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Abstract: We consider a discrete-time dependent Sparre Andersen risk model which incorporates
multiple threshold levels characterizing an insurer’s minimal capital requirement, dividend paying
situations, and external financial activities. We focus on the development of a recursive computational
procedure to calculate the finite-time ruin probabilities and expected total discounted dividends paid
prior to ruin associated with this model. We investigate several numerical examples and make some
observations concerning the impact our threshold levels have on the finite-time ruin probabilities
and expected total discounted dividends paid prior to ruin.
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1. Introduction

The classical Cramér–Lundberg model is a foundational mathematical representation of an
insurer’s surplus process in risk theory. Despite its tractability, however, the model has limitations
in terms of applications. Certainly, more complex models are desirable in modern industrial settings.
This paper strives to contribute to the ever-growing literature on insurance risk models that reflect
more general and realistic modelling approaches to ruin theory.

Bruno de Finetti [1] first introduced the notion of a dividend strategy and the idea of finding an
optimal dividend payment strategy for the insurance risk model. This was followed by numerous
other researchers who further explored the problem in a variety of contexts (for reviews of the area, the
interested reader is directed to Albrecher and Thonhauser [2] and Avanzi [3]). In particular, Drekic and
Mera [4] considered the ruin analysis of a threshold-based dividend payment strategy in a discrete-time
Sparre Andersen model. Their analysis was an extension of the work by Alfa and Drekic [5], in which
a Sparre Andersen insurance risk model in discrete time was analyzed as a doubly-infinite Markov
chain to establish a computational procedure for calculating the joint probability distribution of the
time of ruin, the surplus immediately prior to ruin, and the deficit at ruin.

In this paper, we focus on the development of a recursive computational procedure to calculate
the finite-time ruin probabilities and expected total discounted dividends paid prior to ruin associated
with a model which generalizes the single threshold-based risk model introduced by Drekic and
Mera [4]. In actual fact, three additional threshold levels are introduced to depict a minimum surplus
level control strategy and external financial activities related to both investment and loan undertakings.
Readers are referred to, for example, Cai and Dickson [6] and Li [7] for other general investment
strategies found in insurance risk models, where the latter paper examined an insurance risk model
with risky investments under the assumption that the risky assets follow a Wiener process, and the
former paper considered a Markov chain based interest rate model. Korn and Wiese [8] studied
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optimal investment strategies in an insurance risk model where they also assumed that the risky assets
follow a Wiener process.

The remainder of the paper is organized as follows. In Section 2, we introduce notation and
specify the fundamental components underlying our threshold-based risk model. Section 3 details the
derivation of a recursive formula (namely, Equation (9)) for the finite-time ruin probability associated
with our proposed risk model and demonstrates the simplification of the result to that of Drekic and
Mera [4]. Section 4 presents the derivation of a similar recursive formula (namely, Equation (13)) to
compute the expected total discounted dividends paid prior to ruin and likewise demonstrates the
simplification of the result to that of Drekic and Mera [4]. Finally, Section 5 discusses some numerical
examples and related findings.

2. Model Description and Assumptions

For t ∈N (with N being the set of non-negative integers), we define Ut as the insurer’s amount of
surplus at time t (measured in discrete monetary units) and Ft as the amount of funds present at time
t in the external fund of the insurer, a separate monetary account the insurer holds to better manage
its reserve through both investment activities and loan undertakings. In actual fact, Ut represents
the surplus level at the end of the time interval (t− 1, t], t ∈ Z+ (with Z+ being the set of positive
integers), at which point any premiums, deposits, claims, or withdrawals corresponding to this time
interval have been received/paid out. We adopt the convention that premiums are received at (t− 1)+

and any claims are applied at t−.
In what follows, we assume that it is the insurer’s policy to pay out all the outstanding debt before

resuming investment activities, and that the insurer first utilizes its investment assets to make any
adjustments to its surplus level before engaging in loan activities. To differentiate between investment
activities and loan activities with respect to the external fund, we split the support set of {Ft, t ∈N}
into two disjoint sets, namely Ft ∈ (0, ∞) and Ft ∈ [β, 0], where β is a non-positive integer representing
the minimum support value of {Ft, t ∈N}. In fact, β is one of four threshold levels we feature in our
model with the understanding that −β represents the borrowing limit of the insurer. When Ft > 0, Ft

represents the insurer’s investment activities in which interest is assumed to be earned at a constant
rate of κ1 > 0 per period. Conversely, when β ≤ Ft ≤ 0, Ft represents the insurer’s loan activities and
interest expense accumulates at a constant rate of κ2 > 0 per period.

We next introduce the remaining three threshold levels (to be denoted by `1, `2, and `3) and
explain how they, along with β, define our risk model. To aid in the understanding, let Ut− and Ft−

represent the surplus and external fund levels, respectively, immediately after a claim instance but
before a withdrawal instance. Herein, withdrawal refers to any cash inflow from the external fund
to the surplus process (whereas deposit refers to any cash outflow from the surplus process to the
external fund). Firstly, the threshold `1 represents the insurer’s minimum acceptable surplus level,
and if Ut− (corresponding to the time interval (t− 1, t]) is below `1 due to a claim, we withdraw or
borrow from Ft− to bring Ut− up to level `1. However, if Ft− = β, then we can neither withdraw nor
borrow more from Ft− even if Ut− is below `1. In addition, if Ft− (corresponding to the time interval
(t− 1, t]) drifts below β due to interest expense accumulation, we use Ut− to pay back the difference at
t− as a form of deposit so that Ft is at least kept at its minimum support value of β.

