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Abstract: We study upper and lower bounds on the expectile risk measure of risky
portfolios when the joint distribution of the risky components is not fully specified. First,
we summarize methods for obtaining bounds when only the marginal distributions of the
components are known, but not their interdependence (unconstrained bounds). In particular,
we provide the best-possible upper bound and the best-possible lower bound (under some
conditions), as well as numerical procedures to compute them. We also derive simple
analytic bounds that appear adequate in various situations of interest. Second, we study
bounds when some information on interdependence is available (constrained bounds). When
the variance of the portfolio is known, a simple-to-compute upper bound is provided, and we
illustrate that it may significantly improve the unconstrained upper bound. We also show that
the unconstrained lower bound cannot be readily improved using variance information. Next,
we derive improved bounds when the bivariate distributions of each of the risky components
and a risk factor are known. When the factor induces a positive dependence among the
components, it is typically possible to improve the unconstrained lower bound. Finally, the
unconstrained dependence uncertainty spreads of expected shortfall, value-at-risk and the
expectile are compared.
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1. Introduction and Preliminaries

This paper aims to contribute to the broader academic discussion on the properties of risk measures
relevant to risk management and regulation in the banking and insurance industry; see [1] and [2]
for an overview. The two most well-known risk measures are the value-at-risk (VaR) and expected
shortfall (ES),

VaRαpXq “ inf tx P R : PpX ď xq ě αu , ESβpXq “
1

1´ β

ż 1

β

VaRqpXq dq

where the latter is only defined for random variables (rvs) X with a finite expectation. While VaR is
dominantly used in industry, it lacks the property of subadditivity and is thus not coherent in the sense
of [3]. By contrast, ES, which is merely the average of all upper VaRs, is coherent. In fact, it is the
smallest coherent risk measure that is more conservative than VaR (see [3]). Recently, [4] brought the
issue of elicitability to the foreground. A risk measure is said to be elicitable if it is a minimizer of
the expectation of some scoring function, which depends on the point forecast and the true observed
loss. The work in [4] showed that VaR is elicitable (if the corresponding quantile is unique), but ES
is not. While some authors interpret this to mean that ES cannot be back-tested (e.g., [5,6]), [7] argue
that elicitability is relevant for relative comparisons between estimators, but not for absolute significance
testing. Moreover, [8] show that the pair (VaR, ES) is jointly elicitable. Nevertheless, the question arises
whether there are non-trivial coherent risk measures that are elicitable. In [9–11], it is shown that the
only risk measure that is both elicitable and coherent is the expectile. The expectile is introduced in [12]
as the minimizer of the expectation of an asymmetric quadratic scoring function,

eτ pXq “ argminePR Erpτ1tXąeu ` p1´ τq1tXăeuqpX ´ eq2s

It follows that eτ pXq is the unique solution of the equation implied by the first order conditions
(however, [13] points out that no differentiability or continuity of the distribution function is required):

p1´ τqErpeτ ´Xq1tXăeτ us “ τ ErpX ´ eτ q1tXąeτ us (1)

Expectiles are well known in regression analysis [14–16]; they are used for forecasting financial time
series [17] and estimating VaR and ES [18]. A penalized least squares approach in portfolio optimization
was suggested by [19]; the expectile is a special case when a quadratic downside penalty is used. The
expectile is also closely related to the Omega performance measure [20]; see [21], p. 128. The expectile
was first explicitly considered as a risk measure in [22], and the authors coined the acronym EVaR. This
name was later adopted in other articles ([23,24]). However, even the original authors admit that this
acronym was already used for economic-VaR [25] and recently also for entropic-VaR [26]. To avoid
confusion, we shall use the notation eτ , as in [2,27] and [28], p. 290.

Throughout, we assume that the random variables represent losses. The expectile-based risk measure
eτ pXq is subadditive and thus coherent for τ P r1{2, 1q; for this property, as well as other features
and representations, see [13,27]. A discussion on risk management with expectiles can be found
in [24]. In the present paper, we further contribute to this discussion by examining their properties
when aggregating risks.
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Note that by rearranging Equation (1),

eτ “ ErXs ` θErpX ´ eτ q1tXąeτ us, where θ :“
2τ ´ 1

1´ τ
ě 0 for τ P r1{2, 1q (2)

Thus, the expectile can also be interpreted as the insurance premium using the Dutch premium principle
(see [29]), where the insurer buys an excess-of-loss reinsurance contract for any claim above the premium
e, with loading factor θ (and applies zero loading for the retained part). From Equation (2), we observe
that expectiles are only implicitly defined, and their computation appears cumbersome. However, if the
loss distribution X „ F is known, the following approach can be used to compute the corresponding
expectile. First, define the tail integral,1 a function which will be useful for shorter notation,

TIXpxq :“

ż 8

x

u dF puq “ ErX1tXąxus

Analytic expressions for TIX are available for many commonly-used distributions, such as Pareto,
log-normal, normal, Student t, exponential, gamma, and other. Next, applying Newton’s method to
Equation (1) yields a practical iterative procedure for computing eτ pXq “ limkÑ8 xk, given by:

xk`1 “
p1´ τqErXs ` p2τ ´ 1qTIXpxkq

p1´ τqpk ` τp1´ pkq
(3)

where pk “ F pxkq. An analogue for an empirical distribution using iterative reweighting is mentioned
in [12] and stated explicitly in [14]. The convergence of this procedure is very fast. It is shown in [24] that
for most common distributions, the expectiles are smaller than quantiles at level τ (for τ high enough),
while for heavy-tailed (infinite variance) distributions, the opposite holds true. They coincide exactly
(for all τ ) for a Student t distribution with ν “ 2 and asymptotically (as τ Ñ 1) for the Paretop2q
distribution. Therefore, initializing the procedure at x0 “ VaRτ pXq appears reasonable.

While the expectile is a familiar object in regression analysis, its properties relevant to risk
management are less studied. The focus of this paper is on risk aggregation and measurement under
model uncertainty. Often the total (aggregate) loss that a company faces can be expressed as a sum
S “ X1 ` . . . ` Xd, where the Xi represent, e.g., the losses of different business lines or risk types.
The risks Xi are typically modeled separately, and little might be known about their interdependence.
We will be interested in finding the range of values a risk measure ρpSq can take for different aggregate
losses S P S, where S is the so-called admissible class containing all of the aggregate loss distributions
that are consistent with the available marginal and dependence information. In particular, define the
best-possible upper bound and the best-possible lower bound as:

ρ “ inftρpSq : S P Su and ρ “ suptρpSq : S P Su

where the risk measure ρwill be either VaR, ES or the expectile. The idea to assess the impact of (partial)
dependence information on risk bounds has been explored in a series of recent papers; see [30–36]. In
these papers, the risk measure used was the VaR. In this paper, we will mainly focus on the expectile as
a challenger for VaR.

