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Abstract: A spectrum of upper bounds
`

QαpX; pq
˘

αPr0,8s
on the (largest) p1 ´ pq-quantile

QpX; pq of an arbitrary random variable X is introduced and shown to be stable and
monotonic in α, p, and X , with Q0pX; pq “ QpX; pq. If p is small enough and the
distribution of X is regular enough, then QαpX; pq is rather close to QpX; pq. Moreover,
these quantile bounds are coherent measures of risk. Furthermore, QαpX; pq is the optimal
value in a certain minimization problem, the minimizers in which are described in detail.
This allows of a comparatively easy incorporation of these bounds into more specialized
optimization problems. In finance, Q0pX; pq and Q1pX; pq are known as the value at risk
(VaR) and the conditional value at risk (CVaR). The bounds QαpX; pq can also be used as
measures of economic inequality. The spectrum parameter α plays the role of an index of
sensitivity to risk. The problems of the effective computation of the bounds are considered.
Various other related results are obtained.

Keywords: quantile bounds; coherent measures of risk; sensitivity to risk; measures of
economic inequality; value at risk (VaR); conditional value at risk (CVaR); stochastic
dominance; stochastic orders
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1. Introduction

The most common measure of risk is apparently the value at risk, VaRppXq, defined as the largest p1´
pq-quantile of (the distribution of) a random variable (r.v.) X , which represents an uncertain future loss
on an investment portfolio. Whereas very simple conceptually, the risk measure VaRp is not subadditive
and, hence, is not coherent, in the sense established by Artzner et al. [1] and widely accepted afterwards.
Other flaws of the value at risk are also well known; quoting Rockafellar and Uryasev [2]:

A very serious shortcoming of VaR, in addition, is that it provides no handle on the extent of
the losses that might be suffered beyond the threshold amount indicated by this measure. It
is incapable of distinguishing between situations where losses that are worse may be deemed
only a little bit worse, and those where they could well be overwhelming. Indeed, it merely
provides a lowest bound for losses in the tail of the loss distribution and has a bias toward
optimism instead of the conservatism that ought to prevail in risk management.

In other words, the VaR is not sensitive to the amount of risk beyond the threshold. Moreover, as
is also discussed in [2], VaRppXq is unstable in p and unstable in (the distribution of) X: arbitrarily
small changes of the confidence level 1 ´ p or of the composition of the portfolio may effect arbitrarily
large changes of the value of VaRppXq. Closely related to these two kinds of instability is the inherent
instability in the computation of VaRppXq.

To address these deficiencies of the VaR, Rockafellar and Uryasev [2,3] proposed an alternative risk
measure, CVaR, which stands for the conditional value at risk. In the case when (the distribution
of) the r.v. X is continuous, CVaRppXq can be defined as EpX|X ě VaRppXqq, the conditional
expectation of the loss given that the loss X exceeds the threshold VaRppXq. This alternative risk
measure, CVaRppXq, is coherent and stable in p and in X; it also has a certain, fixed sensitivity to the
losses beyond the threshold.

However, CVaRppXq provides no handle on the degree of sensitivity to risk. In particular, as will be
demonstrated in Section 5.2, one can easily construct two portfolios with the same value of CVaRp, such
that one of the portfolios is clearly riskier than the other. Such indifference may generally be considered
“an unwanted characteristic”; see e.g. comments on pages 36 and 48 in [4].

The main objective of the present paper is to remedy this indifference and provide the mentioned
missing handle on the degree of sensitivity to risk, while retaining the coherence and stability properties.
Indeed, we shall present a spectrum of risk measures

`

QαpX; pq
˘

αPr0,8s
, where the spectrum parameter

αmay be considered the degree of sensitivity to risk: the greater the value of α, the greater the sensitivity
to risk; see Section 5.2 for details. In particular, α “ 8 corresponds to an “exponentially” high degree of
risk sensitivity. Moreover, the proposed spectrum of risk measures possesses the following properties:

(I) The common risk measures VaR and CVaR are in the spectrum: Q0pX; pq “ VaRppXq and
Q1pX; pq “ CVaRppXq; thus, QαpX; pq interpolates between VaRppXq and CVaRppXq for
α P p0, 1q and extrapolates from VaRppXq and CVaRppXq on towards higher degrees of risk
sensitivity for α P p1,8s. Details on this can be found in Section 5.1.

(II) The risk measure Qαp¨; pq is coherent for each α P r1,8s and each p P p0, 1q, but it is not coherent
for any α P r0, 1q and any p P p0, 1q. Thus, α “ 1 is the smallest value of the sensitivity index
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for which the risk measure QαpX; pq is coherent. One may also say that for α P r1,8s the risk
measure Qαp¨; pq inherits the coherence of CVaRp “ Q1p¨; pq, and for α P r0, 1q it inherits the
lack of coherence of VaRp “ Q0p¨; pq. For details, see Section 5.3.

(III) QαpX; pq is three-way stable and monotonic: in α P p0,8s, in p P p0, 1q, and in X . Moreover,
as stated in Theorem 3.4 and Proposition 3.5, QαpX; pq is nondecreasing in X with respect to
the stochastic dominance of any order γ P r1, α ` 1s; but, this monotonicity property breaks
down for the stochastic dominance of any order γ P pα ` 1,8s. Thus, the sensitivity index α
is in a one-to-one correspondence with the highest order of the stochastic dominance respected
by QαpX; pq.

Rockafellar and Uryasev [2] also wrote: “Most importantly for applications, however, CVaR can
be expressed by a remarkable minimization formula.” It will be shown (in Theorem 3.3) that our risk
measures QαpX; pq possess quite a similar variational representation for each α P p0,8s, which in
fact generalizes the minimization formula for CVaR. This representation allows of a comparatively
easy incorporation of the risk measures QαpX; pq into more specialized optimization problems, with
additional restrictions on the r.v. X; see Section 4.3 for details.

The spectrum of risk measures
`

QαpX; pq
˘

αPr0,8s
is naturally based on a previously developed

spectrum
`

PαpX;xq
˘

αPr0,8s
of upper bounds on the tail probability PpX ě xq for x P R, with

P0pX;xq “ PpX ě xq and P8pX;xq being the best possible exponential upper bound on PpX ě xq;
see, e.g., [5,6] and bibliography therein; a shorter version of [6] appeared as [7]. The spectrum
`

PαpX;xq
˘

αPr0,8s
is shown in the present paper to be stable and monotonic in α, x, and X . The

bounds PαpX;xq are optimal values in certain minimization problems. It is shown that the mentioned
minimization problems for which PαpX;xq and QαpX; pq are the optimal values are in a certain sense
dual to each other; in the special case α “ 8, this corresponds to the bilinear Legendre–Fenchel duality.

A few related results are obtained as well. In particular, a generalization of the Cillo–Delquie
necessary and sufficient condition for the so-called mean-risk (M-R) to be nondecreasing with respect to
the stochastic dominance of order 1 is presented, with a short proof. Moreover, a necessary and sufficient
condition for the M-R measure to be coherent is given.

It is also shown that the quantile bounds QαpX; pq can be used as measures of economic inequality,
and then the spectrum parameter α may be considered an index of sensitivity to inequality: the greater
is the value of α, the greater is the sensitivity of the function Qαp¨; pq to inequality.

In addition, it is demonstrated that PαpX;xq and QαpX; pq can be effectively computed.

The paper is structured as follows.

˚ In Section 2, the three-way stability and monotonicity, as well as other useful properties, of the
spectrum

`

PαpX;xq
˘

αPr0,8s
of upper bounds on tail probabilities are established.

˚ In Section 3, the corresponding properties of the spectrum
`

QαpX; pq
˘

αPr0,8s
of risk measures are

presented, as well as other useful properties.

˚ The matters of effective computation of PαpX;xq and QαpX; pq, as well as optimization of QαpX; pq

with respect to X , are considered in Section 4.
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˚ An extensive discussion of results is presented in Section 5, particularly in relation with
existing literature.

˚ Concluding remarks are collected in Section 6.

˚ The necessary proofs are given in Appendix A.

Further details can be found in the arXiv version of this paper [8].

2. An Optimal Three-Way Stable and Three-Way Monotonic Spectrum of Upper Bounds on
Tail Probabilities

Consider the family phαqαPr0,8s of functions hα : RÑ R given by the formula

hαpuq :“

$

’

’

&

’

’

%

Itu ě 0u if α “ 0,

p1` u{αqα` if 0 ă α ă 8,

eu if α “ 8

(2.1)

for all u P R. Here, as usual, It¨u denotes the indicator function, u` :“ 0 _ u and uα` :“ pu`q
α for all

real u.
Obviously, the function hα is nonnegative and nondecreasing for each α P r0,8s, and it is also

continuous for each α P p0,8s. Moreover, it is easy to see that, for each u P R,

hαpuq is nondecreasing and continuous in α P r0,8s. (2.2)

Next, let us use the functions hα as generalized moment functions and thus introduce the
generalized moments

AαpX;xqpλq :“ Ehα
`

λpX ´ xq
˘

. (2.3)

Here and in what follows, unless otherwise specified, X is any random variable (r.v.), x P R, α P r0,8s,
and λ P p0,8q. Since hα ě 0, the expectation in formula (2.3) is always defined, but may take the value
8. It may be noted that in the particular case α “ 0, one has

A0pX;xqpλq “ PpX ě xq, (2.4)

which does not actually depend on λ P p0,8q.
Now one can introduce the expressions

PαpX;xq :“ inf
λPp0,8q

AαpX;xqpλq “

$

’

’

’

’

&

’

’

’

’

%

PpX ě xq if α “ 0,

inf
λPp0,8q

E
`

1` λpX ´ xq{αqα` if 0 ă α ă 8,

inf
λPp0,8q

E eλpX´xq if α “ 8.

(2.5)

By the property stated in (2.2),AαpX;xqpλq and PαpX;xq are nondecreasing in α P r0,8s. In particular,

P0pX;xq “ PpX ě xq ď PαpX;xq. (2.6)
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It will be shown later (see Proposition 2.3) that PαpX;xq also largely inherits the property of hαpuq of
being continuous in α P r0,8s.

The definition (2.5) can be rewritten as

PαpX;xq “ inf
tPTα

ÃαpX;xqptq (2.7)

where

Tα :“

#

R if α P r0,8q,

p0,8q if α “ 8
(2.8)

and

ÃαpX;xqptq :“

$

’

&

’

%

EpX ´ tqα`
px´ tqα`

if α P r0,8q,

E epX´xq{t if α “ 8.
(2.9)

Here and subsequently, we also use the conventions 00 :“ 0 and a
0

:“ 8 for all a P r0,8s. The
alternative representation (2.7) of PαpX;xq follows because (i) AαpX;xqpλq “ ÃαpX;xqpx ´ α

λ
q for

α P p0,8q; (ii) A8pX;xqpλq “ Ã8pX;xqp 1
λ
q; and (iii) P0pX;xq “ PpX ě xq “ inftPp´8,xq PpX ą

tq “ inftPp´8,xq Ã0pX;xqptq.
In view of Formula (2.7), one can see (cf. Corollary 2.3 in [5]) that, for each α P r0,8s, PαpX;xq is

the optimal (that is, least possible) upper bound on the tail probability PpX ě xq given the generalized
moments E gα;tpXq for all t P Tα, where:

gα;tpuq :“

#

pu´ tqα` if α P r0,8q,

eu{t if α “ 8.
(2.10)

In fact (cf. e.g. Proposition 3.3 in [6]), the bound PαpX;xq remains optimal given the larger class of
generalized moments E gpXq for all functions g P H α, where

H α :“
 

g P RR : gpuq “
ş

Rgα;tpuqµpdtq for some µ P Mα and all u P R
(

, (2.11)

Mα denotes the set of all nonnegative Borel measures on Tα, and, as usual, RR stands for the set of all
real-valued functions on R. By Proposition 1(ii) in [9] and Proposition 3.4 in [6],

0 ď α ă β ď 8 implies H α
Ě H β. (2.12)

This provides the other way to come to the mentioned conclusion that

PαpX;xq is nondecreasing in α P r0,8s. (2.13)

By Proposition 1.1 in [10], the class H α of generalized moment functions can be characterized as
follows in the case when α is a natural number: for any g P RR, one has g P H α if and only if
g has finite derivatives gp0q :“ g, gp1q :“ g1, . . . , gpα´1q on R, such that gpα´1q is convex on R and
limxÑ´8 g

pjqpxq “ 0 for j “ 0, 1, . . . , α ´ 1. Moreover, by Proposition 3.4 in [6], g P H 8 if and only
if g is infinitely differentiable on R, and gpjq ě 0 on R and limxÑ´8 g

pjqpxq “ 0 for all j “ 0, 1, . . . .
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Thus, the greater the value of α, the narrower and easier to deal with is the class H α and the smoother
are the functions comprising H α. However, the greater the value of α, the farther away is the bound
PαpX;xq from the true tail probability PpX ě xq.

Of the bounds PαpX;xq, the loosest and easiest one to get is P8pX;xq, the so-called exponential
upper bound on the tail probability PpX ě xq. It is used very widely, in particular when X is the sum
of independent r.v.’s Xi, in which case one can rely on the factorization AαpX;xqpλq “ e´λx

ś

i E e
λXi .

A bound very similar to P3pX;xq was introduced in [11] in the case when X the sum of independent
bounded r.v.’s; see also [12–14]. For any α P p0,8q, the bound PαpX;xq is a special case of a more
general bound given in Corollary 2.3 in [5]; see also Theorem 2.5 in [5]. For some of the further
developments in this direction, see [7] and the bibliography therein. The papers mentioned in this
paragraph used the representation (2.7) of PαpX;xq, rather than the new representation (2.5). The
new representation appears, not only of more unifying form, but also more convenient as far as such
properties of PαpX;xq as the monotonicity in α and the continuity in α and in X are concerned; cf.
(2.2) and the proofs of Propositions 2.3 and 2.4; those proofs, as well as the proofs of most of the other
statements in this paper, are given in Appendix A. Yet another advantage of the representation (2.5) is
that, for α P r1,8q, the function AαpX;xqp¨q inherits the convexity property of hα, which facilitates the
minimization of AαpX;xqpλq in λ, as needed to find PαpX;xq by Formula (2.5); relevant details on the
remaining “difficult case” α P p0, 1q can be found in Section 4.1.

On the other hand, the “old” representation (2.7) of PαpX;xq is more instrumental in establishing
the mentioned connection with the classes H α of generalized moment functions; in proving Part (iii) of
Proposition 2.2; and in discovering and proving Theorem 3.3.

***

Some of the more elementary properties of PαpX;xq are presented in

Proposition 2.1.

(i) PαpX;xq is nonincreasing in x P R.

(ii) If α P p0,8q and EXα
` “ 8, then PαpX;xq “ 8 for all x P R.

(iii) If α “ 8 and E eλX “ 8 for all real λ ą 0, then P8pX;xq “ 8 for all x P R.

(iv) If α P p0,8q and EXα
` ă 8, then PαpX;xq Ñ 1 as x Ñ ´8 and PαpX;xq Ñ 0 as x Ñ 8,

so that 0 ď PαpX;xq ď 1 for all x P R.

(v) If α “ 8 and E eλ0X ă 8 for some real λ0 ą 0, then PαpX;xq Ñ 1 as x Ñ ´8 and
PαpX;xq Ñ 0 as xÑ 8, so that 0 ď PαpX;xq ď 1 for all x P R.