On the other hand, `2 is a trigger point for investment activities. If Ut ≥ `2, a constant deposit
of size d is paid to the external fund at t+. Note that the deposit and withdrawal amounts are also
stochastic in the sense that they are dependent on the surplus process, and that a deposit can be
made at both the left and right limits of a time interval. We denote the left limit deposit amount
corresponding to the time interval (t, t + 1] to be D1,t, the right limit deposit amount corresponding to
the time interval (t− 1, t] to be D2,t, and the withdrawal amount corresponding to the time interval
(t− 1, t] to beWt.

Lastly, as in Drekic and Mera [4], if Ut ≥ `3, a random dividend is paid out to shareholders at t+.
We denote the random dividend paid at time t by Dt and assume that {Dt, t ∈N} is a conditionally
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independent and identically distributed (iid) sequence of random variables given {Ut, t ∈N}. As a
final requirement, we assume that `1 ≤ `2 ≤ `3.

To sum up, premiums and left limit deposits corresponding to the time interval (t, t + 1], t ∈N,
are collected and paid out at t+ according to the following respective (random) rates:

Pt =

{
c if Ut < `3,

Xt if Ut ≥ `3,

and

D1,t =

{
0 if Ut < `2,

d if Ut ≥ `2,

where Xt = c−Dt and bi = Pr{Xt = i}, i = c1, c1 + 1, . . . , c2, denotes the probability mass function
(pmf) of Xt. We refer to c ∈ Z+ as the pure (constant) premium and assume that c1, c2 ∈ {d, d+ 1, . . . , c}
where d ≤ c, c1 ≤ c2, and ∑c2

i=c1
bi = 1. Clearly, c1 and c2 are the respective lower and upper support

values of the distribution of the random premium amount Xt. Note that, by assumption, the probability
distribution of Xt is identical for all values of t ∈N. Let µ = E{X0} denote the common mean.

Withdrawals and right limit deposits corresponding to the time interval (t− 1, t], t ∈ Z+, are
made at t− according to the following respective (random) rates:

Wt =

{
0 if Ut− ≥ `1,

min{`1 −Ut− , max{0, Ft− − β}} if Ut− < `1,

and
D2,t = max{0, β− Ft−}.

For illustrative purposes, Figures 1 and 2 depict an example of the simultaneous evolution of both the
surplus process and that of the external fund.

t0 1 2 3 4 5

Ut

0+ 1+ 2+ 3− 3+ 4− 4+ 5−

`1

v

`2

`3

Premium

Premium - Left deposit

Claim
Claim

Withdrawal

Withdrawal

Claim + Right deposit, causing Ruin

Premium

Initial surplus

Figure 1. Sample evolution of the surplus process {Ut, t ∈N}.
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t0 1 2 3 4 51+ 2− 2+ 3− 4− 5−

Ft

β

g
Initial fund amount

Left deposit

Interest income

Interest income

Withdrawal

Withdrawal
Interest expense

Right deposit

Figure 2. Sample evolution of the external fund process {Ft, t ∈N}.

Beginning at time 0 with an initial surplus level of v ∈ {`1, `1 + 1, . . .} and an initial external fund
amount of g ∈N, the insurer’s amount of surplus at time t is expressible as

Ut = v +
t−1

∑
i=0

Pi −
t−1

∑
i=0

D1,i +
t

∑
i=1
Wi −

t

∑
i=1

D2,i −
Nt

∑
i=1

Yi, t ∈N, (1)

where Nt is the number of claims occurring by time t and individual claim sizes {Yi, i ∈ Z+} are
assumed to form an iid sequence of positive, integer-valued random variables. We assume that the
number of claims process is a discrete-time renewal process with independent, positive, integer-valued
interclaim times {Wi, i ∈ Z+}, where Wi is the time between the (i− 1)-th and i-th claims (with the
understanding that the 0-th claim occurs at time 0). In particular, {Wi, i ∈ Z+} forms an iid sequence
of positive random variables with common pmf ak = Pr{Wi = k}, k = 1, 2, . . . , na where na ∈ Z+, and
corresponding survival function Ak = Pr{Wi > k} = 1−∑k

j=1 aj. Furthermore, we assume that the
pairs {(Wi, Yi), i ∈ Z+} are iid, so that the joint pmf of (Wi, Yi) is given by

Pr{Wi = k, Yi = j} = akαj(k),

where αj(k) = Pr{Yi = j|Wi = k} denotes the conditional pmf of Yi given Wi. Such a structurization
allows for possible dependence between interclaim times and claim sizes in Sparre Andersen models
(e.g., see Cheung et al. [9]).

3. Calculation of Finite-Time Ruin Probabilities

We begin by examining the finite-time ruin probabilities associated with the risk model defined
by Equation (1). To start with, ruin occurs if and only if Ut < 0 for some t ∈ Z+ and we denote T to be
the time of ruin. In other words, T = min{t ∈ Z+|Ut < 0} with T = ∞ if Ut ≥ 0 ∀ t ∈ Z+.
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In what follows, we are interested in computing the quantity

Ψ(v, g, n) = Pr{T ≤ n|U0 = v, F0 = g} = 1− Pr{T > n|U0 = v, F0 = g}, n ∈N,

which we refer to as the finite-time ruin probability. To aid in the computation of this quantity, we
introduce the following related function:

σ(u, f , n, m) = Pr{T > n|U0 = u, F0 = f , M0 = m}, n ∈N, u ∈ Z, f ∈ {β, β + 1, . . . },

where Z denotes the set of all integers and Mt, referred to as the elapsed waiting time counter,
represents the elapsed time at time t since the most recent claim occurrence and its values lie in the set
{0, 1, . . . , na − 1}. With the introduction of this function, we remark that Ψ(v, g, n) = 1− σ(v, g, n, 0).