1 Note that for a continuous rv X , ESβpXq “ 1
1´β TIXpVaRβpXqq.
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The paper is structured as follows: Section 2 considers the case when only marginal distributions are
known. We provide the best-possible upper bound, as well as the best-possible lower bound (under some
conditions) and provide numerical procedures to practically compute these bounds. We also provide
weaker bounds and show they are close to the best-possible ones in various situations of interest. We
study the location-scale family and provide analytical expressions for the best possible bounds in this
context. Section 3 gives bounds when the mean and variance of the aggregate loss are known. In
Section 4, we consider the availability of dependence information through factor models. We provide
various bounds in this context, and the results of this and previous sections are applied in an example
using the skew-t distribution. In Section 5, the width of the dependence uncertainty interval for the
expectile is compared to that of VaR and ES. Finally, Section 6 summarizes the observations.

2. Bounds when Only the Marginal Distributions Are Known

Due to the curse of dimensionality, it is typically easier to statistically fit a one-dimensional
distribution function (df) to eachXi than to fit a multivariate distribution to X “ pX1, . . . , Xdq. Under an
idealized version of dependence uncertainty (DU), only the marginal distributions Xi „ Fi, i “ 1, . . . , d

are known, while the dependence structure (copula) is completely unknown. Hence, the aggregate loss
S can be any of the elements in the (Fréchet) admissible class S,

SpF1, . . . , Fdq “ tX1 ` . . .`Xd : Xi „ Fi, i “ 1, . . . , du

The (best-possible) bounds on the expectile are denoted by eτ and eτ . To determine the bounds, it turns
out to be sufficient to find elements in SpF1, . . . , Fdq that are maximal, respectively, minimal in the
sense of convex order.2 We first recall the definition of this ordering concept and then connect it with eτ
and eτ .

Definition 1 (Convex order). Let X and Y be random variables, such that:

ErφpXqs ď ErφpY qs for all convex functions φ : RÑ R

provided the expectations exist. Then, X is said to be smaller than Y in the convex order (X ďcx Y ).

Consider the convex functions φepxq “ px´ eq1txąeu indexed by e P R. We find that:3

X ďcx Y ñ ErpX ´ eq1tXąeus ď ErpY ´ eq1tYąeus @e P R ñ eτ pXq ď eτ pY q (4)

2 Likewise, the study of VaR bounds is connected to identifying (in an appropriate admissible class) the elements that are
minimum in the sense of convex order, a feature that points to a similarity between the study of bounds on the expectile
and the study of bounds on VaR; see Section 2.3 in [30] for these results.

3 Note that Equation (4) also follows from the more general results in [37,38]. Indeed, [37] has shown that any convex risk
measure ρ with the Fatou property is consistent with the convex order, meaning that X ďcx Y implies ρpXq ď ρpY q.
Furthermore, [38] shows that law-invariant risk measures have the Fatou property. Since the expectile is convex and law
invariant, it is consistent with the convex order. See [39] for further results on the properties of the expectile and other
generalized quantiles with respect to various stochastic orders.
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In particular, this shows that upper bound eτ , resp., lower bound eτ , is obtained if one can find the
maximum, resp., minimum element, in the convex order sense in the admissible class S. The last
implication in Equation (4) comes from the following lemma by taking Gpeq “ ErpY ´ eq1tYąeus and
noting that ErXs “ ErY s. Specifically, the following lemma connects bounds on the stop-loss premium
ErpS ´ eq1tSąeus with bounds on eτ pSq.

Lemma 2. Suppose G : RÑ R is a non-increasing function, such that:

ErpS ´ eq1tSąeus ď Gpeq @e P R (5)

Then, eτ pSq ď e‹, where:

e‹ “ inf

"

e P R : e ě ErSs `
2τ ´ 1

1´ τ
Gpeq

*

Analogously, a lower bound on the stop-loss premium yields a lower bound on eτ pSq.

Proof. From Equation (5), it immediately follows that:

e ě ErSs `
2τ ´ 1

1´ τ
Gpeq ñ e ě ErSs `

2τ ´ 1

1´ τ
ErpS ´ eq1tSąeus (6)

Since for both inequalities, the right-hand side is non-increasing in e, the solution of Equation (2) (i.e.,
eτ pSq) must be less than or equal to e‹.

2.1. Upper Bound with Marginal Information

It is shown in [40] that the comonotonic dependence structure leads to the maximal element (denoted
Sc) with respect to the convex order in the admissible class S.

@S P S : S ďcx S
c :“

d
ÿ

i“1

F´1i pUq, where U „ Up0, 1q (7)

Hence, we find that eτ “ eτ pS
cq. In the case of identical margins Fi “ F1, i “ 2, . . . , d, using positive

homogeneity, this simplifies to:

eτ “ eτ pdX1q “ deτ pX1q “
řd
i“1 eτ pXiq

In general, however, the expectile is not comonotone additive, and hence, the upper bound eτ often needs
to be computed numerically. Unfortunately, the df of Sc is typically not available in an analytical from,
so the iterative procedure Equation (3) is more difficult to apply, since it would involve a nested root
search. In particular, to compute TIScpxkq at each step, one would first need to find a pk, such that
F´1Sc ppkq “ xk, and then sum up the tail integrals TIipF

´1
i ppkqq for the margins.

Since Sc is defined in Equation (7) in terms of its quantile function F´1Sc , it is easier to work in
terms of the probability level p corresponding to the expectile. For continuous marginal distributions
with densities fi, we can again apply Newton’s method by differentiating Equation (1) with respect to
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p using the chain rule. This yields an iterative procedure for computing eτ pScq “ F´1Sc ppq in terms of
p “ limkÑ8 pk, given by:

pk`1 “ pk ´ ek{Bppkq `

řd
i“1

`

p1´ τqErXis ` p2τ ´ 1qTIipF
´1
i ppkq

˘

Bppkqppkp1´ τq ` p1´ pkqτq
(8)

where ek “ F´1Sc ppkq and:

Bpuq “
`

F´1Sc

˘1
puq “

d
ÿ

i“1

`

F´1i

˘1
puq “

d
ÿ

i“1

1

fi
`

F´1i puq
˘ , u P p0, 1q

Again, since analytic expressions for the mean, the tail integral and inverse df of parametric marginal
distributions are often available, this is a very fast and accurate method. It is possible that Equation (8)
yields pk`1 ě 1, in which case we can take pk`1 “ ppk ` 1q{2 instead; similarly, if pk`1 ď 0, set
pk`1 “ pk{2. Analogously to Equation (3), it is reasonable to initiate the procedure at p0 “ τ .

In general, by subadditivity (recall that we use τ P r1{2, 1q),

eτ pSq ď
d
ÿ

i“1

eτ pXiq “: e`τ (9)

so e`τ is a valid upper bound, too, but it is typically not the best possible. In Section 4.3, e`τ is computed,
as well as the best-possible upper bound in an example with skew-t distributions; we can observe that
they are very close in all cases.

2.2. Lower Bound with Marginal Information

The analysis of the lower bound is more involved. We first observe that:

eτ ě ErSs “
d
ÿ

i“1

ErXis (10)

This can be seen either by applying Jensen’s inequality to the degenerate random variable m “ ErSs

to show m ďcx S, @S P S, or by noting that e1{2pSq “ ErSs and that eτ pSq is increasing in τ (see,
e.g., [24] for these and other properties). If the admissible class S contains the constant ErSs, then this
is the smallest element in convex order, and the lower bound Equation (10) is attained (sharp). This
situation is achieved when the components Xi are “compensating” for each other and corresponds to the
notion of joint mixability, which was formally introduced in [41] and extends the concept of complete
mixability ([42]) to the inhomogeneous case; see also [43] for an overview of these and related concepts.
Precisely, a distribution F is called d-completely mixable if there exist rvs Xi „ F , i “ 1, . . . , d, such
that

řd
i“1Xi “ dc a.s., c P R. Analogously, a d-tuple of dfs pF1, . . . , Fdq is called jointly mixable if

there exist rvs Xi „ Fi, such that
řd
i“1Xi “ k a.s., k P R. Another concept that leads to an explicit

smallest element in the Fréchet admissible class is that of mutual exclusivity, which requires that the
margins have a large probability mass at an endpoint of the support; see [44].

In general, however, the dependence structure that leads to the smallest element in the convex order
is known only for d “ 2 (countermonotonicity). If d ą 2, for distributions that are bounded below
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(and satisfy some further conditions), in the case of identical margins, one can use the method from [45]
(involves solving an integral equation), or for different margins, the method from [46] (requires solving a
functional equation). A general, but approximate method is the rearrangement algorithm (RA) (see [47–
49]), which is based on a discretization of the margins. In the following, we describe a simple, yet
necessary modification of the RA that provides improved approximations for the best-possible lower
bounds in the case of expectation-based risk measures, such as ES and the expectile.

2.2.1. Rearrangement Algorithm

The most general method currently available for computing lower bounds for the common risk
measures is the RA; see [47–49]. While the quantile-based RA performs well when computing bounds on
the (quantile-based) VaR, [50] indicates that for heavy-tailed margins, the RA lower bound for ES ([48])
is not sharp, because the tail expectation is underestimated due to discretization. Since also expectiles
are defined in terms of the tail expectation (see Equation (2)), it is important to address this issue of the
RA. In the following, we first recall the standard discretization of the RA for each margin i “ 1, . . . , d

and next provide two modifications that we further investigate.

Standard RA: xk,i “ F´1i

ˆ

k ´ 1

N

˙

, k “ 1, . . . , N .

Midpoint RA: xk,i “ F´1i

ˆ

k ´ 1{2

N

˙

, k “ 1, . . . , N .

Expectation RA: xk,i “ F´1i

ˆ

k ´ 1{2

N

˙

, k “ 2, . . . , N ´ 1,

xN,i “ ES1´1{NpXiq, x1,i “ LES1{NpXiq :“ N
ş1{N

0
F´1i pqq dq

While the standard discretization may seem conservative, it is nonetheless an approximate lower
bound, since the RA may stop at a suboptimal rearrangement (see [48]). Moreover, if the distribution is
unbounded below, then F´1i p0q “ ´8. For highN (such that pN ą d), this would still give a finite lower
bound for ES; however, it would be undefined for the expectile, since it depends on both the upper and the
lower tail of the aggregate distribution. The midpoint RA avoids this problem, but still underestimates
tail expectations; the expectation RA should solve both issues. To evaluate and compare the sharpness of
the bounds obtained using the different discretizations, we consider the homogeneous case with Pareto
marginals. In this case, the exact lower bound on ES can be obtained using the method in [45]. In
Table 1, the resulting underestimation errors are listed. Observe that the midpoint RA improves the
results considerably, but the errors are still noticeable. The expectation RA, however, gives results that
are within 0.1% of the true lower bound. In light of this, we will use the “expectation” version of RA
for computing the unconstrained lower bounds on the expectile (i.e., eτ ) in Section 4.3, since it provides
more accurate estimates of the tail expectations. One final adjustment concerns the stopping condition
for RA. In [48], the RA stops when an iteration reduces the ES by less than a pre-defined ε. To match the
stopping condition with the objective, we stop the RA when the reduction in eτ becomes smaller than
ε. This means that the expectile of the current rearrangement needs to be computed at each iteration.
However, the Equation expectile of the previous iteration of the RA makes a very good initial guess for
Equation (3), so this is not time-consuming. To summarize, the expectation RA only changes the way the
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margins are discretized and the stopping condition; the rest of the RA remains as in [48]. For other recent
developments on the RA, we refer to https://sites.google.com/site/RearrangementAlgorithm/ and [51].

Table 1. Relative underestimation as a percent of the exact ESp for d Paretopθq distributions,
using the rearrangement algorithm (RA) with different discretizations of size N “ 105 and
stopping condition ε “ 10´4.

