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Abstract: Shot-noise processes generalize compound Poisson processes in the
following way: a jump (the shot) is followed by a decline (noise). This constitutes
a useful model for insurance claims in many circumstances; claims due to natural
disasters or self-exciting processes exhibit similar features. We give a general account
of shot-noise processes with time-inhomogeneous drivers inspired by recent results
in credit risk. Moreover, we derive a number of useful results for modeling and
pricing with shot-noise processes. Besides this, we obtain some highly tractable
examples and constitute a useful modeling tool for dynamic claims processes. The
results can in particular be used for pricing Catastrophe Bonds (CAT bonds), a traded
risk-linked security. Additionally, current results regarding the estimation of shot-noise
processes are reviewed.

Keywords: shot-noise processes; tail dependence; catastrophe derivatives; marked point
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1. Introduction

An insurance company insures occurring claims in exchange for a regular premium. Numerous works
study the determination of an optimal premium: for example, the premium should be high enough such
that the ruin probability of the insurance company is sufficiently small. The claim sizes themselves
are often considered to be independent and identically distributed, with arrival times being jump times
from a Poisson process. A by now classical extension of this model considers renewal times, where the
inter-arrival times are no longer exponential.

In this paper, we extend this set-up further and study arrival times with a random arrival rate. In
particular, we will consider arrival rates having shot-noise features. This could, for example, be used
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to model the claims arrivals after a catastrophe in a dynamic way: many claims will be reported right
after the catastrophe, such that the arrival rate in the beginning is high. Further claims will be announced
later and later corresponding to a decreasing arrival rate. Shot-noise arrival rates directly model such
an effect. An alternative application appears when considering claims caused by a flood or hail: they
typically admit spatial patterns with a centre where the majority of the claims are located and a decreasing
number of claims with increasing distance from the centre. In a life insurance context, a natural disaster,
such as a tsunami also leads to a similar patterns.

The main idea we follow here is to give a new view on insurance claims processes inspired by recent
results in credit risk. In particular, we propose a model with multiple claim arrivals, i.e., claims can occur
at the same time. This is an important issue for catastrophe modeling and for pricing Catastrophe Bonds
(CAT bonds). The size of CAT bond markets has been increasing tremendously over the last decade.
Currently, it reaches an all-time high: the outstanding volume hit $19 billion dollars in October 2013
(sources: [1,2]).

Shot-noise processes are a well-known and well-studied object. Inspired by physical effects as in [3]
many applications have been proposed. For further literature we refer to [4–6], among many others.
Applications in the insurance context are given in [7] or in [8]. Shot-noise processes in credit risk are
treated in [9,10].

More precisely, consider a Poisson process N and a non-decreasing function L. Claims arrive
according to the time-transformed process

N(L(t)), t ≥ 0.

This is the classical inhomogeneous Poisson process if L is absolutely continuous. If L, however, has
jumps, then it might happen that N(L(t))−N(L(t−)) > 1 whenever P(L(t)− L(t−) > 0) > 0. This
refers to the possibility of having more than one claim arrival at time t.

It turns out that L can be replaced by a stochastic process, which is non-decreasing, and we will show
how to incorporate shot-noise effects in here. The obtained results have a sufficient degree of generality,
in particular, we will not need Markovianity of the shot-noise processes.

The structure of the paper is as follows: in Section 2, we introduce a general form of shot-noise
processes and derive general results. In Section 2.1, we give the claims arrival process with a stochastic
intensity process having a shot-noise structure. In Section 3, we study the pricing of catastrophe bonds
while in Section 4, we discuss the estimating of shot-noise processes. In closing, Section 5 shows how
to simulate shot-noise processes.

2. Claims with Stochastic Arrival Rate

We study models allowing for factor-driven dynamics by borrowing heavily from current
developments in credit risk, in particular reduced form modeling, see [11] or [12] for detailed accounts.
A particular interesting example will be given in terms of general shot-noise processes. We start by
introducing an appropriate notion of cumulated intensity.

Consider a probability space (Ω,F ,P) with a filtration F = (Ft)t≥0 satisfying the usual conditions,
i.e., F is right-continuous and F0 contains all P-nullsets.
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From a general viewpoint, non-life insurance can be described as follows: insurance claims are
reported at the arrival times 0 < T1 ≤ T2 ≤ · · · . An arrival time is an F-stopping time, such that
the available information at time t, given by Ft, contains the precise timing of all claims occurred before
t. The size of claim i is denoted by Zi and we assume that the claim size is immediately available i.e., Zi
is FTi-measurable for all i ≥ 1. The aggregated claim amount process C is given by

Ct =
∞∑
i=1

1{Ti≤t}Zi, t ≥ 0. (1)

2.1. Intensity and Cumulated Intensity

We start by revisiting some well-known facts for marked point processes. A detailed exposition of
the theory of point processes and marked point processes may be found in [13], which we follow here.
The sequence (Ti, Zi)i≥0 is a marked point process (MPP). If the claim sizes are non-zero, then there is a
one-to-one correspondence between the marked point process (Ti, Zi)i≥0 and its dynamic representation
C = (Ct)t≥0 and we will use both interchangeably. There is a further useful tool to describe C: the
random measure M defined by