First of all, assuming the occurrence of no claims and no right limit deposits, we need to identify
when Ut ≥ `2 and Ut ≥ `3 for the first time. We introduce two functions to denote these time
points, namely:

zt,u =

{
0 if u ≥ `2,

min{b `2−u−1
c c+ 1, t} if u < `2,

and

z′t,u =

{
0 if u ≥ `3,

min{b `3−u−czt,u−1
c−d c+ zt,u + 1, t} if u < `3,

where bxc, referred to as the floor function of x, yields the largest integer less than or equal to x.
To aid us in obtaining a mathematical expression for σ(u, f , n, m), we have to examine how the

process {Ft, t ∈N} evolves over time. Let us first assume that there are no claims or withdrawals to
consider. Clearly, Ft is a non-decreasing function of t if f ∈N. On the other hand, if f /∈N, Ft could
either be a strictly decreasing function of t or perhaps a convex function depending on the values
of f , κ2 and d. Consequently, if Ft drifts below β, a deposit is forced to be made and this may cause
ruin. Thus, in this model, ruin can occur due to either a claim or a deposit. This certainly adds more
complexity in deriving a formula for σ(u, f , n, m), and as a result, we have to introduce a few more
functions. One such function is denoted by ot,u, f , representing the time point s ∈ {1, 2, . . . , t} at which
Fs is set to become greater than or equal to 0 for the first time. Obtaining this value is not difficult since,
assuming the occurrence of no claims and that Fs ≥ β ∀ s ≤ ot,u, f , Fs becomes non-stochastic, the form
of which we denote by:

F̃s,u, f =

{
f (1 + κ2)

s + dκ2
zs,u ,s if f < 0,

f (1 + κ1)
s + dκ1

zs,u ,s if f ≥ 0,

where dκi
k,l , k, l ∈ N, represents the future value of deposits made at times k+, (k + 1)+, . . . , (l − 1)+

with respect to interest rate κi per period, i = 1, 2. Clearly, we have dκi
k,l = 0 for l ≤ k and

dκi
k,l = d(1 + κi)

l−k + d(1 + κi)
l−k−1 + · · ·+ d(1 + κi) =

d(1 + κi)[(1 + κi)
l−k − 1]

κi
, l > k.

It subsequently follows that

ot,u, f =

{
t if F̃i+1,u, f < 0 ∀ i ∈ {0, 1, . . . , t},
min{i ∈ {0, 1, . . . , t}|F̃i+1,u, f ≥ 0} otherwise.
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In defining ot,u, f above, we utilize the value of F̃i+1,u, f instead of F̃i,u, f . This is because for f < 0,
the function F̃t,u, f , t ∈N, up-crosses level 0 only if a positive amount of deposit is made to the external
fund. We stated earlier that left deposits are made at the left limit point of a discrete-time interval.
Thus, F̃i+1,u, f ≥ 0 for the first time implies that at time i+, there was a left deposit made to the
external fund.

With the introduction of ot,u, f , we henceforth express the non-stochastic form of Ft as

F̂t,u, f = b( f (1 + κ2)
ot,u, f + dκ2

zot,u, f ,u ,ot,u, f )(1 + κ1)
t−ot,u, f + dκ1

max{zt,u ,ot,u, f },t
c, t ∈N. (2)

Note that Equation (2) involves the use of the floor function to calculate the (non-stochastic) value
of the external fund at time t. Such an assumption can be viewed as conservative in nature, since any
non-integer value of the external fund (which can arise due to interest accumulation) is essentially
rounded down.

There is another important function we introduce next, as it represents the earliest time point when
Ft falls below β (again assuming the occurrence of no claims) due to interest expense accumulation.
We denote this time point by ct,m,u, f and refer to it as a calling point. It is given by

ct,m,u, f =

{
min{na −m, t} if F̂i,u, f ≥ β ∀ i ∈ {1, 2, . . . , min{na −m, t}},
min{i ∈ {1, 2, . . . , min{na −m, t}}|F̂i,u, f < β} otherwise.

Note that the above function depends on both t and m. As introduced earlier in this section, m
represents the elapsed time at time 0 since the most recent claim occurrence.

With these preliminaries in place, we adopt the principle of conditioning on the first claim time as
in Cossette et al. [10] or Drekic and Mera [4]. Measured from our initial time point (which we label
as time 0), the lower limit of the time until the first claim occurs is 1, but its pmf is now conditional
on the value of m. Morever, in evaluating σ(u, f , n, m), we condition on first claim times ranging
from 1 up to cn,m,u, f , and on the event that the time until the first claim occurs is greater than cn,m,u, f .
For first claim time instances which take place at or before the calling point, the recursive process
used is very similar to that of Drekic and Mera [4]. However, in the event that the time until the first
claim occurs is greater than cn,m,u, f , the recursive process is performed differently. By doing so, we are
essentially denoting cn,m,u, f to be the “new” initial time point, updating the parameters of the function
σ, and proceeding with the recursive process. We further explain this situation after introducing some
necessary boundary conditions for σ(u, f , n, m), namely:

σ(u, f , n, m) =

{
0 if u ∈ Z− or m = na,

1 if u ∈N, n = 0, and m = 0, 1, . . . , na − 1,
(3)

where Z− in Equation (3) denotes the set of negative integers. By conditioning on the events outlined
above, we get

