Risks 2014, 2(2), 132-145; doi:10.3390/risks2020132
Article

Effectively Tackling Reinsurance Problems by Using Evolutionary and Swarm Intelligence Algorithms

1,* email, 1email, 2email, 2email and 2email
Received: 15 January 2014; in revised form: 28 February 2014 / Accepted: 3 March 2014 / Published: 1 April 2014
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: This paper is focused on solving different hard optimization problems that arise in the field of insurance and, more specifically, in reinsurance problems. In this area, the complexity of the models and assumptions considered in the definition of the reinsurance rules and conditions produces hard black-box optimization problems (problems in which the objective function does not have an algebraic expression, but it is the output of a system (usually a computer program)), which must be solved in order to obtain the optimal output of the reinsurance. The application of traditional optimization approaches is not possible in this kind of mathematical problem, so new computational paradigms must be applied to solve these problems. In this paper, we show the performance of two evolutionary and swarm intelligence techniques (evolutionary programming and particle swarm optimization). We provide an analysis in three black-box optimization problems in reinsurance, where the proposed approaches exhibit an excellent behavior, finding the optimal solution within a fraction of the computational cost used by inspection or enumeration methods.
Keywords: reinsurance; optimization problems; evolutionary-based algorithms
PDF Full-text Download PDF Full-Text [352 KB, uploaded 1 April 2014 14:19 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Salcedo-Sanz, S.; Carro-Calvo, L.; Claramunt, M.; Castañer, A.; Mármol, M. Effectively Tackling Reinsurance Problems by Using Evolutionary and Swarm Intelligence Algorithms. Risks 2014, 2, 132-145.

AMA Style

Salcedo-Sanz S, Carro-Calvo L, Claramunt M, Castañer A, Mármol M. Effectively Tackling Reinsurance Problems by Using Evolutionary and Swarm Intelligence Algorithms. Risks. 2014; 2(2):132-145.

Chicago/Turabian Style

Salcedo-Sanz, Sancho; Carro-Calvo, Leo; Claramunt, Mercè; Castañer, Ana; Mármol, Maite. 2014. "Effectively Tackling Reinsurance Problems by Using Evolutionary and Swarm Intelligence Algorithms." Risks 2, no. 2: 132-145.

Risks EISSN 2227-9091 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert