(t), (15)

where:

µxt is the age-specific death rate for age x and year t
ax is the average age-specific mortality
kt is the mortality index in year t, capturing the underlying mortality trend
bx is the deviation in mortality due to changes in the kt index



Risks 2018, 6, 13 9 of 21

f i(t), i = 1, 2, . . . , j is an indicator function valued at time t, taking the value 0 if no new
classification occurs in t and value 1 otherwise. The index i means the numbers of ICD coming true in
the considered period. In this application, j = 3.

δ
(i)
x measures the magnitude of coding changes at age x and captures the discontinuities in the

mortality trend induced by the changes in the coding system. It is necessary to verify if f (i)(t) = 1; only
in this case are the δ

(i)
x values meaningful for the fitting data procedure.

4.3. Empirical Evidence and Illustrations

The Probabilities

This section is focused on the parameter estimations of the models described above, performed
on the basis of the data in Section 4.1. For sake of clarity, we will explain the procedure according to
the scheme in Section 4.2.

The Survival Probabilities

The trend of parameters ax, bx, and kt of model (15) obtained as outputs of the procedure in
Section 4.2 are illustrated in Figure 1 in the male case. Moving clockwise, the first subplot on the left
shows the trend of parameter ax, the second on the right the trend of bx as a function of x, and the
third on the bottom the adjusted kt as a function of t.
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The Diagnosis Probabilities

As we already said, in the case of cancer and circulatory system illnesses, the probabilities for
pricing both the critical illness covers (Accelerated and Stand Alone) are available. In particular, in the
case of the Standard Critical Illness Loan (Accelerated), we have to consider that a high proportion of
deaths from cancer, and a possibly smaller proportion of deaths from circulatory system illness, must
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be removed from the “all causes” death rates to avoid double-counting of claims. The probabilities
reported in the above Haberman and Villegas (2014) consider this circumstance.

The Cause-Specific Death Probabilities

The parameters ax, bx, kt, and δ
(i)
x of model (20) are illustrated in Figure 2: their estimated values

and the forecasted px values for males and females are reported in the Appendix A (Tables A1 and A2).
Moving clockwise in Figure 2, the first subplot shows the trend of the sum of the two parameters ax

and δ
(i)
x . The second subplot shows the trend of the parameter bx as function of x, and the third reports

the adjusted kt trend as a function of t. The three vertical red segments point out the reclassification
times: as is evident, no more jumps are present in the graph.

In Figure 2, we show in an orderly way the model parameters and the adjusted mortality rates
for males and females in the UK population and cancer and circulatory system illness case. Moving
clockwise, in Figure 2 the first subplot shows the trend of the sum of the two parameters ax and δ

(i)
x .

Being ax constant with respect to t over the whole observed period, the four curves refer to the four
different values of δ

(i)
x obtained in the four intervals: 1950–1967, 1968–1978, 1979–2000, and 2001–2009.

These intervals have been pointed in the ICD years (1968, 1979, 2001). The second subplot shows the
trend of the parameter b as a function of x, and the third reports the adjusted kt trend as a function
of t. The three vertical red segments point out the reclassification times: as evident, no more jumps
are present in the graph. The four subplots in Figure 3 show the adjusted mortality index trends,
and in particular show how the discontinuities have been mitigated. As an example, they refer to
four different age intervals (40–44, 50–54, 60–64, 70–74): the red dots are the adjusted values of kt,
the black dots are the observed data, and the continuous line represents the fitted data. The plots in
Figures 4 and 5 show the same quantities in the case of the female population.
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Figure 2. Model parameters, Cancer and Circulatory System Illness, UK Male population. On the axes
of ordinates the parameter values.
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Figure 4. Model parameters, Cancer and Circulatory System Illness, UK Female population. On the
axes of ordinates the parameter values.
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Figure 5. Adjusted mortality index- Cancer and Circulatory System, UK Female population, age groups
40–44, 50–54, 60–64, 70–74.

The Insurance Contracts: Pricing

In this section, we develop the amortization schedules for loans covered in case of death or/and
critical illness of the borrower as clarified in Section 3.