Standard RA p “ 0.95 p “ 0.99

d 1 2 3 4 5 8 1 2 3 4 5 8

θ “ 5 0.1 0.2 0.2 0.2 0.3 0.4 0.3 0.5 0.6 0.7 0.8 1.2
θ “ 3 0.3 0.4 0.5 0.6 0.7 1.0 0.7 1.1 1.4 1.7 1.9 2.6
θ “ 2.5 0.5 0.7 0.9 1.0 1.2 1.5 1.2 1.7 2.2 2.6 2.9 3.8
θ “ 2 1.2 1.6 1.9 2.2 2.5 3.1 2.5 3.4 4.2 4.9 5.4 6.9
θ “ 1.5 5.3 6.6 7.6 8.3 9.0 10.6 9.0 11.5 13.4 14.9 16.2 19.4

Midpoint RA p “ 0.95 p “ 0.99

d 1 2 3 4 5 8 1 2 3 4 5 8

θ “ 5 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2
θ “ 3 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.3 0.4 0.5 0.5 0.7
θ “ 2.5 0.2 0.2 0.3 0.3 0.4 0.5 0.4 0.6 0.7 0.8 1.0 1.3
θ “ 2 0.5 0.7 0.8 0.9 1.0 1.3 1.0 1.4 1.7 2.0 2.2 2.8
θ “ 1.5 3.0 3.8 4.3 4.7 5.1 6.0 5.1 6.5 7.5 8.3 9.0 10.6

Expectation RA p “ 0.95 p “ 0.99

d 1 2 3 4 5 8 1 2 3 4 5 8

θ “ 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
θ “ 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
θ “ 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
θ “ 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1
θ “ 1.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2

2.3. Example: Location-Scale Family

We assume that the Xi belong to the same location-scale family of dfs, i.e., Fip¨q “ F pp¨ ´ µiq{σiq,
i “ 1, . . . , d for some df F . Denote also µ “

řd
i“1 µi and σ “

řd
i“1 σi.

2.3.1. Upper Bound

By Equation (7), the convex order-maximal element in SpF1, . . . , Fdq is given by:

Sc “
d
ÿ

i“1

F´1i pUq “ µ` σF´1pUq, where U „ Up0, 1q

Hence,
eτ “ µ` σeτ pF

´1
pUqq “ e`τ
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which can be computed using the procedure described in Equation (3). This also means that when the
margins have the same shape, the bound based on subadditivity Equation (9) is the best possible.

2.3.2. Lower Bound

As mentioned before, obtaining an element in the admissible class that is minimum in the sense of
convex order is often difficult or not even possible to achieve. However, in case the marginal dfs are from
the same location-scale family that is symmetric, we can express the minimal element in the admissible
class explicitly and, thus, also obtain the best-possible lower bound on the expectile.

Theorem 3. Let Xi „ Fip¨q “ F pp¨ ´ µiq{σiq, i “ 1, . . . , d belong to the location-scale family of a
symmetric df F . Suppose without loss of generality that σ1 ě σi, i “ 2, . . . , d.

(i) If σ1 ě
řd
i“2 σi, then a minimal element in SpF1, . . . , Fdq in convex order is:

S` “ F´11 pUq `
řd
i“2 F

´1
i p1´ Uq “

řd
i“1 µi `

´

σ1 ´
řd
i“2 σi

¯

F´1pUq, where U „ Up0, 1q

Correspondingly,
eτ “

řd
i“1 µi `

´

σ1 ´
řd
i“2 σi

¯

eτ pF
´1pUqq

(ii) Otherwise, if F furthermore admits a unimodal density, then the minimal element in the admissible
class is the constant µ “

řd
i“1 µi, and thus, eτ “ µ.

Proof. (i) Case σ1 “
řd
i“2 σi is trivial. If σ1 ą

řd
i“2 σi, we use the well-known fact that the convex

order is consistent with the ordering of expected shortfall (note that VaRupXq “ F´1X puq). In particular,
Theorem 3.A.5 in [52] states that:

X ďcx Y ô

ż 1

p

F´1X puq du ď

ż 1

p

F´1Y puq du @p P p0, 1q and ErXs “ ErY s

Clearly,X`
1 “ F´11 pUq andX`

i “ F´1i p1´Uq, i “ 2, . . . , d have the required dfs, so S` “
řd
i“1X

`
i P S.

If F is continuous, then for any S “
řd
i“1Xi P S and any p P p0, 1q, we have that:

ż 1

p

F´1
S`
puq du “ ErS`1tX`

1ąF
´1
1 ppqus ď ErS1tX1ąF

´1
1 ppqus ď

ż 1

p

F´1S puq du (11)

The first inequality follows from the fact that tX`
1 ą F´11 ppqu “ tX`

i ă F´1i p1 ´ pqu, i “ 2, . . . , d and
A “ tXi ă F´1i p1 ´ pqu minimizes ErXi1As over events A of probability 1 ´ p. Similarly, the second
inequality follows because ErS1As is maximal when A “ tS ą F´1S ppqu.

If F is not continuous, then the indicators in Equation (11) need to be augmented by adding sets,
such as:

 

X`
1 “ F´11 ppq, V ď pPpX`

1 ď F´11 ppqq ´ pq{PpX`
1 “ F´11 ppqq

(

, where V „ Up0, 1q (independent)

to the first one (and similarly for the others). Since the dfs are symmetric and belong to a location-scale
family, the atoms at F´1ppq, F´11 ppq and F´1i p1´ pq, i “ 2, . . . , d are of the same size.

In Case (ii), the rvs are jointly mixable by Corollary 3.6 in [41], and hence, the result follows.
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Note that Theorem 3 is of interest beyond the context of expectiles, as the convex order least element
also yields lower bounds on, e.g., variance and ES in this admissible class. An early result in this
direction was [53], where identical symmetric unimodal distributions with a differentiable density are
considered. It is shown that for such a df F , there exist Xi „ F , i “ 1, . . . , d, in the form Xi “ RUi,
where Ui „ Up´1, 1q and R is a continuous rv. Then, using that the uniform distribution is completely
mixable (an explicit construction is given), it follows that also F is completely mixable. This model can
be considered as a scale mixture of uniform distributions, where R is the scale factor, common to all
margins. In Section 4, more general factor models are considered, and Theorem 3 is applied to find the
minimal element in the convex order and to compute exact lower bounds in an example.

3. Bounds when the Mean and Variance of the Sum Are Known

We consider the case in which additional to the marginal information, also the variance of S is known,
i.e., we consider the admissible class SpF1, . . . , Fd, s

2q,

SpF1, . . . , Fd, s
2
q “ tX1 ` . . .`Xd : Xi „ Fi, i “ 1, . . . , d and VarpX1 ` . . .`Xdq “ s2u

where s2 ą 0 is a compatible variance constraint. In this setting, the bounds on eτ will be denoted es2τ and
es

2

τ . It is not so clear how to determine these best-possible bounds. Instead, we proceed by considering a
larger admissible class that is easier to deal with,4 but gives weaker bounds. Note that in the case of VaR,
in [30], it is shown that the weaker bounds are typically close to the best-possible ones. In the following
sections, let m “

řd
1 ErXis, and denote:

M2pm, s
2
q :“ tS P L2 : ErSs “ m,VarpSq “ s2u (12)

3.1. Upper Bound with Variance Constraint

Since SpF1, . . . , Fd, s
2q is a subset ofM2pm, s

2q, we find that es2τ ď B, where:

B :“ supteτ pSq : S PM2pm, s
2
qu (13)

It will become apparent that variables supported on two points play an important role in the classM2.