M(ω; dt, dz) =
∞∑
i=1

δ(Ti(ω),Zi(ω))(dt, dz)

where δ(t,z) denotes the Dirac-measure at the point (t, z).
By B(R) we denote the Borel σ-algebra on the real line. Fix A ∈ B(R). Then Mt := M([0, t], A),

t ≥ 0 counts the number of claims whose claim size is in A and which occurred in [0, t]. The process
M = (Mt)t≥0 is a point process. If there exists a non-negative F-progressive process ` such that∫ t

0
`(s)ds <∞ with probability one and for all non-negative, F-predictable processes Y it holds that

E
[ ∫ ∞

0

YsdMs

]
= E

[ ∫ ∞
0

Ys`sds

]
then ` is called the F-intensity of M . In the following we generalize this definition to that of
cumulated intensities.

First, for a point process (Tn)n≥1 with associated counting process Nt :=
∑

n≥1 1{Tn≤t}, t ≥ 0 we
call a predictable random measure L cumulated intensity measure if

E
[ ∫ ∞

0

YsdNs

]
= E

[ ∫ ∞
0

YsL(ds)

]
for all non-negative F-predictable processes Y . The non-decreasing, predictable process Lt := L([0, t])

will be called cumulated intensity process.

Example 1. Doubly stochastic setting. Consider a non-decreasing process L = (Lt)t≥0 starting at
zero and i.i.d., standard-exponentially distributed random variables E1, E2, . . . , independent of L. Set
T0 = 0 and define

Ti := inf{t ≥ 0 : Lt ≥ E1 + · · ·+ Ei}, i ≥ 1
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Then L takes the rôle of a cumulated intensity process. Note that in this model it is possible that
Ti = Ti−1, if L has jumps. We will call this effect joint jumps in the claims arrival process.

On the other side, if L is absolutely continuous i.e.,

Lt =

∫ t

0

`sds

the probability of joint jumps vanishes. Then ` is the intensity process of the point process (Ti)i≥1.
Without further assumptions, given L, the point process (T1, T2, . . . ) always exists, but can be

explosive. Uniqueness of the distribution of the point process (T1, T2, . . . ) requires some further
assumptions, in particular on the considered filtration, see [14].

Definition 1. Consider a marked point process with associated random measure M . Suppose that for
each A ∈ B(R), M([0, t], A) has the cumulated intensity measure L(dt, A). Then L(dt, dz) is called
F-cumulated intensity measure of M .

The cumulated intensity measure determines the compensator in the Doob-Meyer decomposition,
such that L is also called compensator of M : if Y is predictable, such that

E
[ ∫ t

0

∫
|Y (s, z)|Ls(ds, dz)

]
<∞

for all t ≥ 0, the following process∫ t

0

∫
Y (s, z)(M(ds, dz)− Ls(ds, dz)), t ≥ 0

is a F-martingale. The compensator in the Doob-Meyer decomposition is unique, and so is the cumulated
intensity measure of M . For further details see [15] Section II.1.

Example 2. Cramér-Lundberg model. Consider a Poisson process with jump times Tn, n ≥ 1

and assume that Zn, n ≥ 1 are independent and identically distributed (i.i.d.), and independent of
Mt =

∑
n≥1 1{Tn≤t}. Then the claims process C is a compound Poisson process. Together with its

canonical filtration given byFt = σ(Mt)∨N whereN denotes the P-nullsets this model fits in our set-up.
Lundbergs exponential upper bound on the ruin probability is a classical result, see [7]

Theorem 4.2.3, and ensures that if the insurer starts with a sufficiently high initial capital the ruin
probability is small.

Example 3. Stochastic discounting. If the insurance company discounts the claim costs from arrival
Tn to today t, the following modification of Equation (1) is appropriate:

Ct =
∞∑
n=1

1{Tn≤t}h(t, Tn)Zn, t ≥ 0

where h(t, T ) is a non-negative, measurable function, for example h(t, T ) = e−r(T−t) or
h(t, T ) = e−

∫ T
t r(s)ds. Assuming non-negative interest rates implies that h is non-increasing in t.

Moreover, h(T, T ) = 1. The process C in this case is a special shot-noise process which we will
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study in the following section in detail. Remarkably, [16] shows that the Lundberg estimate still holds
under h(t, T ) = g(T − t) with non-increasing function g if the claim sizes are in a certain sense not
too heavy-tailed.

2.2. Shot-Noise Processes

In this section we study a general class of shot-noise processes driven by time-inhomogeneous Poisson
processes. In Section this class will build the cornerstone for our modeling of the cumulated intensity
process L.