The following groups of Tables report the constant premiums payable in all the contractual forms
considered in Section 3, in the case of UK female and male populations. We fixed the loan annual
interest rate i = 0.07 and the technical actuarial valuation rate r = 0.02. The contracts were issued
in 2014. In particular, in the Table group 1, Table 1b refers to SpeIL and the premium is determined
by Formulas (7) and (8). This case is compared with the standard form SIL (Standard Insured Loan),
providing the coverage in case of death for any cause, whose premium values are in Table 1a (see
Formula (5)). As expected, premiums fell when only a specific cause of death—even if so relevant—was
considered. Table 2a,b concern the forms indicated as SCILsa and SCILa for female non-smokers;
in Table 3a,b, there are the same results in the female smokers case. The premiums were calculated
by Formulas (9)–(12). It is self-evident how cheap the coverage is in the Specific Insured Loan case
and how it increases if the population refers to smokers. We observe in which measure the highest
premium is that one referred to SCILa, offering the widest coverage: in this case the insurer will pay
what is owed from the amortization schedule in case of death (for any cause) and in case of the specific
illness diagnosis. Moreover, the results highlight that the diagnosis rates for female non-smokers aged
40–70 are higher than the corresponding one for the female smokers. Consequently, in the case of
SCILsa, female non-smokers will pay more than the female smokers. This evidence works only in the
Stand Alone cases. In the Accelerated coverage, this effect is compensated by the expected behavior
of the death probabilities, and is not visible. Tables 4–6 contain the same values referring to the male
population. A comparison between the two groups points out the general lower premiums for the
females. In spite of this, it is interesting to highlight that in the considered age interval, the female
non-smokers have diagnosis rates slightly higher than the male non-smokers. This circumstance turns
into higher premiums for serious illness coverage in the case of female non-smokers.
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Table 1. Actuarial periodic premium—female. Issue time 2014, r = 2%, i = 7%, C = 200,000.

Age at Entry/Duration 40 60

a. Standard Insured Loan—SIL

10 90.19 749.04
20 175.95 1320.07

b. Specific Insured Loan—SpeIL

10 62.65 532.64
20 120.72 981.14

Table 2. Actuarial periodic premium—female non-smokers. Issue time 2014, r = 2%, i = 7%, C = 200,000.

Age at Entry/Duration 40 60

a. Standard Critical Illness Loan (Stand Alone)—SCILsa

10 262.38 831.53
20 422.28 1198.74

b. Standard Critical Illness Loan (Accelerated)—SCILa

10 285.62 925.37
20 456.98 1424.16

Table 3. Actuarial periodic premium—female smokers. Issue time 2014, r = 2%, i = 7%, C = 200,000.

Age at Entry/Duration 40 60

a. Standard Critical Illness Loan (Stand Alone)—SCILsa

10 213.79 805
20 273.18 925.80

b. Standard Critical Illness Loan (Accelerated)—SCILa

10 352.21 1304.30
20 580.70 2034.17

Table 4. Actuarial periodic premium—male. Issue time 2014, r = 2%, i = 7%, C = 200,000.

Age at Entry/Duration 40 60

a. Standard Insured Loan—SIL

10 108.23 1251.55
20 231.06 2106.08

b. Specific Insured Loan—SpeIL

10 64.87 746.67
20 129.59 1440.78

Table 5. Actuarial periodic premium—male non-smokers. Issue time 2014, r = 2%, i = 7%, C = 200,000.

Age at Entry/Duration 40 60

a. Standard Critical Illness Loan (Stand Alone)—SCILsa

10 218.68 1339.71
20 429.84 2049.66

b. Standard Critical Illness Loan (Accelerated)—SCILa

10 260.27 1515.15
20 498.18 2373.22



Risks 2018, 6, 13 14 of 21

Table 6. Actuarial Periodic Premium—Male smokers. Issue Time 2014, r = 2%, i = 7%, C = 200,000.

Age at Entry/Duration 40 60

a. Standard Critical Illness Loan (Stand Alone)—SCILsa

10 440.72 2378
20 834.17 3590.64

b. Standard Critical Illness Loan (Accelerated)—SCILa

10 547.70 2975
20 1035.35 4686.70

5. Amortization Schedule

The global obligations of the borrower/insured arise from the amortization schedule for their
financial obligations, and from the premiums calculated in Tables 1–6 of the preceding section for their
insurance coverage. They will pay the sum between the constant financial installment and the specific
premium referred to the chosen insurance contract. In Table 7, we report the amortization schemes
of a loan issued in 2014 at a fixed rate of 7%, initial debt of C = 200,000, and with duration 10 years
(Table 7a) and 20 years (Table 7b).

Table 7. Amortization schedules.

Maturity Financial
Instalment

Payment Due
in Case of
Insolvency

a. Amortization Schedule. Issue Time 2014, r = 7%, C = 200,000, n = 10

1 28,475.5 214,000
2 28,475.5 198,511.2
3 28,475.5 181,938.2
4 28,475.5 164,205.1
5 28,475.5 145,230.7
6 28,475.5 124,928
7 28,475.5 103,204.2
8 28,475.5 79,959.72
9 28,475.5 55,088.1

