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Abstract: This paper considered a dependent discrete-time risk model, in which the insurance
risks are represented by a sequence of independent and identically distributed real-valued random
variables with a common Gamma-like tailed distribution; the financial risks are denoted by another
sequence of independent and identically distributed positive random variables with a finite upper
endpoint, but a general dependence structure exists between each pair of the insurance risks and
the financial risks. Following the works of Yang and Yuen in 2016, we derive some asymptotic
relations for the finite-time and infinite-time ruin probabilities. As a complement, we demonstrate
our obtained result through a Crude Monte Carlo (CMC) simulation with asymptotics.
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1. Introduction

Consider a discrete-time risk model, where, for every i ≥ 1, the insurer’s net loss (the aggregate
claim amount minus the total premium income) within period i is represented by a real-valued random
variable (r.v.) Xi; and the stochastic discount factor from time i to time i− 1 is denoted by a positive r.v.
Yi. In the terminology in [1], {Xi, i ≥ 1} and {Yi, i ≥ 1} are called the insurance risks and financial
risks, respectively. Throughout this paper, we suppose that {Xi, i ≥ 1} is a sequence of independent
and identically distributed (i.i.d.) real-valued r.v.s with a common distribution F; {Yi, i ≥ 1} is another
sequence of i.i.d. positive r.v.s with a common distribution G; and the random vectors {(Xi, Yi), i ≥ 1}
are independent copies of (X, Y) following a certain dependence structure (see (7) below). In this
framework, we are interested in the following quantities:

S0 = 0, Sn =
n

∑
i=1

Xi

i

∏
j=1

Yj, n ≥ 1, (1)

with the maxima

Mn = max
0≤k≤n

Sk, n ≥ 1, M∞ = max
k≥0

Sk,

where Sn denotes the stochastic discounted value of aggregate net losses within time n.
Then, the two-tail probabilities P(Mn > x) and P(M∞ > x) can be interpreted as the finite-time
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ruin probability within period n and the infinite-time ruin probability, respectively, where x ≥ 0 stands
for the initial wealth of the insurer. Clearly,

0 ≤ Mn ≤
n

∑
i=1

max{Xi, 0}
i

∏
j=1

Yj, (2)

as n → ∞. The right-hand side converges almost surely (a.s.), if −∞ ≤ E ln Y < 0 and
E ln max{X, 1} < ∞ (see Theorem 1.6 in [2] and Theorem 1 in [3]). Thus, Mn converges a.s. to
the limit M∞, which has a proper distribution on [0, ∞). In this paper, we aim to investigate the
asymptotic behavior of the tail probabilities P(Sn > x), P(Mn > x) and P(M∞ > x) as x → ∞.

In such a discrete-time risk model, under independence or some certain dependence assumptions
imposed on Xis and Yis, the asymptotic tail behavior of Mn and M∞ has been extensively studied
by many researchers. Notice that the assumption of complete independence is for mathematical
convenience, but appears unrealistic in most practical situations. A recent new trend of study is to
introduce various dependence structures to describe the insurance and financial risks {Xi, i ≥ 1}
and {Yi, i ≥ 1}. One trend is to require the insurance risks {Xi, i ≥ 1} to obey a certain dependence
structure (see [4–6] among others). Another trend is to assume that {(Xi, Yi), i ≥ 1} form a sequence of
i.i.d. random vectors, but for each i ≥ 1, some certain dependence structure exists between Xi and Yi.
Such a work was initially studied by [7]. Chen considered the discrete-time risk model, in which
each pair of the insurance and financial risks form the bivariate Farlie–Gumbel–Morgenstern (FGM)
distribution. Later, Yang and Konstantinides extended Chen’s results in [5], by considering a more
general dependence structure than the FGM one. They derived the uniform estimates for the finite-time
and infinite-time ruin probabilities, under the assumption that {Xi, i ≥ 1} are of consistent variation.
For more details, one can be refereed to [8–11] among others. We remark that all of the above works
are studied in the heavy-tailed case, while, in this paper, we consider the light-tailed case, that is, the
insurance risks are Gamma-like tailed, thus are light-tailed.

Throughout the paper, all limit relationships hold for x tending to ∞ unless stated otherwise.
For two positive functions f (x) and g(x), we write f (x)∼g(x) if lim f (x)/g(x) = 1; write f (x) ≺ g(x)
or g(x) � f (x) if lim sup f (x)/g(x) ≤ 1; and write f (x) = o(g(x)) if lim f (x)/g(x) = 0.
For two real-valued numbers x and y, denote by x ∨ y = max{x, y}, x ∧ y = min{x, y} and denote the
positive part of x by x+ = x ∨ 0. The indicator function of an event A is denoted by 1A.

