
Risks 2014, 2, 195-210; doi:10.3390/risks2020195
OPEN ACCESS

risks
ISSN 2227-9091

www.mdpi.com/journal/risks

Article

Neumann Series on the Recursive Moments of
Copula-Dependent Aggregate Discounted Claims
Siti Norafidah Mohd Ramli * and Jiwook Jang

Department of Applied Finance and Actuarial Studies, Faculty of Business and Economics,
Macquarie University, Sydney 2109, Australia; E-Mail: jiwook.jang@mq.edu.au

* Author to whom correspondence should be addressed; E-Mail: siti.mohd-ramli@mq.edu.au;
Tel.: +61-2-9850-4870.

Received: 1 November 2013; in revised form: 10 April 2014 / Accepted: 16 May 2014 /
Published: 27 May 2014

Abstract: We study the recursive moments of aggregate discounted claims, where the
dependence between the inter-claim time and the subsequent claim size is considered. Using
the general expression for them−th order moment proposed by Léveillé and Garrido (Scand.
Actuar. J. 2001, 2, 98–110), which takes the form of the Volterra integral equation (VIE), we
used the method of successive approximation to derive the Neumann series of the recursive
moments. We then compute the first two moments of aggregate discounted claims, i.e., its
mean and variance, based on the Neumann series expression, where the dependence structure
is captured by a Farlie–Gumbel–Morgenstern (FGM) copula, a Gaussian copula and a
Gumbel copula with exponential marginal distributions. Insurance premium calculations
with their figures are also illustrated.
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1. Introduction

As the occurrence of catastrophe events becomes more frequent, the assumption of independence
between event occurrence and claim severity is no longer sufficient in insurance risk modeling, given
its impact on pricing and reserving, capital allocation solvency, as well as regulatory systems. The
February 2009, Victorian bushfire in Australia (10,200 insurance claims amounting to approximately
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AUD 1.2 billion), the February 2011, Christchurch earthquake (USD 13 billion insured economic losses),
the 2011 Great Eastern Japanese earthquake (loss amounting to as much as USD 40 billion), as well as
the 2012 Hurricane Sandy (an expected loss of USD 25 billion) are the examples of this effect (see [1,2]).

In dealing with the dependency between the inter-claim arrivals and claim sizes, various approaches
have been proposed in previous studies that can be noticed in [3–11], as well as the references therein.
Regardless of the model used, we notice that previous research focused on either examining the
expression of the moments of the aggregate discounted claims, Z(t), as can be seen in [6,11–14], or
by finding the related ruin measures and the ruin probability expressions, just like in [3–5,10,15].

Assuming the Poisson claim arrival process with claim sizes following mixed exponential
distributions, [7] obtained the explicit expressions of the actuarial net premiums and the variances of
the discounted aggregate claims from the Laplace transform of the distribution of the shot noise process,
which was derived using the martingale approach. The first two moments of the aggregate discounted
claims were obtained in [9] assuming the dependency between the claim sizes and the rates of claim
occurrence affected by a Markovian environment, called the circumstance process. A delayed renewal
process was also explored in [12–15], as well as [11] to accommodate the epochs between claim arrival
and the observation of the risk process.

The asymptotical behaviour of a conditional tail probability dependence structure of claim sizes given
the inter-claim arrival time was studied in [5,8]. Assuming that the conditional tail of claim size given
the inter-claim time satisfies a certain condition for a bounded inter-claim time and a really huge claim
size, [5] obtained the asymptotic tail probabilities of the discounted aggregate claims. Three copulas
were indicated as fulfilling this assumption, which are the Farlie–Gumbel–Morgenstern (FGM) and the
Frank and Ali–Mikhail–Haq (AMH) copulas, and the Weibull claim size was paired with exponential
inter-claim arrival time in their numerical example. On the other hand, [8] explored the analytical
properties related to the same dependence structure described by the survival copulas, such as their
local and global uniformity.