In view of Proposition 2.1, it will be henceforth assumed by default that the tail bounds PαpX;xq

– as well as the quantile bounds QαpX; pq, to be introduced in Section 3, and also the corresponding
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expressions AαpX;xqpλq, ÃαpX;xqptq, and BαpX; pqptq, as in Formulas (2.3), (2.9), and (3.9)) are
defined and considered only for r.v.’s X P Xα (unless indicated otherwise), where

Xα :“

$

’

’

&

’

’

%

X if α “ 0,
 

X P X : EXα
` ă 8

(

if α P p0,8q,
 

X P X : ΛX ‰ H
(

if α “ 8,

(2.14)

X is the set of all real-valued r.v.’s on a given probability space (implicit in this paper), and

ΛX :“
 

λ P p0,8q : E eλX ă 8
(

. (2.15)

Observe that the set Xα is a convex cone containing all real constants; for details on this, one may
see comments in the paragraph containing Formula (1.14) in [8].

As usual, we let }Z}α :“ pE |Z|αq1{α, the L α-norm of a r.v. Z, which is actually a norm if and only
if α ě 1.

It follows from Proposition 2.1 and Formula (2.6) that

PαpX;xq is nonincreasing in x P R, with PαpX; p´8q`q “ 1 and PαpX;8´q “ 0. (2.16)

Here, as usual, fpa`q and fpa´q denote the right and left limits of f at a.
One can say more in this respect. To do that, introduce

x˚ :“ x˚,X :“ sup suppX and p˚ :“ p˚,X :“ PpX “ x˚q. (2.17)

Here, as usual, suppX denotes the support set of (the distribution of the r.v.) X; speaking somewhat
loosely, x˚ is the maximum value taken by the r.v. X , and p˚ is the probability with which this value
is taken. It is of course possible that x˚ “ 8, in which case necessarily p˚ “ 0, since the r.v. X was
assumed to be real-valued.

Introduce also
xα :“ xα,X :“ inf Eαp1q, (2.18)

where
Eαppq :“ Eα,Xppq :“ tx P R : PαpX;xq ă pu. (2.19)

Recall that, according to the standard convention, for any subset E of R, inf E “ 8 if and only if
E “ H. Now, one can state

Proposition 2.2.

(i) For all x P rx˚,8q, one has PαpX;xq “ P0pX;xq “ PpX ě xq “ PpX “ xq “ p˚ Itx “ x˚u.

(ii) For all x P p´8, x˚q, one has PαpX;xq ą 0.

(iii) The function p´8, x˚sXR Q x ÞÑ PαpX;xq´1{α is continuous and convex if α P p0,8q; we use the
conventions 0´a :“ 8 and8´a :“ 0 for all real a ą 0; concerning the continuity of functions with
values in the set r0,8s, we use the natural topology on this set. Also, the function p´8, x˚s X R Q
x ÞÑ ´ lnP8pX;xq is continuous and convex, with the convention ln 0 :“ ´8.
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(iv) If α P p0,8s, then the function p´8, x˚s X R Q x ÞÑ PαpX;xq is continuous.

(v) The function R Q x ÞÑ PαpX;xq is left-continuous.

(vi) xα is nondecreasing in α P r0,8s, and xα ă 8 for all α P r0,8s.

(vii) If α P r1,8s, then xα “ EX; even for X P Xα, it is of course possible that EX “ ´8, in which
case PαpX;xq ă 1 for all real x.

(viii) xα ď x˚, and xα “ x˚ if and only if p˚ “ 1.

(ix) Eαp1q “ pxα,8q ‰ H.

(x) PαpX;xq “ 1 for all x P p´8, xαs.

(xi) If α P p0,8s, then PαpX;xq is strictly decreasing in x P rxα, x˚s X R.

This proposition will be useful when establishing continuity properties of the quantile bounds
considered in Section 3 and the matters of effective computation addressed in Section 4. Moreover,
Proposition 2.2 will be heavily used in the proof of Proposition 3.1 to establish basic properties of the
risk measures QαpX; pq.

For α P p1,8q, Parts (i), (iv), (vii), (x), and (xi) of Proposition 2.2 are contained in [6],
Proposition 3.2.

One may also note here that, by (2.16) and Part (v) of Proposition 2.2, the function PαpX; ¨q may be
regarded as the tail function of some r.v. Zα: PαpX;uq “ PpZα ě uq for all real u.

Some parts of Propositions 2.1 and 2.2 are illustrated in Example 1.3 in [8] and in the corresponding
figure there.

Proposition 2.3. PαpX;xq is continuous in α P r0,8s in the following sense: Suppose that pαnq is
any sequence in r0,8q converging to α P r0,8s, with β :“ supn αn and X P Xβ; then PαnpX;xq Ñ

PαpX;xq.

In view of Parts (ii) and (iii) of Proposition 2.1, the condition X P Xβ in Proposition 2.3 is essential.
Let us now turn to the question of stability of PαpX;xq with respect to (the distribution of) X . First

here, recall that one of a number of mutually equivalent definitions of the convergence in distribution,
Xn

D
ÝÑ
nÑ8

X , of a sequence of r.v.’s Xn to an r.v. X is the following: PpXn ě xq ÝÑ
nÑ8

PpX ě xq for all

real x such that PpX “ xq “ 0; cf.; cf. e.g. [15, §4 and Theorem 2.1].
We shall also need the following uniform integrability condition:

sup
n

EpXnq
α
` ItXn ą Nu ÝÑ

NÑ8
0 if α P p0,8q, (2.20)

sup
n

E eλXn ItXn ą Nu ÝÑ
NÑ8

0 for each λ P ΛX if α “ 8. (2.21)

Proposition 2.4. Suppose that α P p0,8s. Then PαpX;xq is continuous in X in the following sense.
Take any sequence pXnqnPN of real-valued r.v.’s such that Xn

D
ÝÑ
nÑ8

X and the uniform integrability
condition (2.20)- (2.21) is satisfied. Then one has the following.
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(i) The convergence
PαpXn;xq ÝÑ

nÑ8
PαpX;xq (2.22)

takes place for all real x ‰ x˚, where x˚ “ x˚,X as in (2.17); thus, by Parts (i) and (iv) of
Proposition 2.2, (2.22) holds for all real x that are points of continuity of the function PαpX; ¨q.

(ii) The convergence (2.22) holds for x “ x˚ as well, provided that PpXn “ x˚q ÝÑ
nÑ8

PpX “ x˚q. In

particular, (2.22) holds for x “ x˚ if PpX “ x˚q “ 0.

Note that in the case α “ 0 the convergence (2.22) may fail to hold, not only for x “ x˚, but for all
real x such that PpX “ xq ą 0.

***

Let us now discuss matters of monotonicity of PαpX;xq in X , with respect to various orders on the
mentioned set X of all real-valued r.v.’s X . Using the family of function classes H α, defined by (2.11),

one can introduce a family of stochastic orders, say
α`1
ď , on the set X by the formula

X
α`1
ď Y

def
ðñ E gpXq ď E gpY q for all g P H α,

where α P r0,8s and X and Y are in X . To avoid using the term “order” with two different meanings

in one phrase, let us refer to the relation
α`1
ď as the stochastic dominance of order α ` 1, rather than the

stochastic order of order α ` 1. In view of (2.11), it is clear that

X
α`1
ď Y ðñ E gα;tpXq ď E gα;tpY q for all t P Tα, (2.23)

so that, in the case when α “ m ´ 1 for some natural number m, the order
α`1
ď coincides with the

“m-increasing-convex” order ďm´icx as defined e.g. on page 206 in [16]. In particular,

X
1
ď Y ðñ PpX ą tq ď PpY ą tq for all t P R

ðñ PpX ě tq ď PpY ě tq for all t P R ðñ X
st
ď Y,

(2.24)

where
st
ď denotes the usual stochastic dominance of order 1, and:

X
2
ď Y ðñ EpX ´ tq` ď EpY ´ tq` for all t P R, (2.25)

so that
2
ď coincides with the usual stochastic dominance of order 2. Also,

X
st
ď Y iff for some r.v.’s X1 and Y1 one has X1 ď Y1, X1

D
“ X , and Y1

D
“ Y , (2.26)

where D
“ denotes the equality in distribution.

By (2.12), the orders
α`1
ď are graded in the sense that

if X
α`1
ď Y for some α P r0,8s, then X

β`1
ď Y for all β P rα,8s. (2.27)

A stochastic order, which is a “mirror image” of the order
α`1
ď , but only for nonnegative r.v.’s, was

presented by Fishburn in [17]; note Theorem 2 in [17] on the relation with a “bounded” version of this



Risks 2014, 2 358

order, previously introduced and studied in [18]. Denoting the corresponding Fishburn [17] order by
ďα`1, one has

X ďα`1 Y ðñ p´Y q
α`1
ď p´Xq, (2.28)

for nonnegative r.v.’sX and Y . However, as shown in this paper (recall Proposition 2.1), the condition of
the nonnegativity of the r.v.’s is not essential; without it, one can either deal with infinite expected values
or, alternatively, require that they be finite. The case when α is an integer was considered, in a different
form, in [19].

One may also consider the order ď´1
α defined by the condition that X ď´1

α Y if and only if X and Y
are nonnegative r.v.’s and F p´αqX ppq ď F

p´αq
Y ppq for all p P p0, 1q, where α P p0,8q,

F
p´αq
X ppq :“

1

Γpαq

ż

r0,pq

pp´ uqα´1 dF´1
X puq, (2.29)

F´1
X ppq :“ inftx P r0,8q : PpX ď xq ě pu “ ´Qp´X; pq (2.30)

with Qp¨; ¨q as in (3.3), and the integral in (2.29) is understood as the Lebesgue integral with respect to
the nonnegative Borel measure µ´1

X on r0, 1q defined by the condition that µ´1
X

`

r0, pq
˘

“ F´1
X ppq for all

p P p0, 1q; cf. [20,21]. Note that F p´1q
X ppq “ F´1

X ppq. For nonnegative r.v.’s, the order ď´1
α`1 coincides

with the order ďα`1 if α P t0, 1u; again see [20,21]. Even for nonnegative r.v.’s, it seems unclear how
the orders ďα`1 and ď´1

α`1 relate to each other for positive real α ‰ 1; see e.g. the discussion following
Proposition 1 in [20] and Note 1 on page 100 in [22].

The following theorem summarizes some of the properties of the tail probability bounds PαpX;xq

established above and also adds a few simple properties of these bounds.

Theorem 2.5. The following properties of the tail probability bounds PαpX;xq are valid.

Model-independence: PαpX;xq depends on the r.v. X only through the distribution of X .

Monotonicity in X: Pαp¨ ;xq is nondecreasing with respect to the stochastic dominance of order

α ` 1: for any r.v. Y such that X
α`1
ď Y , one has PαpX;xq ď PαpY ;xq. Therefore, Pαp¨ ;xq is

nondecreasing with respect to the stochastic dominance of any order γ P r1, α` 1s; in particular,
for any r.v. Y such that X ď Y , one has PαpX;xq ď PαpY ;xq.

Monotonicity in α: PαpX;xq is nondecreasing in α P r0,8s.

Monotonicity in x: PαpX;xq is nonincreasing in x P R.

Values: PαpX;xq takes only values in the interval r0, 1s.

α-concavity in x: PαpX;xq´1{α is convex in x if α P p0,8q, and lnPαpX;xq is concave in x if α “ 8.

Stability in x: PαpX;xq is continuous in x at any point x P R – except the point x “ x˚ when p˚ ą 0.

Stability in α: Suppose that a sequence pαnq is as in Proposition 2.3. Then PαnpX;xq Ñ PαpX;xq.

Stability in X: Suppose that α P p0,8s and a sequence pXnq is as in Proposition 2.4. Then
PαpXn;xq Ñ PαpX;xq.
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Translation invariance: PαpX ` c;x` cq “ PαpX;xq for all real c.

Consistency: Pαpc;xq “ P0pc;xq “ Itc ě xu for all real c; that is, if the r.v. X is the constant c, then
all the tail probability bounds PαpX;xq precisely equal the true tail probability PpX ě xq.

Positive homogeneity: PαpκX;κxq “ PαpX;xq for all real κ ą 0.

3. An Optimal Three-Way Stable and Three-Way Monotonic Spectrum of Upper Bounds
on Quantiles

Take any
p P p0, 1q (3.1)

and introduce the generalized inverse (with respect to x) of the bound PαpX;xq by the formula

QαpX; pq :“ inf Eα,Xppq “ inf
 

x P R : PαpX;xq ă p
(

, (3.2)

where Eα,Xppq is as in (2.19). In particular, in view of the equality in (2.6),

QpX; pq :“ Q0pX; pq “ inf
 

x P R : PpX ě xq ă p
(

“ inf
 

x P R : PpX ą xq ă p
(

, (3.3)

which is a p1 ´ pq-quantile of (the distribution of) the r.v. X; actually, QpX; pq is the largest one in the
set of all p1´ pq-quantiles of X .

It follows immediately from (3.2), (2.13), and (3.3) that

QαpX; pq is an upper bound on the quantile QpX; pq, and

QαpX; pq is nondecreasing in α P r0,8s.
(3.4)

Thus, one has a monotonic spectrum of upper bounds, QαpX; pq, on the quantile QpX; pq, ranging from
the tightest bound, Q0pX; pq “ QpX; pq, to the loosest one, Q8pX; pq, which latter is based on the
exponential bound P8pX;xq “ infλą0 E e

λpX´xq on PpX ě xq.
Also, it is obvious from (3.2) that

QαpX; pq is nonincreasing in p P p0, 1q. (3.5)

Basic properties of QαpX; pq are collected in

Proposition 3.1. Recall the definitions of x˚ and xα in (2.17) and (2.18). The following statements are
true.

(i) QαpX; pq P R.

(ii) If p P p0, p˚s X p0, 1q then QαpX; pq “ x˚.

(iii) QαpX; pq ď x˚.

(iv) QαpX; pq ÝÑ
pÓ0

x˚.
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Figure 1. Illustration of Proposition 3.1
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p
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(v) If α P p0,8s, then the function

pp˚, 1q Q p ÞÑ QαpX; pq P pxα, x˚q (3.6)

is the unique inverse to the continuous strictly decreasing function

pxα, x˚q Q x ÞÑ PαpX;xq P pp˚, 1q. (3.7)

Therefore, the function (3.6), too, is continuous and strictly decreasing.

(vi) If α P p0,8s, then for any y P
`

´8, QαpX; pq
˘

, one has PαpX; yq ą p.

(vii) If α P r1,8s, then QαpX; pq ą EX .

Example 3.2. Some parts of Proposition 3.1 are illustrated in Figure 1, with graphs t
`

p,QαpX; pq
˘

:

0 ă p ă 1u in the important case when the r.v. X takes only two values. Then, by the translation
invariance property stated below in Theorem 2.5, without loss of generality (w.l.o.g.) EX “ 0. Thus,
X “ Xa,b, where a and b are positive real numbers and Xa,b is a r.v. with the uniquely determined
zero-mean distribution on the set t´a, bu. Let us take a “ 1 and b “ 3, with the values of α equal 0

(black), 1
2

(blue), 1 (green), 2 (orange), and 8 (red). One may compare this picture with the one for
PαpX;xq in Example 1.3 in [8] (where the same values of a, b, and α were used), having in mind that
the function QαpX; ¨q is a generalized inverse to the function PαpX; ¨q.

The definition (3.2) of QαpX; pq is rather complicated, in view of the definition (2.5) of PαpX;xq.
So, the following theorem will be useful, as it provides a more direct expression of QαpX; pq; at that,
one may again recall (3.3), concerning the case α “ 0.

Theorem 3.3. For all α P p0,8s

QαpX; pq “ inf
tPTα

BαpX; pqptq, (3.8)

where Tα is as in (2.8) and

BαpX; pqptq :“

$

’

’

&

’

’

%

t`
}pX ´ tq`}α

p1{α
for α P p0,8q,

t ln
E eX{t

p
for α “ 8.