10 28,475.5 28,475.5

Maturity Financial
Instalment

Payment Due
in Case of
Insolvency

Maturity Financial
Instalment

Payment Due
in Case of
Insolvency

b. Periodic Amortization Schedule. Issue Time 2014, r = 7%, C = 200,000, n = 20

1 18,878.59 214,000 11 18,878.59 141,877
2 18,878.59 208,779.9 12 18,878.59 131,608.3
3 18,878.59 203,194.4 13 18,878.59 120,620.8
4 18,878.59 197,218 14 18,878.59 108,864.1
5 18,878.59 190,823.1 15 18,878.59 96,284.51
6 18,878.59 183,980.7 16 18,878.59 82,824.33
7 18,878.59 176,659.2 17 18,878.59 68,421.95
8 18,878.59 168,825.3 18 18,878.59 53,011.41
9 18,878.59 160,443 19 18,878.59 36,961.41

10 18,878.59 151,473.9 20 18,878.59 18,878.59

We report in particular the constant instalment due by the borrower in case of insolvency
throughout the loan duration (column 2) and the payment due by the insurer in case of the borrower’s
insolvency, if this event happens during the year preceding the date of valuation (column 3). As an
example, in the case of SCILsa, female non-smokers, the global annual obligation, calculated including
the actuarial obligations, is shown in Table 8a. It is possible to appreciate the contribution of the illness
diagnosis coverage inclusion in the global amount to pay if compared with results in Table 8b, referred
to the traditional SIL contractual form.
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Table 8. Global annual obligation.

Age at Entry/Duration 40 60

a. Global annual obligation.
Insured Loan and Stand Alone—SCILsa
Female non-smokers, C = 200,000, i = 7%, r = 2%

10 28,738.88 29,307.03
20 19,300.87 20,077.33

b. Global annual obligation.
Standard Insured Loan—SIL
Female non-smokers, C = 200,000, i = 7%, r = 2%

10 28,565.69 29,224.54
20 19,054.54 20,198.66

c. Global annual obligation.
Specific Insured Loan—SpeIL
Female non-smokers, C = 200,000, i = 7%, r = 2%

10 28,538.15 29,008.14
20 18,999.31 19,859.73

d. Global annual obligation.
Insured Loan and Accelerated—SCILa
Female non-smokers, C = 200,000, i = 7%, r = 2%

10 28,761.12 29,400.87
20 19,335.57 20,302.75

Table 8c,d show the global obligations in the same general conditions and in the SpeIL and SCILa
cases, for which a cause-specific death and a dread disease are considered.

6. Future Developments

This paper focused on the conjoint consideration of the financial product loan to private persons
and the insurance coverage in case of specific causes of death and illness.

On the one hand, the loan is very much diffused and is quite often affected by very long duration;
this circumstance involves a strong insolvency risk due to critical illnesses or death of the borrower.
On the other hand, we can observe the general tendency in specializing insurance contracts particularly
in the more advanced countries; this happens in order to offer more efficient and cheaper products
from both counterparties’ points of view. Moreover, we can add that these kinds of contracts are
increasingly computable in light of the increasing extent of specific data. So, the idea was to explore
new insurance coverage within the standard financial loan. Toward this aim, it was necessary to
project the survival probabilities and cause-specific mortality rates. In this paper, the relevant question
of the discontinuities in the mortality rates due to the reclassification of the data (ICD) was fronted
using a recent model able to mitigate the jumps in the data themselves. It has been possible to infer
the projected data, to price the proposed contractual forms, and to build the final borrower/insured
payment scheme.

Future research in this topic can be developed following two different lines. The first one is
connected with the increasing interest in the specialization of the insurance contracts. We will propose
new forms covering insolvency not due to death or illness but to other relevant circumstances such
as the layoff of the borrower. The second will investigate the question of the eventual existence of
dependence among all causes of death, in order to better understand the mortality phenomenon and
their interactions. This topic is presently a subject of debate in actuarial literature, and could be fronted
by means of cointegration procedures (see Arnold and Sherris 2013).
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7. Conclusions

The increasing trend of human life expectancy is generally known as longevity. One of the
components of longevity is the expansion phenomenon, which is the random advancement of the
ultimate lifetime towards increasingly higher ages. Today’s individuals are expected to live longer than
previous generations, but some of these extra years of life may not necessarily be healthy. As one of the
consequences of this scenario, the interest in a prudential cover in case of specific illness and/or in case
of death for specific or generically for all causes is growing in the insurance market. This is proved by
an intense reinforcement of the offer of this kind of product and by a strong expression of interest by the
European Institution involved in the insurance contracts linked to human life. The scientific literature
is active in many of the main aspects of such contracts, such as the lack of data, their sensitivity to
biometric assumptions, or broadly speaking, to pricing problems.

In addition, we want to point out that a challenging characteristic of these products is their
flexibility and adaptability to be inserted inside other contractual structures. In particular, our interest
is focused on the insured loan contract in which some covers are linked to critical illness and/or
specific cause death. Some very recent proposals show the actual interest of the insurance market in
this sense.

