
risks

Article

Predicting Human Mortality: Quantitative Evaluation
of Four Stochastic Models
Anastasia Novokreshchenova

Dipartimento di Statistica e Matematica Applicata, corso Unione Sovietica 218 bis, Torino 10134, Italy;
anastasia.novokreshchenova@carloalberto.org; Tel.: +39-011-670-5742

Academic Editor: Qihe Tang
Received: 29 August 2016; Accepted: 25 November 2016; Published: 2 December 2016

Abstract: In this paper, we quantitatively compare the forecasts from four different mortality models.
We consider one discrete-time model proposed by Lee and Carter (1992) and three continuous-time
models: the Wills and Sherris (2011) model, the Feller process and the Ornstein-Uhlenbeck (OU)
process. The first two models estimate the whole surface of mortality simultaneously, while in the
latter two, each generation is modelled and calibrated separately. We calibrate the models to UK and
Australian population data. We find that all the models show relatively similar absolute total error for
a given dataset, except the Lee-Carter model, whose performance differs significantly. To evaluate the
forecasting performance we therefore look at two alternative measures: the relative error between the
forecasted and the actual mortality rates and the percentage of actual mortality rates which fall within
a prediction interval. In terms of the prediction intervals, the results are more divergent since each
model implies a different structure for the variance of mortality rates. According to our experiments,
the Wills and Sherris model produces superior results in terms of the prediction intervals. However,
in terms of the mean absolute error, the OU and the Feller processes perform better. The forecasting
performance of the Lee Carter model is mostly dependent on the choice of the dataset.

Keywords: stochastic mortality; affine processes; survival probability modelling; mortality
probability calibration

1. Introduction

One of the main issues facing financial and governmental institutions, within the current economic
climate, is the forecasting of mortality among an elderly population. Within a vast list of effected
parties are public pension policies, private pension funds and life insurance businesses. They face the
greatest risk, due to an increasing life expectancy across developed countries.

Over the last few decades it has become widely accepted that mortality can be more accurately
measured by the use of stochastic models (see [1]), since they are better able to capture the uncertainty
inherent within the problem. For any given individual, the probability of death naturally increases
with age, however, as life expectancy increases over time, we observe improvements in mortality
rates. Due to these effects, “dynamic mortality” has been introduced to produce models with age
and time dependence. One of the seminal works, which became a benchmark within the industry, is
the model of Lee and Carter [2] who model the central death rate as a two variable function. Since
the publication of their work, several extensions of the Lee-Carter model have been proposed. For
example, Renshaw-Haberman [3] considered a model that allows for a cohort effect and Blake and
Dowd [4] proposed a two-factor model for mortality rates. Traditionally mortality models are used for
forecasting mortality for older generations (ages over 50) since these mostly affect the uncertainty in
the value of financial instruments offered by pension funds due to improvements in mortality and
longer life expectancy (phenomena referred to in the literature as longevity risk). However, Plat [5] has
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recently suggested a model that can fit mortality to a wider range of ages (20–89). In [6] this model has
been extended to fit even younger ages (5–89).

A fairly recent stream of actuarial literature has dealt with the phenomenon of stochastic mortality
by modelling the instantaneous mortality intensity as a stochastic process. Recent works include
Milevsky and Promislow [7], Dahl [8], Biffis [9], Denuit and Devolder [10], Luciano and Vigna [11],
Shrager [12]. The mathematical framework in these models has been adapted from the credit risk
literature to value securities subject to risk to default. Similarities between the time to default and
remaining lifetime and between short-term interest rate and the force of mortality are exploited in
this approach. Moreover, if the intensity process is affine, then the survival function for an individual
can be derived in a closed form. This is extremely useful when pricing mortality-linked financial
products, such as endowments, annuities, variable annuities and other forms of mortality-linked
financial securities.

Luciano and Vigna [11] have studied the applicability of the affine processes, such as
Ornstein-Uhlenbeck and Feller, for modelling mortality intensities. The approach is focused on
fitting the survival curve for which closed-form solutions are available. The future projections
for survival probabilities are made, their closeness to the historical values is discussed, but not
evaluated quantitatively.

Another continuous-time mortality model we consider in this work is the one proposed by Wills
and Sherris (2011) [13] for the Australian population. As with the Lee and Carter (1992) [2] model, it is
able to capture the whole “mortality surface” across age and period. Moreover, it takes account of the
correlation structure between different generations. This is important for life offices portfolios which
often have contracts written on individuals from different cohorts. The authors have shown that the
multiple risk factors implied by the model reflect the actual correlation structure between generations
inferred from the data and that the model is suitable for pricing financial instruments (see Wills and
Sherris [13,14]).

The advantages of continuous time mortality models mean that it is important to study how
well continuous time processes can predict future mortality. There are numerous papers comparing
the performance of mortality models—[5,6,15–18] are among them. Nevertheless, most of them have
focused on discrete stochastic mortality models. For example, Cairns et al. [15] examined the in-sample
fits of eight different discrete time stochastic mortality models. However, as noted in Dowd et al. [16],
it is quite possible for a model to provide a good in-sample fit to historical data and produce forecasts
that appear plausible ex ante, but still produce poor ex-post forecasts, that is, forecasts that differ
significantly from the subsequently realised outcomes. Consequently, a “good” model should produce
forecasts that perform well out-of-sample which can be evaluated using backtesting methods.

Lee and Miller [19] evaluated the performance of the Lee-Carter model by examining the
behaviour of forecast errors and plots of “percentile error distributions”, although they did not report
any formal test results. In contrast, Dowd et al. [16] formally evaluate the forecasting performance of
six different stochastic mortality models applied to male mortality data for England and Wales. They
use a backtesting procedure to test the stability of forecasts over different time horizons and conclude
that the investigated models perform adequately, and that there is little difference between them.

The framework for backtesting stochastic mortality models in Dowd et al. [16] is a very general
one. The “backtests” might involve the use of plots whose goodness of fit is interpreted informally,
as well as formal statistical tests of predictions. The evaluation can be done for different metrics
(the forecasted variable) of interest – possible metrics include mortality rates, life expectancy, future
survival rates, the prices of annuities and other life-contingent financial instruments.

This paper focuses on the forecasting performance of several continuous-time models, making a
novel contribution to the literature. More specifically, we concentrate on the following continuous-time
mortality models: the Ornstein-Uhlenbeck process, the Feller process and the Wills and Sherris model.

To compare the performance of these models to a benchmark, we also include the Lee and Carter
model in our experiments. We evaluate the in-sample goodness of fit by using statistical techniques
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including the BIC criteria and an analysis of the fitted residuals. To assess the forecasting performance
of each model we employ out-of-sample back-testing methods using mortality rates as the metric. This
is done first by computing the relative error between the forecast and actual mortality rates and then by
looking at the percentage of observed mortality rates which fall within a prediction interval. However,
the same backtesting procedure using different metrics might be relevant for different purposes.

For our analysis we employ the data of the British and Australian population as they are among
the countries where the market for mortality derivatives has started to emerge. According to [20], the
annuity markets are relatively well developed in the UK and US. Some product innovations, such as
variable annuities with guaranteed withdrawal lifetime benefits have been introduced in Australia,
Japan and Europe. Multiple mortality and longevity derivatives (such as q-forwards, s-forwards,
longevity and survivor bonds and swaps) have been suggested in the literature as well, see [14,21].
In [14,20] the authors study the securitisation of longevity risk for the Australian pension industry.
In [22] natural hedging of longevity risk with application to the UK population is analysed.

This paper is organised as follows: in Section 2 we present some notation and description of
the data that will be used in the subsequent analysis. In Section 3 we provide an overview of the
Lee-Carter model, which we will use as a benchmark for our comparisons. Section 4 provides the Wills
and Sherris model setup. Section 5 describes time-homogeneous affine processes. Section 6 calibrates
the four models to the UK female dataset and Section 7 compares the results of this calibration for
the four models. Section 8 discusses the robustness of the simulation results on the male and female
datasets for the British and Australian populations. Section 9 concludes.