(3.9)
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Proof of Theorem 3.3. The proof is based on the simple observation, following immediately from the
definitions (2.9) and (3.9), that the dual level sets for the functions ÃαpX;xq and BαpX; pq are the same:

TÃαpX;xqppq “ TBαpX;pqpxq (3.10)

for all α P p0,8s, x P R, and p P p0, 1q, where

TÃαpX;xqppq :“ tt P Tα : ÃαpX;xqptq ă pu and

TBαpX;pqpxq :“ tt P Tα : BαpX; pqptq ă xu.

Indeed, by (2.7) and (3.10),

PαpX;xq ă p ðñ inf
tPTα

ÃαpX;xqptq ă p

ðñ TÃαpX;xqppq ‰ H ðñ TBαpX;pqpxq ‰ H ðñ x ą inf
tPTα

BαpX; pqptq.

Now, (3.8) follows immediately by (3.2).

Note that the case α “ 8 of Theorem 3.3 is a special case of Proposition 1.5 in [23], and the
above proof of Theorem 3.3 is similar to that of Proposition 1.5 in [23]. Correspondingly, the duality
presented in the above proof of Theorem 3.3 is a generalization of the bilinear Legendre–Fenchel duality
considered in [23].

The following theorem presents the most important properties of the quantile bounds QαpX; pq,
in addition to the variational representation of QαpX; pq given by Theorem 3.3.

Theorem 3.4. The following properties of the quantile bounds QαpX; pq are valid.

Model-independence: QαpX; pq depends on the r.v. X only through the distribution of X .

Monotonicity in X: Qαp¨ ; pq is nondecreasing with respect to the stochastic dominance of order

α ` 1: for any r.v. Y such that X
α`1
ď Y , one has QαpX; pq ď QαpY ; pq. Therefore, Qαp¨ ; pq is

nondecreasing with respect to the stochastic dominance of any order γ P r1, α` 1s; in particular,
for any r.v. Y such that X ď Y , one has QαpX; pq ď QαpY ; pq.

Monotonicity in α: QαpX; pq is nondecreasing in α P r0,8s.

Monotonicity in p: QαpX; pq is nonincreasing in p P p0, 1q, and QαpX; pq is strictly decreasing in
p P rp˚, 1q X p0, 1q if α P p0,8s.

Finiteness: QαpX; pq takes only (finite) real values.

Concavity in p´1{α or in ln 1
p
: QαpX; pq is concave in p´1{α if α P p0,8q, and Q8pX; pq is concave

in ln 1
p
.

Stability in p: QαpX; pq is continuous in p P p0, 1q if α P p0,8s.

Stability in X: Suppose that α P p0,8s and a sequence pXnq is as in Proposition 2.4. Then
QαpXn; pq Ñ QαpX; pq.
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Stability in α: Suppose that α P p0,8s and a sequence pαnq is as in Proposition 2.3. Then
QαnpX; pq Ñ QαpX; pq.

Translation invariance: QαpX ` c; pq “ QαpX; pq ` c for all real c.

Consistency: Qαpc; pq “ c for all real c; that is, if the r.v. X is the constant c, then all of the quantile
bounds QαpX; pq equal c.

Positive sensitivity: Suppose here that X ě 0. If at that PpX ą 0q ą 0, then QαpX; pq ą 0 for all
α P p0,8s; if, moreover, PpX ą 0q ą p, then Q0pX; pq ą 0.

Positive homogeneity: QαpκX; pq “ κQαpX; pq for all real κ ě 0.

Subadditivity: QαpX; pq is subadditive in X if α P r1,8s; that is, for any other r.v. Y (defined on the
same probability space as X) one has:

QαpX ` Y ; pq ď QαpX; pq `QαpY ; pq.

Convexity: QαpX; pq is convex in X if α P r1,8s; that is, for any other r.v. Y (defined on the same
probability space as X) and any t P p0, 1q one has

Qα

`

p1´ tqX ` tY ; p
˘

ď p1´ tqQαpX; pq ` tQαpY ; pq

The inequality Q1pX; pq ď Q8pX; pq, in other notations, was mentioned (without proof) in [24];
of course, this inequality is a particular, and important, case of the monotonicity of QαpX; pq in
α P r0,8s. That Qαp¨ ; pq is nondecreasing with respect to the stochastic dominance of order α ` 1

was shown (using other notations) in [25] in the case α “ 1.
The following two propositions complement the monotonicity property of QαpX; pq in X stated

in Theorem 3.4.

Proposition 3.5. The upper bound α` 1 on γ in the statement of the monotonicity of QαpX; pq in X in
Theorem 3.4 is exact in the following rather strong sense. For any α P r0,8q, there exist r.v.’s X and Y

in Xα such that X
γ
ď Y for all γ P pα ` 1,8s, whereas QαpX; pq ą QαpY ; pq.

Proposition 3.6. Suppose that an r.v. Y is stochastically strictly greater than X
`

which may be written

as X
st
ă Y ; cf., (2.24)

˘

in the sense that X
st
ď Y and for any v P R there is some u P pv,8q such that

PpX ě uq ă PpY ě uq. Then QαpX; pq ă QαpY ; pq if α P p0,8s.

The latter proposition will be useful in the proof of Proposition 3.7 below.
Given the positive homogeneity, it is clear that the subadditivity and convexity properties ofQαpX; pq

easily follow from each other. In the statements in Theorem 3.4 on these two mutually equivalent
properties, it was assumed that α P r1,8s. One may ask whether this restriction is essential. The
answer to this question is “yes”:
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Proposition 3.7. There are r.v.’s X and Y such that for all α P r0, 1q and all p P p0, 1q one has
QαpX`Y ; pq ą QαpX; pq`QαpY ; pq, so that the functionQαp¨; pq is not subadditive (and, equivalently,
not convex).

It is well known (see e.g. [1,2,26]) thatQpX; pq “ Q0pX; pq is not subadditive inX; it could therefore
have been expected thatQαpX; pq will not be subadditive inX if α is close enough to 0. In quite a strong
and specific sense, Proposition 3.7 justifies such expectations.

***

Consider briefly the rather important case when the distribution of X belongs to a location-scale
family; that is, when (the distribution of) the r.v. X has a probability density function (pdf) of the form

fµ,σpxq “
1

σ
f
´x´ µ

σ

¯

(3.11)

for all real x, where f is a pdf, µ P R (is the “location” parameter), and σ P p0,8q (is the “scale”
parameter). Then f may be referred to as the “standard” pdf of this family. Perhaps the most common
example of a location-scale family is the normal distribution family, for which f is the standard normal
pdf, and µ and σ are the mean and the standard deviation of the distribution.

Proposition 3.8. If the r.v. X has a pdf of the form (3.11), then

QαpX; pq “ µ` σ QαpZ; pq, (3.12)

where Z stands for any r.v. with the “standard” pdf f .

This follows immediately by the translation invariance, positive homogeneity, and
model-independence properties stated in Theorem 3.4. Note that, given any location-scale family,
QαpZ; pq depends only on α and p.

Remark 3.9. It is shown in [8] that for small enough values of p the quantile boundsQαpX; pq are close
enough to the true quantiles Q0pX; pq “ VaRppXq provided that the right tail of the distribution of X
is light enough and regular enough, depending on α; see Proposition 2.7 in [8].

For instance, if the r.v. X has the normal distribution with mean µ and standard deviation σ, then, by
(3.12) and the monotonicity of QαpX; pq in α,

µ` σ Q0pZ; pq “ Q0pX; pq ď QαpX; pq ď Q8pX; pq “ µ` σ Q8pZ; pq. (3.13)

Next, obviously Q0pZ; pq “ Φ´1p1 ´ pq, where Φ´1 is the inverse to the standard normal distribution
function Φ, and Q8pZ; pq “

b

2 ln 1
p
. Also, 1 ´ Φpuq “ expt´u2{p2 ` op1qqu as u Ñ 8. Therefore,

Q0pZ; pq “ Φ´1p1 ´ pq „
pÓ0

b

2 ln 1
p
“ Q8pZ; pq. Here, as usual, a „ b means a{b Ñ 1. Hence, by

(3.13), QαpX; pq « Q0pX; pq “ VaRppXq for small p ą 0 and all α P p0,8s.
Another easy to consider case, also illustrating Remark 3.9, is that of the exponential location-scale

family, with the “standard” pdf f given by the formula fpxq “ e´x Itx ą 0u.
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Let then the r.v.X have the corresponding pdf fµ,σ, so that fµ,σpxq “ 1
σ

exp
 

´
x´µ
σ

(

Itx ą µu. Let Z
be any r.v. with the “standard” exponential pdf f . Then, obviously, Q0pZ; pq “ ln 1

p
. Also, it is not hard

to see that here Q8pZ; pq “ ´W´1p´p{eq, where W´1 is the p´1q-branch of the Lambert function [27,
pages 3 and 16]; that is, ´Q8pZ; pq is the only root u P p´8,´1s of the equation ueu “ ´p{e. Note
that ueu “ exptp1 ` op1qquu as u Ñ ´8. Therefore, Q8pZ; pq “ ´W´1p´p{eq „

pÓ0
ln 1

p
“ Q0pZ; pq.

Hence, by the monotonicity in α, one has QαpZ; pq „
pÓ0

Q0pZ; pq uniformly in α P r0,8s. Hence, again

by (3.13), QαpX; pq « Q0pX; pq “ VaRppXq for small p ą 0 and all α P p0,8s.
For α P r1,8q and a r.v. Z as in the above paragraph, one has B1p0q “ 1 ´ pα

p
ď 0 if 0 ă p ď pα,

where Bptq :“ BαpZ; pqptq and pα :“ Γpα`1q
αα

; then, in view of Part (i) of Proposition 4.4, the infimum
in (3.8) is attained at some point tα P r0,8q; in fact, tα “ ln pα

p
. It follows that QαpZ; pq “ α ` ln pα

p

for all α P r1,8q and p P p0, pαq; so, one can now establish directly that QαpZ; pq „
pÓ0

ln 1
p
“ Q0pZ; pq

for each α P r1,8q.

4. Computation of the Tail Probability and Quantile Bounds

4.1. Computation of PαpX;xq

The computation of PαpX;xq in the case α “ 0 is straightforward, in view of the equality in (2.6). If
x P rx˚,8q, then the value of PαpX;xq is easily found by Part (i) of Proposition 2.2. Therefore, in the
rest of this subsection it may be assumed that α P p0,8s and x P p´8, x˚q.

In the case when α P p0,8q, using (2.5), the inequality

`

1` λpX ´ xq{α
˘α

`
ď 2pα´1q`

`

λαXα
` ` pα ´ λxq

α
`

˘

{αα, (4.1)

the condition X P Xα, and dominated convergence, one sees that AαpX;xqpλq is continuous in
λ P p0,8q and right-continuous in λ at λ “ 0

`

assuming the definition (2.3) for λ “ 0 as well
˘

, and hence

PαpX;xq “ inf
λPr0,8q

AαpX;xqpλq. (4.2)

Similarly, using in place of (4.1) the inequality eλX ď 1 ` eλ0X whenever 0 ď λ ď λ0, one can
show that A8pX;xqpλq is continuous in λ P ΛX

`

recall (2.15)
˘

and right-continuous in λ at λ “ 0, so
that (4.2) holds for α “ 8 as well – provided that X P X8. Moreover, by the Fatou lemma for the
convergence in distribution (see e.g. Theorem 5.3 in [15]), A8pX;xqpλq is lower-semicontinuous in λ
at λ “ λ˚ :“ sup ΛX even if λ˚ P RzΛX . It then follows by the convexity of A8pX;xqpλq in λ that
A8pX;xqpλq is left-continuous in λ at λ “ λ˚ whenever λ˚ P R; at that, the natural topology on the set
r0,8s is used, as it is of course possible that A8pX;xqpλ˚q “ 8.

Since x P p´8, x˚q, one can find some y P px,8q such that PpX ě yq ą 0 (of course, necessarily
y P px, x˚s); so, one can introduce

λmax :“ λmax,α :“ λmax,α,X :“

$

’

’

&

’

’

%

α

y ´ x

´ 1

PpX ě yq1{α
´ 1

¯

if α P p0,8q,

1

y ´ x
ln

1

PpX ě yq
if α “ 8.

(4.3)
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Then, by (2.3), AαpX;xqpλq ě E
`

1 ` λpX ´ xq{α
˘α

`
ItX ě yu ě

`

1 ` λpy ´ xq{α
˘α

PpX ě yq ą

1 if α P p0,8q and λ P pλmax,α,8q, and A8pX;xqpλq ě E eλpX´xq ItX ě yu ě eλpy´xq PpX ě

yq ą 1 if λ P pλmax,8,8q. Therefore, for all α P p0,8s one has AαpX;xqpλq ą 1 ě PαpX;xq “

infλPp0,8qAαpX;xqpλq provided that λ P pλmax,8,8q, and hence

PαpX;xq “ inf
λPr0,λmax,αs

AαpX;xqpλq, if α P p0,8s and x P p´8, x˚q. (4.4)

Therefore and because λmax,α ă 8, the minimization of AαpX;xqpλq in λ in (4.4) in order
to compute the value of PαpX;xq can be done effectively if α P r1,8s, because in this case
AαpX;xqpλq is convex in λ. At that, the positive-part moments E

`

1 ` λpX ´ xq{αqα`, which express
AαpX;xqpλq for α P p0,8q in accordance with (2.3), can be efficiently computed using formulas in [28];
cf. e.g. Section 3.2.3 in [6]. Of course, for specific kinds of distributions of the r.v. X , more explicit
expressions for the positive-part moments can be used.

In the remaining case, when α P p0, 1q, the function λ ÞÑ AαpX;xqpλq cannot in general be
“convexified” by any monotonic transformations in the domain and/or range of this function, and the
set of minimizing values of λ does not even have to be connected, in the following rather strong sense:

Proposition 4.1. For any α P p0, 1q, p P p0, 1q, and x P R, there is a r.v. X (taking three distinct values)
such that PαpX;xq “ p and the infimum infλPp0,8qAαpX;xqpλq in (2.5) is attained at precisely two
distinct values of λ P p0,8q.

Proposition 4.1 is illustrated by

Example 4.2. Let X be a r.v. taking values ´27
11
,´1, 2 with probabilities 1

4
, 1

4
, 1

2
; then x˚ “ 2. Also

let α “ 1
2

and x “ 0, so that x P p´8, x˚q, and then let λmax be as in (4.3) with y “ x˚ “ 2,
so that here λmax “

3
4
. Then the minimum of AαpX; 0qpλq over all real λ ě 0 equals

?
3

2
and is

attained at each of the two points, λ “ 11
54

and λ “ 1
2
, and only at these two points. The graph

 `

λ,A1{2pX; 0qpλq
˘

: 0 ď λ ď λmax

(

is shown here in Figure 2.

Figure 2. Illustration of Example 4.2
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Nonetheless, effective minimization of AαpX;xqpλq in λ in (4.4) is possible even in the case α P
p0, 1q, say by the interval method. Indeed, take any α P p0, 1q and write

AαpX;xqpλq “ A`α pX;xqpλq ` A´α pX;xqpλq,
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where (cf. (2.3)) A`α pX;xqpλq :“ E
`

1 ` λpX ´ xq{αqα` ItX ě xu and A´α pX;xqpλq :“ E
`

1 `

λpX ´ xq{αqα` ItX ă xu. Just as AαpX;xqpλq is continuous in λ P r0,8q, so are A`α pX;xqpλq and
A´α pX;xqpλq. It is also clear that A`α pX;xqpλq is nondecreasing and A´α pX;xqpλq is nonincreasing in
λ P r0,8q.