σ(u, f , n, m) =

cn,m,u, f

∑
k=1

ak+m
Am

Pr{T > n|U0 = u, F0 = f , M0 = m, W1(m) = k}

+
Acn,m,u, f +m

Am
Pr{T > n|U0 = u, F0 = f , M0 = m, W1(m) > cn,m,u, f },

where W1(m) is the duration from our initial time point until the first claim occurs given that the
elapsed waiting time at time 0 since the most recent claim is m.
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At time k ∈ {1, 2, . . . , cn,m,u, f }, the elapsed waiting time counter is reset to 0 for the next recursion,
n is reduced by k, and the “new” initial surplus and external fund amounts are determined by the size
of the incurred claim and the premiums received up to time k. Specifically, we obtain

Pr{T > n|U0 = u, F0 = f , M0 = m, W1(m) = k}

=

(k−z′k,u)c2

∑
l=(k−z′k,u)c1

bl,k−z′k,u

u+cz′k,u−d(k−zk,u)+l+F̂k,u, f−β

∑
j=1

αj(k + m)σ(u?, f ?, n− k, 0),

where

u? = u + cz′k,u − d(k− zk,u) + l − j

+ min{F̂k,u, f − β, max{0, j− [u + cz′k,u − d(k− zk,u) + l − `1]}}, (4)

f ? = max{β, min{F̂k,u, f , F̂k,u, f − j + [u + cz′k,u − d(k− zk,u) + l − `1]}}, (5)

and l denotes the value of the sum of the random premiums received up to time k, with corresponding
pmf bl,k−z′k,u

representing the (k − z′k,u)-fold convolution of bl with itself. To evaluate the pmf bl,r,
r ∈N, we define bl,0 = δl,0 (where δi,j, in general, denotes the Kronecker delta function of i and j),

bl,1 =

{
bl if l = c1, c1 + 1, . . . , c2,

0 otherwise,

and for r = 2, 3, . . . ,

bl,r =

∑c2
j=c1

bj,1bl−j,r−1 if l = rc1, rc1 + 1, . . . , rc2,

0 otherwise.

The reasoning behind the definitions of the above parameters is that we first consider whether
the claim size is substantial enough for the surplus process to fall below its minimum support level
`1. If so, then j − [u + cz′k,u − d(k − zk,u) + l − `1] is a positive quantity and we consider whether
the external fund is able to support the surplus process. We do this by comparing F̂k,u, f − β and
j− [u + cz′k,u − d(k− zk,u) + l − `1], and choosing the minimum of the two quantities to ensure that
the external fund does not fall below the maximum level of external funding allowed, β. If j− [u +

cz′k,u − d(k− zk,u) + l − `1] is a non-positive quantity, then the surplus process is greater than or equal
to `1 after the claim, in which case, we only need to consider whether F̂k,u, f is below β. If so, F̂k,u, f − β

is less than 0, and we would subtract |F̂k,u, f − β| from the surplus process and add it to the external
fund to bring it up to β.

In situations when W1(m) > cn,m,u, f , we perform a recursion at cn,m,u, f to similarly acquire

Pr{T > n|U0 = u, F0 = f , M0 = m, W1(m) > cn,m,u, f }

=

(cn,m,u, f−z′cn,m,u, f ,u, f )c2

∑
l=(cn,m,u, f−z′cn,m,u, f ,u)c1

bl,cn,m,u, f−z′cn,m,u, f ,u, f
σ(u′, f ′, n− cn,m,u, f , cn,m,u, f + m), (6)

where

u′ = u + cz′cn,m,u, f ,u − d(cn,m,u, f − zcn,m,u, f ,u) + l + min{0, F̂cn,m,u, f ,u, f − β} (7)
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and

f ′ = max{F̂cn,m,u, f ,u, f , β}. (8)

We remark that when W1(m) > cn,m,u, f , there is no claim size to consider at time cn,m,u, f . Thus, all
we need to account for is whether F̂cn,m,u, f ,u, f falls below β. In this case, just enough funds would be
withdrawn from the surplus process and added to the external fund to bring it up to β. However, note
that F̂cn,m,u, f ,u, f may not necessarily be below β. If F̂cn,m,u, f ,u, f ≥ β, then cn,m,u, f = min{na −m, n} and
this implies that either n− cn,m,u, f = 0 or cn,m,u, f + m = na in Equation (6). This yields an interesting
outcome. Given that W1(m) ≥ cn,m,u, f and F̂cn,m,u, f ,u, f ≥ β, it must be that u′ ≥ 0 at time cn,m,u, f .
However, if cn,m,u, f + m = na, then σ(u′, f ′, n− cn,m,u, f , na) is set equal to 0 via Equation (3). On the
other hand, if n < na − m so that cn,m,u, f = n, then σ(u′, f ′, 0, cn,m,u, f + m) = 1 from Equation (3).
Putting it altogether, we establish the following final formula for σ(u, f , n, m):

σ(u, f , n, m)

=

cn,m,u, f

∑
k=1

ak+m
Am

(k−z′k,u)c2

∑
l=(k−z′k,u)c1

bl,k−z′k,u

u+cz′k,u−d(k−zk,u)+l+F̂k,u, f−β

∑
j=1

αj(k + m)σ(u?, f ?, n− k, 0)

+
Acn,m,u, f +m

Am

(cn,m,u, f−z′cn,m,u, f ,u)c2

∑
l=(cn,m,u, f−z′cn,m,u, f ,u)c1

bl,cn,m,u, f−z′cn,m,u, f ,u
σ(u′, f ′, n− cn,m,u, f , cn,m,u, f + m). (9)

Note that the determination of σ(u, f , n, m) via Equation (9) requires a double recursion in both n
and m, with boundary conditions given by Equation (3) serving as the starting point. Moreover, if we
assume that f = 0, d = 0, `1 = 0, β = 0, m = 0, and αj(k) = Pr{Yi = j|Wi = k} = Pr{Yi = j} = αj
(i.e., Yi is independent of Wi ∀ i ∈ Z+), then the model under consideration is equivalent to the
independent Sparre Andersen model studied by Drekic and Mera [4]. To verify this, we first observe
that cn,0,u,0 = min{n, na} ∀ n ∈ Z+. If n < na, then σ(u′, f ′, 0, n) = 1 and

An

A0
Pr(T > n|U0 = u, F0 = 0, M0 = 0, W1(0) > n) = An

(n−z′n,u)c2

∑
l=(n−z′n,u)c1

bl,n−z′n,u
= An.