Definition 4. A random variable is X called diatomic if PpX “ aq “ p and PpX “ bq “ 1 ´ p for
some a ă b and p P p0, 1q.

The expectile of such a diatomic random variable has a simple expression,

eτ pXq “
p1´ τqpa` τp1´ pqb

p1´ τqp` τp1´ pq
(14)

4 Note indeed that the admissible class SpF1, . . . , Fd, s
2q reflects d ` 1 constraints rendering optimization difficult. By

relaxing the d (infinite dimensional) constraints on the marginal distributions and substituting them by the portfolio
mean constraint, we enlarge the class (as there are many marginal distributions that yield the same portfolio mean) and
effectively obtain two constraints only, which greatly facilitates the optimization.
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Theorem 5. The maximum expectile B defined in Equation (13) is given by:

B “ m` s

c

q

1´ q

where q “ p2τ ´ 1q2. It is attained by a diatomic rv with support ta, bu and mass τ at a, where:

a “ m´ s
b

1´τ
τ
,

b “ m` s
a

τ
1´τ

Proof. Denote by A ĂM2pm, s
2q the subset of diatomic variables. The proof further consists of two

steps. First, we construct a variable Xτ P A that maximizes eτ on A. Next, we show that Xτ also
provides the solution to Equation (13). Any Xp P A has two support points ap, bp with mass p at ap,

ap “ m´ s
b

1´p
p
,

bp “ m` s
b

p
1´p

where 0 ă p ă 1. Substituting ap and bp into Equation (14) yields:

eτ pXpq “ m` s
p2τ ´ 1q

a

p1´ pqp

p1´ pqτ ` p1´ τqp
(15)

0 0.2 0.4 0.6 0.8 1
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Figure 1. Expectile eτ pXpq for a diatomic rv Xp (standardized to m “ 0, s “ 1), as a
function of p P p0, 1q. The maximum is attained at p “ τ ; the minimum is approached as
pÑ 0 or pÑ 1.

Using differentiation with respect to p, we find that eτ pXpq attains its maximum on p0, 1q when p “ τ

(see also Figure 1). Hence, the variable that maximizes eτ on A is given by:

Xτ “

#

m´ s
b

1´τ
τ

with probability τ,

m` s
a

τ
1´τ

with probability 1´ τ

For this rv, defining q “ p2τ ´ 1q2, Equation (15) simplifies to:

eτ pXτ q “ m` s
pτ ´ 1{2q
a

p1´ τqτ
“ m` s

c

q

1´ q



Risks 2015, 3 610

Now, consider any S PM2pm, s
2q. Without loss of generality, we can express S “ F´1S pUq for some

standard uniformly distributed rv U . Letting p “ FSpeτ pSqq, the variable S can also be written as:

S “ F´1S pUq1tUďpu ` F
´1
S pUq1tUąpu

Define a diatomic variable Y such that ErY s “ m and eτ pY q “ eτ pSq by

Y “ ppm´ p1´ pqESppSqq{pq1tUďpu ` ESppSq1tUąpu

From Jensen’s inequality, it follows that VarpY q ď VarpSq “ s2. Since Y is diatomic and the right-hand
side of Equation (15) is increasing in s (recall that τ P r1{2, 1q),

eτ pSq “ eτ pY q ď eτ pXpq ď eτ pXτ q

which completes the proof.

The bound B does not make use of the specific information on the marginal distributions. When the
variance is “too high”, the unconstrained bound eτ will be stronger. In the opposite case,B will dominate
eτ . We formulate the following corollary.

Corollary 6.
es

2

τ ď min tB, eτu

Remarks.

(i) A procedure called the extended rearrangement algorithm (ERA) was introduced in [30] and makes
it possible to compute an approximation of es2τ from below, using both the marginal, as well as the
variance information. This algorithm will be applied in an example in Section 4.3.

(ii) Denote by C “ sup tVaRτ pSq : S PM2pm, s
2qu and by D “ sup tESτ pSq : S PM2pm, s

2qu. A
similar proof as in Theorem 5 shows that C and D are attained by the same diatomic variable Xτ

that attains the bound B; see also [30]. We find that:

C “ D “ m` s

c

τ

1´ τ

and, thus, that B ă C “ D. On the other hand, the numerical value of these upper bounds would
coincide for eτ , VaRα and ESβ , if we set α “ β “ p2τ ´ 1q2.

3.2. Lower Bound with Variance Constraint

From the proof of Theorem 5, it follows that:

A :“ inf
 

eτ pSq : S PM2pm, s
2
q
(

is given by A “ m p“ ErSsq. Indeed, eτ pXpq Ñ m as p Ñ 0, respectively p Ñ 1; see also Figure 1.
Moreover, this bound cannot be improved by assuming either an upper bounded support or a lower
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bounded support.5 Hence, we conclude that working in the moment spaceM2 does not make it readily
possible to improve on eτ .

4. Bounds for Factor Models

A factor model is introduced in [32] as a way to include additional information on the dependence
structure and, hence, reduce the DU. This model considers rvs Xi and a factor W for which the bivariate
distributions Hi of pXi,W q are known. The aggregate risk S “ X1 ` . . . ` Xd then belongs to the
factor-constrained admissible class:

SpHi, . . . , Hdq “ tX1 ` . . .`Xd : pXi,W q „ Hi, i “ 1, . . . , du

In the following, denote by Fi the marginal distribution of Xi and by Fi|w the conditional distribution
of pXi|W “ wq, i “ 1, . . . , d (if defined). The additional information of this factor structure leads to
narrower factor-constrained DU bounds,

efτ “ infteτ pSq : S P Sf
pH1, . . . , Hdqu,

efτ “ supteτ pSq : S P Sf
pH1, . . . , Hdqu

In the rest of this section, we consider a model where, conditional on a non-negative factor W with
distribution G, the rvs Xi belong to the location-scale family of distribution F0.

