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Abstract:



The discrete-time multifactor Vasiček model is a tractable Gaussian spot rate model. Typically, two- or three-factor versions allow one to capture the dependence structure between yields with different times to maturity in an appropriate way. In practice, re-calibration of the model to the prevailing market conditions leads to model parameters that change over time. Therefore, the model parameters should be understood as being time-dependent or even stochastic. Following the consistent re-calibration (CRC) approach, we construct models as concatenations of yield curve increments of Hull–White extended multifactor Vasiček models with different parameters. The CRC approach provides attractive tractable models that preserve the no-arbitrage premise. As a numerical example, we fit Swiss interest rates using CRC multifactor Vasiček models.
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1. Introduction


The tractability of affine models, such as the Vasiček [1] and the Cox–Ingersoll–Ross [2] models, has made them appealing for term structure modeling. Affine term structure models are based on a (multidimensional) factor process, which in turn describes the evolution of the spot rate and the bank account processes. No-arbitrage arguments then provide the corresponding zero-coupon bond prices, yield curves and forward rates. Prices in these models are calculated under an equivalent martingale measure for known static model parameters. However, model parameters typically vary over time as financial market conditions change. They may, for instance, be of a regime switching nature and need to be permanently re-calibrated to the actual financial market conditions. In practice, this re-calibration is done on a regular basis (as new information becomes available). This implies that model parameters are not static and, henceforth, may also be understood as stochastic processes. The re-calibration should preserve the no-arbitrage condition, which provides side constraints in the re-calibration. The aim of this work is to discuss these side constraints with the help of the discrete-time multifactor Vasiček interest rate model, which is a tractable, but also flexible model. We show that re-calibration under the side constraints naturally leads to Heath–Jarrow–Morton [3] models with stochastic parameters, which we call consistent re-calibration (CRC) models [4].



These models are attractive in financial applications for several reasons. In risk management and in the current regulatory framework [5], one needs realistic and tractable models of portfolio returns. Our approach provides tractable non-Gaussian models for multi-period returns on bond portfolios. Moreover, stress tests for risk management purposes can be implemented efficiently in our framework by selecting suitable models for the parameter process. While an in-depth market study of the performance of CRC models remains to be done, we provide in this paper some evidence of improved fits.



The paper is organized as follows. In Section 2, we introduce Hull–White extended discrete-time multifactor Vasiček models, which are the building blocks for CRC in this work. We define CRC of the Hull–White extended multifactor Vasiček model in Section 3. Section 4 specifies the market price of risk assumptions used to model the factor process under the real-world probability measure and the equivalent martingale measure, respectively. In Section 5, we deal with parameter estimation from market data. In Section 6, we fit the model to Swiss interest rate data, and in Section 7, we conclude. All proofs are presented in Appendix A.




2. Discrete-Time Multifactor Vasiček Model and Hull–White Extension


2.1. Setup and Notation


Choose a fixed grid size [image: there is no content] and consider the discrete-time grid [image: there is no content]. For example, a daily grid corresponds to [image: there is no content] if there are 252 business days per year. Choose a (sufficiently rich) filtered probability space [image: there is no content] with discrete-time filtration [image: there is no content], where [image: there is no content] refers to time point [image: there is no content]. Assume that [image: there is no content] denotes an equivalent martingale measure for a (strictly positive) bank account numeraire [image: there is no content]. [image: there is no content] denotes the value at time [image: there is no content] of an investment of one unit of currency at Time 0 into the bank account (i.e., the risk-free rollover relative to Δ).



We use the following notation. Subscript indices refer to elements of vectors and matrices. Argument indices refer to time points. We denote the [image: there is no content] identity matrix by [image: there is no content]. We also introduce the vectors [image: there is no content] and [image: there is no content].




2.2. Discrete-Time Multifactor Vasiček Model


We choose [image: there is no content] fixed and introduce the n-dimensional [image: there is no content]-adapted factor process:


[image: there is no content]








which generates the spot rate and bank account processes as follows:


r(t)=1⊤X(t)andB(t)=expΔ∑s=0t−1r(s),



(1)




where [image: there is no content]; empty sums are set equal to zero. The factor process [image: there is no content] is assumed to evolve under [image: there is no content] according to:


X(t)=b+βX(t−1)+Σ12ε*(t),t>0,



(2)




with initial factor [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] being [image: there is no content]-adapted. The following assumptions are in place throughout the paper.



Assumption 1. 

We assume that the spectrum of matrix β is a subset of [image: there is no content] and that matrix [image: there is no content] is non-singular. Moreover, for each [image: there is no content], we assume that [image: there is no content] is independent of [image: there is no content] under [image: there is no content] and has standard normal distribution [image: there is no content].





Remark. 

In Assumption 1, the condition on matrix β ensures that [image: there is no content] is invertible and that the geometric series generated by β converges. The condition on [image: there is no content] ensures that [image: there is no content] is symmetric positive definite. Under Assumption 1, Equation (2) defines a stationary process; see [6], Section 11.3.





The model defined by Equations (1) and (2) is called the discrete-time multifactor Vasiček model. Under the above model assumptions, we have for [image: there is no content]:


[image: there is no content]



(3)







Remark. 

For [image: there is no content], the conditional distribution of [image: there is no content], given [image: there is no content], depends only on the value [image: there is no content] at time [image: there is no content] and on lag [image: there is no content]. In other words, the factor process (2) is a time-homogeneous Markov process.





At time [image: there is no content], the price of the zero-coupon bond (ZCB) with maturity date [image: there is no content] with respect to filtration [image: there is no content] and equivalent martingale measure [image: there is no content] is given by:


[image: there is no content]











For the proof of the following result, see Appendix A.



Theorem 2. 

The ZCB prices in the discrete-time multifactor Vasiček Models (1) and (2) with respect to filtration [image: there is no content]and equivalent martingale measure [image: there is no content]have an affine term structure:


P(t,m)=eA(t,m)−B(t,m)⊤X(t),m>t,








with [image: there is no content], [image: there is no content]and for [image: there is no content]:


[image: there is no content]













In the discrete-time multifactor Vasiček Models (1) and (2), the term structure of interest rates (yield curve) takes the following form at time [image: there is no content] for maturity dates [image: there is no content]:


[image: there is no content]



(4)




with the spot rate at time [image: there is no content] given by [image: there is no content].




2.3. Hull–White Extended Discrete-Time Multifactor Vasiček Model


The possible shapes of the Vasiček yield curve (4) are restricted by the choice of the parameters [image: there is no content], [image: there is no content] and [image: there is no content]. These parameters are not sufficiently flexible to exactly calibrate the model to an arbitrary observed initial yield curve. Therefore, we consider the Hull–White extended version (see [7]) of the discrete-time multifactor Vasiček model. We replace the factor process defined in (2) as follows. For fixed [image: there is no content], let [image: there is no content] satisfy:


X(k)(t)=b+θ(t−k)e1+βX(k)(t−1)+Σ12ε*(t),t>k,



(5)




with starting factor [image: there is no content], [image: there is no content] and function [image: there is no content]. Model assumption (5) corresponds to (2), where the first component of [image: there is no content] is replaced by the time-dependent coefficient [image: there is no content] and all other terms ceteris paribus. Without loss of generality, we choose the first component for this replacement. Note that parameter [image: there is no content] is redundant in this model specification, but for didactical reasons, it is used below. The time-dependent coefficient θ is called the Hull–White extension, and it is used to calibrate the model to a given yield curve at a given time point [image: there is no content]. The upper index (k) denotes that time point and corresponds to the time shift we apply to the Hull–White extension θ in Model (5). The factor process [image: there is no content] generates the spot rate process and the bank account process as in (1).