Consider an inhomogeneous Poisson process N with intensity function λ and denote by
0 < τ1 < τ2 < · · · its jump times. Let ξn, n ≥ 1 be random variables with values in Rd, i.i.d. and
independent of N . Then the driving process (τn, ξn)n≥1 is a inhomogeneous compound Poisson process.
Finally, consider a measurable function h : R≥0 × R≥0 × Rd → R and define the process S by

St :=
∑
n≥1

1{τn≤t}h(t, τn, ξn), t ≥ 0. (2)

Then we call S a shot-noise process. The function h is called noise-function. This definition is general
enough for our purposes, but could be extended at the cost of more complicated results. For example, it is
possible to include general random compensators for N or even infinity activity for the driving process.
We refer to [4] or [17] for references and further literature on shot-noise processes.

If µ is the random measure associated with the marked point process (τn, ξn)n≥1, then

St =

∫ t

0

∫
Rd
h(t, s, x)µ(ds, dx), t ≥ 0 (3)

This representation shows that in general, S will not be a semi-martingale. In most applications,
however, we will consider h(t, s, x) = g(t − s, x) and the semi-martingale property in this case is
simpler to study.

Example 4. If G is not of finite absolute variation, S is no longer a semi-martingale. For example,
consider a Brownian motion W such that (Wt)t≥0 is F0-measurable. Letting

g(t, x) = xWt

gives that dSt = Zt−dWt + dZt which is not a semi-martingale (W is F0-measurable!).

For the following result, we denote by ν the compensator of µ and consider shot-noise processes of
the form

St :=
∑
n≥1

1{τn≤t}g(t− τn, ξn), t ≥ 0. (4)

Lemma 2. Fix T > 0 and assume that g(t, x) = g(0, x) +
∫ t

0
g′(s, x)ds for all 0 ≤ t ≤ T and all

x ∈ Rd. If ∫ T

0

∫
Rd

(g′(s, x))2ν(ds, dx) <∞ (5)

P-a.s., then (St)0≤t≤T as in Equation (4) is a semi-martingale.
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Proof. Under condition (5), we can apply the stochastic Fubini theorem in the general version given in
Theorem IV.65 in [18]. Observe that

St =

∫ t

0

∫
Rd

∫ t

s

g′(u− s, x)duµ(ds, dx) +

∫ t

0

∫
Rd
g(0, x)µ(ds, dx)

=

∫ t

0

∫ s

0

∫
Rd
g′(u− s, x)µ(ds, dx) du+

∫ t

0

∫
Rd
g(0, x)ν(ds, dx) +Mt

with a local martingale M . This is the semi-martingale representation of S and we conclude.

In the exponential case, i.e., when g(t, x) = xe−bt, we obtain g′(t, x) = −bg(t, x) and g(0, x) = x,
such that

St =

∫ t

0

−bSudu+ Zt.

In this case, S is also a Markov process. This is, under quite weak assumptions, the only specification
where a shot-noise process is Markovian.

For applications it is important to have a repertory of parametric families which can be used to
estimate the shot-noise process from data. We give some specifications in the following example
which lead to highly tractable models. These examples will partly be taken up in Example 10 in an
integrated form.

Example 5. Parametric families. In this example we concentrate on the multiplicative structure

g(t, x) = g(t)x

and give a number of useful specifications for the noise function g.

(1) Regime switching: The shot at Ti has a constant impact for a specified time length β and after β
the impact jumps to a new level (regime) which could even be zero. For α ∈ R, β > 0, let

g(t) = 1{t≤β} + α1{t>β}

For α = 0, the effect of the shot vanishes totally after a time period of length β.

(2) Exponential structure: for β > 0, let
g(t) = e−βt

Here, the effect of a shot decreases exponentially over time. As already mentioned, in this case S
is Markovian. See also Figure 1 for an illustration.

We close this section with an example where claims are discounted with respect to deterministic, but
non-constant interest rates.

Example 6. Discounting claims. Following Example 3 we consider claims, arriving according to a
Poisson process with constant intensity `. The risk-free rate of interest r is a deterministic, measurable
function such that

∫ T
0
r(s)ds < ∞. The value of all claims arriving before T , discounted to time t < T

is given by

Ct =
∞∑
n=1

1{Tn≤t}e
−

∫ Tn
t r(s)dsZn
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which is a shot-noise process with noise function h(t, T, x) = e−
∫ T
t r(s)dsx. Proposition 3 will enable

us to compute the distribution of the discounted claims. This approach can be extended to incorporate
stochastic interest rates as well.

Figure 1. Illustration of a shot-noise process (Top) with exponential structure. The graph
on the bottom shows a counting process whose jump times have the shot-noise process as
intensity `. The dashed line is the cumulated intensity process L(t).
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Example 7. Delayed claims. Often, when a claim is announced to the insurer, the size of the claim is
not known immediately. In this case, there is a delay of the claim. We could incorporate this in our set-up
by letting ξ ∈ R× R≥0 where ξ2 denotes the delay. The noise function

h(t, T, x) = x1g((T + x2)− t)1{t≥T+x2}

x = (x1, x2)>, allows to include such effects in multiplicative model as in Example 5.