Xi “ µi ` γiW ` σi
?
WZi, Zi „ F0, Zi |ùW, i “ 1, . . . , d, and W „ G (16)

Models of this type are called location-scale mixture models and have a broad range of applications,
going back to [55,56], where a particular location-scale mixture family (generalized hyperbolic) is
introduced. In the area of financial modeling, [57] show that this family allows a good fit of asset
returns; [58,59] apply it for pricing; and [60] apply it in the context of Garch models. Specific
consideration has been given in the literature to sub-families of this class; see, for example, [61,62] for
the case of the multivariate variance gamma distribution, as well as [63,64] for the case of multivariate
skew-t distributions.

4.1. Upper Bound

According to Theorem 4.1 in [32], the largest element in the convex order is achieved in the case
when, conditional on the factor, the margins are comonotonic. Thus, computing the upper bound on risk
in such a model is as easy as computing eτ pXiq, since the conditionally comonotonic sum belongs to the
same class of location-scale mixtures:

ScW “ µ` γW ` σ
?
WF´10 pUq, where µ “

d
ÿ

1

µi, γ “
d
ÿ

1

γi, σ “
d
ÿ

1

σi

and W |ù U „ Up0, 1q. In particular, we find that efτ “ eτ pS
c
W q.

5 Assuming a compact support would improve the lower bound, but we do not elaborate on this case here and refer to [54].
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4.2. Lower Bound

The minimal element in the convex order sense is given by the following result (counterpart to
Theorem 4.1 in [32]).

Theorem 7. If S`w is a convex order-minimal element in Sw “ SpF1|w, . . . , Fd|wq for each w, then S`W
is a minimal element in SfpH1, . . . , Hdq and efτ “ eτ pS

`
W q.

Proof. Since S`w P Sw, it can be written as
řd
i“1Xi,w for some Xi,w „ Fi|w, i “ 1, . . . , d. Thus,

pXi,W ,W q have the required bivariate distributions, and S`W P Sf. To show it is minimal, consider
any T P SfpH1, . . . , Hdq, and denote Tw “ T |pW “ wq P Sw. By the definition of the convex order,
ErφpS`wqs ď ErφpTwqs for any convex function φ. Using monotonicity and the tower property, we obtain:

ErφpS`W qs ď ErφpT qs

which completes the proof.

Let σ` “ maxt0, 2 maxdi“1tσiu ´
řd
j“1 σju. By Theorem 3, if the df F0 in model Equation (16) is

symmetric and unimodal, then a minimal element in Sw is:

S`w “ µ` γw ` σ`
?
wF´10 pUq, U „ Up0, 1q

Thus, by Theorem 7, S`W “ µ ` γW ` σ`
?
WF´10 pUq is a convex order minimal element in the

factor-constrained admissible class. Moreover, since U is independent of W , S`W also belongs to the
same mixture family as the margins, so the corresponding lower bound efτ “ eτ pS

`
W q can be computed

as easily as eτ pXiq. Note that the assumption that F0 is symmetric is natural, since the location-mixing
term γiW can be used to add asymmetry to the df of Xi.

4.3. Example: Skewed Student t Distribution

The results in Sections 4.1 and 4.2 apply for general choices of dfs F0 and G in Equation (16). The
most well-known location-scale mixture class is that of normal mean-variance mixtures, i.e., the case
when F0 “ Φ. If, in addition, W follows the generalized inverse Gaussian (GIG) distribution, then
the family of generalized hyperbolic (GH) distributions is obtained; see Section 6.2.3 in [28]. This is a
flexible class of distributions that exhibits skewness and heavy tails and is therefore useful for modeling
financial data. Moreover, it can also be extended to the multivariate GH distribution,

X “ µ` γW `
?
WAZ, Z „ N p0, Idq (17)

where vectors in Rd are written in bold, Id is the identity matrix and Σ “ AAJ is the Cholesky
decomposition of the scale matrix. The multivariate GH class is closed under linear operations, so it
has the portfolio property, which is useful for applications. In this section, a particular subclass of GH is
considered: the skew-t distributions.

The hyperbolic skewed Student t distribution is a special case of normal mean-variance mixtures,
where the mixing distribution is the inverse-gamma df; see [64]. The inverse-gamma distribution
IΓpα, βq has density:

fpx;α, βq “
βα

Γpαq
x´α´1 exp

ˆ

´
β

x

˙
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Setting F0 “ Φ and G “ IΓpν{2, ν{2q in Equation (16) results in Xi „ Skew-tνpµi, γi, σ
2
i q.

The multivariate skew-t subclass of the GH distribution Equation (17) is also closed under linear
transformations. Using Theorem 4.1 in [32], the factor-constrained worst-case dependence structure
is achieved using A with σ “ pσ1, . . . , σdq

J as the first column and zeros in the others (conditional
comonotonicity), resulting in a degenerate matrix Σ. The corresponding aggregate risk is:

ScW „ Skew-tνpµ, γ, σq, where µ “
d
ÿ

i“1

µi, γ “
d
ÿ

i“1

γi, σ “
d
ÿ

i“1

σi

Applying Theorems 3 and 7, the factor-constrained lower bounds in the “dominated” case σ` “

2 maxdi“1tσiu ´
řd
j“1 σj ě 0 (see Case (i) of Theorem 3) can be attained using A with σ as the first

column, except ´σi in row i corresponding to the largest σi and zeros in other columns (conditional
countermonotonicity with respect to the i-th margin). The corresponding aggregate risk is then:

S`W „ Skew-tνpµ, γ, σ
`
q

The inverse df and tail integral (as well as the df and density) of a skew-t distribution can be computed
using the methods in [65], which rely on the use of a Bessel function, numerical integration and root
search (and are computationally intensive). Hence, we can apply the iterative algorithm Equation (3)
(using the df and tail integral) to compute its expectile. Thus, we have a method to obtain the upper,
respectively lower, factor-constrained DU bound. The unconstrained upper bound on the expectile can
be computed using the iterative procedure Equation (8) (based on the tail integral, inverse df and density)
and the unconstrained lower bound using the “expectation” version of RA introduced in Section 2.2.1.

Note that the conditionally jointly mixable case cannot be attained using a multivariate GH
dependence structure. In this case, S`W “ µ ` γW follows a scaled and translated inverse-gamma
distribution. In order to apply the iterative procedure Equation (3), we need the df and tail integral (TI)
for inverse-gamma. For a general W „ IΓpα, βq, we calculate, using the substitution u “ β{t,

FW pxq “

ż x

0

fW ptqdt “
1

Γpαq

ż 8

β{x

uα´1e´udu

which is the (normalized) incomplete gamma function. In MATLAB, this can be computed using the
function gammainc(b./x,a,‘upper’). Similarly, we have:

TIW pxq “

ˆ

β

α ´ 1

˙

1

Γpα ´ 1q

ż β{x

0

uα´2e´udu

which is given by b/(a-1)*gammainc(b./x,a-1,‘lower’) in MATLAB.
In Table 2, the expectile bounds for two examples of a skew-t distribution are listed. The parameters

were selected to be in the range observed when fitting skew-t to daily stock returns (scaled by a factor of
250) of companies in the S&P100 index. Model A is a conditionally jointly-mixable case, and Model B is
a “dominated” case. First, notice that the approximate upper bound e`τ is very close to the best-possible
bound eτ in all cases. Next, observe that due to the positive dependence the factor model induces,
the value of the factor-constrained upper bound is similar to the unconstrained one, whereas the factor
structure noticeably improves the lower bound; this is in agreement with the observations in [32]. In
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Model A, the unconstrained lower bound is close to the mean, so the margins are “almost” jointly
mixable.

Table 2. Upper and lower dependence uncertainty (DU) bounds for eτ pSq for two skew-t
examples with d “ 8. Column eτ lists values for a multivariate skew-t distributed X with a
diagonal Σ matrix.

Model A. ErSs “ 1.24, ν “ 4.5,µ “ p´0.2,´0.15, . . . , 0.15q,

γ “ p´0.25,´0.15, . . . , 0.45q,σ “ p4.5, 5, . . . , 8q

τ eτ efτ eτ efτ eτ e`τ

0.8 1.24 2.16 13.70 35.58 35.62 35.63
0.9 1.24 3.02 21.63 57.14 57.21 57.22
0.95 1.24 4.14 29.65 78.73 78.85 78.87
0.99 1.25 8.44 51.18 135.63 135.98 136.02
0.999 1.30 23.30 96.78 251.11 252.65 252.84

Model B. ErSs “ 1.13, ν “ 5,µ “ p´0.2,´0.15, . . . , 0.15q,

γ “ p´0.25,´0.15, . . . , 0.45q,σ “ p3.5, 3.5, . . . , 3.5, 25.5q

τ eτ efτ eτ efτ eτ e`τ

0.8 1.91 2.18 19.34 34.58 34.61 34.62
0.9 2.50 3.01 30.68 55.29 55.36 55.37
0.95 3.15 3.99 41.90 75.74 75.84 75.86
0.99 5.15 7.34 70.80 128.00 128.28 128.31
0.999 10.05 17.51 126.92 228.06 229.15 229.29

In order to illustrate the influence of variance information on the bounds, we first need to find the
feasible range for VarpSq “ s2. The law of total variance yields:

VarpSq “ ErVarpS|W qs ` VarpErS|W sq

“ ErW Varp
ř

σiZiqs ` γ
2 2ν2

pν ´ 4qpν ´ 2q2

as long as ν ą 4. The first term lies in the range r0, σ2ν{pν ´ 2qs, corresponding to conditional joint
mixability up to conditional comonotonicity. In Figure 2, we plot for Model B the variance-constrained
bound B from Theorem 5 (based on the sole knowledge of the first two moments of the sum S), and
we compare it with the unconstrained upper bound e. We also plot the variance-constrained bound
obtained by means of the extended rearrangement algorithm (ERA), which in addition to the first two
moments of S, also takes into account the marginal distributions of the components Xi (see [30] for a
description of this algorithm). Variance constraints s2 are taken in the range corresponding to standard
deviation s P r1.9, 64.6s. We observe that variance information yields a considerably reduced upper
bound B, as long as s2 is small enough. As the parameter τ increases, the bound B becomes weaker and
is relevant on a smaller range of s2. The approximate bound computed using ERA is very close to the
bound B, indicating that B can nearly be attained by constructing the appropriate dependence among
the random variables (with the given marginal distributions). This dependence yields a sum S that has a
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(nearly) diatomic structure, i.e., S becomes distributed as the random variable in Theorem 5. However,
the highest variance that S can possibly attain, under the constraint that it is diatomic and consistent
with the marginal distributions, occurs when its upper atom is given by b “

řd
i“1 ESτ pXiq. Therefore,

when the variance constraint is too high, we cannot expect ERA to return a diatomic distribution for
S; see also Figure 3, where the distribution function of S obtained using ERA is plotted for different
variance constraints.
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Figure 2. Moment space upper bound B on the expectile, and an approximation of es2τ
computed using the extended rearrangement algorithm (ERA), as a function of the standard
deviation constraint s on the horizontal axis. The unconstrained expectile bounds are also
plotted for the sake of comparison. The dotted vertical line is the maximum standard
deviation of a diatomic random variable, which is consistent with the marginal upper- and
lower-tail expectations.
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Figure 3. Distribution function of S computed using ERA for Model B, τ “ 0.8. In the
left panel, a standard deviation constraint sconstr “ 25 is applied and attained by ERA. In the
right panel, a constraint sconstr “ 58 is attempted, but cannot be attained, resulting in a lower
actual standard deviation sERA “ 43.2; moreover, the distribution is not diatomic. The dotted
lines are the optimal locations of the atoms from Theorem 5.
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Remarks.

(i) More generally, the GIG and, hence, (non-skew) hyperbolic distributions are infinitely divisible
(see [66]), so methods from [67] can be applied to compute the inverse df and the tail integral. In
turn, the iterative procedure Equation (3) can be applied to compute the expectile.

(ii) The most time-consuming quantity to compute was the unconstrained lower bound on the
expectile, because the RA requires a discretization of the margins, i.e., calculating the skew-t
inverse df d ¨ N times (each margin took about 10 min on an Intel i5 2.5 GHz desktop with
N “ 104). A similar calculation with Pareto dfs as in Table 1 was done for this discretization size.
The maximum error using the expectation RA was 0.4% for p “ 0.99 and 1.5% for p “ 0.999;
hence, this discretization size was deemed sufficient for our purposes.

(iii) Due to the mixture form of GH distributions, a faster method for discretizing the margins could
be using a Monte Carlo sample. Since GH dfs can have heavy tails, a similar approach to the
“expectation” discretization for RA was considered, specifically, rejecting any sample points that
lie below F´1i p1{Nq or above F´1i p1´ 1{Nq and adding two points equal to the expectations over
the corresponding intervals. However, this method resulted in a large variance over repeated trials,
so the obtained bounds were not used.

