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Abstract: We consider an insurer who faces an external jump-diffusion risk that is negatively
correlated with the capital returns in a multidimensional regime switching model. The insurer
selects investment and liability ratio policies continuously to maximize her/his expected utility of
terminal wealth. We obtain explicit solutions of optimal policies for logarithmic and power utility
functions. We study the impact of the insurer’s risk aversion, the negative correlation between
the external risk and the capital returns, and the regime of the economy on the optimal policy.
We find, among other things, that the regime of the economy and the negative correlation between
the external risk and the capital returns have a dramatic effect on the optimal policy.

Keywords: insurance; jump diffusion; optimal investment and liability; regime switching; risk
management; stochastic control

1. Introduction

1.1. Economic Motivations

The 2007–2009 financial crisis and economic recession almost put the global financial system on
the brink of collapse. With the accurate total cost of the financial crisis being incalculable, economists
have estimated a conservative number of the total losses in the U.S. between $6 trillion and $14 trillion
or, equivalently, $50,000–$120,000 for every U.S. household (see [1]). To further illustrate how severe
this financial crisis was, we review the staggering case of American International Group, Inc. (AIG),
once one of the largest and most successful insurance companies in the world. AIG’s stock price was
traded at over $50 per share in February 2008 before the financial crisis, but dropped to less than $2
per share in September 2008 when AIG was deep in the crisis. To prevent the financial system from
breakdown, the U.S. government took over AIG through an initial rescue of $85 billion in September
2008, the largest bailout amount in U.S. history. According to records, the total amount of rescue in
the AIG case is over $182 billion (see [2] for additional information).

Apart from the huge impact on the industry and the financial markets, this financial crisis
also brought intense discussions and research to academic society. Many academics investigate the
influence of complicated financial products, such as credit default swaps (CDS), on the economy and
the financial system. They debate over monetary policies, government intervention, regulation of the
markets, systemic risk, etc. However, there are still many important open problems on quantitative
investment and risk management with regards to the financial crisis, e.g., the mechanism of contagion
effects in financial market; pricing, hedging and investing under systemic influences and complex
dependence; and systemic risk measure.
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1.2. Review of Consumption-Investment Models and Reinsurance Models

The study on consumption-investment problems in continuous-time started with the seminal
paper of [3] in which dynamic programming was applied to obtain explicit optimal consumption
and investment policies. The work in [4] provided a more general and rigorous analysis to Merton’s
problem, including arguments on whether the positive constraint of consumption is active, different
scenarios for the natural payments and conditions under which the value function is finite. Many
early contributions to consumption-investment problems can be found in the monographs of [5]
and [6]. The work in [7] further extended Merton’s framework by assuming that investors are
subject to an external risk process (modeled by a diffusion process) and found optimal investment
policies under two criteria: maximizing exponential utility and minimizing the probability of ruin.
Following the same vein, [8] and [9] used a jump-diffusion process to model investors’ external
risk. They both obtained explicit optimal investment strategies, but used different methods: the
former by solving the associated HJB (Hamilton–Jacobi–Bellman) equations and the latter through
the martingale approach. In optimal investment problems with an external risk process, e.g., the
above-mentioned [7–9], investors leave their external risk process uncontrolled, which means the
risk process is independent of investment decisions. The work in [10] incorporated an external risk
(which can be insured against through the purchase of insurance policies) into Merton’s model and
considered consumption, investment and insurance problems, which was generalized in a regime
switching model by [11]. Application of regime switching models to pension funds management can
be found in [12–15].

In the insurance industry, a commonly-used risk management tool for insurers is reinsurance.
In a typical reinsurance problem, an insurer manages its risk exposure by controlling reinsurance
strategies under certain objectives. A classical risk model in actuarial science is the compound Poisson
process, also called the Cramér-Lundberg Model (e.g., [16]). Since the limit process of a compound
Poisson process is a diffusion process, diffusion processes are also frequently used to model risk; see,
for instance, [17]. Common reinsurance types used in the literature are proportional reinsurance
(see [18]) and stop-loss reinsurance (see [19]). Academics also study reinsurance problems under
various objectives, such as mean-variance criterion in [19], maximizing expected utility of running
reserve in [18], minimizing the probability of ruin in [16], and maximizing expected utility of terminal
wealth in [20].

1.3. Review of the AIG Case

As pointed out in [21] (Chapter 6), one major mistake in the AIG case was to ignore the
negative correlation between its liabilities and the capital returns. Such correlation has also been
ignored in consumption/investment models with external risk process and reinsurance problems
with investment. To overcome this drawback, [21] (Chapter 6) proposed a diffusion model for AIG’s
risk process that is negatively correlated with the stock price process. He then found the optimal
liability ratio for AIG when its objective is to maximize the expected logarithmic utility of terminal
wealth. The work in [22] improved Stein’s model by including investment as a control. Furthermore,
they obtained optimal investment and liability ratio strategies under HARA (Hyperbolic Absolute
Risk Aversion) , CARA (Constant Absolute Risk Aversion), and quadratic utility functions.

As agreed by most economists, the trigger of the 2007–2009 financial crisis was the crash of
the housing market. However, back at that time, most individual investors, companies, financial
institutions and banks did not seriously consider the business cycles in the U.S. housing market and
made their financial decisions based on the false prediction of the housing price index. In the AIG
case, AIG Financial Products Corp. (AIGFP), AIG’s subsidiary, significantly underestimated the risk
of writing CDS (Credit default swaps) backed by mortgage payments. To manage the risk generated
by business cycles, regime switching models should be considered. See, for instance, [11,23–25], for
the references on regime switching models.
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1.4. Contributions

This paper does not aim to solve all the problems of AIG. The AIG case simply gives us a lesson
for modeling the investment and liabilities for an insurer. Such a lesson motivates us to propose
a regime switching model that addresses two major mistakes AIG made during the financial crisis.
We consider an insurer whose external risk (liabilities) is modeled by a jump-diffusion process and
suppose that the insurer can control the risk process. We assume the insurer makes investment
decisions in a financial market that consists of a riskless asset and a finite number of risky assets.
We also assume the insurer’s risk process is negatively correlated with the price processes of the risky
assets. In our model, both the financial market and the risk process depend on the regime of the
economy. The objective of the insurer is to select the proportions of wealth invested in the risky assets
and the liability ratio (which is defined as total liabilities over wealth) to maximize her/his expected
utility of terminal wealth.

As far as we know, this is the first paper studying both investment and liability ratio problems
when there is regime switching in the economy. We successfully obtain optimal investment and
liability ratio policies in explicit forms for logarithmic utility and power utility. The work in [21]
(Chapter 6) considered a similar problem, but in a much simpler framework than ours. First, he
did not consider regime switching in the model. Second, the insurer did not control investment.
Third, the risk was modeled by a diffusion process without jumps. Fourth, there was only one risky
asset in the financial market. Last, the only utility function considered in [21] (Chapter 6) was the
logarithmic utility function. The work in [22] generalized the model of [21] (Chapter 6) by allowing
the insurer to control investment, by allowing jumps in the risk diffusion model and by studying
not only logarithmic, but also power, exponential and quadratic utility functions. We generalize the
model of [22] by allowing regime switching and more than one risky asset in the financial market.
Another difference is that we apply the dynamic programming method, while [22] applied the
martingale method. We have discussed the importance of incorporating regime switching into the
model. Here, we consider a financial market of K risky assets, and each one of them has a different
negative correlation with the external risk. We allow the regime of the economy to affect both the
financial market and the risk process. Credit default swaps (CDS) give examples of risk processes
strongly affected by the regime of the economy (see [26] for a description of CDS). Different from
consumption/investment models with regime switching like [23–25], our model also incorporates an
external risk process. Our research also differs from recent work in reinsurance problems in several
directions. For instance, in [20], the insurer’s risk process is governed by a continuous diffusion
process (without jumps) and is assumed to be independent of the price process of the securities.
In [27], investment is not included, and they only provide numerical solutions.

This paper is organized as follows. In Section 2, we introduce the regime switching model and
formulate the problem. In Section 3, we derive the associated Hamilton–Jacobi–Bellman equation and
prove the corresponding verification theorem. In Section 4, we obtain explicit solutions of optimal
investment and liability ratio policies for logarithmic utility and power utility functions. In Section 5,
we present an economic analysis. Section 6 concludes our work.

2. The Model

We consider a continuous-time financial market with regime switching. The regime of the
economy is represented by an observable, continuous-time and stationary Markov chain ε = {εt,
0 ≤ t ≤ T} with finite state space S = {1, 2, · · · , S}. Here, T ∈ (0, ∞) is the terminal time, and
S ∈ N+ is the number of regimes in the economy. We assume that the Markov chain ε has a strongly
irreducible generator Q = (qij)S×S, where ∑j∈S qij = 0 for every i ∈ S .
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In the financial market, there exist one riskless asset (e.g., a bond) and K risky assets (e.g., stocks).
The price processes of the riskless asset and the risky assets are represented by P0 and Pm, m ∈ K :=
{1, 2, · · · , K}, respectively, which satisfy the Markov-modulated stochastic differential equations:

dP0(t) = r(εt)P0(t)dt, P0(0) = 1;

dPm(t) = Pm(t)

(
µm(εt)dt +

K

∑
n=1

σmn(εt)dW(n)(t)

)
, Pm(0) > 0.

Here, W(n), n ∈ K, is a standard one-dimensional Brownian motion defined on a complete probability
space (Ω,F ,P), and W(m) is independent of W(n) for every m 6= n ∈ K. For every εt = i ∈ S , the
coefficients1 ri := r(εt), µm

i := µm(εt), σmn
i := σmn(εt) are constants for every m, n ∈ K. Furthermore,

we denote the K × K matrix σ(εt) := (σmn(εt)) and assume σ(εt) is positive definite and invertible
for every t ∈ [0, T]. We introduce the following vector notations: W = (W(1), W(2), · · · , W(K)),
µ = (µ1, µ2, · · · , µK), 1 = (1, 1, · · · , 1) (in K dimensions) and Σ(εt) = σ(εt)σ′(εt), where prime ′

denotes the transpose operation of a matrix or a vector. Since σ−1(εt) exists, Σ−1(εt) also exists for
every t ∈ [0, T].

We consider an insurer who chooses the proportions of her/his wealth to invest in all available
assets in the financial market. We denote an investment policy by a K-dimensional process
π := (π1(t), π2(t), · · · , πK(t))t∈[0,T], where πm(t) is the proportion of wealth invested in the m-th
risky asset at time t. Hence, the proportion invested in the riskless asset at time t is 1−∑K

m=1 πm(t).
Here, we assume πm(·) ∈ R for each m ∈ K, which means that we allow short-selling in the market.

We assume that the insurer sells insurance policies at a unit premium p(εt) at time t, where pi :=
p(εt) > 0 for every εt = i ∈ S . Here, p(εt) is the premium at time t per dollar of insurance liabilities.
We allow the premium p(εt) to depend on the regime of the economy ε because of some empirical
arguments (see, for example, [28] and [29]). For those insurance products for which the premium is
independent of the regime of the economy, we simply write pi = p1 for every i ∈ S . In the meantime,
the insurer is subject to the risk (liabilities) from the written insurance policies. Generalizing [9] by
allowing regime switching, we assume that the unit risk (dollar amount per liability) is modeled by a
jump-diffusion process:

dR(t) = a(εt)dt + b(εt)dW̃(t) + γ(εt)dN(t), (1)

where W̃ is a standard one-dimensional Brownian motion and N is a Poisson process with constant
intensity λ > 0. For every εt = i ∈ S , the coefficients ai := a(εt), bi := b(εt) and γi := γ(εt)

are positive constants. Therefore, in our setting, the insurer’s unit profit (loss if being negative) over
the time period (t, t + dt) is p(εt)dt − dR(t). Our risk model is applicable not only to traditional
insurance, but also to non-traditional insurance in which the risk is strongly affected by the regime of
the economy (like CDS).

As proposed by [21] (Chapter 6), the risk process R is negatively correlated with the capital gains
in the financial market. We assume such negative correlation is captured by:

d〈W̃, W(n)〉t = ρn(εt)dt,

where −1 ≤ ρn
i < 0 for every εt = i ∈ S .

We denote ρ = (ρ1, ρ2, · · · , ρK) and |x|2 = x · x′, where x is a row vector. Then, we obtain:

dW̃(t) = ρ(εt) · dW ′(t) +
√

1− |ρ(εt)|2 · dW̄(t), (2)

1 We use subscript i to denote the dependence on the regime εt when εt = i.
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where W̄ is a standard Brownian motion defined on (Ω,F ,P), which is independent of W .
In the insurance market, we assume insurers can control their total liabilities at time t, denoted

by L(t). Then, the dynamics of the insurer’s total profit is given by:

L(t) ·
(

p(εt)dt− dR(t)
)

.

Following [24], we assume that the Brownian motions W(n), n ∈ K and W̄, the Poisson process
N and the Markov chain ε are mutually independent. We take the P−augmented filtration generated
by W(n), W̄, N and ε as our filtration {Ft}0≤t≤T .

Remark 1. The above model (1) for the risk process can be understood as a limiting process of the classical
Cramér–Lundberg model; see, e.g., [9,17,27].

Remark 2. We assume the coefficients satisfy µi > ri > 0 and pi > ai > 0 for every i ∈ S . Such an
assumption is reasonable and is also in accordance with the financial markets in real life. This is due to the
well-accepted conclusion that extra uncertainty must be compensated by extra return.

At time t, the insurer selects her/his investment policy π(t) and her/his liability ratio κ(t),
defined as the ratio of total liabilities over wealth. We define the control u := {(π(t), κ(t))}t∈[0,T]. For

every control u, we denote Xu(t) as the insurer’s wealth (surplus) at time t, and thus, κ(t) = L(t)
Xu(t) ,

where L(t) represents the total liabilities at time t. The insurer’s total wealth Xu(t) can be decomposed
into two parts: wealth from investing in the financial market Xu,F(t) and wealth from the businesses
in the insurance market Xu,I(t), i.e., Xu(t) = Xu,F(t) + Xu,I(t). We derive the dynamics of Xu,F(t),
(see, e.g., [5]):

dXu,F(t) = Xu(t)
{[(

µ(εt)− r(εt)1
)
·π′(t) + r(εt)

]
dt + π(t)σ(εt)dW ′(t)

}
.

The process of Xu,I(t) is governed by:

dXu,I(t) = κ(t)Xu(t−)
[
(p(εt)− a(εt)) dt− b(εt)dW̃(t)− γ(εt)dN(t)

]
.

From the decomposition of W̃ in Equation (2), we obtain the dynamics of Xu(t):

dXu(t)
Xu(t−) =

[(
µ(εt)− r(εt)1

)
·π′(t) +

(
r(εt) + (p(εt)− a(εt))κ(t)

)]
dt

+
[
π(t)σ(εt)− b(εt)κ(t)ρ(εt)

]
dW ′(t) (3)

−
√

1− |ρ(εt)|2 b(εt)κ(t)dW̄(t)− γ(εt)κ(t)dN(t),

with Xu(0) > 0.
We denote by At,x,i the set of all admissible controls under the initial conditions Xu(t) = x and

ε(t) = i, where t ∈ [0, T], x > 0 and i ∈ S . We say that u ∈ At,x,i if u is a predictable process and
satisfies for every t ∈ [0, T]:

E
[∫ T

t
(πm(s))2ds

]
< ∞, for every m ∈ K,

E
[∫ T

t
(κ(s))2ds

]
< ∞,

P
{
∀s ∈ [t, T] : Xu(s) > 0

}
= 1,



Risks 2017, 5, 6 6 of 22

and
0 ≤ κ(s) <

1
γ(εs)

, for every s ∈ [t, T].

According to Equations (14) and (22) below, we remark that the last condition above says that the
insurer selects her/his liability ratio κ so that bankruptcy does not occur at jumps. Note that for any
admissible control u, there exists a unique strong solution to Equation (3); see, e.g., Equations (14)
and (22).

We define the criterion functional J by:

J(t, x, i; u) := Et,x,i
[
U(Xu(T))

]
,

where the utility function U is strictly increasing and concave and satisfies the linear
growth condition:

∃C > 0 such that U(y) ≤ C(1 + y) for every y > 0.

The notation Et,x,i means taking conditional expectation given Xu(t) = x and ε(t) = i under the
probability measure P.

We then formulate the optimal investment and liability ratio problem as follows.

Problem 1. Select an admissible control u∗ = (π∗, κ∗) ∈ At,x,i that attains the value function V, defined by:

V(t, x, i) := sup
u∈At,x,i

J(t, x, i; u).

The control u∗ is called an optimal control or an optimal policy.

The work in [22] studied the special case in which there is only one risky asset (stock) in the
financial market, and neither the financial market nor the risk process is affected by the regime of the
economy. In other words, our model generalizes the model of [22] by allowing more than one risky
asset (stock) in the financial market (we allow K ≥ 1) and by allowing the regime of the economy to
affect both the financial market and the risk process (we allow S ≥ 1). The work in [22] applied the
martingale method, while we apply the dynamic programming method.

3. The Verification Theorem

Let ψ(t, x, i) be a C1,2 function for every fixed i ∈ S . We define the operator Lu
i by:

Lu
i ψ := ψt(t, x, i) +

[
(µi − ri1) ·π′ + ri + (pi − ai)κ

]
xψx(t, x, i)

+
1
2

[
|π · σi − biκρi|2 +

(
1− |ρi|2

)
b2

i κ2
]

x2ψxx(t, x, i),

where u = (π, κ) ∈ A := RK × [0, 1
γi
).

Theorem 1. Let v(·, ·, i) ∈ C1,2 for each i ∈ S and v(t, ·, i) be an increasing and concave function for every
t ∈ [0, T] and i ∈ S . If v(t, x, i) satisfies the Hamilton–Jacobi–Bellman equation:

sup
u∈A

{
Lu

i v(t, x, i) + λ[v(t, (1− γiκ)x, i)− v(t, x, i)]
}
= −∑

j∈S
qijv(t, x, j) (4)

and the boundary condition:
v(T, x, i) = U(x) (5)

for every x > 0, i ∈ S , then for every u ∈ At,x,i:

J(t, x, i; u) ≤ v(t, x, i), ∀t ∈ [0, T], x > 0, i ∈ S .
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Furthermore, if the control u∗ = (π∗, κ∗) defined by:

u∗ = arg max
u∈A

{
Lu

i v(t, x, i) + λ[v(t, (1− γiκ)x, i)− v(t, x, i)]
}

(6)

is admissible, then u∗ is an optimal control to Problem 1, and v is the value function.

Proof. Let v be a solution of the HJB equation, and let Xu be the stochastic process associated with
the control u = (π, κ) ∈ At,x,i. We define for each n ∈ {1, 2, 3, · · · },

τn := inf

{
s ∈ [t, T] : Xu

s ≥ n or Xu
s ≤

1
n

or
∫ s

t

K

∑
m=1

(πm(w))2dw ≥ n

or
∫ s

t
(κ(w))2dw ≥ n

}
∧ T.

Applying the Markov-modulated Ito formula (see, e.g., [24]), we obtain, for every t ∈ [0, T]:

v(τn, Xu
τn , ετn) = v(t, Xu

t , εt) +
∫ τn

t

(
Lu

εs v(s, Xu
s , εs) + ∑

j∈S
qεs ,jv(s, Xu

s , j)
)
ds

+
∫ τn

t
Xu

s−vx(s, Xu
s−, εs)

(
π(s)σ(εs)− b(εs)κ(s)ρ(εs)

)
· dW ′(s)

+
∫ τn

t

(
v(s, (1− γ(εs)κs)Xu

s−, εs)− v(s, Xu
s−, εs)

)
dNs + mv

τn ,

where mv is a square-integrable martingale with mv
0 = 0.

Due to the boundedness conditions on the stochastic processes until time τn, the expected value
of the above Ito integral w.r.t. W is equal to zero.

Similarly,

Et,x,i

[∫ τn

t

(
v(s, (1− γ(εs)κs)Xu

s−, εs)− v(s, Xu
s−, εs)

)
dMs

]
= 0,

where M, defined as Mt := Nt − λt, is the compensated Poisson process of N and, hence, a true
martingale under measure P.

Hence, taking conditional expectation for v(τn, Xu
τn , ετn) yields:

Et,x,i
[
v(τn, Xu

τn , ετn)
]
= v(t, x, i) + Et,x,i

[ ∫ τn

t

(
Lu(s)

εs v(s, Xu
s , εs)

+ ∑
j∈S

qεs ,jv(s, Xu
s , j) + λ

[
v(s, (1− γ(εs)κs)Xu

s , εs)− v(s, Xu
s , εs)

])
ds

]
.

We are assuming that v satisfies the HJB Equation (4). Thus,

Et,x,i
[
v(τn, Xu

τn , ετn)
]
≤ v(t, x, i).

We are also assuming that v satisfies the boundary condition (5). Thus, by letting n go to infinity,
we obtain:

Et,x,i
[
U(Xu

T)
]
= Et,x,i

[
v(T, Xu

T , εT)
]
≤ v(t, x, i).



Risks 2017, 5, 6 8 of 22

Finally, if the control u∗ defined by Equation (6) is admissible, then:

Et,x,i
[
U(Xu∗

T )
]
= Et,x,i

[
v(T, Xu∗

T , εT)
]
= v(t, x, i).

Therefore, u∗ is optimal, and v is the value function.

4. Construction of Explicit Solutions

In this section, we obtain explicit solutions to Problem 1 in a regime switching model. There are
two standard tools to solve stochastic control problems: (1) the dynamic programming method (HJB);
and (2) the martingale method. The market is generally incomplete in a regime switching model,
such as the one considered in this paper, which adds extra difficulty when applying the martingale
method. Hence, we apply the dynamic programming method (HJB) to solve Problem 1. Our strategy
is to conjecture that the value function is strictly increasing and strictly concave. Such a conjecture
will give a candidate for the value function and a candidate for the optimal control. Next, we will
apply Verification Theorem 1 to prove that the candidate for the value function is indeed the value
function, and the candidate for the optimal control is indeed an optimal control.

To obtain a candidate for the optimal control, we separate the optimization problem in the HJB
Equation (4) into two optimization problems:

max
π∈RK

[
(µi − ri1) ·π′xvx(t, x, i) +

1
2
|π · σi − biκρi|2x2vxx(t, x, i)

]
for the investment portfolio π and:

max
κ∈[0, 1

γi
)

[
(pi − ai)κxvx(t, x, i) +

1
2
|π · σi − biκρi|2x2vxx(t, x, i)

+
1
2

b2
i

(
1− |ρi|2

)
κ2x2vxx(t, x, i) + λv(t, (1− γiκ)x, i)

]
for the liability ratio κ.

Under the conjecture that v(t, ·, i) is strictly increasing and strictly concave, we obtain the
candidate for the optimal investment strategy, π∗, as:

π∗ = − vx(t, x, i)
xvxx(t, x, i)

(µi − ri1)Σ−1
i + biρiσ

−1
i κ∗, (7)

while the candidate for the optimal liability ratio, κ∗, is solved through the following equation:(
pi − ai + bi(µi − ri1)(σ′i )

−1ρ′i

)
· vx(t, x, i)− λγi · vx(t, (1− γiκ

∗)x, i)

+ x(1− |ρi|2)b2
i κ∗ · vxx(t, x, i) = 0.

(8)

We will impose the technical condition:

pi − ai + bi(µi − ri1)(σ′i )
−1ρ′i > λγi for every i ∈ S . (9)

That is, we are assuming that the premium pi is large enough. We will see below that this
inequality guarantees that Equation (8) has a unique solution.

We consider two utility functions:

1. U(x) = ln(x), x > 0;
2. U(x) = 1

α xα, x > 0, where α < 1 and α 6= 0.

We note that logarithmic utility ln(x) is a limit case of power utility 1
α xα when α→ 0.
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4.1. U(x) = ln(x), x > 0

In this case, we conjecture that the solution to the HJB Equation (4) is given by:

v(t, x, i) = ln(x) + g(t, i),

where g(t, i) will be determined below.
We obtain vx(t, x, i) = 1

x and vxx(t, x, i) = − 1
x2 . Hence, the candidate policy is given by:

π∗ = (µi − ri1) · Σ−1
i + biρiσ

−1
i κ∗, (10)

and:
Ai(κ

∗)2 − Bi κ∗ + Ci = 0, (11)

where:

Ai : = (1− |ρi|2)b2
i γi,

Bi : = (1− |ρi|2)b2
i + γi

[
pi − ai + bi(µi − ri1)(σ′i )

−1ρ′i

]
,

Ci : = pi − ai + bi(µi − ri1)(σ′i )
−1ρ′i − λγi.

(12)

Lemma 1. If the technical condition (9) holds, then there exists a unique solution κ∗ ∈ [0, 1
γi
) to Equation (11).

Proof. Define the function fi(x) := Aix2 − Bi x + Ci. Then, we obtain:

fi(0) = Ci > 0 by Equation (9), and: fi

(
1
γi

)
= −λγi < 0.

Furthermore, f ′′i (x) = 2Ai > 0, so fi is strictly convex. Therefore, there exists a unique solution
κ∗ ∈ [0, 1

γi
) to Equation (11).

By substituting candidate strategies π∗ and κ∗, given by Equations (10) and (11), into the HJB
Equation (4), we obtain the following system of linear differential equations:

gt(t, i) + ∑
j∈S

qijg(t, j) + Πi = 0, (13)

where Πi is defined by:

Πi : = ri +
1
2
(µi − ri1)Σ

−1
i (µi − ri1)′ + λ ln(1− γiκ

∗)

+
(

pi − ai + bi(µi − ri1)(σ′i )
−1ρ′i

)
κ∗ − 1

2
b2

i (1− |ρ|2)(κ∗)2.

In addition, g also satisfies the boundary condition:

g(T, i) = 0 for every i ∈ S .

Notice that the linear ODE system (13) has a unique solution g(t, i), and the candidate for the
optimal control, given by Equations (10) and (11), is square integrable. Next, we show that the
corresponding wealth process X∗ := Xu∗ with the candidate control u∗ is almost surely positive.
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Let us denote:

µ̄(t, εt) :=
(
µ(εt)− r(εt)1

)
· (π∗)′(t) +

(
r(εt) + (p(εt)− a(εt))κ

∗(t)
)
,

σ̄1(t, εt) := π∗(t)σ(εt)− b(εt)κ
∗(t)ρ(εt),

σ̄2(t, εt) :=
√

1− |ρ(εt)|2 b(εt)κ
∗(t).

We define ηi as the i-th jump time of the wealth process X∗, where i ∈ N+. Then, by solving the
SDE (3) with u = u∗, we obtain:

X∗(t) = X(0) · exp
(∫ t

0

(
µ̄(s, εs)−

1
2
|σ̄1(s, εs)|2 −

1
2

σ̄2
2 (s, εs)

)
ds
)

· exp
(∫ t

0

(
σ̄1(s, εs)dW ′(s)− σ̄2(s, εs)dW̄(s)

))
· ∏

i∈N+ , 0≤ηi<t

(
1− γ(εηi )κ(ηi)

)
.

(14)

Between any two adjacent jump times ηi and ηi+1, the wealth process X∗ is in exponential form,
implying that X∗ stays positive in (ηi, ηi+1). In addition, due to κ∗ ∈ [0, 1/γi), X∗(ηi) =

(1− κ∗(ηi)γ(εηi )) · X∗(ηi−) is positive at any jump ηi, i ∈ N. Thus, the positiveness of X∗ follows.
Therefore, the candidate (π, κ∗), from Equations (10) and (11), is indeed an optimal control, and

v(t, x, i) = ln(x) + g(t, i) is the value function to Problem 1.

Theorem 2. Consider the logarithmic utility given by U(x) = ln(x). Let κ∗(t) be the unique solution in[
0, 1

γ(ε(t))

)
to the equation:

Aεt · (κ∗(t))2 − Bεt · κ∗(t) + Cεt = 0, (15)

and:
π∗(t) = (µ(εt)− r(εt)1) · Σ−1(εt) + b(εt)ρ(t)σ−1(εt)κ

∗(t). (16)

Then, u∗ = (π∗, κ∗) is optimal control to Problem 1.
The corresponding optimal wealth X∗ is provided by Equation (14) with u∗ = (π∗, κ∗) given by the two

equations above.
The value function V is given by V(t, x, i) = ln(x)+ g(t, i), where g(t, i) is the solution to Equation (13).

We observe that Equation (15) is simply a quadratic function, so it is easy to calculate κ∗. After
calculating κ∗, we can obtain π∗ from Equation (16). This equation can be decomposed in two
summands. The first term: (µ(εt) − r(εt)1) · Σ−1(εt) is a generalization of the Merton-proportion
that takes into account the regime switching. The value function V can be decomposed into two
summands, as well. The first term ln(x) depends only on x, while the second term g(t, i) depends
only on time t and regime i.

4.2. U(x) = 1
α xα, x > 0, where α < 1 and α 6= 0

In this case, the utility function is of the hyperbolic absolute risk aversion (HARA) type, and the
relative risk aversion coefficient is 1− α.

The solution to the HJB (4) is given by:

v(t, x, i) =
1
α

xα · ĝ(t, i),

where ĝ(t, i) > 0 for every i ∈ S will be determined below.
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From Equations (7) and (8), we obtain that the candidate for the optimal liability ratio κ∗ is a
solution to the equation:

(α− 1)(1− |ρi|2)b2
i κ∗ − λγi(1− γiκ

∗)α−1 + pi − ai + bi(µi − ri1)(σ′i )
−1ρ′i = 0, (17)

and the candidate for the optimal portfolio π∗ is:

π∗ =
1

1− α
(µi − ri1) · Σ−1

i + biρiσ
−1
i κ∗. (18)

Define B̂i and Ĉi by:

B̂i : =
(α− 1)(1− |ρi|2)b2

i
λγ2

i
,

Ĉi : = − 1
λγi

[
pi − ai + bi(µi − ri1)(σ′i )

−1ρ′i

]
− B̂i.

(19)

Then, Equation (17) becomes:

(1− γiκ
∗)α−1 − γi B̂iκ

∗ + (B̂i + Ĉi) = 0. (20)

Lemma 2. If the technical condition (9) holds, then there exists a unique solution in [0, 1
γi
) to Equation (20).

Proof. Let φi := 1 − γiκ
∗. To show there exists a unique solution in [0, 1

γi
) to Equation (20),

we only need to prove that the following equation has a unique solution in (0, 1]:

φα−1
i + B̂iφi + Ĉi = 0.

Consider the function ĥi(x) := xα−1 + B̂ix + Ĉi. At the two end points, we have:

ĥi(0) = lim
x→0+

ĥi(x) = +∞,

ĥi(1) = 1− 1
λγi

[
pi − ai + bi(µi − ri1)(σ′i )

−1ρ′i

]
< 0,

where the above inequality comes from Equation (9).
Furthermore, we have ĥ′i(x) = (α − 1)xα−2 + B̂i < 0, and ĥi(x) is continuous in (0, 1), which

together give the desired result.

By plugging the candidate for the optimal control into the HJB (4), we obtain:

ĝt(t, i) + ∑
j∈S

qij ĝ(t, j) + α Π̂i ĝ(t, i) = 0, (21)

where Π̂i is defined by:

Π̂i : = ri +
1

2(1− α)
(µi − ri1)Σ

−1
i (µi − ri1)′ + λ [(1− γiκ

∗)α − 1]

+
[

pi − ai + bi(µi − ri1)(σ′i )
−1ρ′i

]
κ∗ − 1

2
(1− α)b2

i (1− |ρ|2)(κ∗)2.

The boundary condition for ĝ is given by:

ĝ(T, i) = 1 for every i ∈ S .
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We remark that the linear ODE system above has a unique solution. Furthermore, to verify our
conjecture that v(t, ·, i) is strictly increasing and strictly concave, we need to show that ĝ(t, i) is strictly
positive for every i ∈ S , which is given by Lemma 3.

Lemma 3. The function ĝ(t, i) solving Equation (21) is strictly positive.

Proof. Using Ito’s formula for the Markov-modulated process, we obtain:

ĝ(T, εT) = ĝ(t, εt) +
∫ T

t
ĝt(s, εs)ds +

∫ T

t
∑
j∈S

qεs ,j ĝ(s, j)ds + mĝ
T ,

where mĝ is a square integrable martingale with mĝ
0 = 0.

Taking conditional expectation and using Equation (21), we get:

Et,x,i[ĝ(T, εT)] = ĝ(t, i)− Et,x,i

[∫ T

t
αΠ̂ε(s) ĝ(s, εs)ds

]
,

which is equivalent to (recall the boundary condition ĝ(T, i) = 1)

ĝ(t, i) = 1 + Et,x,i

[∫ T

t
αΠ̂ε(s) ĝ(s, εs)ds

]
.

We find the unique solution given by:

ĝ(t, i) = Et,x,i

[
exp

{∫ T

t
αΠ̂ε(s)ds

}]
.

Hence, the positiveness of ĝ(t, i) follows.

From the construction of ĝ(t, i) and Lemma 3, v(t, x, i) = 1
α xα · ĝ(t, i) is the candidate for the

value function to Problem 1. It can shown in a similar way as in Section 4.1 that the wealth process
X∗ associated with the candidate control u∗ satisfies:

X∗(t) = X(0) · exp
(∫ t

0

(
µ̄(s, εs)−

1
2
|σ̄1(s, εs)|2 −

1
2

σ̄2
2 (s, εs)

)
ds
)

· exp
(∫ t

0

(
σ̄1(s, εs)dW ′(s)− σ̄2(s, εs)dW̄(s)

))
· ∏

i∈N+ , 0≤ηi<t

(
1− γ(εηi )κ(ηi)

)
.

(22)

Then, by Lemma 2, u∗ = (π∗, κ∗) is admissible, where π∗ and κ∗ are given by Equations (18) and (17).
Hence Theorem 3 follows accordingly.

Theorem 3. Consider the power utility given by U(x) = 1
α xα, where α < 1 and α 6= 0. Then, u∗ = (π∗, κ∗)

is optimal control to Problem 1, where κ∗(t) is the unique solution in
[
0, 1

γ(ε(t))

)
to the equation:

(
1− γεt · κ∗(t)

)α−1 − γεt B̂εt · κ∗(t) +
(

B̂εt + Ĉεt

)
= 0. (23)

and:
π∗(t) =

1
1− α

(µ(εt)− r(εt)1) · Σ−1(εt) + b(εt)ρiσ
−1(εt) · κ∗(t). (24)

The corresponding optimal wealth X∗ is given by Equation (22) with u∗ = (π∗, κ∗) solved from the above
two equations.
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The value function V is given by V(t, x, i) = 1
α xα · ĝ(t, i), where ĝ(t, i) is the solution to Equation (21).

We observe that Equation (23) is more complicated than the quadratic function (15) of the
logarithmic utility case. After calculating κ∗, we can calculate π∗ from Equation (24). This equation
can be decomposed in two summands. The first term (µ(εt) − r(εt)1) · Σ−1(εt) is a generalization
of the Merton-proportion that takes into account the regime switching. The value function V can be
decomposed into two products. The first term 1

α xα depends only on x, while the second term ĝ(t, i)
depends only on time t and regime i.

5. Economic Analysis

In this section, we study the impact of the insurer’s risk attitude, the negative correlation ρ and
the regime of the economy on the optimal policy. To this purpose, we assume there are two regimes
in the economy. Regime 1 represents a bull market, in which the economy is booming. Regime 2
represents a bear market, meaning the economy is in recession. We take K = 1, i.e., there is only one
risky asset in the financial market. We denote the return and volatility of this risky asset by µi and σi,
respectively. For comparative analysis, we consider HARA utility functions, namely, U(x) = 1

α xα,
where α < 1 (α = 0 is associated with the case of logarithmic utility function U(x) = ln(x)).
Insurers are high risk-averse when α < 0, moderate risk-averse when α = 0 and low risk-averse
when 0 < α < 1.