For the description of the statistical properties of the model, the Fourier transform of the shot-noise
process is a central quantity which is given in the following result. For convenience of the reader we give
a proof of this classical result in our general set-up. We denote by Λ(t) the cumulated intensity function
of the time-inhomogeneous Poisson process N .
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Proposition 3. Fix t ≥ 0 and assume that Λ(t) < ∞ for all s ∈ [0, t]. Let η be U [0,Λ(t)]-distributed,
independent of ξ1 and

ϕ(t, θ) := E[exp(iθh(t,Λ−1(η), ξ1))]− 1.

Then, for a shot-noise process S as in Equation (2) it holds for all θ ∈ R that

E
(
eiθSt

)
= exp

(
Λ(t)ϕ(t, θ)

)
. (6)

The independence of ξ1 and η allows to compute ϕ by simple integration:

E[exp(iθh(t, η, ξ1))] =

∫ t

0

1

t
E[exp(iθh(t, s, ξ1))]ds.

In a model with multiplicative structure i.e., h(t, s, x) = h(t, s)x we have that

E[exp(iθh(t, s, ξ1))] = E[exp(iθh(t, s)ξ1)]

such that ϕ can be computed from the Fourier transform of ξ1. We illustrate this in Example 8 below.
Central to the proof is the following lemma which gives a relation of the jump times of the Poisson

process to order statistics of i.i.d., uniformly distributed random variables. The order statistic of
η1, . . . , ηk is obtained through ordering the sample by size, η1:k < η2:k < · · · < ηk:k (in our case
there are no ties, i.e., all values are different).

Lemma 4. Consider a (homogeneous) Poisson process N with jump times σ1, σ2, . . . , t > 0 and k ∈ N.
Conditional on Nt = k it holds that

(σ1, . . . , σk)
L
= (η1:k, . . . , ηk:k) (7)

where η1, η2, . . . , ηk are i.i.d., and uniformly distributed on [0, t].

For a proof of Lemma 4 we refer to p.502 in [19].

Proof of Proposition 4. We first consider the case when λt ≡ 1. Then N is a standard Poisson process
and we denote its jump times by σ1, σ2, . . . . By Lemma 4, independence of ξ := (ξ1, ξ2, . . . ) and N ,
and the i.i.d. property of ξ and measurability of h we obtain that, conditionally on NT = k

k∑
n=1

h(t, σn, ξn)
L
=

k∑
n=1

h(t, ηn:k, ξn)
L
=

k∑
n=1

h(t, ηn, ξn). (8)

Hence, as k was arbitrary it follows that∑
σn≤t

h(t, σn, ξn)
L
=
∑
σn≤t

h(t, ηn, ξn)

where (η1, η2, . . . ) are i.i.d., U [0, t]-distributed, and independent of N and ξ. Hence,

E
[ ∏
σn≤t

eiθh(t,ηn,Vn)
]

=
∑
k≥0

e−t
tk

k!

k∏
n=1

E
[
eiθh(t,η1,V1)

]
= exp

(
− t+ tE

[
eiθh(t,η1,ξ1)

])
. (9)
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Now we utilize the representation of an inhomogeneous Poisson process as time-transformation of
a standard Poisson process: the process (N(Λ(s)))s≥0 with Λ(s) :=

∫ s
0
λvdv is a time-inhomogeneous

Poisson process with intensity function λ. The jump times of N(Λ) are given by τn := Λ−1(σn) because∑
n≥1

1{σn≤Λ(t)} =
∑
n≥1

1{Λ−1(σn)≤t}

where Λ−1(t) := inf{s ≥ 0 : Λ(s) ≥ t} denotes the inverse of Λ. We obtain that

St
L
=
∑
τn≤t

h(t, τn, ξn)

=
∑

σn≤Λ(t)

h(t,Λ−1(σn), ξn)

and, by Equation (9),

E
[

exp(iθSt)
]

= E
[

exp
( ∑
σn≤Λ(t)

h(t,Λ−1(σn), ξn)
)]

= exp

(
− Λ(t) + Λ(t)E

[
eiθh(t,Λ−1(η1),ξ1)

])
.

Note that σ1, . . . now take values in [0,Λ(t)], such that η1 ∼ U [0,Λ(t)]. The expectation in the last
equation equals

E
[
eiθh(t,Λ−1(η1),ξ1)

]
= ϕ(θ) + 1

and we conclude.

Corollary 5. Assume that Λ(t) = λt, such that N is a Poisson process with intensity λ > 0.

(i) If h(t, T, x) = 1 we obtain that N(t) is Poisson(λt)-distributed:

E
[
eiθSt

]
= E

[
eiθNt

]
= exp

(
λt(eiθ − 1)).

(ii) If h(t, T, x) = x then S is a compound Poisson process. We denote by ϕξ(θ) := E[eiθξ1 ] the
Fourier transform of ξ1 and obtain

E
[
eiθSt

]
= exp

(
λt(ϕξ(θ)− 1)).