2. Notation and Data Description

Throughout the paper we use the following notation. Define m(x, t) to be the observed central death
rate in year t for lives initially aged x as a number of deaths divided by the population exposure:

m(x, t) =
D(x, t)
E(x, t)

, (1)

Here E(t, x) is the average size of the population aged x last birthday during year t and D(t, x) is
the number of deaths during year t recorded as age x last birthday at the date of death. The observed
central death rate can be calculated directly from the data.

Another measure of mortality is the force of mortality µ(x, t). It is interpreted as the instantaneous
death rate at exact time t for individuals aged exactly x at time t. The probability of death between t
and t + dt for small t is then approximately µ(x, t)× dt. Thus, assuming that the force of mortality
remains constant over a year: µ(x + s, t + u) = µ(x, t) for 0 ≤ s, u < 1, we can approximate the force
of mortality µ(x, t) with the mortality rate m(x, t).

A typical dataset consists of a number of deaths, D(x, t), and the corresponding exposures,
E(x, t), over a range of years t and ages x. The data for the UK we use in this study contains the
number of deaths and the population exposure. It was taken from the Human Mortality Database
(Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for
Demographic Research (Germany)). We consider female population aged 50–99 (which is relevant to
the pension fund industry) during the years 1970–2009.

3. Lee-Carter Model

In this section we describe general characteristics of the famous Lee Carter model [2] and its
estimation process and forecasting technique. Lee-Carter mortality model is used widely in academia,
as well as industry. It has been proposed by Lee and Carter in 1992 specifically for US mortality data
covering years 1933–1987. However it has been used as a benchmark model to mortality data from
many countries and time-periods. It has been shown (see [23]) that the Lee-Carter model is a special
type of multivariate random walk with a drift (RWD), in which the covariance matrix depends on the
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drift vector. For estimation of the model parameters, principle component analysis (PCA) with a single
component is applied to the census data.

Let mxt denote the log of the mortality rate in an age group x (x = 1, ..., A) and time t (t = 1, ..., T)
for one country. The mortality rate is modelled as follows:

mxt = αx + βxκt + εxt (2)

where εxt is a set of random disturbances and αx, βx and κt are parameters to be estimated:

– αx is the average mortality curve across ages;
– βx is a set of parameters representing the sensitivity of the mortality rate at age x to changes in κt;
– κt is a time-varying parameter representing a common risk factor;
– εxt is a zero mean Gaussian error N(0,σ2).

The parametrisation in (2) is not unique, since the likelihood function associated with the model
above has an infinite number of equivalent maxima, each of which would produce identical forecasts,
see Lee and Carter [2]. In practice, model identification implies imposing constrains. Lee and Carter
adopt the constraints ∑t κt = 0 and ∑x βx = 1.

The constraint ∑t κt = 0 implies that the parameter αx is simply the empirical average over time
of the age profile in age group a: αx = m̄x. We can therefore rewrite the model in terms of the mean
centered log-mortality rate, m̃xt = mxt − m̄x. Thus, we can rewrite Equation (2) as a multiplicative
fixed effects model for the centered age profile:

m̃xt ∼ N(µ̄xt,σ2),

E(m̃xt) = µ̄xt = βxκt.
(3)

As a result, we use A + T parameters (with A and T being the total number ages and the total
number of years considered) to approximate the A× T elements of the mortality matrix, where each
row represents the age of the population and each column represents the year of the observation, with
the age-specific parameter βx which is fixed over time for all x and the time-specific parameter κt

which is fixed over age groups for all t.
The parameters βx and κt in the model can be found easily using singular value decomposition

(SVD) of the matrix of centered age profiles, m̃ = BLU′ = Z, which we denote by Z. Then the estimate
for βx is the first column of B, b1 (normalised eigenvector of the matrix ZZ′) and the estimate for κt is
λ1u1, where u1 is the first column of the matrix U (normalised eigenvector of the matrix Z′Z) and λ1

is the first element of the diagonal matrix L (the largest eigenvalue corresponding to the eigenvectors).
Typically, for low-mortality populations, the approximation Z ≈ λ1b1u′1 accounts for more than 90%
of the variance of mxt, see [23].

To forecast future mortality, Lee and Carter assume that αx and βx remain constant over time and
the time factor γt is viewed as a stochastic process. They find that a random walk with drift is the most
appropriate model for their data:

κ̂t = κ̂t−1 + θ+ ξt;

ξt ∼ N(0,σ2
rw),

(4)

where θ is known as the drift parameter and its maximum likelihood estimate is simply
θ̂ = (κ̂T − κ̂1)/(T − 1), which only depends on the first and last components of the κt vector.

We can forecast κ̂t at time T + h with data available up to period T, as follow:

κ̂T+h = κ̂T + hθ̂+
h

∑
l=1

ξT+l−1. (5)
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From this model, we can obtain forecast point estimates, which follow a straight line as a function
of h with slope θ̂:

E[κ̂T+h|κ̂1, . . . , κ̂T ] = κ̂T + hθ̂. (6)

To make a point estimate forecast for log-mortality we plug the obtained expression for κ̂T+h into
the vectorised version of expression (3):

µT+(∆t) = m̄ + β̂xκ̂T+h = m̄ + β̂x[κ̂T + hθ̂], (7)

where β̂x = b1 and κ̂T = λ1u1 are the estimates of βx and κT respectfully obtained using SVD.

4. Wills and Sherris Model

Wills and Sherris suggested a stochastic longevity model where the force of mortality for age x at
time t has the following dynamics (see [13,14]):

dµ(x, t) = (a(x + t) + b)µ(x, t)dt + σµ(x, t)dW(x, t),

0 < x < ω, 0 < t < ω− x.
(8)

In the above expression the drift parameter is an affine function of the current age (x + t), while
volatility function is a constant.Applying the Ito’s lemma, we find the solution to the SDE (8):

µ(x, t) = µ(x, 0) exp
[

a
2

t2 + (ax + b− 1
2
σ2)t + σW(x, t)

]
,

which can be written as follows:

ln
[
µ(x, t)
µ(x, 0)

]
=

[
a
2

t + ax + b− 1
2
σ2
]

t + σW(x, t).

For all ages x1, . . . xN , we consider a multivariate random vector of mortality rates:

µ(x, t) =


µ(x1, t)

...

µ(xN , t)


The dynamics dµ(x, t) are assumed to be driven by the multivariate Wiener process dW(x, t),

with mean zero and the instantaneous correlation matrix given by:

D =


δ11 . . . δ1N

...
. . .

...

δN1 . . . δNN


This means that the Wiener processes are independent between time periods, but correlated

between ages and the multivariate Wiener process dW(x, t) can be expressed in terms of independent
Wiener process dZ(x, t) = [dZ1(t), . . . , dZN(t)]′ as dW(x, t) = DdZ(x, t).

Thus, the model described by Equation (8), becomes a system of equations where the dependence
between the ages is captured by the δx,i term:

dµ(x, t) = (a(x + t) + b)µ(x, t)dt + σµ(x, t)
N

∑
i=1
δx,idZi(t) ∀x = x1, . . . , xN .
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Using the fact that the distribution of the changes in the force of mortality follows a normal
distribution, we can find the parameters â, b̂ and σ̂ by means of maximum likelihood estimation.
In particular,

∆µ(x, t) ∼ N((a(x + t) + b)µ,σµ)

To estimate the covariance matrix of dW(x, t), we apply Principle Component Analysis (PCA)
to the standardised residuals of the model. For each year, they are the realisations of the random
vector dW(x, t):

r(x, t) =
∆µ̂(x, t)/µ̂(x, t)− (â(x + t) + b̂)

σ̂

5. Time-Homogeneous Affine Processes

Mortality intensity since recently has been modelled as a stochastic process, (see Cairns [1]).
In this field, an important stream of literature focuses on describing death arrival as the first jump time
of a Poisson process with stochastic intensity. This approach is named doubly stochastic. Milevsky
and Promislow [7] have used a stochastic force of mortality, whose expectation at any future date has a
Gompertz specification. Dahl [8], Biffis [9], Denuit and Devolder [10] and Schrager [12] in modelling
the stochastic force of mortality have applied the same mathematical tools used in the credit risk
literature to model the time to default. Under this setting, the remaining lifetime of an individual, τ,
is a doubly stochastic stopping time with intensity λ.