Conditioning on the first arrival and using a renewal theory argument, [12] derived a useful expression
for the m−th recursive moment, whereby the inter-claim arrival time and the claim severity are assumed
to be independent. The same conditioning argument was then applied in [6,10], assuming the FGM
copula and then solved using the Laplace transform approach. More recently, [11] also adopted the same
technique to derive the recursive moments of a Sparre Andersen risk process assuming a fairly general
dependence structure between the inter-claim time and subsequent claim size variables, providing a
simplified moments expression for assuming Erlang weights. Four types of copula were showcased in
their examples of joint distribution between the said variables, which are the polynomial copula, the
Bernstein copula, the generalized FGM copula, the extended FGM copula (references for these copulas
are available in Section 3 of [11]).

The recursive moment equation resulting from the technique used in [6,12] takes the form of a Volterra
integral equation of the second kind, which is widely used in the fields of mathematical physics, such as
the electromagnetic and viscoelasticity fields, to represent the dynamics of materials that contain memory
(refer to [16–20]). We are interested in using the same technique and then extend the recursive moments
obtained in [6], so that it can be applied to any continuous bivariate distribution to accommodate the
dependency between the two variables. To do so, we solve the recursive expression of the moments



Risks 2014, 2 197

using the Neumann series obtained via the Picard method of successive approximations, upon which a
selection of bivariate distributions can be applied, including bivariate copula.

This article is structured as follows. Section 2 will introduce the general framework of the continuous
time renewal risk model together with its recursive moments with exponentially distributed inter-claim
time and general claim size distribution. The dependency between the claim size and inter-claim time
are then specified using a bivariate copula. For that purpose, we consider three copulas, which are
the FGM copula, the Gaussian copula, which is a type of elliptical copula, and the Gumbel copula,
an Archimedean type of copula, which is a natural candidate to represent an extreme value copula that
caters for the one-sided dependence structure (see [21]).

In Section 3, we introduce the Volterra integral equation, which will be solved using the successive
approximations method, leading to the Neumann series expression of the recursive moments, which is the
main result of this paper. The Neumann series expression of the recursive moments allows the flexibility
to capture various dependence structures provided by copula probability density functions (pdf).

Section 4 starts with the comparison between the value of moments obtained by our Neumann series
expression assuming the FGM copula and the closed form solution by [6]. We then present the numerical
analysis, showing the value of moments across the dependence parameter for each copula considered,
assuming an exponentially distributed claim size. The illustration and comparison of moments, as well
as premium values under the standard deviation principle are also included in this section. Section 5
concludes the article.

2. Model Setup

We consider a continuous time renewal risk model as in [6], whereby Z = {Z(t)}t≥0 with:

Z(t) =


∑N(t)

i=1 e
−δTiXi if N(t) > 0

0 if N(t) = 0

In this model, N = {N(t)}t≥0 is a homogeneous Poisson process and Xi is a non-negative random
variable (r.v.) representing the claim amount occurring at time Ti for i = 1, 2, . . . , N(t). The
instantaneous rate of net interest, δ, is assumed to be deterministic.

We also define the inter-claim time variable r.v. Wj as:

Wj =

Tj for j = 1

Tj − Tj−1 for j = 2, 3, . . .

The variables, Xj and Wj , are assumed to be continuous. In this study, we relax the independent
assumption between the inter-claim time, Wj , and the claim size, Xj , and we let {(Xj ,Wj)}j∈N to
form a sequence of independent and identically distributed (i.i.d) random vectors, whose components
are dependent.
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2.1. Recursive Moments of Aggregate Discounted Claims

Conditioning on the arrival of the first claim as in [6,10,12], and knowing that E(Xm|W = s) =∫∞
0
xmfX|W=s(x)dx form ≥ 1, we have the general form of them−thmoments of aggregate discounted

claim as the following:

µ
(m)
Z (T ) = E[Zm (T )] =

∫ T

0

fW (s)e−mδsE(Xm|W = s)ds+

∫ T

0

fW (s)e−mδsµ
(m)
Z (T − s)ds

+
m−1∑
j=1

(
m

j

)∫ T

0

fW (s)e−mδsE(Xj|W = s)µ
(m−j)
Z (T − s)ds

=

∫ T

0

∫ ∞
0

e−mδsxmfX,W (x, s) dxds+

∫ T

0

e−mδsfW (s)µ
(m)
Z (T − s)ds

+
∑

1≤j<m

(
m

j

)∫ T

0

∫ ∞
0

e−mδsxjfX,W (x, s)µ
(m−j)
Z (T − s)dxds (1)

where fX,W (x, s) is the bivariate probability density function (pdf) of the pair, Xj and Wj .
In this study, the joint pdf is described via a copula, Cθ(u, v), whose pdf is given by

cθ(u, v) = d2

dudv
Cθ(u, v) with dependence parameter θ (see, e.g., [22,23] for a general review on copulas).