4.4. Adding Variance Information

In this section, we consider factor models with additional variance information. We define the
admissible class:

SpHi, . . . , Hd, s
2
W q “ tS P SpHi, . . . , Hdq : VarpS|W q “ s2W u

where the conditional variance is known for each outcome of W . Consider the problem:

ef,s
2

τ “ sup
 

eτ pSq : S P SpHi, . . . , Hd, s
2
W q

(

Theorem 8. Let e‹ be given by:

e‹ “ m` p2τ ´ 1qE

„

b

s2W ` pmW ´ e‹q2


where m :“ ErSs and mW :“ ErS|W s. Then:

ef,s
2

τ ď e‹

Proof. Let SW P SpHi, . . . , Hd, s
2
W q. By [54] (Case C13), the upper bound6 on the stop-loss premium

over Sw PM2pmw, s
2
wq (recall the definition ofM2 in Equation (12)) is given by:

ErpSw ´ eq1tSwąeus ď
1

2

´

mw ´ e`
a

s2w ` pmw ´ eq2
¯

(18)

6 This upper bound can also be derived using the reasoning in the proof of Theorem 5. Indeed, one shows that the upper
bound is attained by a diatomic variable Xp (with mean mw and variance s2w). Next, one optimizes over p P p0, 1q to
obtain Equation (18).
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which holds for any e P R. Using monotonicity and the tower property, we obtain an upper bound for
the unconditional stop-loss premium ErpSW ´ eq1tSWąeus. Writing θ “ p2τ ´ 1q{p1´ τq and invoking
Lemma 2, we find that eτ pSW q ď e‹, where e‹ satisfies:

e˚ “ m`
θ

2
E

„

mW ´ e
‹
`

b

s2W ` pmW ´ e‹q2


“ m`
θ

2
pm´ e‹q `

θ

2
E

„

b

s2W ` pmW ´ e‹q2


The stated equation for e‹ follows by rearranging.

Remark. If the conditional variances s2w are not known, but the total variance s2 :“ VarpSq is available,
then we still have that ef,s2τ ď min

 

efτ , B
(

.

5. Dependence Uncertainty Spread Comparison

In this section, the dependence uncertainty (DU) spreads of VaR, ES and the expectile are compared,
where the DU spread for a risk measure ρ is defined as:

ρpSq ´ ρpSq

Here, we focus on the Fréchet admissible class (only marginal dfs known); see Section 2. The behavior
of DU spreads of VaR and ES for large-dimensional portfolios is discussed in [68]. In order to make the
resulting capital requirements similar under the different risk measures, one could, for example, use the
same level α “ β “ τ for all three, but multiply by different scaling factors.

The approach taken by the Basel Committee on Banking Supervision [69], when moving from
VaR0.99 as the risk measure for the trading book capital requirements to ES, consists of adjusting the
confidence level, apparently so that the numerical value of ESβpXq for a normally-distributed rv X

matches VaR0.99pXq “ 2.3263. Doing so yields β « 0.97423, which gets rounded to β “ 0.975.
Similarly, [24] suggest using a parameter τ , such that eτ pXq “ VaR0.99pXq for X „ Φ; this yields
τ « 0.99855. Note that rounding to 0.999 would give e0.999 “ 2.4358; therefore, five significant digits
τ “ 0.99855 will be used in this section when comparing the expectile to the other risk measures. ES is
not as sensitive to the level β, and ES0.975 “ 2.3378 is close enough to VaR0.99.

In Figures 4 and 5, the DU spreads are plotted in the homogeneous case for different Pareto and
Student t distributions, respectively, as functions of the dimension d. For the Pareto example, VaR, VaR,
ES and e are computed from the minimal elements in the convex order, obtained using the methods from
[45]. ES and e are obtained using the comonotonic dependence structure.

Since the Student t distribution is symmetric and unimodal, it is completely mixable [53], so the
lower bounds on ES and the expectile are equal to the mean. To compute the lower bound on VaR, we
apply RA. As the Student t density is decreasing from the median, [45] can again be applied for the
upper bound on VaR. While VaR and ES focus only on the losses, the expectile also takes the gains into
account. Student t has two infinite tails, which leads to a larger DU spread for the expectile, especially in
the most heavy-tailed case. Overall, the results indicate that for the chosen adjusted significance levels,
the DU spread is typically the smallest for ES.
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Figure 4. DU spread for VaR, expected shortfall (ES) and the expectile of the sum of d Paretopθq

distributed margins, with d on the horizontal axis. The DU spread is given relative to ES`β pSq.
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Figure 5. The DU spread for VaR, ES and the expectile of the sum of d Gaussian or Student tpνq

distributed margins, with d on the horizontal axis. The DU spread is given relative to ES`β pSq.

6. Final Remarks

In the statistics literature, the expectile functional and its properties related to regressions are well
known. Recently, in the context of risk measurement, the expectile risk measure has also been shown to
have appealing theoretical properties. We contribute to the analysis of this new risk measure by focusing
on its properties under dependence uncertainty. We first summarize and provide improved methods
for computing bounds on the expectile of a portfolio in the case of no information on dependence
(unconstrained bounds) and prove analytic bounds for a location-scale family. Next, we discuss the
influence of dependence information on these unconstrained bounds.

In this regard, we provide simple-to-compute bounds under an additional constraint on the portfolio
variance and show that the upper bound can be considerably improved. By contrast, the unconstrained
lower bound cannot be improved by only using the information on the first two moments.

Furthermore, we provide bounds in the factor-constrained case. A family of commonly-used
distributions, the normal mean-variance mixtures, is considered as a special case. These models are
particularly tractable, and we state the conditional best- and worst-case dependence structures explicitly.
We note that due to the restriction on dependence that such a factor model induces, the lower eτ bounds
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were significantly improved (for high values of τ ). The upper bounds are only slightly reduced, and the
simple (unconstrained) upper bound based on subadditivity remains adequate for practical purposes.

We compare the dependence uncertainty spread of the expectile (i.e., the difference between the
maximum and minimum possible value of the risk measure when only marginal information is used) with
that of VaR and ES. We observe that the results are not favorable to the expectile. While the expectile
has been proposed as the elicitable counterpart to ES, it is not clear that this property is indeed crucial for
back-testing, and evidence exists to the contrary (e.g., [70]). Hence, gaining elicitability may not justify
the increase in the dependence uncertainty spread. However, alternative mathematical approaches exist
to “provide a broadly similar level of risk capture” ([71], p. 18) when moving to another risk measure
(or even sticking with VaR), such as scaling. Although this makes the interpretation less clear (it was
not clear for the expectile to begin with), it would allow reducing the confidence level, hence making
statistical analysis more feasible and also reducing model uncertainty (see Table 2).
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