The aim of this paper is to structure a new kind of insured loan contract that, meeting the increase
in the individual health information and the general tendency for insurance products to be increasingly
tailor-made, can generate lowering prices. We propose three new insured loan contracts containing
specified insurance covers, indicated with the acronyms: SpeIL, SCILsa, SCILa. In them, the letters
SC stand for Standard Critical Illness, IL stand for Loan, sa for stand alone, a for accelerated, Spe for Death
Specific.

In the application, we consider the specific death cause and/or illness cause “cancer and
circulatory system illness”, taken from the International Classification of Diseases (ICD). The procedure
for performing the practical implementation of data provides for the arrangements of the survival
probabilities, the diagnosis probabilities, and the cause-specific death probabilities. In particular, the
discontinuities problem was fronted following Haberman and Villegas (2014) and Villegas (2015).
Downstream of such accommodations, we performed the contract pricing in all three proposed cases,
and then we inserted them in the amortization scheme of the insured loan, chosen as an example.
Several tables and graphics illustrate the empirical case we study.

Author Contributions: The authors contribute equally to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Survival probability forecasting px, U.K. female.

2010 . . . 2014 2015 2016 2017 2018 . . . 2031

0 1 1 1 1 1 1 1
1 0.99795810 0.99811926 0.99819502 0.99826773 0.99833752 0.99840450 0.99906537
2 0.99788077 0.99805063 0.99813036 0.99820681 0.99828012 0.99835043 0.99904047
3 0.99782942 0.9980047 0.99808692 0.99816572 0.99824127 0.99831367 0.99902266
4 0.99778646 0.99796608 0.99805031 0.99813102 0.99820837 0.99828249 0.99900709
5 0.99775184 0.99793496 0.99802079 0.99810304 0.99818183 0.99825732 0.99899449
6 0.99772249 0.99790862 0.99799584 0.99807939 0.99815943 0.99823610 0.99898397
7 0.99769303 0.99788201 0.99797056 0.99805537 0.9981366 0.99821441 0.99897281
8 0.99766699 0.99785847 0.99794818 0.99803409 0.99811637 0.99819517 0.99896282
9 0.99763957 0.99783355 0.99792442 0.99801144 0.99809478 0.99817459 0.99895178

10 0.99761075 0.99780725 0.99789929 0.99798743 0.99807184 0.99815267 0.99893967
11 0.99758016 0.99777923 0.99787248 0.99796178 0.99804729 0.99812918 0.99892643
12 0.99754836 0.99775006 0.99784454 0.99793502 0.99802166 0.99810463 0.99891241
13 0.99751107 0.99771576 0.99781165 0.99790347 0.99799141 0.99807562 0.99889559
14 0.99747332 0.9976811 0.99777843 0.99787164 0.99796091 0.99804640 0.99887881
15 0.99742903 0.99764036 0.99773936 0.99783417 0.99792497 0.99801192 0.99885878



Risks 2018, 6, 13 17 of 21

Table A1. Cont.