A distribution F on R is said to be Gamma-like tailed with shape parameter α > 0 and scale
parameter γ > 0 if there exists a slow function l(·) : (0, ∞) 7→ (0, ∞) such that

F(x) = 1− F(x) ∼ l(x)xα−1e−γx (3)

(see [12,13]). A larger distribution class is that of generalized exponential distributions. A distribution
F on R is said to belong to the class L(γ) with γ ≥ 0, if for any y ∈ R,

F(x− y) ∼ eγyF(x). (4)

Clearly, if γ = 0, the class L(0) consists of all long-tailed distributions, which are heavy-tailed.
If γ > 0, then all distributions in the class L(γ) are light-tailed. A class larger than the generalized
exponential distribution class L(γ) is that of rapidly varying tailed distributions. A distribution F on
R is said to be rapidly varying tailed, denoted by F ∈ R−∞, if F(xy) = o(F(x)) holds for all y > 1.
For a distribution F ∈ R−∞, from Theorem 1.2.2 of [14], it can be seen that for any ε > 0 and δ > 0,
there exists a sufficiently large constant D > 0 such that for all y ≥ x ≥ D,

F(y)
F(x)

≤ (1 + ε)
( y

x

)−δ
.
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We remark that if a distribution F is Gamma-like tailed with α > 0 and γ > 0, then F ∈ L(γ) ⊂
R−∞ holds.

In the case of light-tailed insurance risks, in [15,16] Tang and his coauthor first established some
asymptotic formulas for the finite-time ruin probability P(Mn > x) under the independence structure,
and the conditions that the insurance risks Xis have a common convolution-equivalent or a rapidly
varying tail, and the financial risks Yis have a common distribution G with a finite upper endpoint

y∗ = y∗(G) = sup{y : G(y) < 1} < ∞. (5)

Precisely speaking, consider a discrete-time risk model, in which {Xi, i ≥ 1} and {Yi, i ≥ 1}
are two sequences of i.i.d. r.v.s with common distributions F and G, respectively, and these
two sequences are mutually independent. If F ∈ R−∞ and G have a finite upper endpoint y∗ > 1
with p∗ = P(Y1 = y∗) > 0, then, for each fixed n ≥ 1,

P(Mn > x) ∼ pn
∗P
( n

∑
i=1

yi
∗Xi > x

)
. (6)

Recently, in [17] Yang and Yuen derived some more precise results than relation (6) in the presence
of Gamma-like tailed insurance risks, under the independence structure or a certain dependence
structure, where each pair of the insurance risks and the financial risks follow a bivariate Sarmanov
distribution (see the definition below). They investigated the asymptotic tail behavior of Sn, Mn and
M∞ in three cases of 0 < y∗ < 1, y∗ = 1 and y∗ > 1, respectively, and dropped the condition p∗ > 0.

In this paper, we restrict ourselves to the framework in which a more general dependence structure
exists between each pair of the insurance risks and the financial risks. Precisely speaking, the random
vectors of the insurance and financial risks {(Xi, Yi), i ≥ 1} are assumed to be i.i.d. copies of a generic
pair (X, Y) with the dependent components X and Y fulfilling the relation

P(X > x | Y = y) ∼ P(X > x)h(y) (7)

holding uniformly for all y ∈ (0, y∗] as x → ∞, i.e.,

lim
x→∞

sup
y∈(0,y∗ ]

∣∣∣∣P(X > x | Y = y)
P(X > x)h(y)

− 1
∣∣∣∣ = 0.

Here, h(·) : [0, ∞) 7→ (0, ∞) is a positive measurable function, and if y is not a possible value of Y,
then the left side of relation (7) consists of the unconditional probability; thus, h(y) equals to 1. Such
a dependence structure (7) was introduced by [18], which contains many commonly-used bivariate
copulas, such as the Ali–Mikhail–Haq copula, the Farlie–Gumbel–Morgenstern copula, and the Frank
copula among others, and allows both positive and negative dependence structures. We remark that if
P(X > x) > 0 for all x ∈ R, then relation (7) leads to Eh(Y) = 1. See [19–21] for more details on such a
dependence structure. In particular, if X and Y follow a bivariate Sarmanov distribution defined by

P(X ≤ x, Y ≤ y) =
∫ x

−∞

∫ y

0
1 + θφ1(x)φ2(y)F(du)G(dv), x ∈ R, y ∈ (0, y∗],

and assume that the limit limx→∞ φ1(x) = d1 exists, then it can be directly verified that relation (7) is
satisfied with h(y) = 1 + θd1φ2(y).