Conversely, if n ≥ na, then σ(u′, f ′, n− na, na) = 0 and

Ana

A0
Pr(T > n|U0 = u, F0 = 0, M0 = 0, W1(0) > na) = Ana × 0 = 0.

Thus, Equation (9) simplifies to become

σ(u, 0, n, 0) = An +
min{n,na}

∑
k=1

ak

(k−z′k,u)c2

∑
l=(k−z′k,u)c1

bl,k−z′k,u

u+cz′k,u+l

∑
j=1

αjσ(u + cz′k,u + l − j, 0, n− k, 0),

which is consistent with the result in Drekic and Mera [4], p. 744.

4. Calculation of Expected Total Discounted Dividend Payments

Our next objective is to derive a corresponding recursive formula to compute the expected total
discounted dividend payments made prior to ruin. The approach we employ essentially borrows from
that of Dickson and Waters [11], Section 5. Let E{Dv,g} denote the expected total discounted (i.e., to
time 0 according to discount factor ν ∈ (0, 1) per unit of time) dividends paid prior to ruin, where
the random variable Dv,g represents the total discounted dividends paid before ruin starting from
an initial surplus of v and an initial level of g in the external fund. Moreover, we also introduce the
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analogous quantity E{Dv,g,n} as the expected total discounted dividends paid before ruin occurs or
strictly before time n ∈ Z+, whichever happens first.

In order to calculate E{Dv,g}, we develop a computational procedure for calculating E{Dv,g,n}
and then use the fact that E{Dv,g,n} → E{Dv,g} as n→ ∞. To aid in the computation of E{Dv,g,n}, we
introduce a function (similar in nature to σ from the previous section) defined by

V(u, f , n, m) = E{Du, f ,n|M0 = m}, n ∈ Z+, u ∈ Z, f ∈ {β, β + 1, . . .}, m ∈ {0, 1, . . . , na − 1}.

Clearly, E{Dv,g,n} = V(v, g, n, 0). As with the function σ in the previous section, the function
V(u, f , n, m) also has its own set of boundary conditions, namely:

V(u, f , n, m) =


0 if u ∈ Z− or m = na,

0 if 0 ≤ u < `3 and n = 1,

c− µ if u ≥ `3 and n = 1.

(10)

We employ a similar approach as in the previous section by conditioning on values of W1(m)

ranging from 1 up to cn−1,m,u, f , as well as the case when W1(m) > cn−1,m,u, f . By conditioning on these
events, we immediately obtain

V(u, f , n, m)

=

cn−1,m,u, f

∑
k=1

ak+m
Am

E{Du, f ,n,m|W1(m) = k}+
Acn−1,m,u, f +m

Am
E{Du, f ,n,m|W1(m) > cn−1,m,u, f }.

For k ∈ {1, 2, . . . , cn−1,m,u, f }, an expected dividend payment of amount c− µ would occur at times
z′+k,u, (z′k,u + 1)+, . . . , (k− 1)+, followed by possible future dividend payments (starting from time k)
once the initial claim is applied. Applying the appropriate conditioning arguments ultimately leads to

E{Du, f ,n,m|W1(m) = k}

=
k−1

∑
i=z′k,u

νi(c− µ) + νk
(k−z′k,u)c2

∑
l=(k−z′k,u)c1

bl,k−z′k,u

u+cz′k,u−d(k−zk,u)+l+F̂k,u, f−β

∑
j=1

αj(k + m)V(u?, f ?, n− k, 0), (11)

where u? and f ? are given by Equations (4) and (5), respectively. For W1(m) > cn−1,m,u, f , however,
we need to reset the parameters of the function V as we did in our treatment of the finite-time
ruin probabilities and base the recursion at cn−1,m,u, f . We also need to account for the expected
dividend payments received at times z′+cn−1,m,u, f ,u, (z′cn−1,m,u, f ,u + 1)+, . . . , (cn−1,m,u, f − 1)+. Thus, we
eventually obtain

E{Du, f ,n,m|W1(m) > cn−1,m,u, f }

=

cn−1,m,u, f−1

∑
i=z′cn−1,m,u, f

νi(c− µ) + νcn−1,m,u, f

×
(cn−1,m,u, f−z′cn−1,m,u, f ,u)c2

∑
l=(cn−1,m,u, f−z′cn−1,m,u, f ,u)c1

bl,cn−1,m,u, f−z′cn−1,m,u, f ,u
V(û, f̂ , n− cn−1,m,u, f , cn−1,m,u, f + m), (12)

where

û = u + cz′cn−1,m,u, f ,u − d(cn−1,m,u, f − zcn−1,m,u, f ,u) + l + min{0, F̂cn−1,m,u, f ,u, f − β},
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and

f̂ = max{F̂cn−1,m,u, f ,u, f , β}.