2010 . . . 2014 2015 2016 2017 2018 . . . 2031

16 0.99737869 0.99759407 0.99769497 0.99779161 0.99788416 0.99797280 0.99883613
17 0.99731077 0.99753134 0.99763468 0.99773366 0.99782847 0.99791927 0.99880419
18 0.99722830 0.99745492 0.99756112 0.99766285 0.99776031 0.99785366 0.99876423
19 0.99714271 0.99737569 0.99748489 0.99758951 0.99768974 0.99778577 0.99872315
20 0.99705831 0.99729773 0.99740997 0.99751750 0.99762054 0.99771926 0.99868348
21 0.99697627 0.99722208 0.99733733 0.99744775 0.99755356 0.99765494 0.99864554
22 0.99689338 0.99714573 0.99726405 0.99737743 0.99748607 0.99759018 0.99860761
23 0.99681227 0.99707111 0.99719248 0.99730878 0.99742023 0.99752702 0.99857091
24 0.99672828 0.99699382 0.99711834 0.99723766 0.997352 0.99746158 0.99853281
25 0.99664210 0.99691451 0.99704225 0.99716467 0.99728198 0.99739440 0.99849367
26 0.99655018 0.99682981 0.99696095 0.99708662 0.99720706 0.99732249 0.99845146
27 0.99644705 0.99673452 0.99686935 0.99699858 0.99712244 0.99724115 0.99840284
28 0.99633667 0.9966324 0.99677112 0.99690410 0.99703156 0.99715374 0.99835014
29 0.99621751 0.99652201 0.99666488 0.99680184 0.99693314 0.99705902 0.99829257
30 0.99608647 0.9964004 0.99654773 0.99668898 0.99682442 0.99695428 0.99822816
31 0.99593859 0.99626279 0.99641498 0.99656093 0.9967009 0.99683513 0.99815359
32 0.99577290 0.99610811 0.99626553 0.99641654 0.99656139 0.99670034 0.99806744
33 0.99558589 0.9959333 0.99609653 0.99625314 0.99640342 0.99654762 0.99796904
34 0.99537487 0.99573548 0.99590499 0.99606769 0.99622386 0.99637376 0.99785486
35 0.99513320 0.99550842 0.99568490 0.99585436 0.99601708 0.99617334 0.99772134
36 0.99485874 0.99524996 0.99543409 0.99561098 0.99578092 0.99594417 0.99756640
37 0.99455463 0.9949632 0.99515564 0.99534059 0.99551836 0.99568922 0.99739254
38 0.99420388 0.99463155 0.99483315 0.99502701 0.99521344 0.99539273 0.99718670
39 0.99381175 0.99426049 0.99447220 0.99467590 0.9948719 0.99506051 0.99695491
40 0.99336575 0.99383755 0.99406034 0.99427484 0.99448136 0.99468021 0.99668588
41 0.99285110 0.99334826 0.99358326 0.99380967 0.99402781 0.99423799 0.99636780
42 0.99225213 0.99277684 0.99302516 0.99326457 0.99349541 0.99371800 0.99598538
43 0.99159448 0.99215015 0.99241340 0.99266740 0.99291249 0.99314899 0.99556996
44 0.99081453 0.99140393 0.99168351 0.99195348 0.9922142 0.99246600 0.99505818
45 0.98992861 0.9905546 0.99085192 0.99113927 0.99141701 0.99168548 0.99446561
46 0.98894031 0.98960639 0.98992315 0.99022956 0.99052597 0.99081274 0.99379971
47 0.98782421 0.98853414 0.98887220 0.98919949 0.98951638 0.98982323 0.99303823
48 0.98656901 0.98732712 0.98768859 0.98803885 0.98837828 0.98870724 0.99217418
49 0.98519012 0.98600094 0.98638802 0.98676342 0.98712752 0.98748068 0.99122355
50 0.98366870 0.98453722 0.98495236 0.98535529 0.98574641 0.98612609 0.99017169
51 0.98190356 0.98283487 0.98328059 0.98371358 0.98413423 0.98454294 0.98892271
52 0.97993280 0.98092939 0.98140698 0.98187132 0.98232283 0.98276190 0.98749444
53 0.97782204 0.97889257 0.97940620 0.97990596 0.9803923 0.98086560 0.98599321
54 0.97547991 0.97662921 0.97718127 0.97771886 0.97824239 0.97875229 0.98430453
55 0.97290013 0.97413529 0.97472925 0.97530808 0.9758722 0.97642204 0.98243829
56 0.96994278 0.97126604 0.97190315 0.97252451 0.97313057 0.97372175 0.98022474
57 0.96679396 0.9682163 0.96890184 0.96957092 0.97022399 0.97086148 0.97790637
58 0.96323666 0.9647647 0.96550201 0.96622214 0.96692555 0.96761268 0.97524240
59 0.95947439 0.96111989 0.96191465 0.96269139 0.96345058 0.96419267 0.97246654
60 0.95522217 0.9569942 0.95785093 0.95868879 0.95950826 0.96030980 0.96928440
61 0.95047073 0.95237919 0.95330281 0.95420669 0.9550913 0.95595712 0.96569280
62 0.94507434 0.9471235 0.94811626 0.94908848 0.95004066 0.95097324 0.96150779
63 0.93946455 0.94167678 0.94274949 0.94380061 0.94483063 0.94584005 0.95728366
64 0.93334589 0.93573559 0.93689532 0.93803234 0.93914713 0.94024020 0.95267450
65 0.92657832 0.92916 0.93041393 0.93164397 0.93285062 0.93403438 0.94754589
66 0.91924913 0.92203917 0.92339537 0.92472639 0.92603276 0.92731499 0.94199659
67 0.91082890 0.91383141 0.91529220 0.91672674 0.91813553 0.91951908 0.93542103
68 0.90167795 0.90491718 0.90649447 0.90804425 0.90956705 0.91106338 0.92832105
69 0.89185340 0.89535188 0.89705671 0.89873266 0.90038025 0.90200000 0.92073958
70 0.88104830 0.88482782 0.88667102 0.88848389 0.89026697 0.89202077 0.91237397
71 0.86919651 0.87327945 0.87527213 0.87723301 0.8791626 0.88106143 0.90316529
72 0.85598530 0.86037785 0.86252345 0.86463597 0.86671593 0.86876383 0.89268634
73 0.84187360 0.84662331 0.84894505 0.85123208 0.8534849 0.85570402 0.88170120
74 0.82638034 0.8315106 0.83402026 0.83649361 0.83893115 0.84133336 0.86955997
75 0.80929585 0.81482896 0.81753785 0.82020895 0.82284273 0.82543965 0.85605208
76 0.79076847 0.79672358 0.79964151 0.80252027 0.80536032 0.80816211 0.84129944
77 0.77038929 0.77678474 0.77992122 0.78301740 0.78607371 0.78909054 0.82489993
78 0.74799462 0.75482592 0.75817948 0.76149212 0.76476419 0.76799606 0.80651527
79 0.72380740 0.73109609 0.73467785 0.73821828 0.74171767 0.74517631 0.78657117
80 0.69712342 0.70485799 0.70866322 0.71242734 0.71615058 0.71983316 0.76411753
81 0.66772006 0.67587238 0.67988821 0.68386399 0.68779982 0.69169586 0.73879752
82 0.63545582 0.64395923 0.64815389 0.65231052 0.65642918 0.66050988 0.71014063
83 0.60155967 0.61042344 0.61480215 0.61914529 0.62345277 0.62772452 0.67999573
84 0.56528931 0.57445676 0.57899252 0.58349601 0.58796704 0.59240544 0.64707466
85 0.52770328 0.53714656 0.54182638 0.54647787 0.55110071 0.55569459 0.61266808
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Table A1. Cont.