Motivated by [17], in this paper, we aim to study the asymptotic tail relations of Sn, Mn and M∞

in two cases, i.e., 0 < y∗ < 1 and y∗ = 1, under the assumption that {(Xi, Yi), i ≥ 1} are i.i.d. random
vectors with dependent components fulfilling relation (7). In the case 0 < y∗ < 1, we also obtain
a uniform result for both finite-time and infinite-time ruin probabilities, by considering the asymptotic
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formulas for P(Mn > x) and P(M∞ > x). We still restrict the insurance risks to be Gamma-like tailed.
Our obtained results essentially extend the corresponding ones in [17].

The rest of this paper is organized as follows. In Section 2, the main results of the present paper
are provided, and Section 3 displays their proofs. In Section 4, we perform a simulation to verify the
approximate relationships in the main results by using the Crude Monte Carlo (CMC) method.

2. Main Results

Denote by p∗ = P(Y1 = y∗) ≥ 0, which can be equal to 0. The first result investigates the
asymptotics for the finite-time ruin probability in two cases of 0 < y∗ < 1 and y∗ = 1.

Theorem 1. Consider the above-mentioned discrete-time risk model, where {(Xi, Yi), i ≥ 1} are a sequence of
i.i.d. random vectors with a generic pair (X, Y) satisfying relation (7) uniformly for all y ∈ (0, y∗]. Assume
that F is Gamma-like tailed with shape parameter α > 0 and scale parameter γ > 0 defined in relation (3), G
has a finite upper endpoint y∗ defined in relation (5), and infy∈(0,y∗ ] h(y) > 0.
(1) If 0 < y∗ < 1, then for each fixed n ≥ 1, it holds that E(eγSn−1) < ∞, E(eγMn−1) < ∞, and

P(Sn > x) ∼ p∗h(y∗)E(eγSn−1)

yα−1
∗

l(x)xα−1e−
γx
y∗ , (8)

P(Mn > x) ∼ p∗h(y∗)E(eγMn−1)

yα−1
∗

l(x)xα−1e−
γx
y∗ . (9)

(2) If y∗ = 1, then for each fixed n ≥ 1, it holds that

P(Mn > x) ∼ P(Sn > x) ∼ pn
∗h(y∗)γn−1(Γ(α))n

y(α−1)n
∗ Γ(nα)

(l(x))nxnα−1e−γx. (10)

The condition y∗ ≤ 1 in relations (8)–(10) means that the insurer invests all his/her surpluses into
a risk-free market.

The second result gives formula (9) with n = ∞, which implies the asymptotic relation for
the infinite-time ruin probability. Combining relation (9), a uniform result for both finite-time and
infinite-time ruin probabilities is also derived in the case 0 < y∗ < 1.

Theorem 2. Under the conditions of Theorem 1, if 0 < y∗ < 1, then it holds that

P(M∞ > x) ∼ p∗h(y∗)E(eγM∞)

yα−1
∗

l(x)xα−1e−
γx
y∗ . (11)

Furthermore, relation (9) holds uniformly for all n ≥ 1, that is,

lim
x→∞

sup
n≥1

∣∣∣∣ P(Mn > x)

p∗h(y∗)E(eγMn−1)y−(α−1)
∗ l(x)xα−1e−

γx
y∗
− 1
∣∣∣∣ = 0.

3. Proofs of Main Results

We start this section by the following lemma, which is initiated by Lemma 2 in [22], where they
considered that X and Y are two independent r.v.s and Y is supported on (0, 1], indicating y∗ = 1.

Lemma 1. Let X and Y be two dependent r.v.s with distributions F on R and G on (0, y∗], respectively.
If F ∈ R−∞ and relation (7) holds uniformly for all y ∈ (0, y∗], then it holds that

lim
x→∞

P(XY > x)
P(X > xy−1

∗ )
= h(y∗)P(Y = y∗). (12)
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Proof of Lemma 1. As done in the proof of Lemma 2 in [22], for any x > 0 and any z ∈ (0, y∗),
we have that

P(XY > x) = P(XY > x, Y ∈ (0, z]) + P(XY > x, Y ∈ (z, y∗)) + P(XY > x, Y = y∗)
=: K1 + K2 + K3.

(13)

For K3, by relation (7), we have that

K3 = P(XY > x | Y = y∗)P(Y = y∗)

= P(X > xy−1
∗ | Y = y∗)P(Y = y∗) (14)

∼ P(X > xy−1
∗ )h(y∗)P(Y = y∗).

Again, by relation (7) and Eh(Y) = 1 < ∞, we have that

lim
z↑y∗

lim sup
x→∞

K2

P(X > xy−1
∗ )

= lim
z↑y∗

lim sup
x→∞

∫ y∗

z

P(X > xy−1 | Y = y)P(Y ∈ dy)
P(X > xy−1

∗ )

= lim
z↑y∗

lim sup
x→∞

∫ y∗

z

P(X > xy−1)h(y)P(Y ∈ dy)
P(X > xy−1

∗ )
(15)

≤ lim
z↑y∗

Eh(Y)1{Y∈(z,y∗)} = 0.

By F ∈ R−∞, we have that

lim sup
x→∞

P(XY > x, Y ∈ (0, z])
P(X > xy−1

∗ )
≤ lim sup

x→∞

P(X > xz−1)

P(X > xy−1
∗ )

= 0. (16)

Plugging relations (15)–(16) into (13), we can derive the desired relation (12). This ends the proof
of Lemma 1.

Proof of Theorem 1. We firstly prove relation (8) in claim (1). Denote by

T0 = 0, Tn
d
=

n

∑
i=1

Xi

n

∏
j=i

Yj, n ≥ 1,

where d
= represents equality in distribution. Clearly, Tn

d
= Sn, n ≥ 1; thus, in order to prove relation (8),

we only need to verify the relation

P(Tn > x) ∼ p∗h(y∗)E(eγTn−1)

yα−1
∗

l(x)xα−1e−
γx
y∗ . (17)

Clearly, by relations P(T1 > x) = P(X1Y1 > x), relations (12) and (3), (17) hold for n = 1, which
implies that E(eγT1) < ∞ and FT1 ∈ L(γ/y∗). Now, we inductively assume that relation (17) holds
for n = m for some integer m ≥ 1, which implies that E(eγTm) < ∞ and FTm ∈ L(γ/y∗). We aim to
show that relation (17) holds for n = m + 1. Note that the sequence {Tn, n ≥ 0} satisfies the stochastic
equation

T0 = 0, Tn
d
= (Tn−1 + Xn)Yn, n ≥ 1. (18)

We divide the tail probability P(Tm + Xm+1 > x) into three parts as

P(Tm + Xm+1 > x) = ∑3
i=1 P(Tm + Xm+1 > x, Ωi)

=: I1 + I2 + I3,
(19)
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where the events Ω1 = (Tm > 0, Xm+1 > 0), Ω2 = (Tm > 0, Xm+1 ≤ 0) and Ω3 = (Tm ≤ 0, Xm+1 > 0).
We firstly deal with I1. For any 0 < ε < 1 such that 0 < (1+ ε)y∗ < 1, we have that

I1 =
∫ ∞

0
P(Xm+1 > x− u)P(Tm ∈ du)

=

( ∫ x
1+ε

0
+
∫ ∞

x
1+ε

)
P(Xm+1 > x− u)P(Tm ∈ du) (20)

= I11 + I12.

By Theorem 1.5.6 (i) in [23], for any δ > 0 and sufficiently large x, we have that

l(x− u)(x− u)α−1

l(x)xα−1 ≤ 2
(x− u

x

)α−1−δ

≤ 2
(( ε

1+ ε

)α−1−δ
∨ 1
)

with 0 ≤ u ≤ x/(1+ ε). Since l(·) is a slowly varying function, according to the dominated convergence
theorem, we have that

I11 ∼
∫ x

1+ε
0 l(x− u)(x− u)α−1e−γ(x−u)P(Tm ∈ du)

∼ l(x)xα−1e−γxE
(
eγTm 1{Tm>0}

)
.

(21)

Again by the slow variety of l(·) and the the induction assumption, it holds that

I12 ≤ P(Tm > x
1+ε )

∼ p∗h(y∗)E
(

eγTm−1
)

yα−1
∗ (1+ε)α−1 l(x)xα−1e−

γx
y∗(1+ε) .

(22)

Plugging relations (21) and (22) into relation (21), by 0 < (1+ ε)y∗ < 1, we obtain that

I1 ∼ l(x)xα−1e−γxE
(
eγTm 1{Tm>0}

)
. (23)

We next deal with I3. According to relation (3), F ∈ L(γ) and the dominated convergence theorem,
we have that

I3 =
∫ 0

−∞
F(x− u)P(Tm ∈ du)

∼ F(x)
∫ 0

−∞
eγuP(Tm ∈ du) (24)

∼ l(x)xα−1e−γxE
(
eγTm 1{Tm≤0}

)
.

As for I2, by the induction assumption we have that

I2 ≤ P(Tm > x)

∼ p∗h(y∗)E
(

eγTm−1
)

yα−1
∗

l(x)xα−1e−
γx
y∗ .

(25)

Thus, by noting 0 < y∗ < 1, we derive from relations (19) and (23)–(25) that

P(Tm + Xm+1 > x) ∼ l(x)xα−1e−γxE
(
eγTm

)
. (26)
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Now, we shall show that if Xm+1 and Ym+1 are dependent according to relation (7) holding
uniformly for all y ∈ (0, y∗], then Tm + Xm+1 and Ym+1 follow the same dependence structure. Clearly,
for all y ∈ (0, y∗], since (Xm+1, Ym+1) is independent of Tm, we have that

lllP(Tm + Xm+1 > x | Ym+1 = y) =
∫ ∞

−∞
P(Xm+1 > x− u | Ym+1 = y)P(Tm ∈ du)

=

( ∫ x−a(x)

−∞
+
∫ ∞

x−a(x)

)
P(Xm+1 > x− u | Ym+1 = y)P(Tm ∈ du)

=: L1 + L2,

(27)

where a(x) < x is any infinitely increasing function. For L1, by relations (7) and (26), it holds uniformly
for all y ∈ (0, y∗] that

L1 ∼
∫ x−a(x)

−∞
P(Xm+1 > x− u)h(y)P(Tm ∈ du)

≤ h(y)P(Tm + Xm+1 > x) (28)

∼ h(y)l(x)xα−1e−γxE
(
eγTm

)
.

As for L2, for the above sufficiently small 0 < ε < 1 satisfying 0 < (1 + ε)y∗ < 1, choose
a(x) = ε(1+ ε)−1x. Then, by the induction assumption and the slow variety of l(·), we have that

L2 ≤ P
(

Tm >
x

1+ ε

)
∼ p∗h(y∗)E(eγTm−1)

(y∗(1+ ε))α−1 l(x)xα−1e−
γx

y∗(1+ε) .
(29)

Plugging relations (29) and (29) into relation (27), together with infy∈(0,y∗] h(y) > 0, yields that
uniformly for all y ∈ (0, y∗],

P(Tm + Xm+1 > x | Ym+1 = y) ≺ h(y)l(x)xα−1e−γxE
(
eγTm

)
. (30)

For the lower bound, by relations (26)–(29), we have that uniformly for all y ∈ (0, y∗],

P(Tm + Xm+1 > x | Ym+1 = y) ≥ L1

∼ h(y)P
(

Tm + Xm+1 > x, Tm ≤
x

1+ ε

)
≥ h(y)

(
P(Tm + Xm+1 > x)− P

(
Tm >

x
1+ ε

))
∼ h(y)l(x)xα−1e−γxE

(
eγTm

)
.

(31)

Thus, by relations (26), (30) and (31), we derive that uniformly, for all y ∈ (0, y∗],

P(Tm + Xm+1 > x | Ym+1 = y) ∼ P(Tm + Xm+1 > x)h(y), (32)

which means that Tm + Xm+1 and Ym+1 follow the dependence structure defined in relation (7).
Therefore, according to Lemma 1, we can obtain from relation (26) that

P(Tm+1 > x) ∼ P(Tm + Xm+1 > xy−1
∗ )h(y∗)P(Ym+1 = y∗)

∼
p∗h(y∗)E

(
eγTm

)
yα−1
∗

l(x)xα−1e−
γx
y∗ ,

(33)

which also implies that E
(
eγTm+1

)
< ∞ and FTm+1 ∈ L(γ/y∗).
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We next prove relation (9). Introduce a Markov chain {Wn, n ≥ 1} satisfying

W0 = 0, Wn = (Wn−1 + Xn)+Yn, n ≥ 1. (34)

By using the identity

Mn
d
=

n∨
k=0

Tk, n ≥ 1,

and by Theorem 2.1 in [15], similarly to relation (18), we have that

Mn
d
= Wn, n ≥ 1.

Obviously, the relation (34) holds for n = 1. Following the same line of the proof of relation (8),
we obtain that

P(Wn > x) ∼
p∗h(y∗)E

(
eγWn−1

)
yα−1
∗

l(x)xα−1e−
γx
y∗ ,

which coincides with relation (9). Therefore, we complete the proof of claim (1).

For claim (2), according to the above proof, it suffices to show

P(Tn > x) ∼ pn
∗h(y∗)γn−1(Γ(α))n

y(α−1)n
∗ Γ(nα)

(l(x))nxnα−1e−γx. (35)

We proceed again by induction on n. Trivially, relation (35) holds for n = 1 by Lemma 1.
Assume that relation (35) holds for n = m for some integer m ≥ 1, which implies that FTm ∈ L(γ).
We aim to prove that relation (35) holds for n = m + 1. As done in relation (19), we still divide the
tail probability P(Tm + Xm+1 > x) into three parts, denoted by I1, I2, and I3, respectively. Starting
from I1, we construct two independent positive conditional r.v.s Xc

m+1 = (Xm+1 | Xm+1 > 0) and
Tc

m = (Tm | Tm > 0), whose tail distributions, by relation (3) and the induction assumption satisfy

P(Xc
m+1 > x) ∼ 1

F(0)
l(x)xα−1e−γx,

and

P(Tc
m > x) ∼ pm

∗ h(y∗)γm−1(Γ(α))m

P(Tm > 0)y(α−1)m
∗ Γ(mα)

(l(x))mxmα−1e−γx.