Let the mortality process µx(t) represent the mortality intensity of an individual belonging to the
generation x at (calendar) time t and τ be the time of death of an individual of generation x. Then
the survival probability from time t to time T ≥ t is defined as a function of τ, Sx(t, T), under the
probability measure P, conditional on the survivorship up to time t:

Sx(t, T) = ¶(τ ≥ T|τ > t), (9)

A doubly stochastic stopping time is the analogue of the first jump time of a Poisson process,
where the intensity is a stochastic process. If τ is the first jump time of a Poisson process with parameter
µ, then

P(τ > t) = e−µt (10)

Similarly, if τ is doubly stochastic with intensity µ, then the individual’s survival function Sx(t) is
given by

Sx(t, T) = P(τ > t|Fs) = E
(

e−
∫ t

s µ(u)du|Fs

)
(11)

where Fs describes the information at time s.
In general, the expectation in (11) is not easy to calculate. However, if the intensity process is

affine (see Duffie, Filipovic and Schachermayer [24]), then it is possible to provide the closed form for
the survival probability:

Sx(t, T) = eα(T−t)+β(T−t)µx(t). (12)

where the functions α(·) and β(·) satisfy generalised Riccati ODEs, which can be solved analytically
or at least numerically. The closed-from expression of survival probabilities (12) in affine framework
allows to price financial instruments written on the underlying population, such as endowments,
annuities, variable annuities and other forms of mortality-linked financial securities. Due to this result,
in applications the processes selected for the mortality intensity are typically affine.

Luciano and Vigna [11] proposed and tested time-homogeneous non-mean reverting affine
processes for the intensity of mortality, which are natural generalisation of the Gompertz law of
mortality. They consider Ornstein Uhlenbeck process, Ornstein Uhlenbeck process with jumps and the
Feller process. They provide the analytical solutions for survival function (12) for these processes and
discuss the appropriateness of using them in modelling mortality. Calibrations on historical data show
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that despite their simple form, these processes fit mortality intensity dynamics very well. Another
study shows how to use these processes to delta-gamma hedge mortality and interest rate risk, see
Luciano, Regis and Vigna [22] .

5.1. The Ornstein-Uhlenbeck Processes

The SDE for the Ornstein-Uhlenbeck (OU) process without mean-reversion, with the associated
solutions of the Riccati ODE α(·) and β(·), is the following:

dµx(t) = aµx(t)dt + σdWx(t),

α(t) =
σ2

2a2 t− σ
2

a3 eat +
σ2

4a3 e2at +
3σ2

4a3 ,

β(t) =
1
a
(1− eat),

(13)

where a > 0, σ > 0.
We calibrate the parameters of the OU process by means of Maximum Likelihood method applied

to the mortality intensities.
Assume that the dynamics of the mortality intensity is described by the OU process without

mean reversion as given by SDE (13). Then, the conditional probability density of an observation µi+1,
given a previous observation µi (with a δ time step between them), has a form (here we omit x which
symbolises a certain generation):

f (µi+1|µi; a, σ̂) =
1√

2πσ̂2
e−

(µi+1−µi eaδ)2

2σ̂2 ,

where σ̂2 = σ2 1−e2aδ

2a .
The log-likelihood function of a set of observations µ̄ = (µ1,µ2, . . . ,µn) can be derived from the

conditional density function:

L(µ̄; a, σ̂) =
n

∑
i=1

ln f (µi+1|µi; a, σ̂) =

= −n
2

ln(2π)− n ln(σ̂)− 1
2σ̂2

n

∑
i=1

(µi+1 − µieaδ)2.
(14)

From the Maximum Likelihood conditions we find the following equations for the parameters:

a =
1
δ

∑n
i=1 µi+1µi

∑n
i=1 µ

2
i

σ̂2 =
∑n

i=1(µi+1 − µie−aδ)2

n

(15)

The OU process in general can produce negative paths. The probability of λx turning negative is

P(µx(t) ≤ 0) = Φ

− µx(0)eat

σ

√
e2at−1

2a

 = Φ (ζ(σ, a)) , (16)

where Φ is the distribution function of a standard normal.
In fact, the function ζ(σ, a) = − µx(0)eat

σ

√
e2at−1

2a

is increasing in σ and decreasing in a, as well as the

probability of negative values of µ. In mortality modelling applications the probability that µ(t) takes
negative values is very small, because in practice the obtained value of σ is small enough and the
value of a, on the contrary, is high enough. In our calibration we check that the values of the obtained
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parameters are such that there are no negative intensities. Otherwise, to keep mortality intensity
positive, it is possible to impose a restriction using Equation (16) during the parameter search, such
that probability (16) is negligible (see Luciano and Vigna [11] for more details).

5.2. The Feller Process

The fourth model is the Feller process which is described by the following SDE with the associated
solutions of the Riccati ODEs α(·) and β(·):

dµ(t) = aµ(t)dt + σ
√
µ(t)dW(t),

α(t) = 0,

β(t) =
1− ebt

c + debt ,

(17)

where a > 0, σ ≥ 0, the boundary conditions are α(0) = 0 and β(0) = 0, and the coefficients are:

b = −
√

a2 + 2σ2

c =
b + a

2
,

d =
b− a

2
.

(18)

The solution to the Equation (17) has the form:

µ(t) = µ(0)eat + σ
∫ t

0
ea(t−u)dW(u) (19)

The Feller process is a type of the Cox, Ingersoll, Ross (1985) process [25] without mean reversion.
It was proposed as a model of a short rate for financial market, referred to as the CIR model. This
model is described by the following SDE:

dr(t) = a(b− r(t))dt + σ
√

r(t)dW(t), (20)

where b > 0 is the mean-reversion level. Thus, the model suggests that the r(t) is pulled towards b
at a speed controlled by a. If condition 2ab > σ2 holds and r(0) > 0, then the CIR process remains
strictly positive, almost surely, and the state (marginal) distribution of the process is steady. The
marginal density is gamma-distributed. The maximum likelihood estimation of the parameter vector
θ = (a, b, σ) is based on the transition density. Given rt at time t the density of rt+∆t at time t + ∆t is

p(rt+∆t|rt; θ) = ce−u−v
( v

u

) q
2 Iq(2

√
uv), (21)

where

c =
2a

σ2(1− e−a∆t)

u = crte−a∆t,

v = crt+∆t,

q =
2ab
σ2 − 1,

(22)
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and Iq(2
√

uv) is modified Bessel function of the first kind and of order q. Then the likelihood function
of the time series (r1 . . . rN) with the time between two observations ∆t = 1 is

L(θ) =
N−1

∏
i=1

p(ri+1|ri; θ), (23)

from which the log-likelihood function of the CIR process is derived:

ln L(θ) = (N − 1) ln c +
N−1

∑
i=1

[
−ui − vi+1 + 0.5q ln

(
vi+1

ui

)
+ ln(Iq(2

√
uivi+1))

]
, (24)

where ui = crie−a∆t and vi+1 = cri+1.
There are two approaches to calibrating affine mortality processes to the historical data. One

is to match the survival function (Equation (12)) using the solutions of the Riccati ODEs for the OU
(Equation (13)) and the Feller (Equation (17)) processes to the set of observed survival probabilities.
Another approach is to maximise the likelihood function of the transition density. In this work we
employ the second approach as described in [26] since both for the OU process and the Feller process
the transition density is known in closed-form.

6. Models Calibration

In this section we work with the UK female dataset which describes the mortality in population
aged 50–99 for the years 1970–2009. First, we divide the data in two data sets: the estimation data
set, containing 30 years of observations, from 1970 until 1999; and the backtesting data set containing
the last 10 years of observations, from 2000 till 2009. First we estimate the model parameters on the
estimation data set, then we make 10-years predictions of mortality rates and calculate how well the
forecast is compared with actual mortality rates for the period 2000–2009.

For the Lee and Carter and the Wills and Sherris models we use the whole surface of mortality to
calibrate the models. Then, to compare the performance of the models between each other, we chose
19 generations. To have reliable estimation results and to make the comparison between the models
which simulate the whole mortality surface (the Lee Carter and the Wills and Sherris models) and
the ones which model each generation separately (the OU and the Feller processes) fairer, we take all
possible generations from the data, which satisfy the criteria that the length of the backtesting period
would not be less than 10 years. This results in 19 generations—aged 42–60 in the year 1970. We obtain
the mortality rates for corresponding generations from the surface by taking the relative diagonal of
the matrix. For the OU and the Feller processes, however, we calibrate the parameters for each of the
19 generations separately. We calculate the parameters on the estimation time period (1970–1999) and
then use them to make forecasts of mortality for the next 10 years. Thus, we build forecasts for these
generations and compute the relative error of prediction, as well as the percentage value of the actual
mortality rates which fall within the prediction interval in the test period 2000–2009.

6.1. Calibration of the Lee-Carter Model

First of all, we compute the average of the log mortality mxt for every age over time period
1970-1999 for the estimation dataset and subtract it in order to obtain mean centered log-mortality
rates, m̃xt = mxt − m̄x. The average of the log mortality for the whole dataset is shown in Figure 1.
Then, we perform SVD on m̃xt matrix and obtain estimates for parameters – two vectors β̂x and κ̂t.
The actual centered mortality and its SVD approximation are illustrated in Figure 2.

The obtained ML estimates for the drift and the variance of the innovations are θ̂ML = −0.5992
and σ̂2rw = 0.9154, respectively. Using these parameters we can compute the forecast for κt as given
by Equation (4) and its forecast point estimate as described in Equation (6). In Figure 3a the estimated
vector of κt and its forecast obtained for the next 10 years (in red) are shown. Then, we calculate the
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forecast for log-mortality as given in Equation (7). Figure 3b shows the mortality for the 10 years
forecasted by the Lee-Carter. The forecast corresponds well to the observed mortality rates for the UK
female population presented in Figure 1b. However, we can see that the cohort effect (diagonal trends
in the data present in Figure 1b) is not captured by the Lee-Carter forecast of mortality.

(a) (b)

Figure 1. Observed mortality rates for the UK female population. (a) Estimation data set, 1970–1999;
(b) Backtesting data set, 2000–2009.

(a) (b)

Figure 2. Actual centered mortality and its approximation. (a) Mean centered log-mortality rate;
(b) Approximation by 1-factor SDV.

(a) (b)

Figure 3. Results of the Lee-Carter model. (a) Estimation and forecast of κt; (b) Lee-Carter forecast
for 2000–2009.
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6.2. Calibration of the Wills and Sherris Model

The analysis of the fit is based on the assumption that the residuals are independent and identically
distributed normal variables with mean 0 and standard deviation 1. Figure 4a shows the graph of
residuals for the UK female population aged 50–99, years 1970–1999 (the estimation dataset). The plot,
together with the residuals descriptive statistics in Table 1, supports the hypothesis that the residuals
follow a standard normal distribution with mean close to zero and standard deviation very close to
one. The table also contains the value of the log likelihood function, the BIC criteria and the value of
the χ-square statistics.

The Bayesian information criteria (BIC) is defined as

BIC = −2 ln(L̂) + k ln(n),

where:

n – the number of observations (sample size);
k – the number of free parameters to be estimated.
L̂ – the maximized value of the likelihood function of the model.

Pearson’s chi-square statistics, defined as χ2 = ∑observations
(Oi−Ei)

2

Ei
, allows us to evaluate the

goodness of fit by testing wether or not an observed frequency distribution differs from the theoretical
one. We compare weather the computed value of χ2 with the critical value of the statistic with degree
of freedom defined as

d f = number of observations− number of independent parameters− 1.

The obtained value of the χ2 is 1.5835. This is compared to the chi-square distribution with 217
degrees of freedom (49 ∗ 29− (492/2 + 3)− 1). Higher values of the χ2 statistic suggest a poorer fit.
Since the calculated value is very low, the test confirms a very good fit to the data.

(a) (b)

Figure 4. Results of the Wills and Sherris model. (a) UK female 1970-1999 fitted residual; (b) Mortality
forecast for the test period.

To capture the correlation structure between ages we calculate eigenvectors of the matrix of the
obtained residuals using Principal Component Analysis. Table 2 summarises the percentage of the
observed variation explained by these vectors. The observed age-correlation matrix has a total of 49
eigenvalues. In our experiments we take first 30 eigenvectors to approximate the correlation matrix as
they account for 98.9% of the variation.
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Table 1. Parameter estimates and residual descriptive statistics for the Wills and Sherris model fit to
UK female mortality rates 1970–1999.

Parameter Estimates

a 0.0007032
b 0.0850
σ 0.0385
Log-likelihood 7246.4
BIC-criteria −14480

Residual Descriptive Statistics

mean 1.3192 × 10−15

Minimum −5.1384
Maximum 2.9886
Standard Deviation 1.0004
Standard Error 0.0125
Confidence Level 0.0003
χ2 1.5835

Table 2. Percentage of the observed variation in residuals explained by the eigenvectors using PCA.

Number of Eigenvectors % of Observed Variation

1 28.1
5 55.8

10 75.4
15 86.5
20 93.1
25 96.8
30 98.9
35 100

Figure 4b shows the mortality surface for the test period built with the Wills and Sherris model
using the parameters obtained on the estimation dataset. By comparing the forecast with the actual
mortality rates (Figure 1b), we can see that the model gives projections which are similar to the real
data, although we see more variation in the simulated mortality intensities. In order to obtain a reliable
prediction of mortality rates for a particular generation, we perform Monte Carlo simulations of the
mortality surface for the test period and extract from the surface a diagonal corresponding to a specific
generation. Then we estimate the mean of the Monte Carlo simulations for a given generation, together
with the 90% prediction interval.

6.3. Calibration of the OU-Process

We calibrate the model on 19 generations and evaluate the goodness of fit by means of the BIC
criteria and analysis of the residuals. For each generation x, having a series of length N we use
n = N − 10 observations (first n years of the sample) to estimate the parameters a and σ and last 10
observation for backtesting the results. For instance, for the UK data, if we consider individuals who
were 50 in the year 1970, and we have the data until the year 2009, we have 40 years of observations.
Then the first thirty years of observations (1970–1999) is the estimation data and the last ten years of
observations (2000–2009) is the backtesting data.

After obtaining the parameters we use the following simulation equation to generate paths of the
mortality intensities. This expression is an exact solution of the SDE (13):

µi−1 = µieaδ + σ

√
1− e2aδ

−2a
N0,1. (25)
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From the mortality intensities one can easily obtain the survival probabilities by means of the
analytical formula 12 with t = Tj+1 − Tj = 1. In this way the expression for a one-year survival curve
with α and β being constants is:

Sx(Tj+1, Tj) = eα+βµx j ,

α =
σ2

2a2 −
σ2

a3 ea +
σ2

4a3 e2a +
3σ2

4a3 ,

β =
1
a
(1− ea),

(26)

However, in our study we focus on mortality intensities. We obtain the parameters using the
estimation dataset as described above, after which we use them to generate paths and to forecast
mortality intensities. Finally, we calculate the error between the forecasted mortality curve and the
actual mortality rates.

The residuals of the model are the realisations of the random component dW(t) which should
follow the standard normal distribution if the parameters are estimated correctly:

∆µ− aµ
σ

∼ N(0, 1).