2010 . . . 2014 2015 2016 2017 2018 . . . 2031

86 0.48780225 0.49740212 0.50216796 0.50691046 0.51162919 0.51632372 0.57498754
87 0.44636057 0.45602245 0.46082818 0.46561635 0.47038641 0.47513784 0.53499785
88 0.40406424 0.4136591 0.41844109 0.42321192 0.42797096 0.43271759 0.49303874
89 0.36105081 0.37042214 0.37510264 0.37977877 0.38444982 0.38911512 0.44895437
90 0.31801456 0.32703013 0.33154311 0.33605858 0.34057582 0.34509412 0.40362342
91 0.27546522 0.28396717 0.28823310 0.29250804 0.29679128 0.30108214 0.35724818
92 0.23343879 0.24120267 0.24510735 0.24902633 0.25295896 0.25690461 0.30909701
93 0.19421147 0.2011868 0.20470364 0.20823917 0.21179284 0.21536410 0.26313644
94 0.15789023 0.16399508 0.16708087 0.17018831 0.17331696 0.17646635 0.21908476
95 0.12560299 0.13081871 0.13346195 0.13612833 0.13881753 0.14152919 0.17866197
96 0.09749861 0.10183407 0.10403701 0.10626314 0.10851224 0.11078406 0.14227245
97 0.07340510 0.07688715 0.07866114 0.08045694 0.08227445 0.08411353 0.10991671
98 0.05438708 0.05714632 0.05855604 0.05998578 0.06143551 0.06290518 0.08379603
99 0.03962151 0.04178766 0.04289793 0.04402637 0.045173 0.04633787 0.06314194
100 0.02824857 0.02990519 0.03075702 0.03162463 0.03250811 0.03340752 0.04657583

Table A2. Survival probability forecasting px, U.K. male.

2010 . . . 2014 2015 2016 2017 2018 . . . 2031

0 1 1 1 1 1 1 1
1 0.99870336 0.99882201 0.99887721 0.99892982 0.99897997 0.99902777 0.99906537
2 0.99866636 0.99878965 0.99884694 0.99890151 0.99895349 0.99900300 0.99904047
3 0.99863614 0.99876289 0.99882175 0.99887781 0.99893119 0.99898202 0.99902266
4 0.99861148 0.99874098 0.99880110 0.99885834 0.99891284 0.99896472 0.99900709
5 0.99859084 0.99872262 0.99878380 0.99884203 0.99889745 0.99895022 0.99899449
6 0.99857271 0.99870652 0.99876862 0.99882773 0.99888398 0.99893752 0.99898397
7 0.99855303 0.99868893 0.99875199 0.99881200 0.99886911 0.99892345 0.99897281
8 0.99853409 0.99867195 0.99873591 0.99879677 0.99885469 0.99890980 0.99896282
9 0.99851143 0.99865145 0.99871642 0.99877823 0.99883706 0.99889304 0.99895178