The bivariate pdf of (X,W ) at (x, s) can be represented as:

fX,W (x, s) = cθ(FX(x), FW (s))fX(x)fW (s)

where f(·) and F (·) are the marginal pdf and cdf for r.v.’s X and W .
Since the jump occurrences are assumed to follow a Poisson distribution, we therefore have an

exponentially distributed inter-claim arrival time, i.e., W ∼ exp(β). Upon replacing fW (s) = βe−βs,
we obtain:

µZ(T ) =

∫ T

0

∫ ∞
0

βxe−(β+δ)sfX(x)cθ (FX(x), FW (s)) dxds+ β

∫ T

0

e−(β+δ)sµZ(T − s)ds

= C(T ) + β

∫ T

0

e−(β+δ)sµZ(T − s)ds

= C(T ) + β

∫ T

0

e−(β+δ)(T−s)µZ(s)ds (2)

and:

µ
(m)
Z (T ) = β[

∫ T

0

∫ ∞
0

xme−(β+mδ)sfX(x)cθ (FX(x), FW (s)) dxds

+
∑

1≤j<m

(
m

j

)∫ T

0

x−(m−j)e−[β+mδ]scθ (FX(x), FW (s)) fX(x)µ
(m−j)
Z (T − s)dxds]

+ β

∫ T

0

e−(β+mδ)sµ
(m)
Z (T − s)ds

= C(m)(T ) + β

∫ T

0

e−(β+mδ)sµ
(m)
Z (T − s)ds

= C(m)(T ) + β

∫ T

0

e−(β+mδ)(T−s)µ
(m)
Z (s)ds (3)
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where

C(m)(T ) = β[

∫ T

0

∫ ∞
0

xme−(β+mδ)sfX(x)cθ (FX(x), FW (s)) dxds

+
∑

1≤j<m

(
m

j

)∫ T

0

x−(m−j)e−[β+mδ]scθ (FX(x), FW (s)) fX(x)µ
(m−j)
Z (T − s)dxds]

(4)

for m = 2, 3, · · · .

2.2. Copula Used

We are interested to calculate the first, second and mth moment of aggregate discounted claims under
three copulas: the FGM copula, the Gaussian copula and the Gumbel copula. Their pdfs are given by:

cFθ (FX(x), FW (s)) = 1 + θ(1− 2FX(x))(1− 2FW (s)) (5)

cGθ (FX(x), FW (s)) =
1√

(1− θ2)
e
− θ(2Φ−1(FX (x))Φ−1(FW (s))−θ(Φ−1(FX (x))2+Φ−1(FW (s))2))

2(θ2−1) (6)

cMθ (FX(x), FW (s)) =
(− lnu)θ

−u lnu

(− ln v)θ

−v ln v

θ
√

(− lnu)θ + (− ln v)θ

[(− lnu)θ + (− ln v)θ]2

×
θ
√

(− lnu)θ + (− ln v)θ + θ − 1

e
θ
√

(− lnu)θ+(− ln v)θ
(7)

The FGM copula is used in this study due to its simplicity and analytical tractability. It is also used
to verify our numerical results in Section 4.1 with [6]. The well-known elliptical family member, the
Gaussian copula, is chosen as, to the best of our knowledge, the effect of elliptical copula in terms of the
dependence between claim size and inter-claim time have not been explored extensively. The Gumbel
copula is also chosen, since it could be adopted by an insurance company, who assumes risks with
extreme magnitude, having the tendency to occur together, as pointed out by De Matteis in [21]. Many
standard statistical texts offer illustrations of copula scatter plots with various dependence structure, for
which we refer to [22–24].

3. Linear Integral Equations

The most general form of linear integral equation (IE) is given by:

h(T )Ψ(T ) = g(T ) +

∫ b(T )

a

K(T, s)Ψ(s)ds (8)

where Ψ(T ) is the solution to the IE that we need to obtain, g(T ) is a given function and K(T, s) is
the kernel for the IE. Equation (8) can be a homogeneous/non-homogenous, Volterra/Fredholm IE of the
1st/the 2nd kind, for which readers are referred to the conditions given in Section 2.1 of [18]. Linear
IE can be solved either numerically using methods, such as the Runge–Kutta and collocation methods
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(see, e.g., [25,26]), or solved explicitly, such as by obtaining its Neumann series via the Picard method
of successive approximations or using the Laplace transform method.

3.1. Volterra IE of the 2nd Kind

If we have g(T ) 6= 0, h(T ) = 1, and b(T ) = T , Equation (8) becomes:

Ψ(T ) = g(T ) +

∫ T

a

K(T, s)Ψ(s)ds (9)

which is a non-homogeneous Volterra integral equation of the second kind. The Volterra IE is widely
used in the areas of viscoelasticity and electromagnetic to compute the dynamics of materials that
“contain” memory, other than being useful in renewal theory and demography (see, e.g., [16,27],
as well as the references therein for a more rigorous treatment on Volterra integral equations).

We easily notice that the moments provided by Equations (2) and (3) take the form of Equation (9)
and attempt to derive the explicit solution of the recursive expressions using Neumann series in the next
subsection.

A unique and continuous solution, Ψ(T ), is obtainable if we have a combination of a continuous
kernel, K(T, s), in the region a ≤ s ≤ T ≤ b(T ) with a function, g(T ), that is continuous in the region
a ≤ T ≤ b(T ), even though it is not a requirement for the kernel function, K(T, s), to be continuous
(see page 1 of [28] and page 5 of [20]). For the case of a discontinuous kernel function, we need to check
if K(T, s) fulfills the three regularity conditions set on page 3 of [27], and, hence is an L2-function.

In the case of the first and second moments, µZ(T ) and µ(2)
Z (T ), the function, g(T ), is represented by

the following equations, respectively:∫ T

0

∫ ∞
0

e−(β+δ)sxfX(x)cθ (FX(x), FW (s)) dxds (10)

∫ T

0

∫ ∞
0

e−(β+2δ)sx2fX(x)cθ (FX(x), FW (s)) dxds

+2

∫ T

0

∫ ∞
0

e−(β+2δ)sxfX(x)cθ (FX(x), FW (s))µZ(T − s)dxds (11)

where FW (s) = 1− e−βs is the inter-claim time cdf.
As X and W are continuous r.v.’s, and by corollary 2.2.6 of [23] on copula continuity, g(T ) is the

continuous function for s ∈ [0, T ] and x ∈ [0,∞], since it is the sum and product of continuous functions.
The kernel function is also continuous, as it is an exponential function given by:

K(T, s) = e−(β+mδ)(T−s) (12)

Additionally, it is a bounded function in the square Π = {(T, s) : a ≤ T ≤ b(T ), a ≤ s ≤ T}.

3.2. Neumann Series

In this section, we will find the Neumann series of the Volterra IE assuming the exponentially
distributed inter-claim arrival time and a general claim size with continuous pdf. To do so, we start
with a proposition from Chapter 3 of [27], which used the Picard method of successive approximation.
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Proposition 1. Neumann Series for a Volterra IE of the 2nd Kind
For the Volterra IE of the 2nd kind, as in Equation (9), where g(T ) and K(T, s) are L2-functions, its

Neumann series is given by:

Ψ(T ) = g(T ) +
∞∑
n=1

λn
∫ T

a

K(T, s)Ψ(s)ds

= g(T ) + λ

∫ T

a

∞∑
n=1

λn−1Kn(T, s)g(s)ds

= g(T ) + λ

∫ T

a

Γ(T, s;λ)g(s)ds (13)

where Γ(T, s;λ) =
∑∞

n=1 λ
n−1Kn(T, s) is the unique resolvent kernel and Kn(T, s) is the n-th-iterated

kernel function satisfying the recurrence formula:

Kn(T, s) =

∫ T

s

K(T, u)Kn−1(u, s)du (14)

with K1(T, s) = K(T, s).

In order to prove our theorem, it is necessary to find the resolvent kernel, which is obtained in the
following lemma.