The model defined by (1, 5) is called the Hull–White extended discrete-time multifactor Vasiček model. Under these model assumptions, we have for [image: there is no content]:


[image: there is no content]











Remark. 

For [image: there is no content], the conditional distribution of [image: there is no content], given [image: there is no content], depends only on the factor [image: there is no content] at time [image: there is no content]. In this case, factor process (5) is a time-inhomogeneous Markov process. Note that the upper index (k) in the notation is important since the conditional distribution depends explicitly on the lag [image: there is no content].





Theorem 3. 

The ZCB prices in the Hull–White extended discrete-time multifactor Vasiček model (1, 5) with respect to filtration [image: there is no content]and equivalent martingale measure [image: there is no content]have affine term structure:


P(k)(t,m)=eA(k)(t,m)−B(t,m)⊤X(k)(t),m>t≥k,








with [image: there is no content]as in Theorem 2, [image: there is no content]and for [image: there is no content]:


A(k)(t,m)=A(k)(t+1,m)−B(t+1,m)⊤b+θ(t+1−k)e1+12B(t+1,m)⊤ΣB(t+1,m).













In the Hull–White extended discrete-time multifactor Vasiček model (1, 5), the yield curve takes the following form at time [image: there is no content] for maturity dates [image: there is no content]:


[image: there is no content]



(6)




with spot rate at time [image: there is no content] given by [image: there is no content].



Remark. 

Note that the coefficient [image: there is no content] in Theorem 3 is not affected by the Hull–White extension θ and depends solely on [image: there is no content], whereas the coefficient [image: there is no content] depends explicitly on the Hull–White extension θ.






2.4. Calibration of the Hull–White Extended Model


We consider the term structure model defined by the Hull–White extended factor process [image: there is no content] and calibrate the Hull–White extension [image: there is no content] to a given yield curve at time point [image: there is no content]. We explicitly introduce the time index k in Model (5) because the CRC algorithm is a concatenation of multiple Hull–White extended models, which are calibrated at different time points [image: there is no content], see Section 3 below.



Assume that there is a fixed final time to maturity date [image: there is no content] and that we observe at time [image: there is no content] the yield curve [image: there is no content] for maturity dates [image: there is no content]. For these maturity dates, the Hull–White extended discrete-time multifactor Vasiček yield curve at time [image: there is no content], given by Theorem 3, reads as:


[image: there is no content]











For given starting factor [image: there is no content] and parameters [image: there is no content], [image: there is no content] and [image: there is no content], our aim is to choose the Hull–White extension [image: there is no content] such that we get an exact fit at time [image: there is no content] to the yield curve [image: there is no content], that is,


[image: there is no content]



(7)







The following theorem provides an equivalent condition to (7), which allows one to calculate the Hull–White extension [image: there is no content] explicitly.



Theorem 4. 

Denote by [image: there is no content]the yield curve at time [image: there is no content]obtained from the Hull–White extended discrete-time multifactor Vasiček Model (1, 5) for given starting factor [image: there is no content], parameters [image: there is no content], [image: there is no content]and [image: there is no content]and Hull–White extension [image: there is no content]. For given [image: there is no content], identity [image: there is no content]holds if and only if the Hull–White extension θ fulfills:


[image: there is no content]



(8)




where [image: there is no content], [image: there is no content]and [image: there is no content]are defined by:


θi=θ(i),Cij(β)=B1(k+j,k+i+1)1{j≤i},zib,β,Σ,x,y=∑s=k+1k+i12B(s,k+i+1)⊤ΣB(s,k+i+1)−B(s,k+i+1)⊤b−1⊤1−βi+11−β−1xΔ+(i+1)yi+1(k)Δ,








with [image: there is no content] and [image: there is no content]given by Theorem 2.





Theorem 4 shows that the Hull–White extension can be calculated by inverting the [image: there is no content] lower triangular positive definite matrix [image: there is no content].





3. Consistent Re-Calibration


The crucial extension now is the following: we let parameters [image: there is no content], β and Σ vary over time, and we re-calibrate the Hull–White extension in a consistent way at each time point, that is according to the actual choice of the parameter values using Theorem 4. Below, we show that this naturally leads to a Heath–Jarrow–Morton [3] (HJM) approach to term structure modeling.



3.1. Consistent Re-Calibration Algorithm


Assume that [image: there is no content], [image: there is no content] and [image: there is no content] are [image: there is no content]-adapted parameter processes with [image: there is no content] and [image: there is no content] satisfying Assumption 1, [image: there is no content]-a.s., for all [image: there is no content]. Based on these parameter processes, we define the n-dimensional [image: there is no content]-adapted CRC factor process [image: there is no content], which evolves according to Steps (i)–(iv) of the CRC algorithm described below. Thus, factor process [image: there is no content] will define a spot rate model similar to (1).



In the CRC algorithm, Steps 3.1.1–3.1.3 below are executed iteratively.



3.1.1. Initialization [image: there is no content]


Assume that the initial yield curve observation at Time 0 is given by [image: there is no content]. Let [image: there is no content] be an [image: there is no content]-measurable Hull–White extension, such that condition (7) is satisfied at Time 0 for initial factor [image: there is no content] and parameters [image: there is no content], [image: there is no content] and [image: there is no content]. By Theorem 4, the values [image: there is no content] are given by:


[image: there is no content]











This provides Hull–White extended Vasiček yield curve [image: there is no content] identically equal to [image: there is no content] for given initial factor [image: there is no content] and parameters [image: there is no content], [image: there is no content], [image: there is no content].




3.1.2. Increments of the Factor Process from [image: there is no content]


Assume factor [image: there is no content], parameters [image: there is no content] and [image: there is no content] and Hull–White extension [image: there is no content] are given. Define the Hull–White extended model [image: there is no content] by:


X(k)(t)=b(k)+θ(k)(t−k)e1+β(k)X(k)(t−1)+Σ(k)ε*(t),t>k,



(9)




with starting value [image: there is no content], [image: there is no content]-measurable parameters [image: there is no content], [image: there is no content] and [image: there is no content] and Hull–White extension [image: there is no content]. We update the factor process [image: there is no content] at time [image: there is no content] according to the [image: there is no content]-dynamics, that is, we set:


[image: there is no content]











This provides [image: there is no content]-measurable yield curve at time [image: there is no content] for maturity dates [image: there is no content]:


[image: there is no content]








with [image: there is no content] and [image: there is no content], and recursively for [image: there is no content]:


A(k)(t,m)=A(k)(t+1,m)−B(k)(t+1,m)⊤b(k)+θ(k)(t+1−k)e1+12B(k)(t+1,m)⊤Σ(k)B(k)(t+1,m),B(k)(t,m)=1−β(k)⊤−11−(β(k)⊤)m−t1Δ.











This is exactly the no-arbitrage price under [image: there is no content] if the parameters [image: there is no content], [image: there is no content] and [image: there is no content] and the Hull–White extension [image: there is no content] remain constant for all [image: there is no content].




3.1.3. Parameter Update and Re-Calibration at [image: there is no content]


Assume that at time [image: there is no content], the parameters [image: there is no content] are updated to [image: there is no content]. We may think of this parameter update as a consequence of model selection after we observe a new yield curve at time [image: there is no content]. This is discussed in more detail in Section 5 below. The no-arbitrage yield curve at time [image: there is no content] from the model with parameters [image: there is no content] and Hull–White extension [image: there is no content] is given by:


[image: there is no content]











The parameter update [image: there is no content] requires re-calibration of the Hull–White extension, otherwise arbitrage is introduced into the model. This re-calibration provides [image: there is no content]-measurable Hull–White extension [image: there is no content] at time [image: there is no content]. The values [image: there is no content] are given by (see Theorem 4):


[image: there is no content]



(10)




and the resulting yield curve [image: there is no content] under the updated parameters is identically equal to [image: there is no content]. Note that this CRC makes the upper index [image: there is no content] in the yield curve superfluous, because the Hull–White extension is re-calibrated to the new parameters, such that the resulting yield curve remains unchanged. Therefore, we write [image: there is no content] in the sequel for the CRC yield curve with factor [image: there is no content], parameters [image: there is no content] and Hull–White extension [image: there is no content].



(End of algorithm.)



Remark. 

For the implementation of the above algorithm, we need to consider the following issue. Assume we start the algorithm at Time 0 with initial yield curve [image: there is no content]. At times [image: there is no content], for [image: there is no content], calibration of [image: there is no content] requires yields with times to maturity beyond [image: there is no content]. Either yields for these times to maturity are observable, and the length of [image: there is no content] is reduced in every step of the CRC algorithm or an appropriate extrapolation method beyond the latest available maturity date is applied in every step.







3.2. Heath–Jarrow–Morton Representation


We analyze the yield curve dynamics [image: there is no content] obtained by the CRC algorithm of Section 3.1. Due to re-calibration (10), the yield curve fulfills the following identity for [image: there is no content]:


Y(k+1,m)=−A(k)(k+1,m)(m−(k+1))Δ+B(k)(k+1,m)⊤X(k+1)(m−(k+1))Δ=−A(k+1)(k+1,m)(m−(k+1))Δ+B(k+1)(k+1,m)⊤X(k+1)(m−(k+1))Δ,



(11)




where the first line is based on the [image: there is no content]-measurable parameters [image: there is no content] and Hull–White extension [image: there is no content], and the second line is based on the [image: there is no content]-measurable parameters and Hull–White extension [image: there is no content] after CRC Step (iii). Note that in the re-calibration only [image: there is no content] can be chosen exogenously, and the Hull–White extension [image: there is no content] is used for consistency property (10). Our aim is to express [image: there is no content] as a function of [image: there is no content] and [image: there is no content]. Using Equations (9) and (11), we have for [image: there is no content]:


Y(k+1,m)m−(k+1)Δ=−A(k)(k+1,m)+B(k)(k+1,m)⊤b(k)+θ(k)(1)e1+β(k)X(k)+Σ(k)12ε*(k+1).



(12)







This provides the following theorem; see Appendix A for the proof.



Theorem 5. 

Under equivalent martingale measure [image: there is no content], the yield curve dynamics [image: there is no content]obtained by the CRC algorithm of Section 3.1 has the following HJM representation for [image: there is no content]:


Y(k+1,m)(m−(k+1))Δ=Y(k,m)(m−k)Δ−Y(k,k+1)Δ+12B(k)(k+1,m)⊤Σ(k)B(k)(k+1,m)+B(k)(k+1,m)⊤Σ(k)12ε*(k+1),








with [image: there is no content].





Key observation. 

Observe that in Theorem 5, a remarkable simplification happens. Simulating the CRC algorithm (9) and (10) to future time points [image: there is no content] does not require the calculation of the Hull–White extensions [image: there is no content] according to (10), but the knowledge of the parameter process [image: there is no content] is sufficient. The Hull–White extensions are fully encoded in the yield curve process [image: there is no content], and we can avoid the inversion of (potentially) high dimensional matrices [image: there is no content].





Further remarks. 


	
CRC of the multifactor Vasiček spot rate model can be defined directly in the HJM framework assuming a stochastic dynamics for the parameters. However, solely from the HJM representation, one cannot see that the yield curve dynamics is obtained, in our case, by combining well-understood Hull–White extended multifactor Vasiček spot rate models using the CRC algorithm of Section 3; that is, the Hull–White extended multifactor Vasiček model gives an explicit functional form to the HJM representation.



	
The CRC algorithm of Section 3 does not rely directly on [image: there is no content] having independent and Gaussian components. The CRC algorithm is feasible as long as explicit formulas for ZCB prices in the Hull–White extended model are available. Therefore, one may replace the Gaussian innovations by other distributional assumptions, such as normal variance mixtures. This replacement is possible provided that conditional exponential moments can be calculated under the new innovation assumption. Under non-Gaussian innovations, it will no longer be the case that the HJM representation does not depend on the Hull–White extension [image: there is no content].



	
Interpretation of the parameter processes will be given in Section 5, below.












4. Real World Dynamics and Market Price of Risk


All previous derivations were done under an equivalent martingale measure [image: there is no content] for the bank account numeraire. In order to statistically estimate parameters from market data, we need to specify a Girsanov transformation to the real-world measure, which is denoted by [image: there is no content]. We present a specific change of measure, which provides tractable spot rate dynamics under [image: there is no content]. Assume that [image: there is no content] and [image: there is no content] are [image: there is no content]- and [image: there is no content]-valued [image: there is no content]-adapted processes, respectively. Let [image: there is no content] be the factor process obtained by the CRC algorithm of Section 3.1. Then, we assume that the n-dimensional [image: there is no content]-adapted process [image: there is no content] describes the market price of risk dynamics. We define the following [image: there is no content]-density process: [image: there is no content]


ξ(k)=exp−12∑s=0k−1λ(s)+Λ(s)X(s)22+∑s=0k−1λ(s)+Λ(s)X(s)⊤ε*(s+1),k∈N0.











The real-world probability measure [image: there is no content] is then defined by the Radon–Nikodym derivative:


dPdP*F(k)=ξ(k),k∈N0.



(13)







An immediate consequence is that for [image: there is no content]:


[image: there is no content]








has a standard Gaussian distribution under [image: there is no content], conditionally on [image: there is no content]. This implies that under the real-world measure [image: there is no content], the factor process [image: there is no content] is described by:


[image: there is no content]



(14)




where we define:


a(k)=b(k)+θ(k)(1)e1−Σ(k)12λ(k)andα(k)=β(k)−Σ(k)12Λ(k).



(15)







As in Assumption 1, we require [image: there is no content] to be such that the spectrum of [image: there is no content] is a subset of [image: there is no content]. Formula (14) describes the dynamics of the factor process [image: there is no content] obtained by the CRC algorithm of Section 3.1 under real-world measure [image: there is no content]. The following corollary describes the yield curve dynamics obtained by the CRC algorithm under [image: there is no content], in analogy to Theorem 5.



Corollary 6. 

Under real-world measure [image: there is no content]satisfying (13), the yield curve dynamics [image: there is no content]obtained by the CRC algorithm of Section 3.1 has the following HJM representation for [image: there is no content]:


Y(k+1,m)m−(k+1)Δ=Y(k,m)(m−k)Δ−Y(k,k+1)Δ+12B(k)(k+1,m)⊤Σ(k)B(k)(k+1,m)−B(k)(k+1,m)⊤Σ(k)12λ(k)−B(k)(k+1,m)⊤Σ(k)12Λ(k)X(k)+B(k)(k+1,m)⊤Σ(k)12ε(k+1),








with [image: there is no content].





Compared to Theorem 5, there are additional drift terms [image: there is no content] and [image: there is no content], which are characterized by the market price of risk parameters [image: there is no content] and [image: there is no content].




5. Choice of Parameter Process


The yield curve dynamics obtained by the CRC algorithm of Section 3.1 require exogenous specification of the parameter process of the multifactor Vasiček Models (1) and (2) and the market price of risk process, i.e., we need to model the process:


[image: there is no content]



(16)







By Equation (9), the one-step ahead development of the CRC factor process [image: there is no content] under [image: there is no content] reads as:


[image: there is no content]



(17)




with [image: there is no content]-measurable parameters [image: there is no content], [image: there is no content] and [image: there is no content] and Hull–White extension [image: there is no content]. Thus, on the one hand, the factor process [image: there is no content] evolves according to (17), and on the other hand, parameters [image: there is no content] evolve according to the financial market conditions. Note that the process [image: there is no content] of Hull–White extensions is fully determined through CRC by (10). In order to distinguish the evolutions of [image: there is no content] and [image: there is no content], respectively, we assume that process (16) changes at a slower pace than the factor process, and therefore, parameters can be assumed to be constant over a short time window. This assumption motivates the following approach to specifying a model for process (16). For each time point [image: there is no content], we fit multifactor Vasiček Models (1) and (2) with fixed parameters [image: there is no content] on observations from a time window [image: there is no content] of length K. For estimation, we assume that we have yield curve observations [image: there is no content] for times to maturity [image: there is no content]. Since yield curves are not necessarily observed on a regular time to the maturity grid, we introduce the indices [image: there is no content] to refer to the available times to maturity. Varying the time of estimation [image: there is no content], we obtain time series for the parameters from historical data. Finally, we fit a stochastic model to these time series. In the following, we discuss the interpretation of the parameters and present two different estimation procedures. The two procedures are combined to obtain a full specification of the model parameters.



5.1. Interpretation of Parameters


5.1.1. Level and Speed of Mean Reversion


By Equation (3), we have under [image: there is no content] for [image: there is no content]:


[image: there is no content]











Thus, β determines the speed at which the factor process [image: there is no content] and the spot rate process [image: there is no content] return to their long-term means:


limm→∞E*X(m)|F(t)=1−β−1bandlimm→∞E*r(m)|F(t)=1⊤1−β−1b.











A sensible choice of [image: there is no content] adapts the speed of mean reversion to the prevailing financial market conditions at each time point [image: there is no content].




5.1.2. Instantaneous Variance


By Equation (3), we have under [image: there is no content] for [image: there is no content]:


Cov*X(t)|F(t−1)=Σ,andVar*r(t)|F(t−1)=1⊤Σ1.











Thus, matrix Σ plays the role of the instantaneous covariance matrix of [image: there is no content], and it describes the instantaneous spot rate volatility.





5.2. State Space Modeling Approach


On each time window, we want to use yield curve observations to estimate the parameters of time-homogeneous Vasiček Models (1) and (2). In general, this model is not able to reproduce the yield curve observations exactly. One reason might be that the data are given in the form of parametrized yield curves, and the parametrization might not be compatible with the Vasiček model. For example, this is the case for the widely-used Svensson family [8]. Another reason might be that yield curve observations do not exactly represent risk-free zero-coupon bonds.



The discrepancy between the Vasiček model and the yield curve observations can be accounted for by adding a noise term to the Vasiček yield curves. This defines a state space model with the factor process as the hidden state variable. In this state space model, the parameters of the factor dynamics can be estimated using Kalman filter techniques in conjunction with maximum likelihood estimation ([9] Section 3.6.3). This is explained in detail in Section 5.2.1, Section 5.2.2, Section 5.2.3, Section 5.2.4, Section 5.2.5, Section 5.2.6 and Section 5.2.7 below.



5.2.1. Transition System


The evolution of the unobservable process [image: there is no content] under [image: there is no content] is assumed to be given on time window [image: there is no content] by:


X(k)=a+αX(k−1)+Σ12ε(k),k∈{t−K+1,…,t},








with initial factor [image: there is no content] and parameters [image: there is no content] and [image: there is no content]. The initial factor [image: there is no content] is updated according to the output of the Kalman filter for the previous time window [image: there is no content]. The initial factor is set to zero for the first time window available.



Remark. 

Parameters [image: there is no content] are assumed to be constant over the time window {[image: there is no content],…,t}. Thus, we drop the index k compared to Equations (14) and (15). For estimation, we assume that the factor process evolves according to the time-homogeneous multifactor Vasiček Models (1) and (2) in that time window. The Hull–White extension is calibrated to the yield curve at time [image: there is no content] given the estimated parameter values of the time-homogeneous model.






5.2.2. Measurement System


We assume that the observations in the state space model are given by:


Y^(k)=d+DX(k)+S12η(k),k∈{t−K,…,t},



(18)




where:


Y^(k)=Y^(k,k+τ1),…,Y^(k,k+τM)⊤∈RM,d=−(τ1Δ)−1A(k,k+τ1),…,−(τMΔ)−1A(k,k+τM)⊤∈RM,Dij=(τiΔ)−1Bj(k,k+τi),1≤i≤M,1≤j≤n,








with [image: there is no content] and [image: there is no content] given by Theorem 2 and M-dimensional [image: there is no content]-measurable noise term [image: there is no content] for non-singular [image: there is no content]. We assume that [image: there is no content] is independent of [image: there is no content] and [image: there is no content] under [image: there is no content] and that [image: there is no content]. The error term [image: there is no content] describes the discrepancy between the yield curve observations and the model. For [image: there is no content], we would obtain a yield curve in (18) that corresponds exactly to the multifactor Vasiček one.



Given the parameter and market price of risk values [image: there is no content], we estimate the factor using the following iterative procedure. For [image: there is no content] and fixed t, we consider the σ-field FY^(k)=σY^(s)|t−K≤s≤k⊂F(k) and describe the estimation procedure in this state space model.




5.2.3. Anchoring


Fix initial factor [image: there is no content], and initialize:


[image: there is no content]












5.2.4. Forecasting the Measurement System


At time [image: there is no content], we have:


[image: there is no content]












5.2.5. Bayesian Inference in the Transition System


The prediction error [image: there is no content] is used to update the unobservable factors.


[image: there is no content]








where [image: there is no content] denotes the Kalman gain matrix given by:


[image: there is no content]












5.2.6. Forecasting the Transition System


For the unobservable factor process, we have the following forecast:


[image: there is no content]












5.2.7. Likelihood Function


The Kalman filter procedure above allows one to infer factors [image: there is no content] given the parameter and market price of risk values. Of course, in this section, we are interested in estimating these values in the first place. For this purpose, the procedure above can be used in conjunction with maximum likelihood estimation. For the underlying parameters [image: there is no content], we have the following likelihood function given the observations [image: there is no content]:


[image: there is no content]



(19)







The maximum likelihood estimator (MLE) [image: there is no content] is found by maximizing the likelihood function [image: there is no content] over Θ, given the data. As in the EM (expectation maximization) algorithm, maximization of the likelihood function is alternated with Kalman filtering until convergence of the estimated parameters [image: there is no content] is achieved.





5.3. Estimation Motivated by Continuous Time Modeling


5.3.1. Rescaling the Time Grid


Assume factor process [image: there is no content] is given under [image: there is no content] by [image: there is no content] and for [image: there is no content]:


[image: there is no content]








where [image: there is no content] and [image: there is no content]. Furthermore, assume that α is a diagonalizable matrix with [image: there is no content] for [image: there is no content] and diagonal matrix [image: there is no content]. Then, the transformed process [image: there is no content] evolves according to:


Z(t)=c+DZ(t−1)+Ψ12ε(t),t>0,








where [image: there is no content] and [image: there is no content]. For [image: there is no content], the d-step ahead conditional distribution of [image: there is no content] under [image: there is no content] is given by:


Z(t+d)|F(t)∼PNμ+γZ(t),Γ,t≥0,








where [image: there is no content], [image: there is no content] and [image: there is no content]. Suppose we have estimated [image: there is no content], the diagonal matrix [image: there is no content] and [image: there is no content] on the time grid with size [image: there is no content], for instance, using MLE, as explained in Section 5.2. We are interested in recovering the parameters [image: there is no content], D and Ψ of the dynamics on the refined time grid with size Δ from μ, γ and Γ.