So, as soon as the minimizing values of λ are bracketed as in (4.4), one can partition the finite interval
r0, λmax,αs into a large number of small subintervals ra, bs with 0 ď a ă b ď λmax,α. For each such
subinterval,

Ma,b :“ max
λPra,bs

AαpX;xqpλq ď A`α pX;xqpbq ` A´α pX;xqpaq,

ma,b :“ min
λPra,bs

AαpX;xqpλq ě A`α pX;xqpaq ` A´α pX;xqpbq,

so that, by the continuity of A˘α pX;xqpλq in λ,

Ma,b ´ma,b ď A`α pX;xqpbq ´ A`α pX;xqpaq ` A´α pX;xqpaq ´ A´α pX;xqpbq ÝÑ 0

as b ´ a Ñ 0, uniformly over all subintervals ra, bs of the interval r0, λmax,αs. Thus, one can effectively
bracket the value PαpX;xq “ infλPr0,λmax,αsAαpX;xqpλq with any degree of accuracy; this same
approach will work, and perhaps may be sometimes useful, for α P r1,8q as well.

4.2. Computation of QαpX; pq

Proposition 4.3. (Quantile bounds: Attainment and bracketing).

(i) If α P p0,8q, then inftPTα BαpX; pqptq “ inftPRBαpX; pqptq in (3.8) is attained at some t opt P R
and hence

QαpX; pq “ min
tPR

BαpX; pqptq “ BαpX; pqpt optq; (4.5)

moreover, for any
s P R and p̃ P pp, 1q,

necessarily
t opt P rtmin, tmaxs, (4.6)

where
tmax :“ BαpX; pqpsq, tmin :“ t0,min ^ t1,min, (4.7)

t0,min :“ Q0pX; p̃q, t1,min :“
pp̃{pq1{α t0,min ´ tmax

pp̃{pq1{α ´ 1
. (4.8)

(ii) Suppose now that α “ 8. Then inftPTα BαpX; pqptq “ inftPp0,8qBαpX; pqptq in (3.8) is attained,
and hence

Q8pX; pq “ min
tPp0,8q

B8pX; pqptq

unless
x˚ ă 8 and p ď p˚, (4.9)
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where x˚ and p˚ are as in (2.17). On the other hand, if conditions (4.9) hold, then B8pX; pqptq is
strictly increasing in t ą 0 and hence inftPTα BαpX; pqptq “ inftPp0,8qBαpX; pqptq in (3.8) is not
attained; rather,

Q8pX; pq “ inf
tą0

B8pX; pqptq “ B8pX; pqp0`q “ x˚.

For instance, in the case when α “ 0.5, p “ 0.05, and X has the Gamma distribution with the
shape and scale parameters equal to 2.5 and 1, respectively, Proposition 4.3 yields tmin ą 4.01 (using
p̃ “ 0.095) and tmax ă 6.45.

When α “ 0, the quantile bound QαpX; pq is simply the quantile QpX; pq, which can be effectively
computed by Formula (3.3), since the tail probability PpX ą xq is monotone in x. Next, as was noted in
the proof of Theorem 3.4, BαpX; pqptq is convex in t when α P r1,8s, which provides for an effective
computation of QαpX; pq by Formula (3.8).

Therefore, it remains to consider the computation – again by Formula (3.8) – of QαpX; pq for
α P p0, 1q. In such a case, as in Section 4.1, one can use an interval method. As soon as the minimizing
values of t are bracketed as in (4.6), one can partition the finite interval rtmin, tmaxs into a large number
of small subintervals ra, bs with tmin ď a ă b ď tmax. For each such subinterval,

Ma,b :“ max
tPra,bs

BαpX; pqptq ď b` p´1{α
}pX ´ aq`}α,

ma,b :“ min
tPra,bs

BαpX; pqptq ě a` p´1{α
}pX ´ bq`}α,

so that, by the continuity of }pX ´ tq`}α in t,

Ma,b ´ma,b ď b´ a` p´1{α
p}pX ´ aq`}α ´ }pX ´ bq`}αq ÝÑ 0

as b´ aÑ 0, uniformly over all subintervals ra, bs of the interval rtmin, tmaxs. Thus, one can effectively
bracket the value QαpX; pq “ inftPRBαpX; pqptq; this same approach will work, and perhaps may be
useful, for α P r1,8q as well.

In accordance with Proposition 3.2 in [6], consider

x˚˚ :“ x˚˚,X :“ sup
`

psuppXqztx˚u
˘

P r´8, x˚s Ď r´8,8s. (4.10)

The following proposition will be useful.

Proposition 4.4.

(i) If α P r1,8s, then BαpX; pqptq is convex in the pair pX, tq P Xα ˆ Tα.

(ii) If α P p1,8q, then BαpX; pqptq is strictly convex in t P p´8, x˚˚s X R.

(iii) B8pX; pqptq is strictly convex in t P ts P p0,8q : E eX{s ă 8u, unless PpX “ cq “ 1 for some
c P R.

If α P p1,8q then, by Part (ii) of Proposition 4.4 and Part (i) of Proposition 4.3, the set
argmin

tPR
BαpX; pqptq is a singleton one; that is, there is exactly one minimizer t P R of BαpX; pqptq.

If α “ 1, then BαpX; pqptq “ B1pX; pqptq is convex, but not strictly convex, in t, and the set
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argmin
tPR

BαpX; pqptq of all minimizers of BαpX; pqptq in t coincides with the set of all p1´ pq-quantiles

of X , as mentioned at the conclusion of the derivation of the identity (5.10). Thus, if α “ 1, then the
set argmin

tPR
BαpX; pqptq may in general be, depending on p and the distribution of X , a nonzero-length

closed interval. Finally, if α P p0, 1q then, in general, the set argmin
tPR

BαpX; pqptq does not have to

be connected:

Proposition 4.5. For any α P p0, 1q, p P p0, 1q, and x P R, there is a r.v. X (taking three distinct values)
such that QαpX; pq “ x and the infimum inftPTα BαpX; pqptq “ inftPRBαpX; pqptq in (3.8) is attained
at precisely two distinct values of t.

Proposition 4.5 follows immediately from Proposition 4.1, by the duality (3.10) and the
change-of-variables identity AαpX;xqpλq “ ÃαpX;xqpx ´ α{λq for α P p0,8q, used to establish
(2.7)–(2.9). At that, λ P p0,8q is one of the two minimizers of AαpX;xqpλq in Proposition 4.1 if
and only if t :“ x´ α{λ is one of the two minimizers of BαpX; pqptq in Proposition 4.5.

Proposition 4.1 is illustrated by the following example, which is obtained from Example 4.2 by the
same duality (3.10).

Example 4.6.
As in Example 4.2, let α “ 1

2
, and let X be a r.v. taking values ´27

11
,´1, 2 with probabilities 1

4
, 1

4
, 1

2
.

Also let p “
?

3
2

. Then the minimum of BαpX; pqptq over all real t equals zero and is attained at each of
the two points, t “ ´27

11
and t “ ´1, and only at these two points. The graph

 `

t, B1{2

`

X;
?

3
2

˘

ptq
˘

: ´

3 ď t ď 3
(

is shown in Figure 3. The minimizing values of t here, ´27
11

and ´1, are related with the
minimizing values of λ in Example 4.2, 11

54
and 1

2
, by the mentioned formula t “ x ´ α{λ (here, with

x “ 0 and α “ 1
2
).

Figure 3. Illustration of Example 4.6

-

27

11
-1 2

t

2

3

B1�2HX ; 3 �2LHtL

4.3. Optimization of the Risk Measures QαpX; pq with Respect to X

As was pointed out, the variational representation of QαpX; pq given in (3.8) allows for a
comparatively easy incorporation of these risk measures into more specialized optimization problems,
with restrictions on the r.v. X . Indeed, (3.8) immediately yields the following generalization of
Theorem 14 of Rockafellar and Uryasev [2]:
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Theorem 4.7. (Optimization shortcut.)Take any α P p0,8s and any p P p0, 1q. Let Yα be any subset
of the set Xα of r.v.’s defined by Formula (2.14). Then, for any α P p0,8s and any p P p0, 1q, the
minimization of the risk measure QαpX; pq in X P Yα is equivalent to the minimization of BαpX; pqptq

in pt,Xq P pTα,Yαq, in the sense that

inf
XPYα

QαpX; pq “ inf
pt,XqPpTα,Yαq

BαpX; pqptq. (4.11)

The mentioned Theorem 14 in [2] is the special case of Theorem 4.7 corresponding to α “ 1; recall
that in this case, according to (5.1), QαpX; pq coincides with CVaRppXq.

Suppose that α P r1,8s and the set Yα is convex. Then, in view of Part (i) of Proposition 4.4,
computing the infimum on the right-hand side of (4.11) is a problem of convex optimization, for which
there are very effective algorithms.

In view of the variational representations of PαpX;xq given in (2.5) and (2.7), the result similar to
Theorem 4.7 obviously holds for PαpX;xq as well.

When the uncertain potential losses on the assets under consideration are modeled as jointly
normal r.v.’s, the optimization can be further simplified. Indeed, suppose that the column matrix
X “ rX1, . . . , Xns

T of the uncertain losses X1, . . . , Xn on assets 1, . . . , n is multivariate normal with
mean vector µ “ rµ1, . . . , µns

T and n ˆ n covariance matrix Σ; here, as usual, T denotes the matrix
transposition. Let w “ rw1, . . . , wns

T be the column matrix of the weights of the assets 1, . . . , n

in the considered investment portfolio, so that the potential loss on the portfolio is X :“ w ¨ X :“

wTX “ w1X1`¨ ¨ ¨`wnXn, which is normally distributed with mean µ “ w ¨µ and standard deviation
σ “

?
wTΣw. Thus, in view of Proposition 3.8, the investor is now in the Markowitz mean-variance

risk-assessment framework. For instance, the problem of minimizing the risk measure QαpX; pq given
the mean loss µ (which, it is hoped, is negative) is equivalent to the quadratic optimization problem of
minimizing the value of the quadratic form wTΣw over all weight “vectors” w satisfying the restrictions
(say) w ¨ µ “ µ, w ¨ 1 “ 1, and Kw ě 0, where 1 :“ r1, . . . , 1

loomoon

n

sT , K is a rectangular real matrix, 0

is the the zero column matrix of the appropriate height, and the inequality Kw ě 0 is considered
component-wise, so that the latter inequality requires some or all of the weights w1, . . . , wn (or some of
their linear combinations) to be nonnegative.

4.4. Additional Remarks on the Computation and Optimization

As demonstrated in Propositions 4.1 and 4.5, the computation of PαpX;xq and QαpX; pq in the case
α P p0, 1q inherits some of the difficulties known for the case α “ 0, when QαpX; pq coincides with
VaRppXq.

One may also note that – even when a minimizing value of λ or t in Formulas (2.5) – (2.7), or (3.8)
is not identified quite perfectly – one still obtains, by those formulas, an upper bound on PαpX;xq or
QαpX; pq and hence on the true tail probability PpX ě xq or the true quantile QpX; pq, respectively. A
similar remark is valid concerning the optimization shortcut (4.11).

Using variational formulas – of which Formulas (2.5), (2.7), and (3.8) are examples – to define
or compute measures of risk is not peculiar to the present paper. Indeed, as mentioned previously,
the special case of (3.8) with α “ 1 is the well-known variational representation (5.10) of CVaR,
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obtained in [2,3,26]. The risk measure given by the the Securities and Exchange Commission (SEC)
rules Subsection 3.2 in [1] is another example where the calculations are done, in effect, according to a
certain minimization formula, which is somewhat implicit and complicated in that case.

5. Implications for Risk Assessment in Finance and Inequality Modeling in Economics

5.1. The Spectrum
`

QαpX; pq
˘

αPr0,8s
Contains VaR and CVaR.

In financial literature (see, e.g., [2,26,29]), the quantile bounds Q0pX; pq and Q1pX; pq are known as
the value at risk and conditional value at risk, denoted as VaRppXq and CVaRppXq, respectively:

Q0pX; pq “ VaRppXq and Q1pX; pq “ CVaRppXq; (5.1)

here, X is interpreted as a priori uncertain potential loss. The value of Q1pX; pq is also known as
the expected shortfall (ES) [30], average value at risk (AVaR) [31] and expected tail loss (ETL) [32].
As indicated in [2], at least in the case when there is no atom at the quantile point QpX; pq, the quantile
bound Q1pX; pq is also called the “mean shortfall” [33], whereas the difference Q1pX; pq ´ QpX; pq is
referred to as “mean excess loss” [34,35].

5.2. The Spectrum Parameter α as a Risk Sensitivity Index

Greater values of the spectrum parameter α correspond to greater sensitivity to risk; cf., e.g., [36].
This is manifested, first of all, by the monotonicity of QαpX; pq in α, as stated in Theorem 3.4

˘

.
`

In the
normal-distribution realm, this monotonicity is expressed as the growing (with α) weight of the standard
deviation σ of the loss X in its linear combination with the mean µ in (3.12).

˘

Moreover, in view of the monotonicity in X (also stated in Theorem 3.4) and Proposition 3.5, the
sensitivity index α is in a one-to-one correspondence with the highest order of the stochastic dominance
respected by QαpX; pq.

As pointed out in the Introduction, the most popular coherent risk measure CVaR has a fixed and
rather limited sensitivity to risk and thus allows of no variation in the degree of such sensitivity. In fact,
one can easily construct two investment portfolios such that

(i) one of the portfolios is clearly riskier than the other;

(ii) this distinction is sensed (to varying degrees, depending on α) by all the risk measures QαpX; pq

with α P p1,8q;

(iii) yet, the values of CVaRp “ Q1pX; pq are the same for both portfolios.

For instance, let X and Y denote the potential losses corresponding to two different investments
portfolios. Suppose that there are mutually exclusive events E1 and E2 and real numbers p˚ P p0, 1q and
δ P p0, 1q such that (i) PpE1q “ PpE2q “ p˚{2; (ii) the loss of either portfolio is 0 if the event E1 Y E2

does not occur; (iii) the loss of the X-portfolio is 1 if the event E1 Y E2 occurs; and (iv) the loss of
the Y -portfolio is 1 ´ δ if the event E1 occurs, and it is 1 ` δ if the event E2 occurs. Thus, the r.v. X
takes values 0 and 1 with probabilities 1 ´ p˚ and p˚, and the r.v. Y takes values 0, 1 ´ δ, and 1 ` δ
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with probabilities 1 ´ p˚, p˚{2, and p˚{2, respectively. Hence, EX “ EY , that is, the expected losses
of the two portfolios are the same. Clearly, the distribution of X is less dispersed than that of Y , both

intuitively and also in the formal sense that X
α`1
ď Y for all α P r1,8s. So, everyone will probably say

that the Y -portfolio is riskier than the X-portfolio. However, for any p P pp˚, 1q it is easy to see, by
(3.3), that Q0pX; pq “ 0 “ Q0pY ; pq, and hence, in view of (5.10), Q1pY ; pq “ 1

p
EY “ p˚

p
“ 1

p
EX “

Q1pX; pq. Using also the continuity of Qαp¨; pq in p, as stated in Theorem 3.4, one concludes that the
Q1p¨; pq “ CVaRpp¨q risk value of the riskier Y -portfolio is the same as that of the less riskyX-portfolio
for all p P rp˚, 1q. Such indifference (which may also be referred to as insufficient sensitivity to risk)
may generally be considered “an unwanted characteristic” – see e.g. pages 36 and 48 in [4]. One can
also perceive the exhibited here lack of dependence of CVaR on δ as a certain “flatness” of this measure
of risk.