10 0.99848787 0.99863007 0.99869604 0.99875883 0.99881857 0.99887542 0.99893967
11 0.99846394 0.99860831 0.99867530 0.99873904 0.99879970 0.99885743 0.99892643
12 0.99843489 0.99858174 0.99864988 0.99871473 0.99877645 0.99883519 0.99891241
13 0.99840072 0.99855034 0.99861979 0.99868589 0.99874881 0.99880870 0.99889559
14 0.99835990 0.99851275 0.99858371 0.99865127 0.99871558 0.99877681 0.99887881
15 0.99830910 0.99846586 0.99853867 0.99860799 0.99867401 0.99873687 0.99885878
16 0.99824027 0.99840207 0.99847726 0.99854888 0.99861710 0.99868209 0.99883613
17 0.99812870 0.99829787 0.99837656 0.99845156 0.99852306 0.99859120 0.99880419
18 0.99791214 0.99809298 0.99817727 0.99825772 0.99833451 0.99840781 0.99876423
19 0.99764150 0.99783605 0.99792693 0.99801380 0.99809685 0.99817625 0.99872315
20 0.99738522 0.99759358 0.99769109 0.99778441 0.99787374 0.99795924 0.99868348
21 0.99713085 0.99735333 0.99745761 0.99755750 0.99765322 0.99774494 0.99864554
22 0.99689312 0.99712941 0.99724029 0.99734659 0.99744853 0.99754628 0.99860761
23 0.99666428 0.99691419 0.99703157 0.99714418 0.99725223 0.99735592 0.99857091
24 0.99644706 0.99671019 0.99683387 0.99695260 0.99706657 0.99717600 0.99853281
25 0.99623804 0.99651409 0.99664393 0.99676861 0.99688837 0.99700339 0.99849367
26 0.99601347 0.99630282 0.99643901 0.99656987 0.99669560 0.99681643 0.99845146
27 0.99578071 0.99608361 0.99622628 0.99636342 0.99649526 0.99662201 0.99840284
28 0.99554034 0.99585701 0.99600627 0.99614981 0.99628786 0.99642065 0.99835014
29 0.99528520 0.9956161 0.99577218 0.99592234 0.99606683 0.99620587 0.99829257
30 0.99501477 0.99536049 0.99552367 0.99568074 0.99583195 0.99597752 0.99822816
31 0.99472612 0.99508732 0.99525793 0.99542224 0.99558048 0.99573290 0.99815359
32 0.99442051 0.99479771 0.99497601 0.99514780 0.99531333 0.99547285 0.99806744
33 0.99409620 0.99449047 0.99467696 0.99485673 0.99503002 0.99519710 0.99796904
34 0.99375177 0.99416384 0.99435889 0.99454699 0.99472841 0.99490339 0.99785486
35 0.99338477 0.99381571 0.99401983 0.99421677 0.99440680 0.99459017 0.99772134
36 0.99298607 0.99343742 0.99365135 0.99385784 0.99405718 0.99424963 0.99756640
37 0.99255416 0.99302713 0.99325148 0.99346813 0.99367736 0.99387946 0.99739254
38 0.99208127 0.9925776 0.99281320 0.99304082 0.99326075 0.99347328 0.99718670
39 0.99158366 0.99210507 0.99235273 0.99259211 0.99282351 0.99304721 0.99695491
40 0.99101421 0.99156332 0.99182433 0.99207673 0.99232083 0.99255693 0.99668588
41 0.99036593 0.99094554 0.99122127 0.99148804 0.99174618 0.99199598 0.99636780
42 0.98961324 0.9902263 0.99051820 0.99080079 0.99107440 0.99133932 0.99598538
43 0.98883219 0.98948206 0.98979172 0.99009165 0.99038219 0.99066365 0.99556996
44 0.98790783 0.98859817 0.98892741 0.98924650 0.98955578 0.98985557 0.99505818
45 0.98686824 0.98760298 0.98795372 0.98829386 0.98862374 0.98894370 0.99446561
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Table A2. Cont.