Similarly to the proof of relation (4.13) in [17], we have that

I1 ∼
pm
∗ h(y∗)γm(Γ(α))m+1

y(α−1)m
∗ Γ((m + 1)α)

(l(x))m+1x(m+1)α−1e−γx. (36)

As for I2, by the induction assumption, we have that

I2 ≤ P(Tm > x)

∼ pm
∗ h(y∗)γm−1(Γ(α))m

y(α−1)m
∗ Γ(mα)

(l(x))mxmα−1e−γx (37)

= o(1)(l(x))m+1x(m+1)α−1e−γx.
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Similarly, by relation (3), we have that

I3 ≤ F(x)

∼ l(x)xα−1e−γx

= o(1)(l(x))m+1x(m+1)α−1e−γx. (38)

Then, it follows from relations (19) and (36)–(38) that

P(Tm + Xm+1 > x) ∼ pm
∗ h(y∗)γm(Γ(α))m+1

y(α−1)m
∗ Γ((m + 1)α)

(l(x))m+1x(m+1)α−1e−γx. (39)

As done in the proof of claim (1), we next show that Tm +Xm+1 and Ym+1 are dependent according
to relation (7) uniformly for all y ∈ (0, y∗] with y∗ = 1. As relation (27), we still divide the tail probability
P(Tm + Xm+1 > x | Ym+1 = y) into two parts L1 and L2. On one hand, similarly to relation (29), by
relation (39), we have that uniformly for all y ∈ (0, y∗],

L1 ≺ h(y)P(Tm + Xm+1 > x)

∼ h(y)
pm
∗ h(y∗)γm(Γ(α))m+1

y(α−1)m
∗ Γ((m + 1)α)

(l(x))m+1x(m+1)α−1e−γx.
(40)

As for L2, choose a(x) = δ ln x with 0 < γδ < α, where a(x) is defined in relation (27). Then, by
the induction assumption, similarly to relation (29), we have that

L2 ≤ P(Tm > x− δ ln x)

∼ pm
∗ h(y∗)γm−1(Γ(α))m

y(α−1)m
∗ Γ(mα)

(l(x))mxmα−1e−γ(x−δ ln x)

=
pm
∗ h(y∗)γm−1(Γ(α))m

y(α−1)m
∗ Γ(mα)

(l(x))mxmα−1+γδe−γx

= o(1)(l(x))m+1x(m+1)α−1e−γx.

(41)

Plugging relations (40) and (41) into relation (27), together with infy∈(0,y∗] h(y) > 0, leads to

P(Tm + Xm+1 > x | Ym+1 = y) ≺ h(y)P(Tm + Xm+1 > x), (42)

holding uniformly for all y ∈ (0, y∗]. On the other hand, similarly to relation (31), by relations (39) and
(41), we have that uniformly for all y ∈ (0, y∗],

P(Tm + Xm+1 > x | Ym+1 = y) � h(y)
(
P(Tm + Xm+1 > x)− P(Tm > x− δ ln x)

)
� h(y)P(Tm + Xm+1 > x).

(43)

Relations (42) and (43) mean that Tm + Xm+1 and Ym+1 follow the dependence (7) holding
uniformly for all y ∈ (0, y∗].

Therefore, combining Lemma 1, we conclude that the desired relation (35) holds for n = m + 1.
This completes the proof of Theorem 1 (2).

Remark 1. Note that [17] considered the three cases of 0 < y∗ < 1, y∗ = 1 and y∗ > 1, respectively, under the
conditions that X and Y are independent or follow the bivariate Sarmanov distribution. However, our Theorem 1
excludes the case y∗ > 1 because, when using the mathematical induction to estimate P(Tn > x), we find no
way to prove Tm + Xm+1 and Ym+1 follow the dependence structure (7); hence, Lemma 1 can not be used.
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Proof of Theorem 2. We firstly prove the asymptotic relation (11). For each n ≥ 0, define
nonnegative r.v.s

ξn =
∞

∑
i=n+1

yi
∗Xi+. (44)

Thus, by relation (2), for all n ≥ 1, we have that

0 ≤ Mn ≤ ξ0 − ξn. (45)

By ln y∗ < 0, E ln(X1 ∨ 1) < ∞ and Theorem 1.6 in [2], we obtain that Mn converges a.s. to a limit
M∞ as n → ∞. Then, in order to verify relation (11), we need to prove that E

(
eγM∞

)
< ∞. As done

in [17], we introduce a nonnegative r.v. Z, which is independent of {(Xi, Yi), i ≥ 1}, with the tail
distribution

FZ(x) ∼ x2α−1e−
γx
y∗ .

We further construct a nonnegative conditional r.v. Zc = (Z | Z > x0). It has been proved by [17]

that, for every n ≥ 1, Mn
d
≤ Zc, where the symbol

d
≤ denotes ‘stochastically not larger than’, that is,

for all x ≥ 0,
P(Mn > x) ≤ P(Zc > x).

Letting n→ ∞, we have that

M∞ ≤ ξ0
d
≤ Zc,

which, together with FZc(x) = FZ(x)/FZ(x0) for all x ≥ x0 and E
(
eγZ) < ∞, yields

E
(
eγM∞

)
≤ E

(
eγξ0

)
< ∞. (46)

According to the same method of [17], by relation (46), the dominated convergence theorem
and the Jensen’s inequality, for any ε > 0 with 0 < (1 + ε)y∗ < 1 and arbitrarily fixed ȳ ∈ ( 3

√
y∗, 1)

(implying y∗ < ȳ3 < 1), we can choose a sufficiently large integer n0 ≥ 3 such that∣∣∣∣E(eγMn0−1
)
−E

(
eγM∞

)∣∣∣∣ ≤ ε, (47)

E
(
eγξn0−1

)
≤ 1+ ε, (48)

and

∞

∑
i=n0+1

ȳi < 1. (49)

For the upper bound of relation (11),

P(M∞ > x) ≤ P(Mn0 + ξn0 > x)

=

( ∫ x
1+ε

0
+
∫ ∞

x
1+ε

)
P(Mn0 > x− u)P(ξn0 ∈ du) (50)

=: J1 + J2.
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By relation (9) in Theorem 1, relations (47), (48) and the dominated convergence theorem, we
have that

J1 ∼
∫ x

1+ε

0
p∗h(y∗)E(eγMn0−1)y−(α−1)

∗ l(x− u)(x− u)α−1e−
γ(x−u)

y∗ P(ξn0 ∈ du)

≤ (1+ ε)p∗h(y∗)E(eγM∞)y−(α−1)
∗ l(x)xα−1e−

γx
y∗
∫ x

1+ε

0

l(x− u)(x− u)α−1

l(x)xα−1 e
γu
y∗ P(ξn0 ∈ du)

∼ (1+ ε)p∗h(y∗)E(eγM∞)y−(α−1)
∗ l(x)xα−1e−

γx
y∗ E(eγξn0−1)

≤ (1+ ε)2p∗h(y∗)E(eγM∞)y−(α−1)
∗ l(x)xα−1e−

γx
y∗ .

(51)

As for J2, it is dealt with along the same line of that in [17], we have that

J2 = o(1)l(x)xα−1e−
γx
y∗ . (52)

Plugging relations (51) and (52) into relation (51), we obtain that

P(M∞ > x) ≺ (1+ ε)2p∗h(y∗)E(eγM∞)y−(α−1)
∗ l(x)xα−1e−

γx
y∗ .

For the lower bound of relation (11), we derive from relation (9) in Theorem 1 and relation (47)
that

P(M∞ > x) ≥ P(Mn0 > x)

∼ p∗h(y∗)E(eγMn0−1)y−(α−1)
∗ l(x)xα−1e−

γx
y∗

≥ (1− ε)p∗h(y∗)E(eγM∞)y−(α−1)
∗ l(x)xα−1e−

γx
y∗ .

Therefore, the desired relation (11) can be obtained by the arbitrariness of ε > 0.
The second part of Theorem 2 can be dealt with the standard argument, which was also shown

in [17]. This ends the proof of Theorem 2.

4. Simulation Study

In this section, we conduct a simulation study through the software MATLAB R2014a (The
MathWorks, Inc., Natick, MA, USA) to verify the asymptotic relation (10) for the finite-time ruin
probability in the main theoretical result Theorem 1.

Assume that {(Xi, Yi), i ≥ 1} is a sequence of i.i.d. random vectors with a generic pair (X, Y),
where the insurance risk X follows a common exponential distribution with parameters λ > 0, µ ∈ R

F(x; λ) = 1− e−λ(x−µ), x ≥ µ,

which satisfies the Gamma-tailed distribution defined in relation (3). Note that if α = 1, then relation
(3) is the tail distribution of exponential distribution. The financial risk Y follows a common discrete
distribution:

Y 0.2 0.6 1
P(Y = y) 0.3 0.4 0.3

We assume X and Y follow a bivariate FGM distribution

P(X ≤ x, Y ≤ y) = F(x)G(y)(1 + δF(x)G(y)),

with parameter |δ| ≤ 1. Note that the bivariate FGM distribution is included by the dependence
structure defined in relation (7).
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The following algorithm is used to generate the component r.v.s X and Y of i.i.d. random vectors
{(Xi, Yi), i ≥ 1}, fulfilling the bivariate FGM distribution:

Step a: Generate two i.i.d. r.v.s u and v following the uniform distribution on (0, 1);
Step b: Set X = − log(1− u)/λ + µ;

Step c: Set w =
(

2δu − δ − 1 + ((δ − 2δu + 1)2 + 4(2δu − δ)v)
1
2

)/
2(2δu − δ), if w ≤ 0.3,

then Y = 0.2; if 0.3 < w ≤ 0.7, then Y = 0.6; if w > 0.7, then Y = 1.
Thus, the generated (X, Y) returns the outcome of two dependent r.v.s. fulling the bivariate

FGM distribution.
We use the CMC method to perform the simulation. The computation procedure of the estimation

of the theoretical finite-time ruin probability ψ(x; n) is listed as the following:
Step 1: Assign a value for the variate x and set m = 0;
Step 2: Generate the i.i.d. r.v.s random vectors {(Xi, Yi), i ≥ 1} satisfying the certain dependence

structure according to the above algorithm;
Step 3: Calculate the vector (Y1, Y1Y2, . . . , ∏n

j=1 Yj)
T. Then, Sn is equal to the product of the two

vectors (X1, X2, . . . , Xn) and (Y1, Y1Y2, . . . , ∏n
j=1 Yj)

T;
Step 4: Select the maximum value from S1, . . . , Sn and denote it by Mn, and compare Mn with x:

if Mn > x; then, m = m + 1;
Step 5: Repeat step 2 to step 4 for N times;
Step 6: Calculate ψ1(x; n) = m/N as the estimate of ψ(x; n).
Step 7: Repeat step 1 to step 6 for l times, and set the mean of all ψ1(x; n) as the final estimate.

All parameters are set as: λ = 0.1, µ = −16, δ = 1, n = 8, N = 10, 000, 000 and l = 20. We set the
initial asset x from 100 to 150 and compare the simulated estimate values with the asymptotic values
of the finite-time ruin probability in the following Table 1.

Table 1. Comparison between the simulated estimate values and the asymptotic values in
Theorems 1-(2) for N = 1.0× 107.

x Simulated Estimate Values Asymptotic Values

100 2.06× 10−5 (1.20451× 10−6) 1.18× 10−5

110 1.16× 10−5 (3.06396× 10−7) 8.47× 10−6

120 4.85× 10−6 (2.51962× 10−7) 5.73× 10−6

130 2.05× 10−6 (1.50271× 10−7) 3.69× 10−6

140 1.08× 10−6 (1.28344× 10−7) 2.28× 10−6

150 3.92× 10−7 (2.11470× 10−7) 1.36× 10−6

The standard error of each estimate computed via the CMC method is presented in the bracket
behind the estimate. Without surprise, the larger the initial wealth x is, the smaller both the simulated
estimate values and the asymptotic values of the ruin probability become, but the more fluctuation
their ratio exhibits, the less effective the estimates are. In fact, this is due to the poor performance of the
CMC method, which requires a sufficiently large sample size to meet the demands of high accuracy. In
order to eliminate the influence of large initial wealth, we repeat the simulation with the sample size
N increasing from 10, 000, 000 up to 15, 000, 000. A significant improvement is observed. See Table 2
below.
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Table 2. Comparison between the simulated estimate values and the asymptotic values in Theorem 1-(2)
for N = 1.5× 107.

x Simulated Estimate Values Asymptotic Values

100 2.03× 10−5 (6.75224× 10−7) 1.18× 10−5

110 1.23× 10−5 (3.35691× 10−7) 8.47× 10−6

120 5.04× 10−6 (2.35759× 10−7) 5.73× 10−6

130 2.27× 10−6 (1.04678× 10−7) 3.69× 10−6

140 1.45× 10−6 (6.50245× 10−8) 2.28× 10−6

150 6.98× 10−7 (3.32866× 10−8) 1.36× 10−6

5. Conclusions

In this paper, we study the asymptotics for finite-time and infinite-time ruin probabilities. We
conduct our study in a discrete-time risk model, in which the insurance risks have a common
Gamma-like tail the financial risks all have a finite upper endpoint, but a conditionally tailed asymptotic
dependence structure exists between each pair of them. We demonstrate through simulations that the
approximate relationships obtained in our main results are reasonable.
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