We use Kolmogorov-Smirnov statistic to test hypothesis that the errors come from a standard
normal distribution.

Taking the mortality intensities for the 7 generations we obtain the parameters presented
In Table 3 we report the obtained parameters for selected 7 generations. As expected, the a

parameter is increasing with age, which means that the average mortality intensity is larger for older
generations. The σ parameter is also growing with age. This proves the fact that there is more
uncertainty in mortality rates for older ages.

Table 3. ML parameters of the OU-process and maximised log-likelihood.

Generation Age in 1970 a σ MaxLogLikelihood BIC

60 0.1024 0.0020 138.1895 −269.5766
57 0.0999 0.0015 146.5591 −286.3159
54 0.0951 0.0008 164.1945 −321.5865
51 0.0894 0.0008 165.3501 −323.8979
48 0.0845 0.0004 168.9370 −331.2095
45 0.0841 0.0004 155.7339 −305.0300
42 0.0815 0.0004 136.3726 −266.5631

(a) (b)

Figure 5. Results of the OU-process for UK female generation aged 51 in the year 1970. (a) Fitted
residuals of the model (1971–2009); (b) Historical mortality and simulated paths (1971–2009).
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Figure 5a represents the residuals of the model. According to the Kolmogorov-Smirnov test, the
errors of the model are confirmed to be standard normal at 5% significance level. Figure 5b illustrates
historical mortality intensities (in blue), 1000 MC simulations (in yellow), average among simulations
(in red) and confidence intervals (in green) for the entire period (1970–2009). This graph is done for the
generation aged 51 in the year 1970.

6.4. Calibration of the Feller Process

We have maximised the log-likelihood function as it is stated in Equation (24) assuming that
the mean-reversion parameter is zero. Table 4 reports the obtained parameters and the value of the
maximazed log-likelihood function for each generation. The obtained parameter values correspond
well with the previous work, such as in Luciano and Vigna [11] .

Table 4. ML parameters of the Feller process and maximised log-likelihood.

Generation Age in 1970 a σ MaxLogLikelihood BIC

60 0.0984 0.0073 147.1586 −287.5148
57 0.0955 0.0061 156.6162 −306.4299
54 0.0922 0.0043 171.9529 −337.1034
51 0.0869 0.0046 172.7420 −338.6817
48 0.0833 0.0036 170.9023 −335.1403
45 0.0826 0.0034 155.2175 −303.9972
42 0.0801 0.0031 139.2860 −272.3900

The simulation of the future mortality is performed by discretising Equation (17) with time step
equal to one year:

µt+1 = µt + aµt + σ
√
µtN(0,1). (27)

7. Comparison of the Four Models

To compare the performance of the models for the 19 generations based on their age in 1970.
For each, we forecast mortality rates in the period 2000–2009 and compute the relative error of
prediction, as well as the percentage of the observed mortality rates in the test period which fall
within the prediction interval. The forecast and the prediction bounds are obtained using 15,000
Monte Carlo simulations.

In this section we define the tests of the mean relative error and the prediction intervals. A model
can perform very well with respect to the percentage of the mortality rates which fall within the
prediction bounds, while at the same time having a high relative error, if its variance grows rapidly
and, therefore, the model produces wide prediction bounds. We say that a model is precise if its
forecasts of mortality are consistent with respect to the prediction interval and that a model is accurate
if its mean absolute forecast errors are small. Of course, it is desirable for a good model to be both
accurate and precise. To interpret the results of the experiments, it is important to understand the form
of the variance implied by each model which we discuss in this section as well.

7.1. Relative Error

For each x, t the relative error is defined as follows:

errorx(t) =
µ

predicted
x (t)− µactual

x (t)
µactual

x (t)
∀x, t.

Since the longevity risk corresponds to lower-than-expected mortality rates, we define the
error so that it is positive if the forecast of mortality exceeds the historical values (actual values
are lower-than-expected), and negative in the opposite case.



Risks 2016, 4, 45 15 of 28

We compute the relative error for 19 generations—they are female aged 42–60 in the base year 1970.
Thus, in the test period, for which the graphs of error are plotted, they are 30 years older—72–90
years, respectively.

The results of the experiments are presented in Figures 6 and 7 and Tables 5 and 6. The graphs
of the mean absolute errors in Figure 7 illustrate the results shown in Tables 5 and 6. We can see that
most of the errors fall in the range [−0.1; 0.1]. The exception is the OU process for the generation
aged 60 in 1970, especially for later years of projections. The error for this generation in the Feller
process forecast is also large – its absolute mean for generation aged 60 in 1970 is 0.0427 (Table 5). This
increases the mean absolute errors for this generation for these processes shown in Table 5. Figure 7b
shows the relative absolute error for each year in the test period average over 19 generations. We
see that the error is smaller for younger ages . All the models show a high error for the generation
aged 50 in the year 1970. This might be due to the cohort effect which is generally present in the UK
data. The biggest error for this generation is produced by the Lee-Carter model. The graph of the
relative absolute errors averaged over generations by year (Figure 7a) shows an increasing trend for
all 4 models, especially for the Lee and Carter model (red line). This effect is due to the fact that the
variances of the projected mortality rates increase with projection time. However, this does not happen
at the same rate in different models.

(a) (b)

(c) (d)

Figure 6. Relative error of each model for every generation (a)–(d). (a) Lee-Carte model; (b) OU-process;
(c) Wills-Sherris model; (d) Feller process.

The errors of the Lee-Carter model are mostly positive (Figure 6a) and we can observe a relative
increase of the errors in time for each generation, indicating that the Lee-Carter model has tended
to predict mortality rates that are too high. The errors of the Wills and Sherris model exhibit two
patterns for different generations (Figure 6c). They are negative for the older generations (aged 60,
57, 54, 51 and 48 in 1970) and positive for the two youngest ones (45, 42 in 1970). We note that the
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older generations belong to the lower diagonal of the initial mortality matrix, while the younger two
belong – to the upper diagonal of the matrix. Thus, it may be that the Wills and Sherris model has a
tendency to overestimate the mortality for younger generations and underestimates the mortality for
the older ones.

(a) (b)

Figure 7. Mean relative absolute error of each model, UK female data. (a) Relative absolute error,
average by year; (b) Relative absolute error, average by generation.

Table 5. Mean (over 10 years) of the absolute errors for each generation, UK female data.

Age in 1970 Wills and Sherris Lee-Carter OU-Process Feller

60 0.0383 0.0387 0.0837 0.0428
59 0.0346 0.0245 0.0543 0.0251
58 0.0396 0.0232 0.0562 0.0248
57 0.0457 0.0256 0.0430 0.0269
56 0.0374 0.0313 0.0573 0.0218
55 0.0420 0.0611 0.0209 0.0313
54 0.0515 0.0599 0.0220 0.0376
53 0.0379 0.0965 0.0160 0.0383
52 0.0362 0.0696 0.0260 0.0320
51 0.0320 0.0337 0.0169 0.0404
50 0.1008 0.1630 0.0919 0.1164
49 0.0388 0.0249 0.0256 0.0405
48 0.0353 0.0441 0.0383 0.0588
47 0.0258 0.0406 0.0257 0.0393
46 0.0212 0.0258 0.0251 0.0409
45 0.0279 0.0296 0.0263 0.0298
44 0.0267 0.0299 0.0193 0.0228
43 0.0312 0.0509 0.0221 0.0285
42 0.0334 0.0611 0.0232 0.0220

Mean (Rank) 0.0388 (3) 0.0492 (4) 0.0365 (1) 0.0379 (2)

According to the Tables 5 and 6, the OU process exhibits the lowest mean absolute error, followed
by the Feller process, the Wills and Sherris model and the Lee and Carter model for the UK female data.



Risks 2016, 4, 45 17 of 28

Table 6. Mean (over 19 generations) of the absolute errors for each year, UK female data.

Year (Rank) Wills and Sherris Lee-Carter OU-Process Feller

2000 0.0314 0.0380 0.0379 0.0318
2001 0.0248 0.0417 0.0367 0.0247
2002 0.0267 0.0320 0.0191 0.0187
2003 0.0493 0.0316 0.0241 0.0462
2004 0.0332 0.0473 0.0321 0.0204
2005 0.0409 0.0401 0.0254 0.0311
2006 0.0326 0.0642 0.0405 0.0281
2007 0.0457 0.0537 0.0366 0.0475
2008 0.0626 0.0479 0.0483 0.0690
2009 0.0403 0.0951 0.0645 0.0614

Mean (Rank) 0.0388 (3) 0.0492 (4) 0.0365 (1) 0.0379 (2)

7.2. Discussion on the Variances

As it has been stated in the description of the model, the variance of the mortality intensity µ(t),
conditional on time 0, in the OU specification has a form σ2 e2at−1

2a , where t is the time elapsed. For the
Feller process, when intensity µ(t) is specified by the CIR process of the form:

dµ(t) = (b + aµ(t))dt + σ
√

µ(t)dW(t),

with a > 0, b > 0, σ > 0, the conditional distribution of the mortality intensity at time t, conditional on
time 0 is given by a non-central chi-square distribution:

µ(t) ∼ σ2(eat − 1)
4a

χ2
d(ν),

where χ2
d(ν) denotes the density of a non-central chi-square random variable with d degrees of freedom:

d =
4b
σ2 ,

and the non-centrality parameter ν is

ν =
4aeat

σ2(eat − 1)
µ(0).

The χ2
d(ν) distribution, has a variance Varχ2

d(ν)
= 2(d + 2ν). Thus, intensity µ(t) has a variance:

σ2(eat − 1)
2a

(
4b
σ2 +

8aeat

σ2(eat − 1)
µ(0)

)
In the Feller specification, parameter b is not defined and, hence, the number of degrees of freedom

d is not defined either. However, we can see that, other parameters being equal, the variance of the
OU process should grow faster in time than the variance of the CIR process, as it has e2at term rather
than eat.

The Wills and Sherris model assumes that the distribution of the changes in the force of mortality
follows a normal distribution:

∆µ(x, t) ∼ N((a(x + t) + b)µ, σµ).

Thus, the variance of the mortality intensity grows in time as at each time installment it is
multiplied by the mortality rate from the year before.
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For the Lee Carter model, the variance of the logarithm of the mortality rate at time t for each age
x, is βxσ̂2

rw
√

t, where σ̂rw is the variance of the random walk process κt, in our case equal to 0.9154, and
t is the time passed.

To understand better the variance of the distribution of mortality rates at each point in time we
show the graphs of the standard deviation in Figure 8. The variance of each model grows with time,
however, for the Wills and Sharris model it grows substantially faster than for other three models.
The second fastest growing variance is of the Feller process, then the OU-process and, finally, the
Lee-Carter model shows the slowest growth in variance.

(a) (b)

(c) (d)

Figure 8. Standard deviation of each model for every generation (a–d). (a) Lee-Carte model;
(b) OU-process; (c) Wills-Sherris model; (d) Feller process.

Regarding the covariance/correlation across generations and ages, all models employ a different
structure. Lee-Carter is a one-factor model, which results in mortality improvements at all ages
being perfectly correlated. Wills and Sherris model is designed to capture correlation between the
ages. In practice it amplifies the effect of the variance growth over time since in reality the correlation
increases with age (see Wills and Sherris [13]). In fact, in the simulation procedure the Wiener process is
multiplied by the instantaneous correlation matrix D which describes the correlation structure between
ages. The OU and the Feller processes in the current study do not take into account the correlation
between generations. However, they can also be extended to the case of multiple generations. In [27] it
is described how the OU process can be extended to the case of two generations, whose changes in
mortality intensities are correlated with an instantaneous correlation coefficient.



Risks 2016, 4, 45 19 of 28

7.3. Discussion on the Number of Parameters

The number of estimated parameters is different for each procedure. The Wills and Sherris model
estimates only 3 parameters for the whole dataset plus eigenvectors to approximate the correlation
matrix (in our case we take 30 eigenvectors), while both the OU and the Feller processes fit 2 parameters
for each generation. To calibrate the Lee-Carter model, we have to estimate A + T = 50 + 30 = 80
parameters. To predict mortality for each generation in the dataset for which the size of the estimation
part would be not be less that 10 years, we have to estimate the OU and the Feller processes for
19 generations resulting in 38 parameters each, for the Wills and Sherris model we have used
3 + 30 = 33 parameters.

7.4. Prediction Intervals

The results of the experiments based on prediction intervals are presented in the Figure 9 and
Table 7. Figure 9 illustrates the 90% prediction intervals built for each model with 15000 MC simulations
for generation aged 57 in 1970. We can see that the width of the intervals is different for each model—it
is the smallest for the OU-process; medium for the Lee-Carter model and the Feller process, and it is
the widest for the Wills and Sherris model, especially for the older ages.

(a) (b)

(c) (d)

Figure 9. Actual mortality rate and 90% prediction intervals for generation aged 57 for each model.
(a) Lee-Carte model; (b) OU-process; (c) Wills-Sherris model; (d) Feller process.

According to Table 7, the Wills and Sherris model shows the best results in terms of the percentage
of the actual future mortality which appear within the confidence bounds—for 15 out of 19 generations
the percentage reaches 100%. The Lee-Carter model and the Feller process results are comparably
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good, while the OU process shows the worst result with the average percentage of the actual mortality
within the prediction intervals being 53% (Table 7).

Note, that although the variances of the Lee Carter model is smaller than the ones produced by
the OU-process and the Feller process, the first model shows better results.

Table 7. Percentage of the actual mortality rates which falls within a 90% prediction interval, UK
female data.

Age in 1970 Wills and Sherris Lee-Carter OU-Process Feller

60 1.0000 0.5000 0.2000 0.7000
59 1.0000 0.9000 0.3000 0.8000
58 1.0000 0.9000 0.3000 0.8000
57 1.0000 0.9000 0.5000 0.8000
56 1.0000 0.8000 0.1000 0.9000
55 1.0000 0.3000 0.6000 0.8000
54 1.0000 0.7000 0.8000 0.7000
53 1.0000 0.2000 0.8000 0.7000
52 1.0000 0.6000 0.5000 0.7000
51 1.0000 0.9000 0.8000 0.7000
50 0.5000 0 0 0
49 0.9000 1.0000 0.7000 0.5000
48 1.0000 0.7000 0.4000 0.5000
47 1.0000 0.9000 0.8000 0.8000
46 1.0000 1.0000 0.4000 0.5000
45 1.0000 1.0000 0.6000 0.9000
44 1.0000 1.0000 0.7000 1.0000
43 0.9000 0.8000 0.7000 0.8000
42 0.9000 0.7000 0.9000 0.9000

Mean (Rank) 0.9579 (1) 0.7263 (2) 0.5316 (4) 0.7105 (3)

8. Robustness of Simulation Results

Here we evaluate the performance of the approach described above on the 4 datasets. They are:

1. UK Females
2. UK Males
3. Australian Females
4. Australian Males

The experiments in this section are made using the same time and the age periods—1970–2009
and 50–99. The generations aged 42–60 in the year 1970 are chosen in the same manner as in
Sections 6 and 7.

The results of the estimation are presented in Tables 8 and 9. More detailed results of the estimation
for the 4 datasets are included in the Appendix as tables and plots of the errors for each of the 19
generations. According to the Tables 8 and 9, the results for the UK males data with regard to accuracy
are the same as for the UK females—the OU and the Feller processes produce the smallest error, while
the Lee-Carter and the Wills and Sherris models show the largest error. However, the mean of the
absolute error for the Lee-Carter model in this case is 3 times larger in comparison to the error of
the UK females estimation. This model also shows very bad result according to precision (with the
percentage of the actual mortality within prediction interval being only 4.21%).
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Table 8. Mean of the absolute errors for each dataset over 19 generations (rank of accuracy).