(iii) If h(t, T, x) = xe−b(t−T ) we obtain the classical Markovian shot-noise process and

E
[
eiθSt

]
= exp

(
λtϕ(t, θ)) (10)

with

ϕ(t, θ) = E
[
eiθe

−bη1ξ1
]
− 1 =

1

t

∫ t

0

ϕξ(θe
−bx)dx− 1.
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Proof. The first two results follow immediately. Regarding the third claim, note that Λ−1(t) = t
λ

.
Together with η ∼ U [0, λt] we obtain that

Λ−1(η) =
1

λ
η ∼ U [0, t].

Then also t− η ∼ U [0, t] and we obtain that

ϕ(t, θ) = E
[
eiθe

−bη1ξ1
]
− 1

=
1

t

∫ t

0

E
[
eiθe

−bx ξ1
]
dx− 1

=
1

t

∫ t

0

ϕξ(θe
−bx)dx− 1

by Fubini’s theorem.

Related results may be found in [20]. The semi-Markov case is considered in [21].

Example 8. A parametric example for the jump distribution. The following example illustrates
the applicability of Proposition 3. Consider a Poisson process with intensity λ as driver and ξi which
have an Erlang distribution. This is a flexible class of positive random variables which contains the
exponential and χ2

n-distribution as special cases: consider ξ1 ∼ Γ(n, ν) with n ∈ N and ν > 0. Then

ϕξ (θ) = E(eiθV1) =

(
1− iθ

ν

)−n
.

The tractability of the Erlang-distribution mainly attributes to the following result:∫
an

x(a+ bx)n
dx = ln

( x

a+ bx

)
+

n−1∑
j=1

aj

j(a+ bx)j
. (11)

We choose h(t, T, x) = e−b(t−t)x and compute∫ t

0

ϕξ(θe
−bx)dx =

∫ t

0

νn(
ν − iθe−bs

)nds
=

1

b

∫ 1

e−bt

νn

x (ν − iθx)n
dx

(11)
= ln

iν + θe−bt

iν + θ
+

n−1∑
j=1

(
νj

j(ν − iθ)j
− νj

j(ν − iθe−bt)j

)
and we obtain the characteristic function of St from Equation (10). For n = 1 we obtain an exponential
distribution with parameter ν > 0 and the obvious simplification.

2.3. Claims Driven by Shot-Noise Processes

Now we are in the position to put our ingredients together for the modeling of insurance claims. Let
A : R≥0 → R≥0 be a non-decreasing function denoting the cumulated claim arrival intensity when there
is no shot-noise process present. As previously, we consider an inhomogeneous Poisson process N with
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jump times (τn)n≥1 and intensity function λ. The shots are given by the i.i.d. sequence ξ1, ξ2, . . . . The
considered shot-noise process S is

St :=
∑
n≥1

1{τn≤t}G(t− τn, ξn), t ≥ 0

similar to Equation (4).
As before, claims arrive at times T1, T2, . . . where the associated point process has cumlated intensity

measure (compensator) L. In this section, the shot-noise process will be used as basis for L, such that
we assume that the function G : R≥0×Rd → R is non-decreasing in its first coordinate, time. Moreover,
we assume that

Lt = A(t) +
∑
n≥1

1{τn≤t}G(t− τn, ξn), t ≥ 0 (12)

Example 9. Shot-noise arrival rate. If the claim arrival rate ` is given by a shot-noise process with
noise function g, then L falls into the above class: note that

Lt =

∫ t

0

`sds =
∑
τn≤t

∫ t

τi

g(s− τn, ξn)ds =
∑
τi≤t

G(t− τn, ξn). (13)

with G(t, x) =
∫ t

0
g(s, x)ds. In this case, G(0, x) = 0 reflecting the continuity of L.

As indicated in the above example we will consider integrals over shot-noise processes as cumulated
intensity processes. In view of classical applications this class of processes is quite unusual as the noise
function is increasing. We distinguish these two cases in our notation by always using g and G for the
noise function in the original shot-noise process and the integrated shot-noise process, respectively.

For concrete implementations it is important to have a repertory of non-decreasing shot-noise
processes which can be used to estimate the shot-noise process from data. We give some specifications
in the following example which lead to highly tractable models.

Example 10. Parametric families. In the following examples we consider the multiplicative structure

G(t, x) = G(t)x

where G : R≥0 → R≥0 is non-negative and increasing in its first coordinate, and the random variables
ξn, n ≥ 1 have values in R≥0.

(1) Linear structure: for α ∈ [0, 1] , β > 0, let

G(t) = α + (1− α)
t

β
1{t≤β} + (1− α)1{t>β}.

This response function starts at α and increases linearly over the interval [0, β] until it reaches 1.
For α = 0, this function is absolutely continuous.

(2) Exponential structure: for α ∈ [0, 1] , β > 0, let

G(t) = α + (1− α)
(
1− e−βt

)
.