We assume µi > ri > 0 and pi > ai > 0, i = 1, 2 (Remark 2). The works in [30] and [31] find
that capital returns are higher in a bull market; hence, we assume µ1 > µ2 and r1 > r2. The work
in [32] shows that the stock volatility is greater when the economy is in recession, which implies
σ1 < σ2. Furthermore, we assume µ1−r1

σ2
1

> µ2−r2
σ2

2
, as supported by [31]. Motivated by non-traditional

insurance policies like CDS, we assume that the risk process (claims) is negatively correlated with the
stock returns and interest rate; see, e.g., [33] and [34]. This conclusion leads to the assumption that
a2 > a1, b2 > b1, γ2 > γ1 and ρ2 < ρ1. When the economy is in recession, the insurance companies
charge a higher premium; hence, p2 > p1. In Table 1, we set the basic parameter values that we are
going to use in our analysis.

Table 1. Basic parameter values.

Regime µi ri σi ai bi γi pi λ

1 (bull market) 0.1 0.03 0.15 0.04 0.05 0.2 0.1

2 (bear market) 0.05 0.01 0.25 0.08 0.1 0.4 0.2
0.1

Remark 3.

• Notice that the coefficients in the standard model (see Table 1) satisfy the technical condition (9).
• Denote the loading factor of the insurer by χ. We apply the expected value principle to calculate the premium

rate pi by:
pi = (1 + χ) · E[Ri] = (1 + χ) · (ai + λ γi), where i = 1, 2.

In Table 1, the premium rate pi is calculated at χ = 66.7%.

5.1. Analysis of the Impact of the Risk Aversion Parameter α on the Optimal Policy

We first discuss the impact of the insurer’s risk aversion on the optimal policy. In this subsection,
we study the impact of the risk aversion parameter α on the optimal investment π∗ and the optimal
liability ratio κ∗. To concentrate on the influence of α, we set:

ρ = ρ1 = ρ2,
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and consider ρ = −0.1,−0.5 and −0.9 in this analysis.
For moderate risk-averse insurers (i.e., α = 0), we calculate the optimal policy, given by

Equations (15) and (16), from Theorem 2 and list the results in Table 2.

Table 2. Optimal policy when α = 0.

ρ Regime π∗ (Investment) κ∗ (Liability Ratio)

−0.9 1 2.4031 2.3600
2 0.0905 1.5263

−0.5 1 2.6628 2.6900
2 0.3386 1.5069

−0.1 1 3.0108 3.0088
2 0.5787 1.5314

For both high risk-averse (α < 0) and low risk-averse (0 < α < 1) insurers, we obtain the
corresponding optimal policy, given by Equations (23) and (24), through Theorem 3. We plot the
optimal policy u∗ = (π∗, κ∗) as a function of α under three different values of the correlation
coefficient ρ. The case −5 < α < 0 is graphed in Figure 1 while the case 0 < α < 0.9 is presented in
Figure 2. By Equation (18), the optimal investment π∗ will explode as α approaches one, so we choose
the interval of α to be (0, 0.9) instead of (0, 1) for low risk-averse insurers.

From the graphs in Figures 1 and 2, we observe that the optimal investment π∗ and the optimal
liability ratio κ∗ are increasing with respect to α in both bull and bear regimes for all chosen ρ. Hence,
less risk-averse insurers (that is, insurers with large α) invest proportionally more in the risky asset
and choose a higher liability ratio. Figure 1 shows that after α drops below some threshold (e.g.,
around −3 in the bear regime when ρ = −0.1), the optimal policy is not sensitive to the change of α,
indicating that there exists a “saturation” level for the risk aversion. For high risk-averse insurers (α
small enough), risk aversion does not affect the optimal liability ratio κ∗, nor the optimal investment
π∗ that much in both regimes. On the other hand, when α gets close to one, there is a dramatic effect
of the risk aversion on the optimal investment π∗. In this scenario, the optimal investment π∗ will
clearly explode due to the factor 1

1−α going to infinity. We also notice that borrowing (π∗ > 1) is
necessary to reach the optimal policies in some cases. Furthermore, the optimal policies obtained in
Figures 1 and 2 converge to the one in Table 2 as α→ 0 from both sides.

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
α

-0.5

0

0.5

1

1.5

2

2.5
ρ = -0.9

 π
1
*

 κ
1
*

 π
2
*

 κ
2
*

Figure 1. Cont.



Risks 2017, 5, 6 15 of 22

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
α

0

0.5

1

1.5

2

2.5

3
ρ = -0.5

 π
1
*

 κ
1
*

 π
2
*

 κ
2
*

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
α

0

0.5

1

1.5

2

2.5

3
ρ = -0.1

 π
1
*

 κ
1
*

 π
2
*

 κ
2
*

Figure 1. Optimal policy when −5 < α < 0.
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Figure 2. Optimal policy when 0 < α < 0.9.

5.2. Analysis on the Impact of the Correlation Coefficient ρ on the Optimal Policy

As pointed out in [21] (Chapter 6), a major mistake that contributed significantly to AIG’s sudden
collapse was the negligence of the negative correlation between the risk and the capital returns
(equivalently, AIG assumed ρi ≡ 0 instead of ρi < 0). Thus, in this subsection, we focus on the
impact of the correlation coefficient on the optimal policy.

We consider α = −2, 0, and 0.5, representing high risk-averse, moderate risk-averse and low
risk-averse insurers, respectively. We first study a simplified case in which the correlation coefficient
is the same in both bull and bear regimes, namely ρ = ρ1 = ρ2. Based on the results in Figure 3,
we find that the optimal investment strategy π∗ is an increasing function of ρ in both regimes and
in all cases of α. In addition, since κ∗ does not fluctuate significantly with respect to the change of ρ,
the increasing magnitude of π∗ in ρ is close to linear growth, which is consistent with Equations (10)
and (18). However, the impact of ρ on the optimal liability ratio κ∗ is more complicated. In the bull
market, κ∗ increases as the negative correlation strength reduces (that is, κ∗ increases as |ρ| decreases).
In the bear market, κ∗ is somehow immune to ρ, especially in the case of α = 0.5. To further investigate
the relationship between κ∗ (κ∗2 ) and ρ in the bear market, we draw the graph of κ∗ against ρ separately
in Figure 4. We conclude that in the bear market, the optimal liability ratio κ∗2 is a convex function
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of ρ, where ρ ∈ (−1, 0). This conclusion is consistent with the findings in [22] for the case of only
one regime.
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Figure 3. Optimal policy when −1 < ρ = ρ1 = ρ2 < 0.
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Figure 4. Optimal liability ratio κ∗2 when −1 < ρ = ρ1 = ρ2 < 0.