Lemma 2. Consider the kernel function given by Equation (12). For m = 1, 2, . . ., its resolvent kernel
is therefore given by:

Γ(T, s;λ) = e−mδ(T−s) (15)

Proof. Using Equation (14), we obtain K2(T, s), K3(T, s), · · · , Kn+1(T, s) starting from
K(T, s) = K1(T, s) = e−(β+mδ)(T−s). Letting (T − s) = −(s− T ) and since (s− T )n = [−(s− T )]n

for even n, the resolvent kernel is then obtained by summing up Km(T, s) as follows:

Γ(T, s;λ) = e−(mδ+β)(T−s)
∞∑
n=1

[−(s− T )β]n

n!

= e−(mδ+β)(T−s)e−β(T−s)

= e−mδ(T−s)

Now, we can obtain the expression for the first and second moment, which is the main result of
this article.

Theorem 3. The explicit solution of the first two moments are given by:

µZ(T ) =

∫ T

0

∫ ∞
0

e−δsxLθ(x, s)dxds+ β

∫ T

0

∫ s

0

∫ ∞
0

e−δ(T−s+u)xLθ(x, s)dxduds (16)
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µ
(2)
Z (T ) =

∫ T

0

∫ ∞
0

e−2δsx2Lθ(FX(x), FW (s))dxds

+ 2

∫ T

0

∫ ∞
0

∫ T−s

0

∫ ∞
0

e−2δs−δτxhLθ(FX(x), FW (s))Lθ(FX(h), FW (τ))dhdτdxds

+ 2β

∫ T

0

∫ ∞
0

∫ T−s

0

∫ ∞
0

e−δ(T+s−τ+u)xhLθ(FX(x), FW (s))Lθ(FX(h), FW (u))dhdudτdxds

+ β

∫ T

0

∫ s

0

∫ ∞
0

e−2δ(T−s−τ)x2Lθ(FX(x), FW (s))dxds

+ 2β

∫ T

0

∫ s−τ

0

∫ ∞
0

∫ s

0

∫ ∞
0

e−2δ(T−s−τ)xhLθ(FX(x), FW (τ))Lθ(FX(h), FW (y))dhdydxdτdxds

+ 2β2

∫ T

0

∫ s

0

∫ ∞
0

∫ s−τ

0

∫ y

0

∫ ∞
0

e−δ(2T+u−y−s+τ)xhLθ(FX(x), FW (τ))

× Lθ(FX(h), FW (u))dhdudydxdτdxds (17)

where Lθ(FX(x), FW (u)) = e−βufX(x)cθ(FX(x), FW (u)) with FW (u) = 1− e−βu.

Proof. Applying Proposition 1 and Lemma 2 to Equation (3) with m = 1, 2, the results follow.

Section 4 will numerically illustrate the computation of the first and second moment under three
copulas, assuming that the claim sizes are exponentially distributed, i.e., X ∼ exp(α). We do not
proceed to obtain the closed form solution of the Neumann series expression for the higher moments, as
it is tedious and time consuming. However, they are obtainable using the results provided in this section.

4. Numerical Illustration

We now present numerical illustration of the Neumann series expression for the first two moments.
We start our discussion by presenting the scatter plots of each copula in Figures 1–3, where the marginals
are exponential distribution, which is in line with the assumptions used in the numerical computations
of the moments in this section. All computations were done using Mathematica.

Figure 1. Farlie–Gumbel–Morgenstern (FGM) copula with exponential margins and
dependence parameters −1, zero, one.
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Figure 2. Gaussian copula with exponential margins and dependence parameters −1,
zero, one.

Figure 3. Gumbel copula with exponential margins and dependence parameters one,
three, 100.

4.1. Numerical Accuracy of Neumann Series Expression for Moments

Recall that Equation (16) has at most triple integration involved, while Equation (17) has up to
sextuple numerical integration. This implies that the computation of Equation (17) is expected to be
close to the solution by [6], due to numerical approximation error, and the values would vary according to
selected software packages. To evaluate the performance of the main results, we compare the numerical
values returned by our Neumann series (under the column Neumann of Table 1), using the FGM copula,
with the numerical values given by the closed form solution in [6] (under the column BCLM of Table 1).