Here, G starts at α and increases exponentially to 1. The parameter α controls the impact of the
jump size on S. If α = 0, G is differentiable. The parameter β controls the speed of the growth.
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(3) Rational structure: for α ∈ [0, 1] , β > 0, let

G(t) = α + (1− α)
t

t+ β
.

This provides an alternative specification to the exponential structure.

An illustration of the last example may be found in Figure 2.

Figure 2. Illustration of the cumulated shot-noise intensity L with exponential structure and
jumps (α 6= 0). The graph on the bottom shows a counting process whose jump times have
cumulated intensity process L. Multiple claim arrivals occur when L jumps.
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3. Catastrophe Bonds

Catastrophe bonds (CAT bonds) are risk-linked securities which allow to transfer insurance risks to
investors. While the valuation of car insurance can effectively be done using the law of large numbers,
catastrophe risks pose a large challenge due to highly dependent claim arrivals. Our shot-noise approach
sets a framework which is ideally suited to model such risks.

The size of CAT bond markets has been increasing continuously over the last decade and has reached
an outstanding volume of $19 billion dollars in October 2013.

We consider the following stylized version: a CAT bond offers a coupon payment c at payment dates
t1, . . . , tK and the repayment of the principal 1 at tK if no trigger event happened. In the case of a trigger
event happened, the coupons are ceased and a fraction δ of the principal is paid back.
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As an example we consider as trigger event if the claims process C =
∑

Tn≤t Zn crosses a barrier B
and assume zero interest rates. In this case the payment at tk would be

fk(Ctk) =

c+ 1{k=K}, if Ctk ≤ B

δ1{k=K}, if Ctk > B

for k = 1, . . . , K.
For the pricing of the CAT bond we need to choose a risk-neutral measure Q and obtain that the value

of the CAT bond computes to the expectation (under Q) of discounted pay-offs i.e.,

T∑
k=1

EQ
[
β(tk) fk(Ctk)

]
Here β(t) is the discounting function for the time period [0, t], so for example β(t) = exp(−

∫ t
0
rudu)

with risk-free rate of interest r. The expectations can of course always be computed by means of a
Monte-Carlo simulation. In the following, we show how to obtain a more explicit result.

First, we assume that β is deterministic. This is reasonable in insurance applications as the risks due
to claims are huge in comparison to the effect of stochastic interest rates. This assumption can easily
be relaxed to interest rates which are independent of the claim sizes. More general interest rate models,
however, require a change of numéraire which comes at the cost of more complicated results.

If interest rates are deterministic, we obtain that

EQ
[
β(tk)1{Ctk≤B}

]
= β(tk)Q(Ctk ≤ B)

and it remains to compute the boundary crossing probabilities of the claims process in the following.
For more information on CAT bonds we refer to [22,23] or [24]. Our model also extends the approach

in [8] where shot-noise Cox processes in an exponential structure with α = 0 (see Example 5) have been
applied to derivatives on a catastrophe index.

3.1. Equivalent Measure Changes

Following the results in [25] we study measure changes for shot-noise processes. This is an important
tool for pricing, filtering as well as for importance sampling of shot-noise processes.

The basic driver of the shot-noise process S as given in Equation (2) is the marked point process
Φ = (τn, ξn)n≥0. It is thus sufficient to study changes of measure for Φ. Already in [13] it was shown how
to change measure as in the Girsanov theorem for marked point processes. We will present this results in
the following. In [25] it was shown that these measure changes include all equivalent measure changes.

We consider an initial filtration H ⊂ F0 and denote by P the predictable σ-field. Denote by µ the
random measure associated to Φ as in Equation (3). As above we assume that the compensator of the
process Φt =

∑
τn≤t ξn, t ≥ 0 is given by ν(t, dx)dt i.e.,

Φt −
∫ t

0

∫
Rd
uν(s, dx)ds

is a local martingale and the kernel ν(ω, t, dx) is P ⊗ Rd-measurable. Then ν(t,Rd) is the intensity at t
for a jump and, if the intensity is positive, ν(t,dx)

ν(t,Rd)
is the respective jump-size distribution.
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Consider a P ⊗ Rd-measurable positive function Y such that∫ t

0

∫
Rd
Y (s, u)ν(s, du)ds <∞ (14)

P-almost surely and let the likelihood-process Z be given by

Zt = e−
∫ t
0

∫
Rd (Y (s,u)−1)G(s,du)ds

∏
τn≤t

Y (τn, ξn), t ≥ 0 (15)

Fix a time horizon T > 0 and assume that E[ZT ] = 1. Then dP′ := ZT dP defines a probability measure
which is equivalent (as Y is positive and so Z) to P. Under P′, Φ is a (possibly explosive) marked point
process and its compensator w.r.t. P′ is given by

Y (t, u)ν(t, du)dt

3.1.1. Preserving Independent Increments

For tractability reasons one often considers shot-noise processes driven by a marked point process
which has independent increments. If the increments are moreover stationary, then Φ is a Lévy process.
We cover both cases in this section.