Let us now show that, in contrast with the risk measure Q1p¨; pq “ CVaRpp¨q, the value of Qαp¨; pq

is sensitive to risk for all α P p1,8q and all p P p0, 1q; that is, for all such α and p and for the losses X
and Y as above, QαpY ; pq ą QαpX; pq. Indeed, take any α P p1,8q. By (2.17) and (4.10), x˚,X “ 1,
p˚,X “ p˚, x˚,Y “ 1 ` δ, x˚˚,Y “ 1 ´ δ, and p˚,Y “ p˚{2. If p P p0, p˚{2s then, by Part (ii) of
Proposition 3.1, QαpY ; pq “ x˚,Y “ 1 ` δ ą 1 “ x˚,X “ QαpX; pq. If now p P pp˚{2, 1q, then, by
Formula (3.20) in [8], tY :“ α´1QpY ; pq P p´8, x˚˚,Y q “ p´8, 1 ´ δq. Also, by a strict version of
Jensen’s inequality and the strict convexity of uα in u P r0,8q, BαpX; pqptq “ t ` p´1{α}X ´ t}α ă

t ` p´1{α}Y ´ t}α “ BαpY ; pqptq for all t P p´8, 1 ´ δs. Therefore, by Formula (3.18) in [8] and
Formula (3.8) in the present paper, QαpY ; pq “ BαpY ; pqptY q ą BαpX; pqptY q ě QαpX; pq. Thus, it is
checked that QαpY ; pq ą QαpX; pq for all α P p1,8q and all p P p0, 1q.

The above example is illustrated in Figure 4, for p˚ “ 0.1 and δ “ 0.6. It is seen that the sensitivity
of the measure Qαp¨; pq to risk

`

reflected especially by the gap between the red and blue lines for p P
rp˚, 1q “ r0.1, 1q

˘

increases from the zero sensitivity when α “ 1 to an everywhere positive sensitivity
when α “ 2 to an everywhere greater positive sensitivity when α “ 5.

Figure 4. Sensitivity of Qαp¨; pq to risk, depending on the value of α: graphs
 `

p,QαpX; pq
˘

: 0 ă p ă 1
(

(blue) and
 `

p,QαpY ; pq
˘

: 0 ă p ă 1
(

(red) for α “ 1

(left); α “ 2 (middle); and α “ 5 (right).
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That CVaRp “ Q1p¨; pq is flat – in contrast to Qαp¨; pq with α P p1,8q – is of course rooted in the
fact that uα is strictly convex in u P r0,8q only for α P p1,8q, but not for α “ 1; cf. e.g. [37], where it
is shown that the normed space L α is uniformly convex for α P p1,8q (but of course not for α “ 1).
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5.3. Coherent and Non-Coherent Measures of Risk

Based on an extensive and penetrating discussion of methods of measurement of market and
non-market risks, Artzner et al. [1] concluded that, for a risk measure to be effective in risk regulation and
management, it has to be coherent, in the sense that it possess the translation invariance, subadditivity,
positive homogeneity, and monotonicity properties. In general, a risk measure, say ρ̂, is a mapping of a
linear space of real-valued r.v.’s on a given probability space into R. The probability space (say Ω) was
assumed to be finite in [1]. More generally, one could allow Ω to be infinite, and then it is natural to allow
ρ̂ to take values˘8 as well. In [1], the r.v.’s (say Y ) in the argument of the risk measure were called risks
but at the same time interpreted as “the investor’s future net worth”. Then the translation invariance was
defined in [1] as the identity ρ̂pY `rtq “ ρ̂pY q´t for all r.v.’s Y and real numbers t, where r is a positive
real number, interpreted as the rate of return. We shall, however, follow Pflug [26] (among other authors),
who considers a risk measure (say ρ) as a function of the potential cost/loss, say X , and then defines the
translation invariance of ρ, quite conventionally, as the identity ρpX ` cq “ ρpXq ` c for all r.v.’s X and
real numbers c. The approaches in [1,26] are equivalent to each other, and the correspondence between
them can be given by the formulas ρpXq “ rρ̂pY q “ rρ̂p´Xq, X “ ´Y , and c “ ´rt. The positive
homogeneity, as defined in [1], can be stated as the identity ρpλXq “ λρpXq for all r.v.’s X and real
numbers λ ě 0.

Corollary 5.1. For each α P r1,8s and each p P p0, 1q, the quantile bound Qαp¨; pq is a coherent risk
measure, and it is not coherent for any pair pα, pq P r0, 1q ˆ p0, 1q.

This follows immediately from Theorem 3.4 and Proposition 3.7.
The usually least trivial of the four properties characterizing the coherence is the subadditivity of

a risk measure – which, in the presence of the positive homogeneity, is equivalent to the convexity,
as was pointed out earlier in this paper. As is well known and also discussed above, the value at risk
measure VaRppXq is translation invariant, positive homogeneous, and monotone (inX), but it fails to be
subadditive. Quoting from page 1458 in [2]: “The coherence of [ CVaRppXq] is a formidable advantage
not shared by any other widely applicable measure of risk yet proposed.”

Corollary 5.1 above addresses this problem by providing an entire infinite family of coherent risk
measures, indexed by α P r1,8s, including CVaRp “ Q1p¨; pq just as one member of the family.
Moreover, CVaRp can now be seen as only “barely”, borderline coherent – because

`

CVaRp “ Q1p¨; pq

and
˘

α “ 1 is the smallest value of the sensitivity index for which the risk measure Qαp¨; pq is coherent.
One can also say that the coherence of CVaR is unstable with respect to the sensitivity index α: CVaRp

is coherent, but the risk measure Qαp¨; pq (which is arbitrarily close to CVaRp when α is close enough
to 1) is not coherent if α P r0, 1q. Here one may also recall the discussion in Section 5.2 on CVaR’s
“flatness” and indifference to risk.
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5.4. Other Terminology Used in the Literature for Some of the Listed Properties of Qαp¨; pq

Theorem 3.4 provides a number of useful properties of the spectrum of risk measures Qαp¨; pq.
The terminology we use to name some of these properties differs from the corresponding terminology
used elsewhere.

In particular, what we refer to as the “positive sensitivity” in Theorem 3.4 corresponds to the
“relevance” in [1].

Next, in the present paper the “model-independence” means that the risk measure depends on the
potential loss only through the distribution of the loss, rather than on the way to model the “states of
nature”, on which the loss may depend. In contrast, in [1] a measure of risk is considered “model-free”
if it does not depend, not only on modeling the “states of nature”, but, to a possibly large extent, on
the distribution of the loss. An example of such a “model-free” risk measure is given by the SEC rules
mentioned in Section 4.4; this measure of risk depends only on the set of all possible representations
of the investment portfolio in question as a portfolio of long call spreads, that is, pairs of the form
(a long call, a short call). If a measure of risk is not “model-free”, then it is called “model-dependent”
in [1]. The “model-independence” property is called “law-invariance” in Section 12.1.2 of [38], and a
similar property is called “neutrality” on page 97 in [39].

Also in [38], the consistency property is referred to as “constancy”.

5.5. Gini-Type Mean Differences and Related Risk Measures

Yitzhaki [40] utilized the Gini mean difference – which had prior to that been mainly used as a
measure of economic inequality – to construct, somewhat implicitly, a measure of risk; this approach
was further developed in [41,42]. If (say) a r.v. X is thought of as the income of a randomly selected
person in a certain state, then the Gini mean difference can be defined by the formula

GHpXq :“ EHp|X ´ X̃|q,

where X̃ is an independent copy of X and H : r0,8q Ñ R is a measurable function, usually assumed to
be nonnegative and such that Hp0q “ 0; clearly, given the function H , the Gini mean difference GHpXq

depends only on the distribution of the r.v.X . Therefore, ifHpuq is considered, for any u P r0,8q, as the
measure of inequality between two individuals with incomes x and y such that |x´y| “ u, then the Gini
mean difference EHp|X ´ X̃|q is the mean H-inequality in income between two individuals selected at
random (and with replacement, thus independently of each other). The most standard choice for H is the
identity function id, so that Hpuq “ idpuq “ u for all u P r0,8q. Based on the measure-of-inequality
GH , one can define the risk measure

RHpXq :“ EX `GHpXq “ EX ` EHp|X ´ X̃|q, (5.2)

where now the r.v. X is interpreted as the uncertain loss on a given investment, with the term GHpXq “

EHp|X ´ X̃|q then possibly interpreted as a measure of the uncertainty. Clearly, when there is no
uncertainty, so that the loss X is in fact a nonrandom real constant, then the measure GHpXq of the
uncertainty is 0, assuming that Hp0q “ 0. If X „ Npµ, σ2q (that is, X is normally distributed with mean
µ and standard deviation σ ą 0) and H “ κ id for some positive constant κ, then RHpXq “ µ ` 2κ?

π
σ,
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a linear combination of the mean and the standard deviation, so that in such a case we find ourselves in
the realm of the Markowitz mean-variance risk-assessment framework; cf. (3.12).

It is assumed that RHpXq is defined when both expected values in the last expression in (5.2) are
defined and are not infinite values of opposite signs – so that these two expected values could be added,
as needed in (5.2).

It is clear that RHpXq is translation-invariant. Moreover, RHpXq is convex in X if the function H
is convex and nondecreasing. Further, if H “ κ id for some positive constant κ, then RHpXq is also
positive-homogeneous.

It was shown in [40], under an additional technical condition, thatRHpXq is nondecreasing inX with
respect to the stochastic dominance of order 1 if H “ 1

2
id. Namely, the result obtained in [40] is that

if X
st
ď Y and the distribution functions F and G of X and Y are such that F ´ G changes sign only

finitely many times on R, then R 1
2

idpXq ď R 1
2

idpY q. A more general result was obtained in [42], which
can be stated as follows: in the case when the function H is differentiable, RHpXq is nondecreasing in
X with respect to the stochastic dominance of order one if and only if |H 1| ď 1

2
. Cf. also [41]. The proof

in [42] was rather long and involved; in addition, it used a previously obtained result of [43]. Here we
are going to give (in Appendix A) a very short, direct, and simple proof of the more general

Proposition 5.2. The risk measure RHpXq is nondecreasing in X with respect to the stochastic
dominance of order 1 if and only if the function H is 1

2
-Lipschitz: |Hpxq ´ Hpyq| ď 1

2
|x ´ y| for

all x and y in r0,8q.

In Proposition 5.2, it is not assumed that H ě 0 or that Hp0q “ 0. Of course, if H is differentiable,
then the 1

2
-Lipschitz condition is equivalent to the condition |H 1| ď 1

2
in [42].

The risk measure RHpXq was called mean-risk (M-R) in [41].
It follows from [42] or Proposition 5.2 above that the risk measure Rκ idpXq is coherent for any

κ P r0, 1
2
s. In fact, based on Proposition 5.2, one can rather easily show more:

Proposition 5.3. The risk measure RHpXq is coherent if and only if H “ κ id for some κ P r0, 1
2
s.

It is possible to indicate a relation – albeit rather indirect – of the risk measure RHpXq, defined in
(5.2), with the quantile bounds QαpX; pq. Indeed, introduce

Q̂αpX; pq “ EX ` p´1{α
›

›pX ´ EXq`
›

›

α
, (5.3)

assuming EX exists in R. By (3.8)–(3.9), Q̂αpX; pq is a majorant of QαpX; pq, obtained by using
t “ EX in (3.8) as a surrogate of the minimizing value of t.

The term p´1{α
›

›pX ´ EXq`
›

›

α
in (5.3) is somewhat similar to the Gini mean-difference term

EHp|X ´ X̃|q, at least when α “ 1 and (the distribution of) the r.v. X is symmetric about its mean.
Moreover, if the distribution of X ´ EX is symmetric and stable with index γ P p1, 2s, then

Q̂1pX; pq “ Rκ idpXq with κ “ 2´1´1{γ{p.
One may want to compare the two considered kinds of coherent measures of risk/inequality, Rκ idpXq

for κ P r0, 1
2
s and QαpX; pq for α P r1,8s and p P p0, 1q. It appears that the latter measure is more

flexible, as it depends on two parameters (α and p) rather than just one parameter (κ). Moreover, as
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previously mentioned Proposition 2.7 in [8] shows, rather generally QαpX; pq retains a more or less
close relation with the quantile Q0pX; pq – which, recall, is the widely used value at risk (VaR). On the
other hand, recall here that, in contrast with the VaR,QαpX; pq is coherent for α P r1,8s. However, both
of these kinds of coherent measures appear useful, each in its own manner, representing two different
ways to express risk/inequality.

Formulas (5.2) and (5.3) can be considered special instances of the general relation between risk
measures and measures of inequality established in [44]. Let XE be a convex cone of real-valued r.v.
X P X with a finite mean EX such that XE contains all real constants.

Largely following [44] (see also the earlier study [45]), let us say a coherent risk measure
R : XE Ñ p´8,8s is strictly expectation-bounded if RpXq ą EX for all X P XE.

`

Note that here the
r.v.X represents the loss, whereas in [44] it represents the gain; accordingly, X in this paper corresponds
to ´X in [44]; also, in [44] the cone XE was taken to be the space L 2.

˘

In view of Theorem 3.4 and
Part (vii) of Proposition 3.1, it follows that QαpX; pq is a coherent and strictly expectation-bounded
risk measure if α P r1,8s. Also (cf. Definition 1 and Proposition 1 in [44]), let us say that a mapping
D : XE Ñ r0,8s is a deviation measure if D is subadditive, positive-homogeneous, and nonnegative
with DpXq “ 0 if and only if PpX “ cq “ 1 for some real constant c; here X is any r.v. in XE. Next
(cf. Definition 2 in [44]), let us say that a deviation measure D : XE Ñ r0,8s is upper-range dominated
if DpXq ď sup suppX ´ EX for all X P XE. Then (cf. Theorem 2 in [44]), the formulas

DpXq “ RpX ´ EXq and RpXq “ EX `DpXq (5.4)

provide a one-to-one correspondence between all coherent strictly expectation-bounded risk measures
R : XE Ñ p´8,8s and all upper-range dominated deviation measures D : XE Ñ r0,8s.

In particular, it follows that the risk measure Q̂αp¨; pq, defined by Formula (5.3), is coherent for all
α P r1,8s and all p P p0,8q. It also follows that X ÞÑ QαpX ´ EX; pq is a deviation measure.
As was noted, Q̂αpX; pq is a majorant of QαpX; pq. In contrast with QαpX; pq, in general Q̂αpX; pq

will not have such a close hereditary relation with the true quantile Q0pX; pq as e.g. the ones given
in the previously mentioned Proposition 2.7 in [8]. For instance, if PpX ě xq is like x´8 then, by
Formulas (2.13)-(2.14) in [8], QαpX; pq „

pÓ0
Q0pX; pq for each α P r0,8s, whereas Q̂8pX; pq “ 8 for

all real p ą 0. On the other hand, in distinction with the definition (5.3) of Q̂αpX; pq, the expression (3.8)
for QαpX; pq requires minimization in t; however, that minimization will add comparatively little to the
complexity of the problem of minimizing QαpX; pq subject to a usually large number of restrictions on
X; cf. Theorem 4.7. Risk measures similar to (5.3) were considered in [46] in relation with the stochastic
dominance of arbitrary orders.

5.6. A Lorentz-Type Parametric Family of Risk Measures

Recalling (2.29) and following [21,22,47], one may also consider ´F p´αq´X ppq as a measure of risk.
Here one will need the following semigroup identity, given by Formula (8a) in [21], (cf. e.g. Remark 3.7
in [5]):

F
p´αq
X ppq “

1

Γpα ´ νq

ż p

0

pp´ uqα´ν´1F
p´νq
X puq du (5.5)

whenever 0 ă ν ă α ă 8. The following proposition is well known.
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Proposition 5.4. If the r.v. X is nonnegative, then

F
p´2q
X ppq “ LXppq “ ´pCVaRpp´Xq, (5.6)

where LX is the Lorenz curve function, given by the formula

LXppq :“

ż p

0

F´1
X puq du. (5.7)

Indeed, the first equality in (5.6) is the special case of the identity (5.5) with α “ 2 and ν “ 1, and
the second equality in (5.6) follows by Part (i) of Theorem 3.1 in [48], identity (3.8) for α “ 1, and the
second identity in (5.1). Cf. Theorem 2 in [49] and [20,50].