Note that û and f̂ are identical in form to Equations (7) and (8), respectively, with n simply
replaced by n− 1. Combining Equations (11) and (12) eventually yields the final overall formula

V(u, f , n, m)

=

cn−1,m,u, f

∑
k=1

ak+m
Am

[
(c− µ)

νz′k,u − νk

1− ν

+ νk
(k−z′k,u)c2

∑
l=(k−z′k,u)c1

bl,k−z′k,u

u+cz′k,u−d(k−zk,u)+l+F̂k,u−β

∑
j=1

αj(k + m)V(u?, f ?, n− k, 0)

]

+
Acn−1,m,u, f +m

Am

[
(c− µ)

ν
z′cn−1,m,u, f ,u − νcn−1,m,u, f

1− ν
+ νcn−1,m,u, f

×
(cn−1,m,u, f−z′cn−1,m,u, f ,u)c2

∑
l=(cn−1,m,u, f−z′cn−1,m,u, f ,u)c1

bl,cn−1,m,u, f−z′cn−1,m,u, f ,u
V(û, f̂ , n− cn−1,m,u, f , cn−1,m,u, f + m)

]
. (13)

Similar to the function σ of the previous section, we note that the use of Equation (13) requires a
double recursion in both n and m, with boundary conditions given by Equation (10) serving as the
starting point. As before, we consider the situation when f = 0, d = 0, `1 = 0, β = 0, m = 0, and
αj(k) = αj, so that the model under consideration is equivalent to the one analyzed by Drekic and
Mera [4]. In this case, Equation (13) reduces to

V(u, 0, n, 0) =
min{n−1,na}

∑
k=1

ak

[
(c− µ)

νz′k,u − νk

1− ν

+ νk
(k−z′k,u)c2

∑
l=(k−z′k,u)c1

bl,k−z′k,u

u+cz′k,u+l

∑
j=1

αjV(u + cz′k,u + l − j, 0, n− k, 0)

]

+ Amin{n−1,na}

[
(c− µ)

νz′n−1,u − νn−1

1− ν

+ νn−1
(n−1−z′n−1,u)c2

∑
l=(n−1−z′n−1,u)c1

bl,n−1−z′n−1,u
V(u + cz′n−1,u + l, 0, 1, n− 1)

]
. (14)

We remark that since cn−1,0,u,0 = min{n− 1, na}, the square-bracketed term in Equation (14) that
is pre-multiplied by Amin{n−1,na} matters only if cn−1,0,u,0 = n− 1 since Ana = 0. Thus, for convenience,
we set cn−1,0,u,0 = n− 1 inside this square-bracketed term in Equation (14). In addition, Equation (14)
simplifies further to become:
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V(u, 0, n, 0)

=



min{n−1,na}
∑

k=1
ak

[
(c− µ) ν

z′k,u−νk

1−ν

+νk
(k−z′k,u)c2

∑
l=(k−z′k,u)c1

bl,k−z′k,u

u+cz′k,u+l

∑
j=1

αjV(u + cz′k,u + l − j, 0, n− k, 0)
]

if z′n−1,u < z′n,u,

min{n−1,na}
∑

k=1
ak

[
(c− µ) ν

z′k,u−νk

1−ν

+νk
(k−z′k,u)c2

∑
l=(k−z′k,u)c1

bl,k−z′k,u

u+cz′k,u+l

∑
j=1

αjV(u + cz′k,u + l − j, 0, n− k, 0)
]

+Amin{n−1,na}
n−1
∑

i=z′n−1,u

νi(c− µ) if z′n−1,u = z′n,u.

(15)

The logic behind Equation (15) is as follows. If z′n−1,u < z′n,u, then z′n,u = n. This implies that there
are no dividend payments before time n, and hence, Equation (12) becomes equal to 0. On the other
hand, if z′n−1,u = z′n,u, then there is a guaranteed dividend payment at time n− 1 and

(n−1−z′n−1,u)c2

∑
l=(n−1−z′n−1,u)c1

bl,n−1−z′n−1,u
V(u + cz′n−1,u + l, 0, 1, n− 1) = c− µ.

Thus, the quantity

Amin{n−1,na}
n−1

∑
i=z′n−1,u

νi(c− µ)

in the second component of Equation (15) can be rewritten as

An−1

n−1

∑
i=z′n,u

νi(c− µ).

In addition, consider the expression

na

∑
k=n

ak

n−1

∑
i=z′k,u

νi(c− µ). (16)

If z′n,u = z′n+1,u = . . . = z′na ,u, then certainly we can replace z′n+1,u, z′n+2,u, . . . , z′na ,u with z′n,u
in Equation (16). Otherwise, z′n,u = n, and since min{z′n,u, z′n+1,u, . . . , z′na ,u} = z′n,u, Equation (16)
evaluates to 0. In either case, Equation (16) becomes

na

∑
k=n

ak

n−1

∑
i=z′k,u

νi(c− µ) =
na

∑
k=n

ak

n−1

∑
i=z′n,u

νi(c− µ) = An−1

n−1

∑
i=z′n,u

νi(c− µ).
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Substituting these results into Equation (15) and simplifying ultimately yields

V(u, 0, n, 0) = (c− µ)
na

∑
k=1

ak
νmin{z′k,u ,n} − νmin{k,n}

1− ν

+
min{n−1,na}

∑
k=1

akνk
(k−z′k,u)c2

∑
l=(k−z′k,u)c1

bl,k−z′k,u

u+cz′k,u+l

∑
j=1

αjV(u + cz′k,u + l − j, 0, n− k, 0).

Once again, the above formula coincides with that of Drekic and Mera ([4], p. 745).