Theorem 6. Assume that P ∼ P′. Let the density process of P′ relative to P be of the form Equation (15).

1. If Φ has independent increments under P and P′, then Y is deterministic.

2. If Φ has independent and stationary increments under P and P′, then Y is deterministic and does
not depend on time.

For a proof, see [25].

Example 11. The Esscher measure. Consider a generic n-dimensional stochastic processX . Then the
Esscher measure ([26]) is given by the density

Zt =
eaXt

E(eaXt)

where a ∈ Rd is chosen in such a way that Z is a martingale. [27] showed that the Esscher measure
preserves the Lévy property. [8] applied the Esscher measure to obtain an arbitrage-free pricing
methodology for catastrophe bonds under shot-noise processes.

Example 12. The minimal martingale measure. The minimal martingale measure as proposed in [28]
for a certain class of shot-noise processes has been analysed in [17]. It can be described as follows:
consider the semi-martingale X = A + M where A is an increasing process of bounded variation and
M is a local martingale. Assume that there exists a process ` which satisfies

At =

∫ t

0

`sd〈M〉s
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Then the density of the minimal martingale measure with respect to P is given by

Zt = E
(∫ ·

0

`s−dMs

)
t

Here E denotes the Doleans-Dade stochastic exponential i.e., Z is the solution of dZt = Zt−`t−dMt.
In [29] the minimal martingale measure was obtained by a considering discrete time first and then

taking limits.

3.2. Pricing

In [8] the authors choose the Esscher measure to obtain a pricing measure in the context of CAT
bonds. Choosing the pricing measure in the case of a CAT bond is simpler than in many other cases
because the underlying (the catastrophe index) is not a traded asset. In this case any equivalent measure
is a martingale measure.

We take a more general approach here and only assume that certain properties of the shot-noise
process hold under Q. Given this properties, we derive general pricing rules. A calibration to market
data gives access to the risk-neutral measure Q. Possible ways to do this are to proceed as in [30] via
Kalman filtering, or to use a minimal-distance estimation as in Section 4.

According to Theorem 6 we assume a simple structure of Φ under Q. This is in spirit with many
applied results in mathematical finance, see for example [31].

(A1) We assume that underQ the marked point process Φ has i.i.d. marks (ξn)n≥1 and the point process
(τn)n≥1 is a inhomogeneous Poisson process.

This assumption will be satisfied under an Esscher change of measure, which is an important class
for insurance applications. If we have a deterministic interest rate, β(t) is constant and so for the pricing
it is sufficient to compute the expectation of fk(Ltk) only.

The key to efficient pricing methodologies is to obtain the Fourier transform of the claims arrival
process. In this regard, we consider the set-up as in Section 2.3: claims arrive at times T1, T2, . . . where
the associated point process Mt =

∑
n≥1 1{Ti≤t} has cumulated intensity measure (compensator) L. We

assume that

Lt = A(t) +
∑
n≥1

1{τn≤t}G(t− τn, ξn), t ≥ 0

where A : R≥0 → R≥0 is a non-decreasing measurable function. The driver of the shot-noise process
is an inhomogeneous Poisson process with jump times (τn)n≥1 and intensity function λ. The shots are
given by the i.i.d. sequence ξ1, ξ2, . . . .

Proposition 7. Consider the point process Mt =
∑

n≥1 1{Ti≤t}, t ≥ 0, the independent sequence
Z1, Z2, . . . and the cumulated claims at time t,

Ct =
∑
Tn≤t

Zn
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Then, for all θ ∈ R,

EQ
[
eiθCt

]
=
∑
n≥1

Q(Mt = n)(ϕZ(θ))n

Proof. The result follows immediately by independence as

EQ
[
eiθCt

]
=
∑
n≥1

EQ
[
1{Mt=n}e

iθ(Z1+···+Zn)
]

=
∑
n≥1

Q(Mt = n)(ϕZ(θ))n

Of course, if Zn stems from a family of distributions which is stable under convolution, (ϕZ(θ))n will
be easy to compute. In the following result we compute the remaining probabilities.

In the doubly-stochastic case as in Example 1 we have the following, important result: recall that this
setting can be viewed as a stochastic time change: M(t) = M̃(L(t)), with an Poisson process M̃ with
intensity 1, independent of L. Then

Q(M(t) = n) = EQ[Q(M̃(L(t)) = n|L)
]

= EQ
[ 1

n!
exp(−L(t))(L(t))n

]
Proposition 8. Assume that

Q(Mt = n) =
1

n!
EQ
[

exp(−L(t))(L(t))n
]

(16)

Set
ϕ(t, θ) := E

[
exp

(
− θG(t− Λ−1(η), ξ1)

)]
− 1

here η is U(0,Λ(t))-distributed, independent of ξ1. Then

Q(Mt = n) =
1

n!
e−

∫ t
0 A(s)ds ·

(
(−∂θ)neΛ(t)ϕ(t,θ)

)
Proof. We compute the right hand side of Equation (16). Consider an integrable, non-negative random
variable X . Then, E[exp(−θX)] <∞ for all θ ≥ 0. Moreover, by monotone convergence,

E[X exp(−θX)] = −E[∂θ exp(−θX)] = −∂θE[exp(−θX)]

and, proceeding iteratively,

E[Xn exp(−θX)] = (−∂θ)nE[exp(−θX)]

Then, analogously to Proposition 3, we obtain that

EQ
[

exp(−θL(t))
]

= e−θA(t) · exp
(
Λ(t)ϕ(t,−iθ)

)
and the conclusion follows.
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In Example 8 the n-th derivative can be computed. Otherwise one has to resort to
numerical methods.