Table 1. Moment verification: the case of the FGM copula. Abs. Dev., absolute deviation;
Rel. Dev., relative deviation.

Moment θ BCLM Neumann Abs. Dev. Rel. Dev.

µZ(5) −0.9 0.475231 0.475231 0 0
0 0.453173 0.453173 0 0

0.9 0.431115 0.431115 0 0

µ
(2)
Z (5) −0.9 0.332023 0.329774 0.002249 0.006774

0 0.287786 0.287786 0 0
0.9 0.245457 0.247706 0.002249 0.009163

The values in Table 1 were computed using an example of δ = 0.04, α = 10, β = 1, T = 5 and
θ = −0.9, 0, 0.9. The absolute deviation (Abs. Dev.) figures are obtained by taking the difference
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between the two columns, BCLM and Neumann (i.e., the absolute value of the solution presented in [6]
minus the Neumann series expression), whereas the relative deviation (Rel. Dev.) figures are calculated
as Abs.Dev.

BCLM
.

Our calculations showed that the Neumann series expression for the first moment gives the same
value as the closed form solution presented in [6]. On the other hand, the second moment gives a slightly
different value at θ = −0.9 and 0.9, when the r.v.’s, X and W , are highly dependent. After a close
scrutiny of the programming messages, we noticed that this is caused by numerical approximation errors
of the quadruple, quintuple and sextuple integrations that are not present in the calculation of the first
moment. To improve the accuracy of the Neumann series expression for higher order moments, the
reader can use other software packages or use Monte Carlo simulation.

4.2. Moments of the Aggregate Discounted Claims

Setting δ = 0.04, α = 0.01 and β = 1 for the case of exponential claim inter-arrival time and
exponential claim sizes, respectively, we show the values of moments of the aggregate discounted
claims for each copula used in this study. We present the values of the first and second moments of the
compound distribution, i.e., µZ(5) and µ(2)

Z (5), as well as the variance under each copula in Tables 2–4.
The term “spread”, which is defined as the difference between the values returned by θ at both ends, i.e.,
θ−0.95 − θ0.95 for FGM and Gaussian, and θ1 − θ100 for Gumbel, are also shown in Tables 2 and 3.

Table 2. Values of µZ(5) for various copula.

θ FGM θ Gaussian θ Gumbel

−0.95 455.543 −0.95 513.470 1 453.173
−0.9 455.419 −0.9 511.887 5 360.864
−0.5 454.421 −0.5 488.903 15 267.995

0 453.173 0 453.173 30 148.317
0.5 451.926 0.5 409.481 50 104.457
0.9 450.928 0.9 368.612 75 21.486
0.95 450.803 0.95 363.124 100 10.712

Spread 4.74 150.346 431.687

Our calculations showed that all copula exhibit decreasing values as θ increases, in line with [11].
Intuitively, a negative dependence structure represented by the pair of short inter-claim waiting time
(or frequent claim occurrence within a given time period) with huge claim size will only prompt the
insurer to charge a higher premium as opposed to the positive dependence structure.

As we have expected, the values of moments do not vary much across θ when calculated under the
FGM copula, as opposed to the Gaussian and Gumbel copulas. Being an extreme copula, values of the
first moment calculated under the Gumbel copula also showed the widest spread of the first moment.

Table 5 shows the values of the first moment as a function of α and β, respectively, for which we
use the Gaussian copula at θ = −0.9. It shows that increasing the inter-claim waiting time parameter,
β, results in increasing the mean value of the aggregate discounted claims, and vice versa in the case of
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the claim size parameter. Given an average value of inter-claim arrival time, β, the mean of aggregate
discounted claims gets lower as we have a lower average claim size, given by 1

α
. On the other hand,

given an average value of the claim size, the mean of the aggregate discounted claims gets bigger as the
inter-claim arrival time gets shorter, which implies more frequent claim occurrences. This scenario is
illustrated in Figure 4 for θ = −0.9 (left hand side of the diagram), as well as θ = 0 (right hand side of
the diagram).

Table 3. Values of µ(2)
Z (5) for various copula.