Model; Dataset UK, Females UK, Males Australia, Females Australia, Males

Wills and Sherris 0.0388 (3) 0.0580 (3) 0.1368 (4) 0.0787 (3)
Lee-Carter 0.0492 (4) 0.1252 (4) 0.0380 (1) 0.0712 (1)

OU-process 0.0365 (1) 0.0470 (2) 0.1046 (2) 0.0767 (2)
Feller 0.0379 (2) 0.0391 (1) 0.1326 (3) 0.0840 (4)

Table 9. Percentage within a 90% prediction interval for each dataset (rank of precision).

Model; Dataset UK, Females UK, Males Australia, Females Australia, Males

Wills and Sherris 0.9579 (1) 0.9105 (1) 0.7789 (2) 1.0000 (1)
Lee-Carter 0.7263 (2) 0.0421 (4) 0.8368 (1) 0.3053 (4)

OU-process 0.7105 (3) 0.4000 (3) 0.2947 (4) 0.4421 (3)
Feller 0.5316 (4) 0.7158 (2) 0.3474 (3) 0.5737 (2)

Australian females data is the only dataset which shows good results using the Lee Carter model,
both according to precision and accuracy. The OU and the Feller processes, on the contrary, produce
large errors for this dataset, especially for the generations aged 45–55. This may be explained by the
fact that mortality in Australia is lower for people in their 40s and 50s in comparison to their UK
counterparts, and, as a consequence, mortality intensities are larger for older ages. This can be seen
from the plots of mortality curves for generations aged 51 and 54 in the year 1970 (Figure 10). More
prominent convex form of the mortality curves for Australian population makes the error (which is
calculated for the last 10 years of the observations) larger as the prediction of mortality underestimates
the actual mortality intensity. We would suggest that the inclusion of the correlation coefficient for
the OU and the Feller processes to describe the dependence between the generations could improve
the calibration results for these procedures by taking into account the fact that if mortality of the
generations aged 45–55 is rather low, it would imply an increase in the mortality intensity for the
older ages.

(a) (b)

Figure 10. Observed mortality curves for the UK and Australian generations aged 51 (a) and 54 (b).
(a) Generation aged 51 in the year 1970; (b) Generation aged 54 in the year 1970.

It is worth noting that for all datasets the errors produced by the Wills and Sherris model, the OU
process and the Feller process exhibit similar patterns (Figures 7b, 11b, 12b and 13b), while the errors
produced by the Lee-Carter model have a different pattern. This may be explained by the fact that
the first three procedures model the advances (changes) in mortality intensity for a cohort, while the
Lee-Carter models the central mortality rate itself.
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(a) (b)

Figure 11. Mean relative absolute error of each model, UK male data. (a) Relative absolute error,
average by year; (b) Relative absolute error, average by generation.

(a) (b)

Figure 12. Mean relative absolute error of each model, Australian female data. (a) Relative absolute
error, average by year; (b) Relative absolute error, average by generation.

(a) (b)

Figure 13. Mean relative absolute error of each model, Australian male data. (a) Relative absolute error,
average by year; (b) Relative absolute error, average by generation.
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On the whole, we can say that the results are data dependent. However, from the estimation
results on the four datasets, we can conclude that the Wills and Sherris model performs best in terms
of precision, but it is one of the worst in terms of accuracy. The Lee Carter model shows better fit to
the Australian population dataset rather that to the British one, both for males and females. The OU
process and the Feller process provide rather good results in terms of accuracy, while they have often
get low ranks in terms of precision.

9. Conclusions

In this study we have calibrated 4 mortality models to the UK and Australian populations and
have quantitatively compared their accuracy and precision in forecasting mortality rates. To evaluate
this we have used two measures – first, we looked at the relative errors between the forecasted and
the observed mortality rates and second, we investigated the percentage of the observed mortality
rates which fell within the projected prediction intervals. Our experiments compare one discrete-time
model, proposed by Lee and Carter, and three continuous-time models—the Wills and Sherris model,
the Ornstein-Uhlenbeck process and the Feller process. The first two models estimate the whole
surface of mortality across ages and years simultaneously, while the latter two model each generation
separately. One major advantage of the OU and the Feller processes is that they belong to the affine
class of mortality models and so allow closed-form expressions for survival probabilities, which is
useful for pricing many financial securities. On the other hand, the Wills and Sherris model allows
the dependencies between generations to be captured, which may be useful for life offices who have
portfolios written on multiple cohorts.

The choice of the model may depend on the goal and the data available. As a result of our
experiments with the UK female, the Wills and Sherris model performs best in terms of the prediction
interval, followed by the Lee-Carter model. In terms of the mean absolute error, the OU and the Feller
processes are better. Thus, for the UK data models which capture the whole mortality surface are
more precise, meaning that their forecast prediction intervals are more likely to include the observed
mortality rates. Models for a single generation, on the other hand, tend to be more accurate, meaning
that their mean absolute errors between the forecast and observed mortality are smaller. For the UK
male data the results are rather similar—the main difference here is that the LC model in this case
provides much worst result both in terms of precision and accuracy.

However, the results are different for the Australian dataset. In this case, the Lee-Carter model
and the OU process are the best in terms of accuracy, both for males and females. The Wills and Sherris
model shows good result with respect to the precision measure for Australia as well, followed by the
LC for the females and the Feller process for the males.

Based on our experiments, different models appear to be preferred for specific generations and
years. We believe that our analysis and the results discussed in this paper are useful for the insurance
industry. In particular, we provide potentially useful insights into different mortality modelling
frameworks and allow practitioners to chose a model that suits their specific needs.
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Appendix A

Table A1. Mean (over 10 years) of the absolute errors for each generation, UK male data.

Age in 1970 Wills and Sherris Lee-Carter OU-Process Feller

60 0.0494 0.0612 0.0758 0.0560
59 0.0445 0.0634 0.0737 0.0506
58 0.0227 0.0739 0.0320 0.0222
57 0.0288 0.0941 0.0342 0.0257
56 0.0360 0.1148 0.0425 0.0315
55 0.0602 0.1601 0.0670 0.0506
54 0.0511 0.1746 0.0549 0.0423
53 0.0583 0.2275 0.0399 0.0340
52 0.0527 0.2031 0.0368 0.0344
51 0.0536 0.1455 0.0143 0.0188
50 0.0356 0.0676 0.0249 0.0228
49 0.0408 0.1205 0.0204 0.0178
48 0.0579 0.1350 0.0347 0.0306
47 0.0585 0.1369 0.0280 0.0260
46 0.0738 0.1086 0.0456 0.0410
45 0.0680 0.1169 0.0274 0.0278
44 0.0924 0.1065 0.0659 0.0598
43 0.0976 0.1291 0.0735 0.0614
42 0.1196 0.1404 0.1007 0.0904

Mean (Rank) 0.0580 (3) 0.1252 (4) 0.0470 (2) 0.0391 (1)

Table A2. Mean (over 19 generations) of the absolute errors for each year, UK male data.

Year (Rank) Wills and Sherris Lee-Carter OU-Process Feller

2000 0.0318 0.0643 0.0283 0.0268
2001 0.0418 0.0790 0.0342 0.0312
2002 0.0354 0.0793 0.0268 0.0226
2003 0.0378 0.0735 0.0267 0.0271
2004 0.0621 0.1237 0.0485 0.0413
2005 0.0576 0.1248 0.0449 0.0356
2006 0.0759 0.1575 0.0611 0.0503
2007 0.0713 0.1646 0.0566 0.0449
2008 0.0632 0.1632 0.0494 0.0349
2009 0.1027 0.2224 0.0932 0.0768

Mean (Rank) 0.0580 (4) 0.1252 (1) 0.0470 (3) 0.0391 (2)
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Table A3. Percentage of the actual mortality rates which falls within a 90% prediction interval, UK
male data.

Age in 1970 Wills and Sherris Lee-Carter OU-Process Feller

60 1.0000 0.1000 0.1000 0.5000
59 1.0000 0.1000 0.1000 0.6000
58 1.0000 0 0.6000 0.9000
57 1.0000 0 0.7000 1.0000
56 1.0000 0 0.3000 0.7000
55 1.0000 0 0 0.5000
54 1.0000 0 0.4000 0.7000
53 1.0000 0 0.6000 0.9000
52 1.0000 0 0.4000 0.7000
51 1.0000 0.1000 1.0000 1.0000
50 1.0000 0.4000 0.8000 0.9000
49 1.0000 0 0.7000 0.9000
48 1.0000 0 0.5000 1.0000
47 1.0000 0 0.5000 0.6000
46 0.9000 0 0.2000 0.6000
45 1.0000 0 0.6000 1.0000
44 0.8000 0.1000 0.1000 0.6000
43 0.5000 0 0 0.5000
42 0.1000 0 0 0

Mean (Rank) 0.9105 (1) 0.0421 (4) 0.4000 (3) 0.7158 (2)

Table A4. Mean (over 10 years) of the absolute errors for each generation, Australian female data.

Age in 1970 Wills and Sherris Lee-Carter OU-Process Feller

60 0.1215 0.0697 0.0746 0.0983
59 0.1113 0.0386 0.0461 0.0834
58 0.1191 0.0573 0.0347 0.0777
57 0.1201 0.0368 0.0372 0.0869
56 0.1405 0.0591 0.0561 0.1049
55 0.1270 0.0198 0.0570 0.1018
54 0.1637 0.0215 0.1123 0.1490
53 0.1533 0.0229 0.1158 0.1469
52 0.1713 0.0269 0.1402 0.1709
51 0.1736 0.0253 0.1633 0.1791
50 0.1955 0.1026 0.1802 0.2019
49 0.1438 0.0255 0.1269 0.1533
48 0.1434 0.0300 0.1030 0.1390
47 0.1622 0.0344 0.1735 0.1814
46 0.1551 0.0311 0.1665 0.1839
45 0.1227 0.0151 0.1331 0.1453
44 0.0986 0.0356 0.1044 0.1206
43 0.0905 0.0331 0.0833 0.1017
42 0.0850 0.0373 0.0787 0.0944

Mean (Rank) 0.1368 (3) 0.0380 (4) 0.1046 (1) 0.1326 (2)
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Table A5. Mean (over 19 generations) of the absolute errors for each year, Australian female data.

Year (Rank) Wills and Sherris Lee-Carter OU-Process Feller

2000 0.0322 0.0400 0.0303 0.0308
2001 0.0436 0.0253 0.0354 0.0391
2002 0.0978 0.0394 0.0728 0.0887
2003 0.1041 0.0309 0.0710 0.0941
2004 0.1207 0.0316 0.0825 0.1110
2005 0.1284 0.0322 0.0877 0.1205
2006 0.1664 0.0358 0.1231 0.1612
2007 0.2025 0.0412 0.1588 0.2007
2008 0.2421 0.0606 0.1992 0.2441
2009 0.2296 0.0434 0.1849 0.2361

Mean (Rank) 0.1368 (4) 0.0380 (1) 0.1046 (2) 0.1326 (3)

Table A6. Percentage of the actual mortality rates which falls within a 90% prediction interval,
Australian female data.

Age in 1970 Wills and Sherris Lee-Carter OU-Process Feller

60 1.0000 0.4000 0.3000 0.4000
59 1.0000 0.7000 0.4000 0.4000
58 1.0000 0.4000 0.6000 0.4000
57 1.0000 0.7000 0.6000 0.5000
56 1.0000 0.6000 0.2000 0.2000
55 1.0000 1.0000 0.4000 0.3000
54 0.7000 1.0000 0.1000 0.2000
53 0.7000 0.9000 0.2000 0.2000
52 0.5000 1.0000 0.1000 0.1000
51 0.5000 1.0000 0.1000 0.2000
50 0.3000 0.4000 0 0.1000
49 0.7000 0.9000 0.1000 0.2000
48 0.6000 1.0000 0.2000 0.5000
47 0.6000 0.9000 0.2000 0.2000
46 0.6000 1.0000 0.1000 0.2000
45 0.8000 1.0000 0.2000 0.4000
44 0.8000 1.0000 0.4000 0.5000
43 1.0000 1.0000 0.7000 0.7000
42 1.0000 1.0000 0.7000 0.9000

Mean (Rank) 0.7789 (2) 0.8368 (1) 0.2947 (4) 0.3474 (3)

Table A7. Mean (over 10 years) of the absolute errors for each generation, Australian male data.

Age in 1970 Wills and Sherris Lee-Carter OU-Process Feller

60 0.0940 0.0930 0.0801 0.0945
59 0.0439 0.0534 0.0386 0.0346
58 0.1171 0.0553 0.0980 0.1133
57 0.0879 0.0376 0.0586 0.0783
56 0.0974 0.0231 0.0657 0.0867
55 0.1238 0.0522 0.1385 0.1357
54 0.0949 0.0622 0.0805 0.0958
53 0.1144 0.0737 0.1163 0.1257
52 0.0928 0.0860 0.0817 0.0955
51 0.0900 0.0806 0.0880 0.0968
50 0.1338 0.0179 0.1543 0.1531
49 0.0725 0.1036 0.0916 0.0906
48 0.0693 0.0807 0.0541 0.0658
47 0.0581 0.0967 0.0578 0.0663
46 0.0499 0.0874 0.0562 0.0617
45 0.0460 0.0784 0.0458 0.0500
44 0.0387 0.0860 0.0470 0.0486
43 0.0356 0.1111 0.0628 0.0591
42 0.0357 0.0742 0.0422 0.0432

Mean (Rank) 0.0787 (3) 0.0712 (1) 0.0767 (2) 0.0840 (4)
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Table A8. Mean (over 19 generations) of the absolute errors for each year, Australian male data.

Year (Rank) Wills and Sherris Lee-Carter OU-Process Feller

2000 0.0279 0.0365 0.0287 0.0285
2001 0.0362 0.0516 0.0370 0.0367
2002 0.0623 0.0404 0.0590 0.0615
2003 0.0536 0.0609 0.0521 0.0525
2004 0.0615 0.0597 0.0580 0.0640
2005 0.0561 0.0970 0.0478 0.0578
2006 0.0858 0.0913 0.0825 0.0926
2007 0.1132 0.0866 0.1076 0.1239
2008 0.1526 0.0814 0.1497 0.1652
2009 0.1380 0.1067 0.1448 0.1571

Mean (Rank) 0.0787 (3) 0.0712 (1) 0.0767 (2) 0.0840 (4)

Table A9. Percentage of the actual mortality rates which falls within a 90% prediction interval,
Australian male data.

Age in 1970 Wills and Sherris Lee-Carter OU-process Feller

60 1.0000 0.2000 0.4000 0.6000
59 1.0000 0.4000 0.7000 1.0000
58 1.0000 0.2000 0.2000 0.3000
57 1.0000 0.3000 0.4000 0.8000
56 1.0000 0.6000 0.4000 0.5000
55 1.0000 0.1000 0 0
54 1.0000 0.2000 0.4000 0.5000
53 1.0000 0.1000 0.2000 0.3000
52 1.0000 0 0.3000 0.4000
51 1.0000 0.2000 0.3000 0.3000
50 1.0000 1.0000 0 0.2000
49 1.0000 0 0.4000 0.7000
48 1.0000 0.2000 0.6000 0.8000
47 1.0000 0.1000 0.4000 0.6000
46 1.0000 0.5000 0.7000 0.7000
45 1.0000 0.6000 0.7000 0.8000
44 1.0000 0.4000 0.7000 0.8000
43 1.0000 0.1000 0.7000 0.7000
42 1.0000 0.6000 0.9000 0.9000

Mean (Rank) 1.0000 (1) 0.3053 (4) 0.4421 (3) 0.5737 (2)
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