The diagonal matrix D and vector [image: there is no content] are reconstructed from the diagonal matrix γ as follows:


D=γ1d=1+1dlog(γ)+o1d,asd→∞,c=1−γ−11−γ1dμ=1d1−γ−1logγ−1μ+o1d,asd→∞,








where logarithmic and power functions applied to diagonal matrices are defined on their diagonal elements. Note that for [image: there is no content], we have:


[image: there is no content]











Therefore, we recover Ψ from γ and Γ as follows.


Ψ=1dυ+o1d,asd→∞,








where [image: there is no content]. Consider for [image: there is no content] the increments [image: there is no content]. From the formulas for [image: there is no content], D and Ψ, we observe that the [image: there is no content]-conditional mean of [image: there is no content]:


[image: there is no content]








and the [image: there is no content]-conditional volatility of [image: there is no content]:


[image: there is no content]








live on different scales as [image: there is no content]; in fact, volatility dominates for large d. Under [image: there is no content] for [image: there is no content], we have:


EDtZDtZ⊤|Ft−1=CovDtZ,DtZ|Ft−1+EDtZ|Ft−1EDtZ|Ft−1⊤=CovZ(t),Z(t)|Ft−1+EZ(t)|Ft−1−Z(t−1)EZ(t)|Ft−1−Z(t−1)⊤=Ψ+c+D−1Z(t−1)c+D−1Z(t−1)⊤.











Therefore, setting [image: there is no content], we obtain as [image: there is no content]:


EDtXDtX⊤|Ft−1=TEDtZDtZ⊤|Ft−1T⊤=TΨT⊤+Tc+D−1Z(t−1)c+D−1Z(t−1)⊤T⊤=1dTυT⊤+o1d=TΨT⊤+o1d=Σ+o1d,



(20)








5.3.2. Longitudinal Realized Covariations of Yields


We consider the yield curve increments within the discrete-time multifactor Vasiček Models (1) and (2). The increments of the yield process [image: there is no content] for fixed time to maturity [image: there is no content] are given by:


Dt,τY=Yt,t+τ−Yt−1,t−1+τ=1τΔB(t,t+τ)⊤X(t)−X(t−1)=1τΔB(t,t+τ)⊤DtX,








where [image: there is no content]. For times to maturity [image: there is no content], we get under [image: there is no content]:


[image: there is no content]











By Equation (20) for small grid size Δ, we estimate the last expression by:


[image: there is no content]



(21)







Formula (21) is interesting for the following reasons:

	
It does not depend on the unobservable factors [image: there is no content].



	
It allows for direct cross-sectional estimation of β and Σ. That is, β and Σ can directly be estimated from market observations without knowing the market-price of risk.



	
It is helpful to determine the number of factors needed to fit the model to market yield curve increments. This can be analyzed by principal component analysis.



	
It can also be interpreted as a small-noise approximation for noisy measurement systems of the form (18).








Let [image: there is no content] and [image: there is no content] be market observations for times to maturity [image: there is no content] and [image: there is no content] and at times [image: there is no content], also specified in Section 5.2. Then, the expectation on the left hand side of (21) can be estimated by the realized covariation:


[image: there is no content]



(22)







The quality of this estimator hinges on two crucial assumptions. First, higher order terms in (20) are negligible in comparison to Σ. Second, the noise term [image: there is no content] in (18) leads to a negligible distortion in the sense that observations [image: there is no content] are reliable indicators for the underlying Vasiček yield curves.




5.3.3. Cross-Sectional Estimation of β and Σ


Realized covariation estimator (22) can be used in conjunction with asymptotic relation (21) to estimate parameters β and Σ at time [image: there is no content] in the following way. For given symmetric weights [image: there is no content], we solve the least squares problem:


β^RCov,Σ^RCov=argminβ,Σ{∑i,j=1Mwij[RCov^(t,τi,τj)−1τiτj1⊤1−βτi1−β−1Σ1−β⊤−1I−β⊤τj1]2},



(23)




where we optimize over β and Σ satisfying Assumption 1.





5.4. Inference on Market Price of Risk


Finally, we aim at determining parameters λ and Λ of the change of measure specified in Section 4. For this purpose, we combine MLE estimation (Section 5.2) with estimation from realized covariations of yields (Section 5.3). First, we estimate β and Σ by [image: there is no content] and [image: there is no content] as in Section 5.3. Second, we estimate [image: there is no content], [image: there is no content] and α by maximizing the log-likelihood:


[image: there is no content]








for fixed β and Σ over [image: there is no content], [image: there is no content] and [image: there is no content] with spectrum in [image: there is no content], i.e.,


b^MLE,a^MLE,α^MLE=argmaxb,a,αlogLtb,β^RCov,Σ^RCov,a,α.



(24)







The constraint on the matrix α ensures that the factor process is stationary under the real-world measure [image: there is no content]. From Equation (15), we have [image: there is no content] and [image: there is no content]. This motivates the inference of λ by:


[image: there is no content]



(25)




and the inference of Λ by:


[image: there is no content]



(26)







We stress the importance of estimating as many parameters as possible from the realized covariations of yields prior to using maximum likelihood estimation. The MLE procedure of Section 5.2 is computationally intensive and generally does not work well to estimate volatility parameters.





6. Numerical Example for Swiss Interest Rates


6.1. Description and Selection of Data


We choose [image: there is no content], which corresponds to a daily time grid (assuming that a financial year has 252 business days). For the Swiss currency (CHF), we consider as yield observations the Swiss Average Rate (SAR), the London InterBank Offered Rate (LIBOR) and the Swiss Confederation Bond (SWCNB). See Figure 1 and Figure 2.

	
Short times to maturity. The SAR is an ongoing volume-weighted average rate calculated by the Swiss National Bank (SNB) based on repo transactions between financial institutions. It is used for short times to maturity of at most three months. For SAR, we have the Over-Night SARONthat corresponds to a time to maturity of Δ (one business day) and the SAR Tomorrow-Next (SARTN) for time to maturity [image: there is no content] (two business days). The latter is not completely correct, because SARON is a collateral over-night rate and tomorrow-next is a call money rate for receiving money tomorrow, which has to be paid back the next business day. Moreover, we have the SAR for times to maturity of one week (SAR1W), two weeks (SAR2W), one month (SAR1M) and three months (SAR3M); see also [10].



	
Short to medium times to maturity. The LIBOR reflects times to maturity, which correspond to one month (LIBOR1M), three months (LIBOR3M), six months (LIBOR6M) and 12 months (LIBOR12M) in the London interbank market.



	
Medium to long times to maturity. The SWCNB is based on Swiss government bonds, and it is used for times to maturity, which correspond to two years (SWCNB2Y), three years (SWCNB3Y), four years (SWCNB4Y), five years (SWCNB5Y), seven years (SWCNB7Y), 10 years (SWCNB10Y), 20 years (SWCNB20Y) and 30 years (SWCNB30Y).







Figure 1. Yield rates (lhs): Swiss Average Rate (SAR) and (rhs) London InterBank Offered Rate (LIBOR) from 8 December 1999, until 15 September 2014.



[image: Risks 04 00018 g001]





Figure 2. Yield rates: (lhs) Swiss Confederation Bond (SWCNB) and (rhs) a selection of SAR, LIBOR and Swiss Confederation Bond (SWCNB) from 8 December 1999, until 15 September 2014. Note that LIBOR looks rather differently from SAR and SWCNB after the financial crisis of 2008.