2010 . . . 2014 2015 2016 2017 2018 . . . 2031

46 0.98569311 0.98647771 0.98685259 0.98721637 0.98756939 0.98791201 0.99379971
47 0.98434506 0.98518449 0.98558598 0.98597582 0.98635439 0.98672204 0.99303823
48 0.98283446 0.98373463 0.98416558 0.98458431 0.98499120 0.98538661 0.99217418
49 0.98114174 0.98210856 0.98257188 0.98302235 0.98346037 0.98388630 0.99122355
50 0.97922519 0.98026655 0.98076609 0.98125210 0.98172497 0.98218510 0.99017169
51 0.97702552 0.97814892 0.97868838 0.97921357 0.97972492 0.98022282 0.98892271
52 0.97438310 0.9755949 0.97617749 0.97674514 0.97729826 0.97783726 0.98749444
53 0.97158637 0.97289798 0.97352921 0.97414465 0.97474474 0.97532990 0.98599321
54 0.96834402 0.96976547 0.97045030 0.97111847 0.97177045 0.97240665 0.98430453
55 0.96474628 0.96628788 0.96703136 0.96775726 0.96846604 0.96915815 0.98243829
56 0.96040615 0.96207507 0.96288093 0.96366836 0.96443784 0.96518981 0.98022474
57 0.95573384 0.95754541 0.95842110 0.95927738 0.96011472 0.96093359 0.97790637
58 0.95037649 0.95234263 0.95329409 0.95422515 0.95513629 0.95602798 0.97524240
59 0.94458871 0.94672569 0.94776087 0.94877452 0.94976714 0.95073922 0.97246654
60 0.93813633 0.94045779 0.94158346 0.94268645 0.94376726 0.94482639 0.96928440
61 0.93067373 0.9331908 0.93441263 0.93561070 0.93678550 0.93793754 0.96569280
62 0.92201173 0.92473029 0.92605146 0.92734793 0.92862020 0.92986878 0.96150779
63 0.91292753 0.91587581 0.91731007 0.91871843 0.92010141 0.92145950 0.95728366
64 0.90296158 0.90615694 0.90771289 0.90924173 0.91074397 0.91222010 0.95267450
65 0.89187612 0.89533664 0.89702334 0.89868171 0.90031225 0.90191546 0.94754589
66 0.87995062 0.8836938 0.88551996 0.88731653 0.88908400 0.89082289 0.94199659
67 0.86603850 0.87005602 0.87201813 0.87394980 0.87585153 0.87772381 0.93542103
68 0.85101341 0.85533131 0.85744227 0.85952188 0.86157063 0.86358899 0.92832105
69 0.83507096 0.83970955 0.84197947 0.84421710 0.84642291 0.84859735 0.92073958
70 0.81786786 0.82284565 0.82528387 0.82768890 0.83006118 0.83240115 0.91237397
71 0.79899580 0.80431457 0.80692238 0.80949637 0.81203696 0.81454454 0.90316529
72 0.77771801 0.78335689 0.78612467 0.78885851 0.79155880 0.79422591 0.89268634
73 0.75616850 0.76218269 0.76513752 0.76805796 0.77094435 0.77379703 0.88170120
74 0.73311484 0.73950948 0.74265431 0.74576455 0.74884047 0.75188238 0.86955997
75 0.70845441 0.71523408 0.71857164 0.72187467 0.72514340 0.72837807 0.85605208
76 0.68229987 0.6894546 0.69298049 0.69647231 0.69993021 0.70335440 0.84129944
77 0.65460979 0.6621378 0.66585167 0.66953227 0.67317969 0.67679405 0.82489993
78 0.62505600 0.63292032 0.63680464 0.64065711 0.64447775 0.64826660 0.80651527
79 0.59455190 0.60274994 0.60680391 0.61082776 0.61482144 0.61878490 0.78657117
80 0.56217234 0.57066306 0.57486714 0.57904349 0.58319198 0.58731248 0.76411753
81 0.52723198 0.53592123 0.54022971 0.54451376 0.54877316 0.55300769 0.73879752
82 0.49027289 0.49905338 0.50341367 0.50775358 0.51207278 0.51637098 0.71014063
83 0.45356519 0.46244026 0.46685442 0.47125245 0.47563396 0.47999858 0.67999573
84 0.41598316 0.42486774 0.42929398 0.43370889 0.43811199 0.44250284 0.64707466
85 0.37855622 0.3873989 0.39181203 0.39621896 0.40061915 0.40501207 0.61266808
86 0.34058893 0.34926287 0.35359994 0.35793628 0.36227131 0.36660445 0.57498754
87 0.30346153 0.31189915 0.31612651 0.32035873 0.32459520 0.32883532 0.53499785
88 0.26700312 0.27509286 0.27915455 0.28322663 0.28730847 0.29139947 0.49303874
89 0.23099746 0.23858626 0.24240495 0.24623905 0.25008798 0.25395114 0.44895437
90 0.19722800 0.20426104 0.20780850 0.21137586 0.21496260 0.21856818 0.40362342
91 0.16487781 0.17122568 0.17443539 0.17766835 0.18092412 0.18420222 0.35724818
92 0.13453893 0.14009243 0.14290736 0.14574728 0.14861184 0.15150068 0.30909701
93 0.10731808 0.11206808 0.11448195 0.11692142 0.11938625 0.12187618 0.26313644
94 0.08355544 0.08750889 0.08952323 0.09156249 0.09362651 0.09571515 0.21908476
95 0.06382952 0.06706389 0.06871648 0.07039260 0.07209223 0.07381529 0.17866197
96 0.04671489 0.0492248 0.05051056 0.05181691 0.05314386 0.05449142 0.14227245
97 0.03371610 0.03565254 0.03664753 0.03766047 0.03869143 0.03974049 0.10991671
98 0.02334896 0.02476536 0.02549509 0.02623930 0.02699811 0.02777159 0.08379603
99 0.01585622 0.01687594 0.01740284 0.01794125 0.01849129 0.01905306 0.06314194
100 0.01072913 0.0114689 0.01185250 0.01224541 0.01264775 0.01305963 0.04657583
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