5. Numerical Results

In this section, we implement our key recursive formulas (namely, Equations (9) and (13)) and
investigate the behaviour of our proposed risk model through some numerical examples. To the
best of our knowledge, we are unaware of any alternative computational methods to calculate these
two ruin-related quantities of interest for the kind of discrete-time risk model considered in this
paper. In fact, most methods in the literature have employed conditioning arguments similar to
ours to analyze discrete-time risk models and ultimately formulate a recursive procedure to calculate
such quantities.

In what follows, we focus specifically on the independent Sparre Andersen model (i.e., αj(k) = αj)
and introduce a set of interclaim time distributions to study, namely:

(a) aj =

{
(2/11)(9/11)j−1 if j = 1, 2, . . . , 24,

(9/11)24 if j = 25,

(b) aj = 1/10, j = 1, 2, . . . , 10,

(c) aj =
1

1− (39/50)25

(
25
j

)
(11/50)j(39/50)25−j, j = 1, 2, . . . , 25,

(d) aj =


(0.645)(1/2)j + (0.355)(1/12)(11/12)j−1 if j = 1, 2, . . . , 14,

(0.645)(1/2)14 + (0.355)(1/12)(11/12)14 if j = 15,

(0.355)(1/12)(11/12)j−1 if j = 16, 17, . . . , 49,

(0.355)(11/12)49 if j = 50.

We observe that (a) is the pmf of a truncated geometric distribution with na = 25; (b) is the pmf
of a uniform distribution on {1, 2, . . . , 10}; (c) is the pmf of a zero-truncated binomial distribution
with na = 25; and (d) is the pmf of a mixture of two truncated geometric distributions with na = 50.
We note that the means are essentially equal to 5.5 for all four interclaim time distributions, but their
variability differs with (c) being the least variable and (d) being the most variable.

As for the random premium distribution, in effect, we consider a degenerate distribution with all
the probability mass on 2 (i.e., c1 = c2 = 2, so that b2 = 1). In terms of the claim size distribution, we
consider a discretized version of the Pareto distribution with mean 10 and pmf of the form

αj =
(

1 +
j− 1
30

)−4
−
(

1 +
j

30

)−4
, j ∈ Z+.

Incidentally, the above claim size pmf results from the application of the “lower bound”
discretization method of Dickson ([12], p. 79) to approximate a Pareto distribution which is continuous.
In fact, similar discretization ideas (e.g., see Dickson et al. [13] or Alfa and Drekic [5], pp. 306–307)
can be employed to construct a discrete-time approximation to a continuous-time analogue of our
proposed risk model. We also remark that the above set of interclaim time, random premium, and
claim size distributions are all taken from Section 4 of Drekic and Mera [4]. In all our examples, we set
v = 10, g = 0, c = 5, κ1 = 0.01, d = 1, and ν = 0.75.
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We make the following observations concerning the results in Tables 1 through 3, in which
interclaim time distribution (a) was used throughout:

(i) In Table 1, we assumed that κ2 = 0.02, `1 = 0, `2 = 20, and `3 = 50. Under these circumstances,
changing the maximal level of external funding allowed resulted in a monotone behaviour in
our two performance measures. As we decreased the value of β, the finite-time ruin probabilities
decreased monotonically for all n ≤ 150, whereas the expected total discounted dividends paid
before ruin increased monotonically. It seems that the benefit of having more funds available
outweighs the borrowing costs under the specific setting considered here. We point out that in
Table 1 (as well as Tables 2 through 5), the minimum time point n required to achieve convergence
(to six significant digits) of V(10, 0, n, 0) to E{D10,0} is italicized and appears in parentheses next
to its corresponding value.

(ii) In Table 2, we assumed that κ2 = 0.02, β = −10, `2 = 25, and `3 = 50. Changing the minimal
capital requirement level `1 resulted in a negative effect on the finite-time ruin probabilities.
As we increased `1, the finite-time ruin probabilities monotonically increased for all n ≤ 150.
In relation, the expected total discounted dividends paid before ruin increased as the value of `1

rose. Artificially requiring the level of the surplus process to be at a certain positive level prompts
more borrowing and this generates higher interest expense. Thus, ruin is more likely to occur.
The expected total discounted dividends paid prior to ruin increased since the surplus process is
now more likely to reach the dividend payment trigger level `3, as the surplus level is maintained
at a higher level more often.

(iii) In Table 3, we assumed that κ2 = 0.02, `1 = 0, β = −10, and `3 = 50. Raising the investment
trigger level `2 resulted in increasing both the finite-time ruin probabilities and the expected total
discounted dividend payments prior to ruin. As we increase `2, we are delaying investments and
this leads to a negative effect on the finite-time ruin probabilities since the external fund earns
interest while the surplus process does not. Nevertheless, the surplus process is kept at a higher
level as we increase `2, and thus, the surplus process is more likely to reach `3, resulting in higher
expected total discounted dividend payments prior to ruin.

The following remarks are made concerning the results in Table 4, in which interclaim time
distributions (a) to (d) were each studied:

(iv) We assumed that κ2 = 0.02, `1 = 0, `2 = 20, `3 = 50, and β = −10. In an effort to investigate the
effects of variability in the choice of interclaim time distribution, we observed that the finite-time
ruin probabilities were highest for interclaim time distribution (d) and lowest for interclaim time
distribution (c) for all n ≤ 150. The expected total discounted dividends paid prior to ruin ended
up being highest for (a) and lowest for (d).