[image: Risks 04 00018 g002]






These data are available from 8 December 1999, and we set 15 September 2014 to be the last observation date. Of course, SAR, LIBOR and SWCNB do not exactly model risk-free zero-coupon bonds, and these different classes of instruments are not completely consistent, because prices are determined slightly differently for each class. In particular, this can be seen during the 2008–2009 financial crisis. However, these data are in many cases the best approximation to CHF risk-free zero-coupon yields that is available. For the longest times to maturity of SWCNB, one may also raise issues about the liquidity of these instruments, because insurance companies typically run a buy-and-hold strategy for long-term bonds.



In Figure 3, Figure 4, Figure 5 and Figure 6, we compute the realized volatility [image: there is no content] of yield curve observations [image: there is no content] for different times to maturity [image: there is no content] and window length K; see Equation (22). In Figure 2 and Figure 6, we observe that SAR fits SWCNB better than LIBOR after the financial crisis of 2008. For this reason, we decide to drop LIBOR and build daily yield curves from SAR and SWCNB, only. The mismatch between LIBOR, SAR and SWCNB is attributable to differences in liquidity and the credit risk of the underlying instruments.


Figure 3. SAR realized volatility [image: there is no content] for [image: there is no content], window length [image: there is no content] (lhs) and [image: there is no content] (rhs).



[image: Risks 04 00018 g003]





Figure 4. LIBOR realized volatility [image: there is no content] for [image: there is no content], window length [image: there is no content] (lhs) and [image: there is no content] (rhs).



[image: Risks 04 00018 g004]





Figure 5. SWCNB realized volatility [image: there is no content] for [image: there is no content], window length [image: there is no content] (lhs) and [image: there is no content] (rhs).



[image: Risks 04 00018 g005]





Figure 6. A selection of SAR, LIBOR and SWCNB realized volatility [image: there is no content] for [image: there is no content] 1, 63, 252, 504, window length [image: there is no content] (lhs) and [image: there is no content] (rhs). Note that LIBOR looks rather differently from SAR and SWCNB after the financial crisis of 2008.



[image: Risks 04 00018 g006]







6.2. Model Selection


In this numerical example, we restrict ourselves to multifactor Vasiček models with β and α of diagonal form:


β=diagβ11,…,βnn,andα=diagα11,…,αnn,








where [image: there is no content]. In the following, we explain exactly how to perform the delicate task of parameter estimation in the multifactor Vasiček Models (1) and (2) using the procedure explained in Section 5.



6.2.1. Discussion of Identification Assumptions


We select short times to maturity (SAR) to estimate parameters [image: there is no content], β, Σ, [image: there is no content] and α. This is reasonable because these parameters describe the dynamics of the factor process and, thus, of the spot rate. As we are working on a small (daily) time grid, asymptotic Formulas (20) and (21) are expected to give good approximations. Additionally, it is reasonable to assume that the noise covariance matrix S in data-generating Model (18) is negligible compared to (21). Therefore, we can estimate the left hand side of (21) by the realized covariation of observed yields; see estimator (22). Then, we determine the Hull–White extension θ in order to match the prevailing yield curve interpolated from SAR and SWCNB.




6.2.2. Determination of the Number of Factors


We need to determine the appropriate number of factors n. The more factors we use, the better we can fit the model to the data. However, the dimensionality of the estimation problem increases quadratically in the number of factors, and the model may become over-parametrized. Therefore, we look for a trade-off between the accuracy of the model and the number of parameters used. In Figure 7, we determine [image: there is no content] and Σ by solving optimization (23) numerically for three observation dates and [image: there is no content]. A three-factor model is able to capture rather accurately the dependence on the time to maturity τ. In Figure 8, Figure 9 and Figure 10, we compare the realized volatility of the numerical solution of (23) to the market realized volatility for all observation dates. We observe that in several periods, the two-factor model is not able to fit the SAR realized volatilities accurately for all times to maturities. The three-factor model achieves an accurate fit for most observation dates. The model exhibits small mismatches in 2001, 2008–2009 and 2011–2012. These are periods characterized by a sharp reduction in interest rates in response to financial crises. In September 2011, following strong appreciation of the Swiss Franc with respect to the Euro, the SNB pledged to no longer tolerate Euro-Franc exchange rates below the minimum rate of [image: there is no content], effectively enforcing a currency floor for more than three years. As a consequence of the European sovereign debt crisis and the intervention of the SNB starting from 2011, we have a long period of very low (even negative) interest rates.


Figure 7. SAR realized volatility [image: there is no content] for [image: there is no content], [image: there is no content] and three observation dates compared to the realized volatility of the two- (lhs) and three-factor (rhs) Vasiček model fitted by optimization (23) for [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. The three-factor model achieves an accurate fit.



[image: Risks 04 00018 g007]





Figure 8. SAR realized volatility [image: there is no content] for [image: there is no content], [image: there is no content] (lhs), [image: there is no content] (rhs) and all observation dates compared to the realized volatility of the two- and three-factor Vasiček models fitted by optimization (23) for [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].



[image: Risks 04 00018 g008]





Figure 9. SAR realized volatility [image: there is no content] for [image: there is no content], [image: there is no content] (lhs), [image: there is no content] (rhs) and all observation dates compared to the realized volatility of the two- and three-factor Vasiček models fitted by optimization (23) for [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].



[image: Risks 04 00018 g009]





Figure 10. SAR realized volatility [image: there is no content] for [image: there is no content], [image: there is no content] (lhs), [image: there is no content] (rhs) and all observation dates compared to the realized volatility of the two- and three-factor Vasiček models fitted by optimization (23) for [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].



[image: Risks 04 00018 g010]







6.2.3. Determination of Vasiček Parameters


Considering the results of Figure 8, Figure 9 and Figure 10, we restrict ourselves from now on to three-factor Vasiček models with parameters [image: there is no content] and:


β=diagβ11,β22,β33,α=diagα22,α22,α33,Σ12=Σ111200Σ2112Σ22120Σ3112Σ3212Σ3312,








where [image: there is no content], [image: there is no content] and [image: there is no content].



In Figure 11, Figure 12 and Figure 13, we plot the numerical solutions of optimizations (23) and (24) for all observation dates. The parameters are reasonable for most of the observation dates. We observe that the estimates of [image: there is no content] are close to one for all observation dates. Our values for the speed of mean reversion are reasonable on a daily time grid. Note that β scales as [image: there is no content] on a d-days time grid; see Section 5.3. The speeds of mean reversion of [image: there is no content] and [image: there is no content] are higher than that of [image: there is no content] for most of the observation dates. We also see that the volatility of [image: there is no content] is lower than that of [image: there is no content] and [image: there is no content]. In 2011, we observe large spikes in the factor volatilities. Starting from 2011, we have a period with strong correlations among the factors. From these results, we conclude that the three-factor Vasiček model is reasonable for Swiss interest rates. Particularly challenging for the estimation is the period 2011–2014 of low interest rates following the European sovereign debt crisis and the SNB intervention. In Figure 11 (rhs), we observe that the difference in the speeds of mean-reversion under the risk-neutral and real-world measures is negligible. The difference between [image: there is no content] and [image: there is no content] is considerable in certain time periods. From the estimation results, we conclude that a constant market price of risk assumption is reasonable and set from now on [image: there is no content]. In Figure 14, we compute the objective function of optimization (24) for [image: there is no content] and compare it to the numerical solution [image: there is no content]. We observe that in 2003–2005 and 2010–2014, the parameter configuration [image: there is no content] is nearly optimal. In these periods, we have very low interest rates, and therefore, estimates of [image: there is no content] and [image: there is no content] close to zero are reasonable. Given the estimated parameters, we calibrate the Hull–White extension by equation (10) to the full yield curve interpolated from SAR and SWCNB; see Figure 15. We point out that our fitting method is not a purely statistical procedure; rather, it is a combination of estimation and calibration in accordance with the paradigm of robust calibration, as explained in [4].