θ FGM θ Gaussian θ Gumbel

−0.95 336,551.170 −0.95 409,852.140 1 287,784.972
−0.9 332,022.549 −0.9 405,315.216 3 148,590.220
−0.5 312,126.218 −0.5 357,029.617 5 139,437.15

0 287,785.862 0 287,785.862 40 21,804.385
0.5 264,034.461 0.5 212,119.492 75 1,088.013
0.9 245,457.386 0.9 149,988.657 80 229.608
0.95 241,329.490 0.95 136,249.086 100 178.443

Spread 95,221.68 273,603.054 287,606.529

Table 4. Values of Var(5) for various copula.

θ FGM θ Gaussian θ Gumbel

−0.95 128,940.627 −0.95 146,200.971 1 82,420.094
−0.9 124,616.083 −0.9 143,286.915 3 13,837.353
−0.5 105,627.773 0.5 118,003.474 5 9,214.320

0 82,420.094 0. 82,420.094 40 5,597.566
0.5 59,797.351 0.5 44,444.803 75 626.365
0.9 42,121.325 0.9 14,113.850 80 112.770

0.95 38,106.145 0.95 4,390.216 100 61.436

Table 5. Values of µZ(5) under the Gaussian copula at θ = −0.9.

β =1 µZ(5) α = 1 µZ(5)

α = 0.01 511.887741 β = 0.01 0.165673
α = 0.1 51.188786 β = 0.1 0.884887
α = 1 5.118887 β = 1 5.118887
α = 10 0.511838 β = 10 45.911776
α = 15 0.341257 β = 15 67.571651
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Figure 4. Sensitivity of the first moment under the Gaussian copula at θ = 0 and θ = −0.9

with respect to claim size and inter-claim time averages.

4.3. Premium Calculation under FGM, Gaussian and Gumbel copulas

We now compute the loaded premium related to the risk of an insurance portfolio represented by
Z(T ), where the dependence structure is captured by a copula. For that purpose, the first two moments
will be useful in the premium calculation based on the expected value principle, the variance principle,
as well as the standard deviation (SD) premium principle, as the following:

Π(T ) = E[Z(T )] + κE[Z(T )]

Π(T ) = E[Z(T )] + κVar[Z(T )]

Π(T ) = E[Z(T )] + κ
√
Var[Z(T )]

Table 6 exhibits the loaded premium according to the SD principle under the three copulas considered,
with κ = 0.1, while Figures 5 and 6 illustrate the range of premiums under the copulas studied according
to the SD premium principle.

Table 6. Loaded premium according to the SD principle under various copulas.

θ FGM θ Gaussian θ Gumbel

−0.95 491.55 −0.95 551.71 1 481.88
−0.9 490.72 −0.9 549.74 3 378.85
−0.5 486.92 −0.5 523.25 5 370.46

0 481.88 0 481.88 40 134.79
0.5 476.38 0.5 430.56 75 23.99
0.9 471.45 0.9 380.49 80 11.87
0.95 470.32 0.95 369.75 100 11.60

Spread 21.23 181.96 470.28

5. Conclusions

In this paper, we utilized copulas to capture the dependence structure between the inter-claim arrival
time and claim sizes in classical actuarial risk theory. To do so, we represented the expression for the



Risks 2014, 2 207

m−th order moment proposed in [6,12] in the form of the Volterra integral equation (VIE) of the second
kind, which is widely used in renewal theory, demographics, electromagnetism and viscoelasticity.

Figure 5. The loaded premium under FGM and Gaussian copulas based on the SD
premium principle.

Figure 6. The loaded premium under the Gumbel copula based on the SD premium principle.
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We derived the Neumann series expression for this recursive equation using the Picard method
of successive approximations, based on which we computed the first two moments of the aggregate
discounted claims. For the dependence structure between the inter-claim arrival time and claim sizes, we
used a Farlie–Gumbel–Morgenstern copula, a Gaussian copula and a Gumbel copula with exponential
marginal distributions. We showed the values of moments of the aggregate discounted claims, as well as
the loaded premium for each copula used in this study.

It would be of interest to derive the expression for Equations (2) and (3) using other joint pdfs between
X andW . Other copulas with different claim size distributions forX may be considered in the proposed
approach, which we leave for further research. We can also consider the Monte Carlo simulation, as well
as other numerical methods to solve the VIE (such as Runge–Kutta and the collocation methods), as the
next objective of further research to deal with the computation of higher moments.
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