Using (5.5) with ν “ 2, α` 1 in place of α, and ´X in place of X together with Proposition 5.4, one
has

´ F
p´α´1q
´X ppq “

1

Γpα ´ 1q

ż p

0

pp´ uqα´2 uCVaRupXq du (5.8)

for any α P p1,8q. Since CVaRupXq is a coherent risk measure, it now follows that, as noted in
[47], ´F p´α´1q

´X ppq is a coherent risk measure as well, again for α P p1,8q; by (5.6), this conclusion
will hold for α “ 1. However, one should remember that the expression F p´αqX ppq was defined only
when the r.v. X is nonnegative (and otherwise some of the crucial considerations above will not hold).
Thus, ´F p´α´1q

´X ppq is defined only if X ď 0 almost surely.

5.7. Spectral Risk Measures

In view of (5.8), the risk measure´F p´α´1q
´X ppq is a mixture of the coherent risk measures CVaRupXq

and thus a member of the general class of the so-called spectral risk measures [51], which are precisely
the mixtures, over the values u P p0, 1q, of the risk measures CVaRupXq; thus, all spectral risk measures
are automatically coherent. However, in general such measures will lack such an important variational
representation as the one given by Formula (3.8) for the risk measure QαpX; pq. Of course, for any
“mixing” nonnegative Borel measure µ on the interval p0, 1q and the corresponding spectral risk measure
CVaRµpXq :“

ş

p0,1q
CVaRupXqµp duq, one can write

CVaRµpXq “

ż

p0,1q

inf
tPR

`

t` 1
u
}pX ´ tq`}1

˘

µp duq, (5.9)

in view of (5.1) and (3.8)–(3.9). However, in contrast with (3.8), the minimization (in t P R) in (5.9)
needs in general to be done for each of the infinitely many values of u P p0, 1q. If the r.v. X takes only
finitely many values, then the expression of CVaRµpXq in (5.9) can be rewritten as a finite sum, so that
the minimization in t P R will be needed only for finitely many values of u; cf. e.g. the optimization
problem on page 8 in [47].

On the other hand, one can of course consider arbitrary mixtures in p P p0, 1q and/or α P r1,8q
of the risk measures QαpX; pq. Such mixtures will automatically be coherent. Also, all mixtures of
the measures QαpX; pq in p will be nondecreasing in α, and all mixtures of QαpX; pq in α will be
nonincreasing in p.
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5.8. Risk Measures Reinterpreted as Measures of Economic Inequality

Deviation measures such as the ones studied in [44] and discussed in the paragraph containing (5.4)
can be used as measures of economic inequality if the r.v. X models, say, the random income/wealth –
defined as the income/wealth of an (economic) unit chosen at random from a population of such units.
Then, according to the one-to-one correspondence given by (5.4), coherent risk measures R translate
into deviation measures D, and vice versa.

However, the risk measures Qαp¨; pq themselves can be used to express certain aspects of economic
inequality directly, without translation into deviation measures. For instance, if X stands for the random
wealth, then the statement Q1pX; 0.01q “ 30EX formalizes the common kind of expression “the
wealthiest 1% own 30% of all wealth”, provided that the wealthiest 1% can be adequately defined,
say as follows: there is a threshold wealth value t such that the number of units with wealth greater than
or equal to t is 0.01N , where N is the number of units in the entire population. Then (cf. (5.12)),
0.01N Q1pX; 0.01q “ 0.01N EpX|X ě tq “ N EX ItX ě tu “ 0.30N EX , whence indeed
Q1pX; 0.01q “ 30EX . Similar in spirit expressions of economic inequality in terms of QαpX; pq can be
provided for all α P p0,8q. For instance, suppose now thatX stands for the annual income of a randomly
selected household, whereas x is a particular annual household income level in question. Then, in view
of (3.8)–(3.9), the inequality QαpX; pq ě x means that for any (potential) annual household income
level t less than the maximum annual household income level x˚,X in the population, the conditional
α-mean E

`

pX ´ tqα|X ą t
˘1{α of the excess pX ´ tq` of the random income X over t is no less

than
`

p
PpXątq

˘1{α times the excess px ´ tq` of the income level x over t. Of course, the conditional

α-mean E
`

pX ´ tqα|X ą t
˘1{α is increasing in α. Thus, using the measure QαpX; pq of economic

inequality with a greater value of α means treating high values of the economic variable X in a more
progressive/sensitive manner. One may also note here that the above interpretation of the inequality
QαpX; pq ě x is a “synthetic” statement in the sense that it provides information concerning all values
of potential interest of the threshold annual household income level t.

Not only the upper bounds QαpX; pq on the quantile QpX; pq, but also the upper bounds PαpX;xq on
the tail probability PpX ě xq may be considered measures of risk/inequality. Indeed, if X is interpreted
as the potential loss, then the tail probability PpX ě xq corresponds to the classical safety-first (SF) risk
measure; see e.g. [52,53].

5.9. “Explicit” Expressions of QαpX; pq

In the case α “ 1, an expression of QαpX; pq can be given in terms of the true p1 ´ pq-quantile
QpX; pq:

Q1pX; pq “ QpX; pq ` 1
p
E
`

X ´QpX; pq
˘

`
. (5.10)

That the expression for Q1pX; pq in (3.8) coincides with the one in (5.10) was established in
Theorem 1 in [3] for absolutely continuous r.v.’s X , and then on page 273 in [26] and in Theorem 10
in [2] in general. For the readers’ convenience, let us present here the following brief proof of (5.10).
For all real h ą 0 and t P R, one has

pX ´ tq` ´ pX ´ t´ hq` “ h ItX ą tu ´ pt` h´Xq Itt ă X ă t` hu.
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It follows that the right derivative of the convex function t ÞÑ t ` }pX ´ tq`}1{p at any point t P R is
1 ´ PpX ą tq{p, which, by (3.3), is ď 0 if t ă QpX; pq and ą 0 if t ą QpX; pq. Hence, QpX; pq is a
minimizer in t P R of t ` }pX ´ tq`}1{p, and thus (5.10) follows by (3.8). It is also seen now that any
p1´ pq-quantile of X is a minimizer in t P R of t` }pX ´ tq`}1{p as well, and QpX; pq is the largest of
these minimizers.

As was shown in [2], the expression for Q1pX; pq in (5.10) can be rewritten as a conditional
expectation:

Q1pX; pq “ QpX; pq ` E
`

X ´QpX; pq
ˇ

ˇX ě QpX; pq, U ě δ
˘

“ E
`

X|X ě QpX; pq, U ě δ
˘

,
(5.11)

where U is any r.v. which is independent of X and uniformly distributed on the interval r0, 1s,
δ :“ δpX; pq :“ d ItX “ QpX; pqu, and d is any real number in the interval r0, 1s such that

P
`

X ě QpX; pq
˘

´ p “ P
`

X “ QpX; pq
˘

d;

such a number d always exists. Thus, the r.v. U is used to split the possible atom of the distribution of X
at the quantile point QpX; pq in order to make the randomized tail probability P

`

X ě QpX; pq, U ě δ
˘

exactly equal to p. Of course, in the absence of such an atom, one can simply write

Q1pX; pq “ QpX; pq ` E
`

X ´QpX; pq
ˇ

ˇX ě QpX; pq
˘

“ E
`

X|X ě QpX; pq
˘

. (5.12)

As pointed out in [2,3] and discussed in Section 4.3, a variational formula such as (3.8) has a distinct
advantage over such ostensibly explicit formulas as (5.10) and (5.11), since (3.8) allows of rather easy
incorporation into specialized optimization problems. Nonetheless, one can obtain an extension of the
representation (5.10), valid for all α P r1,8q; see Formula (4.18) and also Proposition 4.7 in [8].

6. Conclusions

Let us summarize some of the advantages of the risk/inequality measures PαpX;xq and QαpX; pq:

• PαpX;xq and QαpX; pq are three-way monotonic and three-way stable – in α, p, and X .

• The monotonicity in X is graded continuously in α, resulting in varying, controllable degrees of
sensitivity of PαpX;xq and QαpX; pq to financial risk/economic inequality.

• x ÞÑ PαpX;xq is the tail-function of a certain probability distribution.

• QαpX; pq is a p1´ pq-percentile of that probability distribution.

• For small enough values of p, the quantile boundsQαpX; pq are close enough to the corresponding
true quantiles QpX; pq “ VaRppXq, provided that the right tail of the distribution of X is light
enough and regular enough, depending on α.

• In the case when the loss X is modeled as a normal r.v., the use of the risk measures QαpX; pq

reduces, to an extent, to using the Markowitz mean-variance risk-assessment paradigm – but with
a varying weight of the standard deviation, depending on the risk sensitivity parameter α.
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• PαpX;xq and QαpX; pq are solutions to mutually dual optimizations problems, which can be
comparatively easily incorporated into more specialized optimization problems, with additional
restrictions on the r.v. X .

• PαpX;xq and QαpX; pq are effectively computable.

• Even when the corresponding minimizer is not identified quite perfectly, one still obtains an upper
bound on the risk/inequality measures PαpX;xq or QαpX; pq.

• Optimal upper bounds on PαpX;xq and, hence, on QαpX; pq over important classes of r.v.’s X
represented (say) as sums of independent r.v.’s Xi with restrictions on moments of the Xi’s and/or
sums of such moments can be given; see e.g. [7,54] and references therein.

• The quantile bounds QαpX; pq with α P r1,8s constitute a spectrum of coherent measures of
financial risk and economic inequality.

• The r.v.’s X of which the measures PαpX;xq and QαpX; pq are taken are allowed to take values of
both signs. In particular, if, in a context of economic inequality, X is interpreted as the net amount
of assets belonging to a randomly chosen economic unit, then a negative value of X corresponds
to a unit with more liabilities than paid-for assets. Similarly, if X denotes the loss on a financial
investment, then a negative value of X will obtain when there actually is a net gain.

As seen from the discussion in Section 5, some of these advantages, and especially their totality,
appear to be unique to the risk measures proposed here.

Further studies involving especially the use and computational implementation of the proposed risk
measures would be welcome.
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Appendix

A. Proofs

Proof of Proposition 2.1. This proof is not hard but somewhat technical; it can be found in the more
detailed version [8] of this paper; see the proof of Proposition 1.1 there.

Proof of Proposition 2.2. This too can be found in [8]; see the proof of Proposition 1.2 there.

Proof of Proposition 2.3. Let α and a sequence pαnq be indeed as in Proposition 2.3. If x P rx˚,´8q,
then the desired conclusion PαnpX;xq Ñ PαpX;xq follows immediately from part (i) of Proposition 2.2.
Therefore, assume in the rest of the proof of Proposition 2.3 that

x P p´8, x˚q. (A1)
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Then (4.4) takes place and, by (4.3), λmax,α is continuous in α P p0,8s. Hence,

λ˚ :“ sup
n
λmax,αn P r0,8q (A2)

and
PγpX;xq “ inf

λPr0,λ˚s
AγpX;xqpλq for all γ P tαu Y tαn : n P Nu. (A3)

Also, by (2.3), (2.2), the inequality (4.1) for α P p0,8q, the condition X P Xβ , and
dominated convergence,

AαnpX;xqpλq Ñ AαpX;xqpλq. (A4)

Hence, by (2.5), lim supn PαnpX;xq ď lim supnAαnpX;xqpλq “ AαpX;xqpλq for all λ P r0,8q,
whence, again by (2.5),

lim sup
n

PαnpX;xq ď PαpX;xq. (A5)

Thus, the case α “ 0 of Proposition 2.3 follows by (2.6).
If α P p0, 1s, then for any κ and λ such that 0 ď κ ă λ ă 8 one has

|AαpX;xqpλq´AαpX;xqpκq| ď pλ´κqα EpX´xqα`{α
α
`pλ´κqα{2{αα`P

`

px´Xq` ą
1?
λ´κ

˘

; (A6)

this follows because

0 ď p1` λu{αqα` ´ p1` κu{αq
α
` ď pλ´ κq

αuα{αα if u ě 0,

0 ď p1` κu{αqα` ´ p1` λu{αq
α
` ď min

`

1, pλ´ κqα|u|α{αα
˘

ď pλ´ κqα{2{αα ` It|u| ą 1?
λ´κ
u if u ă 0.

If now α P p0, 1q, then
`

say, by cutting off an initial segment of the sequence pαnq
˘

one may assume
that β P p0, 1q, and then, by (A6) with αn in place of α, the sequence

`

AαnpX;xqpλq
˘

is equicontinuous
in λ P r0,8q, uniformly in n. Therefore, by (A2) and the Arzelà–Ascoli theorem, the convergence in
(A4) is uniform in λ P r0, λ˚s and, hence, the conclusion PαnpX;xq Ñ PαpX;xq follows by (A3) – in
the case when α P p0, 1q.

Quite similarly, the same conclusion holds if α “ 1 “ β; that is, PαpX;xq is left-continuous in α at
the point α “ 1 provided that EX` ă 8.

It remains to consider the case when α P r1,8s and αn ě 1 for all n. Then, by the definition in (2.1),
the functions hα and hαn are convex and hence, by (2.3), AαpX;xqpλq and AαnpX;xqpλq are convex in
λ P r0,8q. Then the conclusion PαnpX;xq Ñ PαpX;xq follows by Corollary 3 in [55], the condition
X P Xβ , (A3), and (A2).

Proof of Proposition 2.4. This is somewhat similar to the proof of Proposition 2.3. One difference here
is the use of the uniform integrability condition, which, in view of (2.3), (4.1), and the conditionX P Xα,
implies (see e.g. Theorem 5.4 in [15]) that for all λ P r0,8q

lim
nÑ8

AαpXn;xqpλq “ AαpX;xqpλq; (A7)

here, in the case when α “ 8 and λ R ΛX , one should also use the Fatou lemma for the
convergence in distribution (see e.g. Theorem 5.3 in [15]), according to which one always has
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lim infnÑ8AαpXn;xqpλq ě AαpX;xqpλq, even without the uniform integrability condition. In this
entire proof, it is indeed assumed that α P p0,8s.

It follows from (A7) and the nonnegativity of Pαp¨; ¨q that

0 ď lim inf
nÑ8

PαpXn;xq ď lim sup
nÑ8

PαpXn;xq ď PαpX;xq (A8)

for all real x; cf. (A4) and (A5).
The convergence (2.22) for x P px˚,8q follows immediately from (A8) and part (i) of Proposition 2.2.
Using the same ingredients, it is easy to check Part (ii) of Proposition 2.4 as well. Indeed, assuming

that PpXn “ x˚q ÝÑ
nÑ8

PpX “ x˚q and using also (2.6), one has

PpX “ x˚q “ lim inf
nÑ8

PpXn “ x˚q ď lim inf
nÑ8

PpXn ě x˚q ď lim inf
nÑ8

PαpXn;x˚q

ď lim sup
nÑ8

PαpXn;x˚q ď PαpX;x˚q “ PpX “ x˚q,

which yields (2.22) for x “ x˚. Also, Xn
D
ÝÑ
nÑ8

X implies lim supnÑ8 PpXn “ x˚q ď PpX “ x˚q; see

e.g. Theorem 2.1 in [15]. So, if PpX “ x˚q “ 0, then PpXn “ x˚q Ñ PpX “ x˚q and hence (2.22)
holds for x “ x˚, by the first sentence of Part (ii) of Proposition 2.4.

It remains to prove Part (i) of Proposition 2.4 assuming (A1). The reasoning here is quite similar
to the corresponding reasoning in the proof of Proposition 2.3, starting with (A1). Here, instead of the
continuity of λmax,α “ λmax,α,X in α, one should use the convergence λmax,α,Xn Ñ λmax,α,X , which
holds provided that y P px, x˚q is chosen to be such that PpX “ yq “ 0. Concerning the use of
inequality (A6), note that (i) the uniform integrability condition implies that EpXn ´ xqα` is bounded in
n and (ii) the convergence in distribution Xn

D
ÝÑ
nÑ8

X implies that supn P
`

px´Xnq` ą
1?
λ´κ

˘

ÝÑ 0 as
0 ă λ´ κÑ 0. Proposition 2.4 is now completely proved.

Proof of Theorem 2.5. The model-independence is obvious from the definition (2.5). The
monotonicity in X follows immediately from (2.23), (2.10), and (2.7)–(2.9). The monotonicity in
α was already given in (2.13). The monotonicity in x is Part (i) of Proposition 2.1. That PαpX;xq takes
on only values in the interval r0, 1s follows immediately from (2.16). The α-concavity in x and stability
in x follow immediately from parts (iii) and (i) of Proposition 2.2. The stability in α and the stability
in X are Propositions 2.3 and 2.4, respectively. The translation invariance, consistency, and positive
homogeneity follow immediately from the definition (2.5).

Proof of Proposition 3.1.
(i) Part (i) of this proposition follows immediately from (3.2) and (2.16).
(ii) Suppose here indeed that p P p0, p˚sXp0, 1q. Then for any x P px˚,8q one has PαpX;xq “ 0 ă p,

by Part (i) of Proposition 2.2, whence, by (2.19), x P Eαppq. On the other hand, for any x P p´8, x˚s
one has PαpX;xq ě PαpX;x˚q “ p˚ ě p, by Part (i) of Proposition 2.1 and Part (i) of Proposition 2.2,
whence x R Eαppq. Therefore, Eαppq “ px˚,8q, and the conclusion QαpX; pq “ x˚ now follows by the
definition of QαpX; pq in (3.2).

(iii) If x˚ “ 8, then the inequality QαpX; pq ď x˚ in Part (iii) of Proposition 3.1 is trivial. If x˚ ă 8
and p P pp˚, 1q, then x˚ P Eαppq and hence QαpX; pq ď x˚ by (3.2). Now Part (iii) of Proposition 3.1
follows from its Part (ii).
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(iv) Take any x P p´8, x˚q. Then P0pX;xq “ PpX ě xq ą 0. Moreover, for all p P p0, P0pX;xqq

one has x R E0,Xppq. Therefore and because the set E0,Xppq is an interval with endpoints Q0pX; pq and
8, it follows that x ď Q0pX; pq. Thus, for any given x P p´8, x˚q and for all small enough p ą 0

one has Q0pX; pq ě x and hence, by the already established Part (iii) of Proposition 3.1, Q0pX; pq P

rx, x˚s. This means that Part (iv) of Proposition 3.1 is proved for α “ 0. To complete the proof of this
part, it remains to refer to the monotonicity of QαpX; pq in α stated in (3.4) and, again, to Part (iii) of
Proposition 3.1.

(v) Assume indeed that α P p0,8s. By Part (viii) of Proposition 2.2, the case p˚ “ 1 is equivalent
to xα “ x˚, and in that case both mappings (3.6) and (3.7) are empty, so that Part (v) of Proposition 3.1
is trivial. So, assume that p˚ ă 1 and, equivalently, xα ă x˚. The function pxα, x˚q Q x ÞÑ PαpX;xq

is continuous and strictly decreasing, by Parts (iv) and (xi) of Proposition 2.2. At that, PαpX;x˚´q “

PαpX;x˚q “ p˚ by Parts (iv) and (i) of Proposition 2.2 if x˚ ă 8, and PαpX;x˚´q “ 0 “ p˚ by (2.16)
and (2.17) if x˚ “ 8. Also, PαpX;xα`q “ PαpX;xαq “ 1 by the condition xα ă x˚ and Parts (iv)
and (x) of Proposition 2.2 if xα ą ´8, and PαpX;xα`q “ 1 by (2.16) if xα “ ´8. Therefore, the
continuous and strictly decreasing function pxα, x˚q Q x ÞÑ PαpX;xq maps pxα, x˚q onto pp˚, 1q, and
so, Formula (3.7) is correct, and there is a unique inverse function, say pp˚, 1q Q p ÞÑ xα,p P pxα, x˚q,
to the function (3.7); moreover, this inverse function is continuous and strictly decreasing. It remains
to show that QαpX; pq “ xα,p for all p P pp˚, 1q. Take indeed any p P pp˚, 1q. Since the function
pp˚, 1q Q p ÞÑ xα,p P pxα, x˚q is inverse to (3.7) and strictly decreasing, PαpX;xα,pq “ p, PαpX;xq ą p

for x P pxα, xα,pq, and PαpX;xq ă p for x P pxα,p, x˚q. So, by Part (i) of Proposition 2.1, PαpX;xq ą p

for x P p´8, xα,pq and PαpX;xq ă p for x P pxα,p,8q. Now the conclusion that QαpX; pq “ xα,p for
all p P pp˚, 1q follows by (3.2).

(vi) Assume indeed that α P p0,8s and take indeed any y P
`

´8, QαpX; pq
˘

. If PαpX; yq “ 1, then
the conclusion PαpX; yq ą p in Part (vi) of Proposition 3.1 is trivial, in view of (3.1). Therefore, w.l.o.g.
PαpX; yq ă 1 and hence y P Eαp1q “ pxα,8q, by (2.19) and Part (ix) of Proposition 2.2. Let now
yp :“ QαpX; pq for brevity, so that y P p´8, ypq and, by the already verified part (iii) of Proposition 3.1,
yp ď x˚. Hence, xα ă y ă yp ď x˚. So, by Part (v) of Proposition 3.1 and Parts (iv) and (i) of
Proposition 2.2,

PαpX; yq ą lim
xÒyp

PαpX;xq “ PαpX; ypq ě PαpX;x˚q “ p˚, (A9)

which yields the conclusion PαpX; yq ą p in the case when p ď p˚. If now p ą p˚, then p P pp˚, 1q
and, by Part (v) of Proposition 3.1, yp “ QαpX; pq P pxα, x˚q and PαpX; ypq “ p, so that the conclusion
PαpX; yq ą p follows by (A9) in this case as well.

(vii) Part (vii) of Proposition 3.1 follows immediately from (3.6), (3.5), and Part (vii) of
Proposition 2.2.

Proof of Theorem 3.4. The model-independence, monotonicity in X , monotonicity in α,
translation invariance, consistency, and positive homogeneity properties of QαpX; pq follow
immediately from (3.2) and the corresponding properties of PαpX;xq stated in Theorem 2.5.

Concerning the monotonicity of QαpX; pq in p: that QαpX; pq is nondecreasing in p P p0, 1q follows
immediately from (3.3) for α “ 0 and from (3.8) and (3.9) for α P p0,8s. That QαpX; pq is strictly
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decreasing in p P rp˚, 1q X p0, 1q if α P p0,8s follows immediately from Part (v) of Proposition 3.1, and
the verified below statement on the stability in p: QαpX; pq is continuous in p P p0, 1q if α P p0,8s.

The monotonicity of QαpX; pq in α follows immediately from (2.13) and (3.2).
The finiteness of QαpX; pq was already stated in Part (i) of Proposition 3.1.
The concavity of QαpX; pq in p´1{α in the case when α P p0,8q follows by (3.8), since BαpX; pqptq

is affine (and hence concave) in p´1{α. Similarly, the concavity of Q8pX; pq in ln 1
p

follows by (3.8),
since B8pX; pqptq is affine in ln 1

p
.

The stability of QαpX; pq in p can be deduced from Proposition 3.1. Alternatively, the same follows
from the already established finiteness and concavity of QαpX; pq in p´1{α or ln 1

p
(cf. the proof of [2,

Proposition 13]), because any finite concave function on an open interval of the real line is continuous,
whereas the mappings p0, 1q Q p ÞÑ p´1{α P p0,8q and p0, 1q Q p ÞÑ ln 1

p
P p0,8q are homeomorphisms.

Concerning the stability ofQαpX; pq inX , take any real x ‰ x˚. Then the convergence PαpXn;xq Ñ

PαpX;xq holds, by Proposition 2.4. Therefore, in view of (2.19), if x P Eα,Xppq then eventually (that
is, for all large enough n) x P Eα,Xnppq. Hence, by (3.2), for each real x ‰ x˚ such that x ą QαpX; pq

eventually one has x ě QαpXn; pq. It follows that lim supnQαpXn; pq ď QαpX; pq. On the other
hand, by Part (vi) of Proposition 3.1, for any y P

`

´ 8, QαpX; pq
˘

, one has PαpX; yq ą p and,
hence, eventually PαpXn; yq ą p, which yields y R Eα,Xnppq and, hence, y ď QαpXn; pq. It follows
that lim infnQαpXn; pq ě QαpX; pq. Recalling now the established inequality lim supnQαpXn; pq ď

QαpX; pq, one completes the verification of the stability of QαpX; pq in X .
The stability of QαpX; pq in α is proved quite similarly, only using Proposition 2.3 in place of

Proposition 2.4. Here the stipulation x ‰ x˚ is not needed.
Consider now the positive sensitivity property. First, suppose that α P p0, 1q. Then, for all

real t ă 0, the derivative of BαpX; pqptq in t is less than D :“ 1 ´ pEY αq´1`1{α EY α´1, where
Y :“ pX ´ tq` “ X ´ t ą 0. The inequality D ď 0 can be rewritten as the true inequality
τ
τ`1

Lp´1q ` 1
τ`1

Lpτq ě Lp0q for the convex function s ÞÑ Lpsq :“ lnE exptp1 ´ αqs lnY u, where
τ :“ α

1´α
. Therefore, the derivative is negative and hence BαpX; pqptq decreases in t ď 0 (here,

to include t “ 0, we also used the continuity of BαpX; pqptq in t, which follows by the condition
X P Xα and dominated convergence). On the other hand, if t ą 0, then BαpX; pqptq ě t ą 0.
Also, BαpX; pqp0q ą 0 by (3.9) if the condition PpX ą 0q ą 0 holds. Recalling again the continuity
of BαpX; pqptq in t, one completes the verification of the positive sensitivity property – in the case
α P p0, 1q.

The positive sensitivity property in the case α “ 1 follows by (5.10). Indeed, (5.10) yields
Q1pX; pq ě QpX; pq ą 0 if QpX; pq ą 0, and Q1pX; pq “ 1

p
EX ě 0 by the condition X ě 0 if

QpX; pq “ 0; moreover, one has EX ą 0 and hence Q1pX; pq “ 1
p
EX ą 0 if QpX; pq “ 0 and

PpX ą 0q ą 0. On the other hand, by (3.3), X ě 0 implies QpX; pq ě 0. Thus, the positive sensitivity
property in the case α “ 1 is verified as well. This and the already established monotonicity ofQαpX; pq

in α implies the positive sensitivity property whenever α P r1,8s.

As far as this property is concerned, it remains to verify it when α “ 0 – assuming that PpX ą 0q ą p.
The setsE :“

 

x P R : PpX ą xq ď p
(

andE˝ :“
 

x P R : PpX ą xq ă p
(

are intervals with the right
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endpoint 8. The condition PpX ą 0q ą p means that 0 R E. By the right continuity of PpX ą xq in x,
the set E contains the closure E˝ of the set E˝. Therefore, 0 R E˝ and hence 0 ă inf E˝ “ Q0pX; pq,
by (3.3). Thus, the positive sensitivity property is fully verified.

In the presence of the positive homogeneity, the subadditivity property is easy to see to be equivalent
to the convexity; cf. e.g. Theorem 4.7 in [56].

Therefore, it remains to verify the convexity property. Assume indeed that α P r1,8s. If at that
α ă 8, then the function } ¨ }α is a norm and hence convex; moreover, this function is nondecreasing on
the set of all nonnegative r.v.’s. On the other hand, the function R Q x ÞÑ x` is nonnegative and convex.
It follows by (3.9) that BαpX; pqptq is convex in the pair pX, tq. So, to complete the verification of the
convexity property of QαpX; pq in the case α P r1,8q, it remains to refer to the well-known and easily
established fact that, if fpx, yq is convex in px, yq, then infy fpx, yq is convex in x; cf. e.g. Theorem 5.7
in [56].

The subadditivity and hence convexity of QαpX; pq in X in the remaining case α “ 8 can now
be obtained by the already established stability in α. It can also be deduced from Lemma B.2 in [57]
(cf. Lemma 2.1 in [58]) or from the main result in [23], in view of the inequality

`

LX1`¨¨¨`Xn

˘˚´1
ď

`

LX1 H ¨ ¨ ¨ H LXn
˘˚´1

given in the course of the discussion in [23] following Corollary 2.2 therein.
However, a direct proof, similar to the one above for α P r1,8q, can be based on the observation that
B8pX; pqptq is convex in the pair pX, tq. Since t ln 1

p
is obviously linear in pX, tq, the convexity of

B8pX; pqptq in pX, tq means precisely that for any natural number n, any r.v.’s X1, . . . , Xn, any positive
real numbers t1, . . . , tn, and any positive real numbers α1, . . . , αn with

ř

i αi “ 1, one has the inequality
t lnE eX{t ď

ř

i αiti lnE eXi{ti , where X :“
ř

i αiXi and t :“
ř

i αiti; but the latter inequality can
be rewritten as an instance of Hölder’s inequality: E

ś

i Zi ď
ś

i }Zi}pi , where Zi :“ eαiXi{t and
pi :“ t{pαitiq (so that

ř

i
1
pi
“ 1).

`

In particular, it follows that B8pX; pqptq is convex in t, which is
useful when Q8pX; pq is computed by Formula (3.8).

˘

The proof of Theorem 3.4 is now complete.

Proof of Proposition 3.5. Take indeed any α P r0,8q. Let then Y be a r.v. with the density
function f given by the formula fpyq “ cαy

´α´1pln yq´2 Ity ą 2u for all y P R, where cα :“

1
L ş8

2
y´α´1 ln´2 y dy. Then Y P Xα and, by the finiteness property stated in Theorem 3.4, QαpY ; pq P

R. Thus, one can find some real constant c ą QαpY ; pq. Let now X “ c, for any such constant c. Then,
by the consistency property stated in Theorem 3.4, QαpX; pq “ c ą QαpY ; pq. On the other hand, for
any γ P pα ` 1,8s one has E gγ´1;tpXq “ gγ´1;tpcq ă 8 “ E gγ´1;tpY q for all t P Tγ´1 (letting here

γ ´ 1 :“ 8 when γ “ 8), so that, by (2.23), X
γ
ď Y .

Proof of Proposition 3.6. Consider first the case α P p0,8q. Let r.v.’s X and Y be in the default

domain of definition, Xα, of the functional Qαp¨; pq. The condition X
st
ă Y and the left continuity

of the function PpX ě ¨q imply that for any v P R, there are some u P pv,8q and w P pv, uq such
that PpX ě zq ă PpY ě zq for all z P rw, us. On the other hand, by the Fubini theorem, EpX ´

tqα` “
ş

R αpz ´ tqα´1
` PpX ě zq dz for all t P R. Recalling also that X and Y are in Xα, one has

BαpX; pqptq ă BαpY ; pqptq for all t P R. By Proposition 4.3, QαpY ; pq “ BαpY ; pqpt optq for some
t opt P R. Therefore, QαpX; pq ď BαpX; pqpt optq ă BαpY ; pqpt optq “ QαpY ; pq.

`

Note that the proof
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of Proposition 4.3, given later in this appendix, does not use Proposition 3.6 – so that there is no vicious
circle here.

˘

Concerning the case α “ 8, recall (2.17) and (2.15), and then note that the condition X
st
ă Y implies

that x˚,Y “ 8, ΛX Ě ΛY , andB8pX; pqptq ă B8pY ; pqptq for all t P p0,8q such that 1
t
P ΛX and hence

for all t P p0,8q such that 1
t
P ΛY . Here, instead of the formula EpX´tqα` “

ş

R αpz´tq
α´1
` PpX ě zq dz

for all t P R, one uses the formula E epX´xq{t “
ş

R
1
t
epz´xq{t PpX ě zq dz for all t P p0,8q. Using now

Proposition 4.3, one sees that Q8pY ; pq “ B8pY ; pqpt optq for some t opt P p0,8q such that 1
t
P ΛY .