Figure 11. Estimation of [image: there is no content], [image: there is no content] and [image: there is no content] (lhs) and [image: there is no content], [image: there is no content] and [image: there is no content] (rhs) by optimizations (23) and (24) in the three-factor model for [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. The values determine the speed of mean reversion of the factors. Since we are considering a daily time grid, values close to one (slow mean reversion) are reasonable. We observe that the difference in the speed of mean-reversion under the risk-neutral and real-world measures is negligible.



[image: Risks 04 00018 g011]





Figure 12. Estimation of [image: there is no content], [image: there is no content] and [image: there is no content] (lhs) and correlations [image: there is no content], [image: there is no content] and [image: there is no content] (rhs) by optimization (23) in the three-factor model for [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. We observe large spikes in the volatilities and strong correlations among the factors during the European sovereign debt crisis and after the SNB intervention in 2011.



[image: Risks 04 00018 g012]





Figure 13. Estimation of [image: there is no content], [image: there is no content] and [image: there is no content] (lhs) and [image: there is no content], [image: there is no content] and [image: there is no content] (rhs) by optimizations (23) and (24) in the three-factor model for [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. The difference between [image: there is no content] and [image: there is no content] is considerable in 2000–2002 and 2006–2009.



[image: Risks 04 00018 g013]





Figure 14. Objective function [image: there is no content] (lhs) and [image: there is no content], [image: there is no content] and [image: there is no content] (rhs) given by optimization (24) in the three-factor model for [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. We compare the value of the objective function for [image: there is no content] and the numerical solution of the optimization. The configuration [image: there is no content] is almost optimal in low interest rate times.



[image: Risks 04 00018 g014]





Figure 15. Three-factor Hull–White extended Vasiček yield curve (lhs) and Hull–White extension θ (rhs) as of 29 September 2006. The parameters are estimated as in Figure 11, Figure 12 and Figure 13. The initial factors are obtained from the Kalman filter for the estimated parameters. The calibration of the Hull–White extension requires yields on a time to maturity grid of size Δ. These are interpolated from SAR and SWCNB using cubic splines.
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6.2.4. Selection of a Model for the Vasiček Parameters


In the following, we use the CRC approach to construct a modification of the Vasiček model with stochastic volatility. We model the process [image: there is no content] by a Heston-like [11] approach. We assume deterministic correlations among the factors and stochastic volatility given by:


[image: there is no content]








where [image: there is no content], [image: there is no content], [image: there is no content] non-singular, and for each [image: there is no content], [image: there is no content] has a standard Gaussian distribution under [image: there is no content], conditionally given [image: there is no content]. Moreover, we assume that [image: there is no content] is multivariate Gaussian under [image: there is no content], conditionally given [image: there is no content]. Note that [image: there is no content] and [image: there is no content] are allowed to be correlated. The matrix valued process [image: there is no content] is constructed combining this stochastic volatility model with fixed correlation coefficients. This model is able to capture the stylized fact that volatility appears to be more noisy in high volatility periods; see Figure 12.



We use the volatility time series of Figure 12 to specify φ, ϕ and Φ. We rewrite the equation for the evolution of the volatility as:


Σii(t)Σii(t−1)=φiΣii(t−1)+ϕiiΣii(t−1)+(Φ12ε˜(t))i,i=1,2,3,








and use least square regression to estimate φ, ϕ and Φ. From the regression residuals, we estimate the correlations between [image: there is no content] and [image: there is no content]. Figure 16, Figure 17 and Figure 18 show the estimates of φ, ϕ and Φ.


Figure 16. Estimation of [image: there is no content], [image: there is no content] and [image: there is no content] by least square regression (two different scales). We use a time window of 252 observations for the regression.



[image: Risks 04 00018 g016]





Figure 17. Estimation of [image: there is no content], [image: there is no content] and [image: there is no content] (lhs) and [image: there is no content], [image: there is no content] and [image: there is no content] (rhs) by least square regression. We use a time window of 252 observations for the regression.



[image: Risks 04 00018 g017]





Figure 18. Estimation of correlations [image: there is no content], [image: there is no content] and [image: there is no content] (lhs) and correlations [image: there is no content] (rhs). We use a time window of 252 observation for the regression. The residuals ε are calculated using the parameter estimates of Figure 11, Figure 12 and Figure 13.



[image: Risks 04 00018 g018]








6.3. Simulation and Back-Testing


Section 6.2 provides a full specification of the three-factor Vasiček CRC model under the risk-neutral and real-world probability measures. Various model quantities of interest in applications can then be calculated by simulation.



6.3.1. Simulation


The CRC approach has the remarkable property that yield curve increments can be simulated accurately and efficiently using Theorem 5 and Corollary 6. In contrast, spot rate models with stochastic volatility without CRC have serious computational drawbacks. In such models, the calculation of the prevailing yield curve for given state variables requires Monte Carlo simulation. Therefore, the simulation of future yield curves requires nested simulations.




6.3.2. Back-Testing


We backtest properties of the monthly returns of a buy and hold portfolio investing equal proportions of wealth in the zero-coupon bonds with times to maturity of 2, 3, 4, 5, 6 and 9 months and 1, 2, 3, 5, 7 and 10 years. We divide the sample into disjoint monthly periods and calculate the monthly return of this portfolio assuming that at the beginning of each period, we invest in the bonds with these times to maturity in equal proportions of wealth. The returns and some summary statistics are shown in Figure 19. We observe that the returns are positively skewed, leptokurtic and have heavier tails than the Gaussian distribution. These stylized facts are essential in applications.


Figure 19. Logarithmic monthly returns of a buy and hold portfolio investing in equal wealth proportions in the zero-coupon bonds with times to maturity of 2, 3, 4, 5, 6 and 9 months and 1, 2, 3, 5, 7 and 10 years. For each monthly period, we calculate the logarithmic return of this portfolio assuming that at the beginning of each period, we are invested in the bonds with these times to maturity in equal proportions of wealth.



[image: Risks 04 00018 g019]






For each monthly period, we select a three-factor Vasiček model and its CRC counterpart with stochastic volatility. Then, we simulate for each period realizations of the returns of the test portfolio. By construction, the Vasiček model generates Gaussian log-returns and is unable to reproduce the stylized facts of the sample; see Table 1 and Table 2 and Figure 20. Increasing the number of factors does not help much, because the log-returns remain Gaussian. On the other hand, CRC of the Vasiček model with stochastic volatility provides additional modeling flexibility. In particular, we can see from the statistics in Table 2 and the confidence intervals in Figure 20 that the model matches the return distribution better than the Vasiček model. As explained in Figure 20, statistical tests assuming the independence of disjoint monthly periods show that the difference between the Vasiček model and its CRC counterpart is statistically significant. We conclude that the three-factor CRC Vasiček model is a parsimonious and tractable alternative that provides reasonable results.


Figure 20. Confidence intervals computed from [image: there is no content] simulations of the test portfolio returns in the Vasiček model and its CRC counterpart with stochastic volatility. For each monthly period, we check if the market return lies in the confidence interval. This is more often the case for the CRC than for the standard Vasiček model. A one-sided binomial test assuming the independence of monthly periods shows that the difference is statistically significant ([image: there is no content] for the [image: there is no content] and [image: there is no content] 0.00017 for the [image: there is no content] quantiles). The result remains significant if every second month is discarded to account for dependencies ([image: there is no content]). This suggests that the CRC Vasicěk model is able to match the return distribution better than its counterpart with constant parameters.