Finally, we make the following observations concerning the results in Table 5, in which interclaim
time distribution (b) was used throughout:

(v) In (i), we observed that the ability to borrow more money from the external fund had positive
effects on both the finite-time ruin probabilities and expected total discounted dividends paid
prior to ruin. This begs the question as to whether an insurer can continue to borrow more and
more money and still produce a positive impact on the business. To investigate this matter further,
we increased κ2 to 0.30 and varied β from −5 to −30 in increments of size 5. Under this revised
setting, not only has the monotone behaviour of the finite-time ruin probabilities changed, but
the effects of decreasing the value of β have also changed. From Table 5, note that for n = 25 and
onwards, β = −10 produced the lowest ruin probabilities whereas β = −25 yielded the highest
ruin probabilities. On the other hand, the expected total discounted dividends paid before ruin
were still highest for β = −30 and lowest for β = −5, although the difference was rather minimal.
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Table 1. Finite-time ruin probabilities and expected total discounted dividends paid prior to ruin
corresponding to interclaim time distribution (a) with `1 = 0, `2 = 20, `3 = 50, and κ2 = 0.02

Ψ(10, 0, 25) Ψ(10, 0, 50) Ψ(10, 0, 75) Ψ(10, 0, 100) Ψ(10, 0, 150) E{D10,0}
β = 0 0.174830 0.196614 0.204672 0.207823 0.209558 0.248444 (60)

β = −4 0.144086 0.164662 0.172498 0.175638 0.177413 0.250317 (56)
β = −8 0.119948 0.139303 0.146891 0.150007 0.151815 0.251686 (59)

β = −12 0.100726 0.118899 0.126230 0.129316 0.131157 0.252692 (62)
β = −16 0.0852287 0.102274 0.109353 0.112408 0.114284 0.253445 (67)
β = −20 0.0726360 0.0886259 0.0954679 0.0984981 0.100416 0.254016 (67)

Table 2. Finite-time ruin probabilities and expected total discounted dividends paid prior to ruin
corresponding to interclaim time distribution (a) with `2 = 25, `3 = 50, β = −10, and κ2 = 0.02

Ψ(10, 0, 25) Ψ(10, 0, 50) Ψ(10, 0, 75) Ψ(10, 0, 100) Ψ(10, 0, 150) E{D10,0}
`1 = 0 0.110350 0.130056 0.138029 0.141393 0.143408 0.272456 (64)
`1 = 5 0.111521 0.131893 0.140298 0.143928 0.146174 0.274604 (56)
`1 = 10 0.112873 0.134082 0.143026 0.146988 0.149529 0.279519 (56)
`1 = 15 0.114578 0.136889 0.146527 0.150918 0.153847 0.291398 (59)
`1 = 20 0.116151 0.139817 0.150325 0.155267 0.158714 0.315121 (56)

Table 3. Finite-time ruin probabilities and expected total discounted dividends paid prior to ruin
corresponding to interclaim time distribution (a) with `1 = 0, `3 = 50, β = −10, and κ2 = 0.02

Ψ(10, 0, 25) Ψ(10, 0, 50) Ψ(10, 0, 75) Ψ(10, 0, 100) Ψ(10, 0, 150) E{D10,0}
`2 = 5 0.108546 0.125309 0.131734 0.134318 0.135778 0.208521 (60)
`2 = 10 0.108725 0.125772 0.132366 0.135042 0.136572 0.210858 (57)
`2 = 15 0.109265 0.127135 0.134137 0.137011 0.138677 0.231600 (59)
`2 = 30 0.111336 0.132243 0.140858 0.144556 0.146820 0.331537 (56)
`2 = 45 0.113448 0.138442 0.149753 0.155012 0.158566 0.417485 (56)

Table 4. Finite-time ruin probabilities and expected total discounted dividends paid prior to ruin when
β = −10, `1 = 0, `2 = 20, `3 = 50, and κ2 = 0.02

Ψ(10, 0, 25) Ψ(10, 0, 50) Ψ(10, 0, 75) Ψ(10, 0, 100) Ψ(10, 0, 150) E{D10,0}
(a) 0.109811 0.128569 0.136029 0.139131 0.140955 0.252225 (59)
(b) 0.0739737 0.0893741 0.0955145 0.0980538 0.0995368 0.249026 (69)
(c) 0.0577812 0.0719240 0.0775949 0.0799444 0.0813180 0.247518 (56)
(d) 0.198521 0.225533 0.236586 0.241374 0.244328 0.227710 (58)

Table 5. Finite-time ruin probabilities and expected total discounted dividends paid prior to ruin
corresponding to interclaim time distribution (b) with `1 = 0, `2 = 20, `3 = 50, and κ2 = 0.30

Ψ(10, 0, 25) Ψ(10, 0, 50) Ψ(10, 0, 75) Ψ(10, 0, 100) Ψ(10, 0, 150) E{D10,0}
β = −5 0.0973331 0.116764 0.125417 0.129995 0.134825 0.247088 (58)
β = −10 0.0844038 0.107521 0.118964 0.125726 0.133511 0.247093 (56)
β = −15 0.0931086 0.128445 0.140055 0.144002 0.145997 0.247098 (56)
β = −20 0.0983912 0.131307 0.140746 0.144196 0.146018 0.247106 (56)
β = −25 0.103649 0.132289 0.141004 0.144280 0.146028 0.247121 (59)
β = −30 0.103629 0.132196 0.140967 0.144267 0.146026 0.247143 (51)
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6. Conclusions

In this paper, we considered a discrete-time dependent Sparre Andersen risk model featuring
multiple threshold levels in an effort to characterize an insurer’s minimal capital requirement, dividend
paying scenarios, and external financial activities. In analyzing this model, we developed recursive
computational procedures to calculate two particular performance measures of interest, namely
finite-time ruin probabilities and expected total discounted dividends paid prior to ruin. Through a
variety of numerical experiments performed, we were able to make some observations concerning the
impact our threshold levels have on both of these performance measures.
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