Next, we proceed to deal with the more realistic case where |ρ1| < |ρ2| (equivalently, −1 ≤ ρ2 <

ρ1 < 0), in which the negative correlation between the liabilities and the capital returns is stronger
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in the bear market. For the basic parameter values (with parameter values given by Table 1), we
calculate the optimal policy under the following four cases for ρ1 and ρ2:

Case 1. ρ1 = −0.7 and ρ2 = −0.9

Case 2. ρ1 = −0.5 and ρ2 = −0.7

Case 3. ρ1 = −0.3 and ρ2 = −0.5

Case 4. ρ1 = −0.1 and ρ2 = −0.3.

The results are presented in Table 3, which are consistent with the findings when ρ1 = ρ2 above.2

Namely, we still observe that the optimal investment in both regimes (π∗1 and π∗2 ) and the optimal
liability ratio in the bull regime (κ∗1 ) are increasing with respect to ρi, i = 1, 2, while the optimal
liability ratio in the bear regime (κ∗2 ) is a convex function of ρi, i = 1, 2. We also notice that in some
cases, π∗2 is negative, which means the optimal investment involves short-selling the risky asset.

Table 3. Optimal policy when |ρ1| < |ρ2|.

α Case of ρ1 and ρ2 π∗1 κ∗1 π∗2 κ∗2

Case 1 0.3932 0.5372 −0.0227 0.3594
Case 2 0.4221 0.5785 0.0094 0.3474

α = −5 Case 3 0.4561 0.6237 0.0383 0.3417
Case 4 0.4961 0.6737 0.0657 0.3415

Case 1 0.7983 1.0233 −0.0274 0.6688
Case 2 0.8537 1.1000 0.0311 0.6508

α = −2 Case 3 0.9188 1.1823 0.0848 0.6426
Case 4 0.9947 1.2714 0.1361 0.6433

Case 1 2.5214 2.5275 0.0905 1.5263
Case 2 2.6628 2.6900 0.2170 1.5108

α = 0 Case 3 2.8261 2.8502 0.3386 1.5069
Case 4 3.0108 3.0088 0.4583 1.5140

Case 1 3.2027 2.9408 0.1760 1.7333
Case 2 3.3696 3.1157 0.3178 1.7220

α = 0.2 Case 3 3.5606 3.2827 0.4558 1.7211
Case 4 3.7741 3.4426 0.5924 1.7299

Case 1 5.3301 3.8234 0.5142 2.1272
Case 2 5.5565 3.9941 0.6848 2.1257

α = 0.5 Case 3 5.8080 4.1423 0.8539 2.1303
Case 4 6.0799 4.2711 1.0232 2.1404

It is surprising to observe that in the case α = −5, κ∗ is not only a convex function, but also
increases as the economy goes from Case 4–Case 1. To understand this situation, we consider only
two regimes and rewrite Equation (18) in the form:

π∗ − Iiκ
∗ = Ji,

2 To draw Figure 3, we select α = −2, 0, and 0.5. Here, in Table 3, we add two more levels for α: α = −5 and α = 0.2.
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where:
Ii =

biρi
σi

< 0 and Ji =
1

(1− α)

µi − ri

σ2
i

> 0.

We recall that we are assuming µ1−r1
σ2

1
> µ2−r2

σ2
2

, as supported by [31]. Thus, when the economy

is good, both π∗ and κ∗ take large positive values. That is not surprising and agrees with the above
equation. When the economy is bad, Ji approaches zero, especially when the investor is very risk
averse. In addition, ρi approaches −1. In a case of severe recession, π∗ would take even negative
values. To compensate for that, the above equation says that κ∗ should take large positive values.

5.3. Analysis of the Impact of the Regimes on the Optimal Policy

The numerical results obtained in Sections 5.1 and 5.2 allow us to reach some conclusions on the
impact of the market regimes on the optimal policy.

In all of the above studies, the optimal policy depends on the market regime. Furthermore, we
always have:

π∗1 > π∗2 and κ∗1 > κ∗2 .

This result shows that all insurers, regardless of risk aversion, should invest a greater proportion in
the risky asset and choose a higher liability ratio when the economy is in the bull regime.

6. Conclusions

The 2007–2009 financial crisis brought new challenges on risk management to all market
participants. For instance, AIG did not follow proper risk management strategies and, as a
consequence, almost went bankrupt in 2008. There were two major contributors to AIG’s sudden
collapse. First, AIG did not pay full attention to the business cycles (regime switching) in the U.S.
housing market, which directly caused a significant underestimation of the risk of CDS policies.
Second, AIG ignored the negative correlation between its liabilities and the capital gains in the
financial market.

Taking the lessons from the AIG case, we set up a regime switching model from an insurer’s
perspective. In the model, we assume that not only the financial market, but also the insurer’s
risk process depend on the regime of the economy. An insurer makes investment decisions in
a financial market, which consists of a riskless asset and K risky assets, and faces an external
risk that is negatively correlated with the capital returns of the risky assets. The insurer wants
to maximize her/his expected utility of terminal wealth by selecting simultaneously the optimal
investment proportions in the risky assets and the optimal liability ratio. We obtain explicitly optimal
investment and liability ratio policies when the insurer’s utility is given by the logarithmic and power
utility functions.

Through an economic analysis, we find that the optimal policy depends strongly on both the
business cycles (market regimes) and the negative correlation between the liabilities and the capital
returns. To be more specific, all insurers should invest a greater proportion in the risky assets
and select a higher liability ratio when the market is in a bull regime. The optimal investment
proportions in the risky assets are increasing with respect to ρ (correlation coefficient) in both bull
and bear regimes. The relationship between the optimal liability ratio and ρ is more complicated:
there is an increasing relationship in the bull regime and a convex relationship in the bear regime.
Furthermore, we find that the optimal investment proportions and the optimal liability ratios are
increasing functions of α (risk aversion parameter) in both market regimes. That means a less
risk-averse insurer will invest a greater proportion in the risky assets and select a higher liability
ratio, no matter what regime the market is in.
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