[image: Risks 04 00018 g020]







6.3.3. Regulatory Framework


The type of analysis that was performed in the previous section is an integral component of the present regulatory framework for risk management. In the Basel framework [5], the capital charge for the trading book is based on quantile risk measures. Under the internal model approach ([5], Section 2.VI.D), a bank calculates quantiles for the distribution of possible 10-day losses based on recent market data under the assumption that the trading book portfolio is held fixed over the time period. The approach relies on accurate modeling of the distribution of portfolio returns over holding periods of multiple days. A similar analysis is required by the Basel ([5], Section 2.VI.D) regulatory framework for model validation and stress testing: model validation is performed by backtesting the historical performance of the model, and stress tests are carried out using the same methodology by calibrating the model to historical periods of significant financial stress.



These tasks can be accomplished using the CRC approach by selecting suitable classes of affine models and parameter processes. The approach is fairly general, since there are few restrictions on the parameter processes. In particular, it allows for stochastic volatility and can be used to create realistic non-Gaussian distributions of multi-period bond returns (see Section 6.3.2). Nevertheless, computing these bond return distributions does not require nested simulations. This is crucial for reasons of efficiency. Moreover, the flexibility in the specification of the parameter processes makes the CRC approach well suited for stress testing, because it allows one to freely select and specify stress scenarios.






7. Conclusions


	
Flexibility and tractability. Consistent re-calibration of the multifactor Vasiček model provides a tractable extension that allows parameters to follow stochastic processes. The additional flexibility can lead to better fits of yield curve dynamics and return distributions, as we demonstrated in our numerical example. Nevertheless, the model remains tractable. In particular, yield curves can be simulated efficiently using Theorem 5 and Corollary 6. This allows one to efficiently calculate model quantities of interest in risk management, forecasting and pricing.



	
Model selection. CRC models are selected from the data in accordance with the robust calibration principle of [4]. First, historical parameters, market prices of risk and Hull–White extensions are inferred using a combination of volatility estimation, MLE and calibration to the prevailing yield curve via Formulas (23–26, 10). The only choices in this inference procedure are the number of factors of the Vasiček model and the window length K. Then, as a second step, the time series of estimated historical parameters are used to select a model for the parameter evolution. This results in a complete specification of the CRC model under the real world and the pricing measure.



	
Application to modeling of Swiss interest rates. We fitted a three-factor Vasiček CRC model with stochastic volatility to Swiss interest rate data. The model achieves a reasonably good fit in most time periods. The tractability of CRC allowed us to compute several model quantities by simulation. We looked at the historical performance of a representative buy and hold portfolio of Swiss bonds and concluded that a multifactor Vasiček model is unable to describe the returns of this portfolio accurately. In contrast, the CRC version of the model provides the necessary flexibility for a good fit.
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Appendix A Proofs


Proof of Theorem 2. 

We prove Theorem 2 by induction as in ([9] Theorem 3.16) where ZCB prices are derived under the assumption that β and Σ are diagonal matrices. We have [image: there is no content], which proves the claim for [image: there is no content]. Assume that Theorem 2 holds for [image: there is no content]. We verify that it also holds for [image: there is no content]. Under equivalent martingale measure [image: there is no content], we have using the tower property for conditional expectations and the induction assumption:


P(t,m)=exp−1⊤X(t)ΔE*E*exp−Δ∑s=t+1m−11⊤X(s)|F(t+1)|F(t)=exp−1⊤X(t)ΔE*P(t+1,m)|F(t)=exp−1⊤X(t)ΔE*expA(t+1,m)−B(t+1,m)⊤X(t+1)|F(t)=exp−1⊤X(t)Δ+A(t+1,m)−B(t+1,m)⊤b+βX(t)+12B(t+1,m)⊤ΣB(t+1,m)=expA(t+1,m)−B(t+1,m)⊤b+12B(t+1,m)⊤ΣB(t+1,m)−B(t+1,m)⊤β+1⊤ΔX(t).













This proves the following recursive formula for [image: there is no content]:


[image: there is no content]











Finally, note that the recursive formula for [image: there is no content] implies:


[image: there is no content]











This concludes the proof. ☐



Proof of Theorem 3. 

The proof goes by induction as the proof of Theorem 2. ☐





Proof of Theorem 4. 

First, observe that the condition [image: there is no content] imposes conditions only on the values [image: there is no content]. Secondly, note that the vector θ, such that the condition is satisfied, can be calculated recursively in the following way.

	
First component [image: there is no content]. We have [image: there is no content], [image: there is no content] and:


[image: there is no content]








see Theorem 3. Solving the last equation for [image: there is no content], we have:


[image: there is no content]








From (6) and the equation for [image: there is no content] in Theorem 2, we obtain:


[image: there is no content]








This is equivalent to:


[image: there is no content]



(27)







	
Recursion [image: there is no content]. Assume we have determined [image: there is no content] for [image: there is no content]. We want to determine [image: there is no content]. We have [image: there is no content], and iteration of the recursive formula for [image: there is no content] in Theorem 3 implies:


[image: there is no content]








Solving the last equation for [image: there is no content] and using [image: there is no content], we have:


θi+1=−1ΔA(k)(k,k+i+2)−1Δ∑s=k+1k+iB(s,k+i+2)⊤b+θ(s−k)e1−1⊤b+12Δ∑s=k+1k+i+1B(s,k+i+2)⊤ΣB(s,k+i+2).








From (6) and the equation for [image: there is no content] in Theorem 2, we obtain:


[image: there is no content]








This is equivalent to:


θi+1=(i+2)yi+2−1⊤1−βi+21−β−1x−1Δ∑s=k+1k+iB(s,k+i+2)⊤b+θs−ke1−1⊤b+12Δ∑s=k+1k+i+1B(s,k+i+2)⊤ΣB(s,k+i+2)=(i+2)yi+2−1⊤1−βi+21−β−1x−1Δ∑s=k+1k+i+1B(s,k+i+2)⊤b−1Δ∑s=k+1k+iB1(s,k+i+2)θs−k+12Δ∑s=k+1k+i+1B(s,k+i+2)⊤ΣB(s,k+i+2).



(28)














This recursion allows one to determine the components of θ. Note that Equation (28) can be written as:


C(β)θi+1=zi+1b,β,Σ,x,y,i=1,…,M−2.











Observe that the lower triangular matrix [image: there is no content] is invertible since [image: there is no content]. Hence, Equations (27) and (28) prove (8). ☐



Proof of Theorem 5. 

We add and subtract [image: there is no content] to the right hand side of Equation (12) and obtain:


Y(k+1,m)m−(k+1)Δ=A(k)(k,m)−A(k)(k+1,m)−A(k)(k,m)+B(k)(k,m)⊤X(k)−B(k)(k,m)⊤X(k)+B(k)(k+1,m)⊤b(k)+θ(k)(1)e1+β(k)X(k)+Σ(k)12ε*(k+1).



(29)









We have the following two identities from Section 3.1.2:


[image: there is no content]



(30)







Therefore, the right hand side of (29) is rewritten as:


Y(k+1,m)(m−(k+1))Δ=Y(k,m)(m−k)Δ+B(k)(k+1,m)⊤β(k)−B(k)(k,m)⊤X(k)+12B(k)(k+1,m)⊤Σ(k)B(k)(k+1,m)+B(k)(k+1,m)⊤Σ(k)12ε*(k+1).



(31)







Observe that:


[image: there is no content]








and that [image: there is no content]. This proves the claim. ☐
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Table 1. Statistics computed from simulations of the test portfolio returns for some of the monthly periods in the Vasiček model. For each monthly period, we simulate [image: there is no content] realizations.



[image: Risks 04 00018 i001]







Table 2. Statistics computed from the simulations of the test portfolio returns for some of the monthly periods in the consistent re-calibration (CRC) counterpart of the Vasiček model with stochastic volatility. For each monthly period, we simulate [image: there is no content] realizations.
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