Therefore, Q8pX; pq ď B8pX; pqpt optq ă B8pY ; pqpt optq “ Q8pY ; pq.

Proof of Proposition 3.7. Suppose that indeed α P r0, 1q. Let X and Y be independent r.v.’s, each with
the Pareto density function given by the formula fpuq “ p1`uq´2 Itu ą 0u, so that PpX ě xq “ PpY ě

xq “ p1 ` x`q
´1 for all x P R. Then, by the condition α P r0, 1q, the condition X P Xα (assumed

by default in this paper and, in particular, in Proposition 3.6) holds; this is the only place in the proof
of Proposition 3.7 where the condition α ă 1 is used. Moreover, then it is not hard to see that for all
x P p0,8q one has PpX`Y ě xq´Pp2X ě xq “ 2p2`xq´2 lnp1`xq ą 0 and hence, by the definition

of the relation
st
ă given in Proposition 3.6,

2X
st
ă X ` Y.

Using now Proposition 3.6 together with the positive homogeneity property stated in Theorem 3.4,
one concludes that QαpX ` Y ; pq ą Qαp2X; pq “ 2QαpX; pq “ QαpX; pq `QαpY ; pq if α P p0, 1q.

It remains to consider the case α “ 0. Note that the function p0,8q Q x ÞÑ PpX ` Y ě xq P p0, 1q

is decreasing strictly and continuously from 1 to 0. Hence, in view of (3.3), the function p0, 1q Q p ÞÑ
QpX ` Y ; pq P p0,8q is the inverse to the function p0,8q Q x ÞÑ PpX ` Y ě xq P p0, 1q. Similarly,
the function p0, 1q Q p ÞÑ Qp2X; pq P p0,8q is the inverse to the strictly decreasing continuous function
p0,8q Q x ÞÑ Pp2X ě xq P p0, 1q. Since PpX ` Y ě xq ą Pp2X ě xq for all x P p0,8q, it follows
that QpX ` Y ; pq ą Qp2X; pq and thus the inequality QαpX ` Y ; pq ą QαpX; pq `QαpY ; pq holds for
α “ 0 as well.

Proof of Proposition 4.1. Take indeed any α P p0, 1q and p P p0, 1q. Note that there are real numbers q,
r, and b such that

q ą 0, r ą 0, q ` r ă 1,

0 ă b ă 1,

qp1´ bqα ` rp1` bqα “ 2αr “ p.

(A10)

Indeed, if 0 ă b ă 1, r “ p
2α

, and q “ kpbqr, where kpbq :“ 2α´p1`bqα

p1´bqα
, then all of the conditions in

(A10) will be satisfied, possibly except the condition q ` r ă 1, which latter will be then equivalent to
the condition hpbq :“ p

2α
p1` kpbqq ă 1. However, this condition can be satisfied by letting b P p0, 1q be

small enough, because hp0`q “ p P p0, 1q.
If now q, r, and b satisfy (A10), then there is a r.v. X taking values ´1, ´b, and b with probabilities

1´ q ´ r, q, and r, respectively. Let indeed X be such a r.v. Then for all s P p0,8q

AαpX; 0qpαsq “ gpsq :“ p1´ q ´ rqp1´ sqα` ` qp1´ bsq
α
` ` rp1` bsq

α. (A11)
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In view of (A11) and (A10),

gp0`q “ 1 ą p “ gp1
b
q “ gp1q ă 8 “ gp8´q.

Moreover, by the condition α P p0, 1q, the function g is strictly concave on each of the intervals p0, 1s,
r1, 1

b
s, and r1

b
,8q. Therefore, the minimum of gpsq in s P p0,8q equals p and is attained precisely at two

distinct positive values of s. Thus, in the case x “ 0, Proposition 4.1 follows by (A11). The case of a
general x P R immediately reduces to that of x “ 0 by using the shifted r.v. X ` x in place of X .

Proof of Proposition 4.3. Consider first Part (i) of the proposition. For any real t ą tmax, one has
BαpX; pqptq ě t ą BαpX; pqpsq ě inftPRBαpX; pqptq. On the other hand, by (4.8), for all real t ď
t0 :“ t0,min one has }pX ´ tq`}

α
α ě EpX ´ tqα ItX ě t0u ě pt0 ´ tqα PpX ě t0q ě pt0 ´ tqαp̃, whence

BαpX; pqptq ě t ` pt0 ´ tqpp̃{pq1{α ą tmax “ BαpX; pqpsq ě inftPRBαpX; pqptq provided that also
t ă t1,min. Thus, BαpX; pqptq ą inftPRBαpX; pqptq if either t ą tmax or t ă t0,min ^ t1,min “ tmin. This,
together with the continuity of BαpX; pqptq in t, completes the proof of Part (i) of Proposition 4.3.

Concerning Part (ii) of the proposition, consider first
Case 1: x˚ “ 8. Take then any real t1 ą 0 such that E eX{t1 ă 8 and then any real x ą x1 :“

B8pX; pqpt1q such that q :“ PpX ě xq ă p; note that q ą 0, since x˚ “ 8. Then for any real t ą 0 one
has E eX{t ě qex{t and hence

B8pX; pqptq “ t ln
E eX{t

p
ě t ln

qex{t

p
“ x´ t ln

p

q
ą x1 “ B8pX; pqpt1q ě inf

tą0
BαpX; pqptq (A12)

provided that

t ă tmin :“
x´ x1

lnpp{qq
;

the latter inequality is in fact equivalent to the strict inequality in (A12); recall here also that x ą x1 and
0 ă q ă p, whence tmin P p0,8q. Taking now into account that B8pX; pqptq is lower semi-continuous
in t (by Fatou’s lemma) and B8pX; pqptq “ t ln E eX{t

p
„ t ln 1

p
Ñ 8 as tÑ 8, one concludes that

inf
tą0

B8pX; pqptq “ inf
tětmin

B8pX; pqptq “ min
tětmin

B8pX; pqptq,

which completes the consideration of Case 1 for Part (ii) of the proposition. It remains to consider
Case 2: x˚ ă 8. Note that B8p¨; pqptq is translation invariant in the sense that B8pX ` c; pqptq “

B8pX; pqptq ` c for all c P R and t P p0,8q. Therefore, without loss of generality, x˚ “ 0, so that
X ď 0 almost surely (a.s.) and PpX ě ´εq ą 0 for all real ε ą 0. Now, by dominated convergence,
E eX{t ÝÑ

tÓ0
PpX “ 0q “ p˚ and E eX{t ÝÑ

tÑ8
1, whence

ln
E eX{t

p
ÝÑ

$

’

&

’

%

ln
p˚
p

as t Ó 0,

ln
1

p
as tÑ 8.

(A13)

Moreover,

B8pX; pqptq “ t ln
E eX{t

p
ÝÑ

#

0 as t Ó 0,

8 as tÑ 8.
(A14)
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Indeed, if p˚ “ 0, then for each real ε ą 0 and all small enough real t ą 0, one has E eX{t ă p and hence
0 ą t ln E eX{t

p
ě t ln

`

1
p
E eX{t ItX ě ´εu

˘

ě ´ε ` t lnPpX ě ´εq ÝÑ
tÓ0

´ε, which yields (A14) for

t Ó 0, in the case when p˚ “ 0. As for the cases when t Ñ 8, or t Ó 0 and p˚ ą 0, then (A14) follows
from (A13) because 0 ă p ă 1.

To proceed further with the consideration of Case 2, one needs to distinguish the following
three subcases.

Subcase 2.1: p˚ P r0, pq. Then, by (A14), for all large enough real t ą 0

B8pX; pqptq ą 0 “ lim
tÓ0

B8pX; pqptq ě inf
tą0

B8pX; pqptq

and, by (A14) and (A13), for all small enough real s ą 0

lim
tÓ0

B8pX; pqptq “ 0 ą s ln
E eX{s

p
“ B8pX; pqpsq ě inf

tą0
B8pX; pqptq.

It follows that for some positive real tmin and tmax

inf
tą0

B8pX; pqptq “ inf
tminďtďtmax

B8pX; pqptq “ min
tminďtďtmax

B8pX; pqptq;

the latter equality here follows by the continuity of B8pX; pqptq in t P p0,8q, which in turn takes
place by the Case 2 condition x˚ ă 8. This completes the consideration of Subcase 2.1 for Part (ii) of
the proposition.

Subcase 2.2: p˚ P rp, 1q. Here, note that PpX ă 0q ą 0 (since p˚ ă 1) and E eX{t “ p˚`E e
X{t ItX ă

0u. Therefore, if t is decreasing from 8 to zero, then E eX{t is strictly decreasing and hence ln E eX{t

p
is

strictly decreasing – to ln p˚
p
ě 0, by (A13) and the case condition p˚ P rp, 1q. So, ln E eX{t

p
ą 0 for

all t ą 0 and hence B8pX; pqptq “ t ln E eX{t

p
is strictly decreasing if t is decreasing from 8 to 0. It

follows that, in Subcase 2.2, inftPTα “ inftPp0,8q in (3.8) is not attained; rather, inftą0B8pX; pqptq “

limtÓ0B8pX; pqptq “ 0 “ x˚, in view of (A14) and the assumption x˚ “ 0. It remains to consider
Subcase 2.3: p˚ “ 1. Then PpX “ 0q “ 1 and hence B8pX; pqptq “ t ln 1

p
, so that, as in Subcase

2.2, inftPTα “ inftPp0,8q in (3.8) is not attained, and inftą0B8pX; pqptq “ limtÓ0B8pX; pqptq “ 0 “ x˚.
Now Proposition 4.3 is completely proved.

Proof of Proposition 4.4. See the proof of Proposition 3.6 in [8].

Proof of Proposition 5.2. To prove the “if” part of the proposition, suppose that H is 1
2
-Lipschitz and

take any r.v.’s X and Y such that X
st
ď Y . We have to show that then RHpXq ď RHpY q. By (2.26) and

because RHpXq depends only on the distribution of X , w.l.o.g. X ď Y . Let pX̃, Ỹ q be an independent
copy of the pair pX, Y q. Then, by (5.2), the 1

2
-Lipschitz condition, the triangle inequality, and the

condition X ď Y ,

RHpXq ´RHpY q “ EpX ´ Y q ` EHp|X ´ X̃|q ´ EHp|Y ´ Ỹ |q

ď EpX ´ Y q ` 1
2
Ep|X ´ X̃| ´ |Y ´ Ỹ |q

ď EpX ´ Y q ` 1
2
E |X ´ X̃ ´ Y ` Ỹ |

ď EpX ´ Y q ` 1
2
Ep|X ´ Y | ` |X̃ ´ Ỹ |q

“ EpX ´ Y q ` E |X ´ Y | “ EpX ´ Y q ` EpY ´Xq “ 0,
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so that the “if” part of Proposition 5.2 is verified.
To prove the “only if” part of the proposition, suppose thatRHpXq is nondecreasing inX with respect

to the stochastic dominance of order 1 and take any x and y in r0,8q such that x ă y. It is enough to show
that then |Hpxq ´Hpyq| ď 1

2
py ´ xq. Take also an arbitrary p P p0, 1q. Let X and Y be such r.v.’s that

PpX “ 0q “ 1 if x “ 0, PpX “ xq “ p “ 1´PpX “ 0q if x P p0,8q, and PpY “ yq “ p “ 1´PpY “

0q. Then X
st
ď Y , whence, by (5.2), 0 ě 1

p
rRHpXq´RHpY qs “ x´ y` 2p1´ pqrHpxq´Hpyqs, which

yields Hpxq ´Hpyq ď 1
2p1´pq

py ´ xq for an arbitrary p P p0, 1q and hence

Hpxq ´Hpyq ď 1
2
py ´ xq. (A15)

Similarly, letting now X and Y be such r.v.’s that PpX “ ´yq “ p “ 1 ´ PpX “ 0q, PpY “ 0q “ 1

if x “ 0, and PpY “ ´xq “ p “ 1 ´ PpY “ 0q if x P p0,8q, one has X
st
ď Y and hence 0 ě

1
p
rRHpXq ´ RHpY qs “ ´y ` x ` 2p1 ´ pqrHpyq ´ Hpxqs, which yields Hpyq ´ Hpxq ď 1

2
py ´ xq.

Thus, by (A15), |Hpxq ´Hpyq| ď 1
2
py ´ xq.

Proof of Proposition 5.3. To prove the “if” part of the proposition, suppose that H “ κ id for
some κ P r0, 1

2
s. We have to check that then RHpXq has the translation invariance, subadditivity,

positive homogeneity, and monotonicity properties and thus is coherent. As noted in the discussion
in Section 5, RHpXq is translation invariant for any function H . It is also obvious that Rκ idpXq is
positive homogeneous for any κ P r0,8q. Next, as also noted in the discussion in Section 5, RHpXq

is convex in X whenever the function H is convex and nondecreasing. Indeed, let then pX̃0, X̃1q be an
independent copy in distribution of a pair pX0, X1q of r.v.’s, and introduce Xλ :“ p1´ λqX0 ` λX1 and
X̃λ :“ p1´ λqX̃0 ` λX̃1, for an arbitrary λ P p0, 1q. Then

RHpXλq “ EXλ ` EHp|Xλ ´ X̃λ|q

“ p1´ λqEX0 ` λEX1 ` EH
`

|p1´ λqpX0 ´ X̃0q ` λpX1 ´ X̃1q|
˘

ď p1´ λqEX0 ` λEX1 ` EH
`

p1´ λq|X0 ´ X̃0| ` λ|X1 ´ X̃1|
˘

ď p1´ λqEX0 ` λEX1 ` p1´ λqEHp|X0 ´ X̃0|q ` λEHp|X1 ´ X̃1|q

“ p1´ λqRHpX0q ` λRHpX1q.

Thus, the convexity property of RHpXq is verified, which, as noted earlier, is equivalent to the
subadditivity given the positive homogeneity. Now, to finish the proof of the “if” part of Proposition 5.3,
it remains to notice that the monotonicity property of Rκ idpXq for κ P r0, 1

2
s follows immediately from

Proposition 5.2.
To prove the “only if” part of the proposition, suppose that the function H is such that RHpXq

is coherent and thus positive homogeneous, monotonic, and subadditive (as noted before, RHpXq is
translation invariant for any H). Take any p P p0, 1q and let X here be a r.v. such that PpX “ 1q “ p “

1´ PpX “ 0q. Then, by the positive homogeneity, for any real u ą 0 one has

0 “ RHpuXq ´ uRHpXq “ aA`B,

where B :“ p1´ uqHp0q, A :“ Hpuq ´ uHp1q ´ B, and a :“ 2pp1´ pq, so that the range of values of
a is the entire interval p0, 1

2
q as p varies in the interval p0, 1q. Thus, aA ` B “ 0 for all a P p0, 1

2
q. On
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the other hand, aA ` B is a polynomial in a, with coefficients A and B not depending on a. It follows
that A “ B “ 0, which yields Hpuq “ uHp1q for all u P p0,8q and Hp0q “ 0. Hence, Hpuq “ uHp1q

for all real u ě 0. In other words, H “ κ id, with κ :“ Hp1q. Then the monotonicity property and
Proposition 5.2 imply that |κ| ď 1

2
. It remains to show that, necessarily, κ ě 0. Take here X and Y to be

independent standard normal r.v.’s. Then, by the subadditivity,

2κE |X| “ Rκ idpX ` Y q ď Rκ idpXq `Rκ idpY q “ 2
?

2κE |X|,

whence indeed κ ě 0.
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