Now the way to pricing of the CAT-bond is clear: one can either invert the Fourier transform by
Fast-Fourier methods or, alternatively compute

qn := Q(Z1 + · · ·+ Zn ≤ B)

which can sometimes be obtained explicitly, such that

EQ[1{Ct≤B}] =
∑
n≥1

Q(Mt = n)qn

4. Estimating Shot-Noise Processes

The estimation of shot-noise processes is an important part in the application of these models. A
possible approach in this direction uses filtering methods and has been started in [30]. The GMM method
has been applied to a special class of shot-noise processes in [32]. Further approaches for point process
estimation may be found in [33] or [34]. A recent account which especially treats shot-noise processes
may be found in [35] which we will present now.

The key assumption in the approach of [35] is that i.i.d. observations of the shot-noise process are at
hand. The key tool to estimation is to use a parametric compensator of the point process and estimate
the unknown parameter in terms of a minimum-distance estimator. In the insurance context it is often
the case that i.i.d. observations are available: if used for modelling the claims arrivals after catastrophes,
each catastrophe with associated claims process constitutes such a single observation.

We will consider the following case: observations consist of data of i = 1, . . . , n catastrophes. For
each catastrophe i the claims arrive at times T i1, T

i
2, . . . and we observe the point processes

N i
t =

∑
n≥1

1{T in≤t}, t ∈ [0, T̄ ]

on a fixed time interval [0, T̄ ]. Typically T̄ will be quite large such that all claims are included in
the study.

We assume that N i are independent and identically distributed such that each N i has a compensator
of the same type. Each claims arrival process N i is driven by an individual shot-noise process in spirit
of Equation (12). We assume that the time points of the catastrophes are observable: more generally, to
eachN i we associate the catastrophe arrivals τ i1, τ

i
2, . . . which are observable. Moreover, to each τ in there

is an associated ξin which is also assumed to be observable. It denotes a proxy for the overall size of the
catastrophe. This could be obtained from expert opinions, the area of land reached by the catastrophe, or
the cumulated claim sizes. It refers to the size of the shot in the compensator of N i.

Choosing a parametric approach, we follow Equation (12) and consider a parametric shot-noise form.
More precisely, given the parameter θ ∈ Θ ⊂ RK we assume that compensator of N i is given by

Lit(θ0) = A(t, θ0) +
∑
τ in≤t

G(θ0, t− τ in, ξin), t ∈ [0, T̄ ]

for some θ0 ∈ Θ.
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The first step towards the estimation is the introduction of the aggregated point process and the
aggregated compensator:

N̄n =
1

n

n∑
i=1

N i, L̄n(θ) =
1

n

n∑
i=1

Li

The second step is to define a suitable distance. For the finite measure µ we consider the semi-norm

‖ f ‖µ:=

[ ∫
[0,T̄ ]

f 2(t)µ(dt)

]1/2

The measure µ induced by N̄n leads to the following semi-norm

‖ f ‖N̄n =
1

n

n∑
i=1

∑
j≥1

f 2(τ ij)1{τ ij≤T̄}

Then, the quantity

‖ N̄n − L̄n(θ) ‖N̄n

represents an overall measure of fit for the observed data N̄n to the compensator L̄n(θ). The final
estimator of θ0 is the parameter which maximizes this fit:

θn := arg inf
θ∈Θ
‖ N̄n − L̄n(θ) ‖N̄n (17)

The following weak identifiability assumption will be needed for consistency. By Θc we denote the
closure of Θ. First, we assume that for all i = 1, . . . , n

E[N i(T̄ )] <∞ and E[LiT̄ (θ)] <∞

(A2) Let Θ ⊂ RK be a bounded open set and suppose that for each ε > 0

inf
‖θ−θ0‖≥ε

‖ E[L(θ0)− L(θ)] ‖E[L(θ0)]> 0

Moreover, the process (t, θ) → Lt(θ) is continuous with probability one and admits a continuous
extension to [0, T̄ ]×Θc.

The following result, given in Theorem 1 in [35], shows consistency of the minimum-distance estimator.

Theorem 9. Assume that (A2) holds. Then

lim
n→∞

θn = θ0 with probability one.

The proof of the theorem may be found in [35]. It relies on generalized U -Statistics and an appropriate
version of the Hewitt-Savage 0-1 law. Under further assumptions, they also obtain asymptotic normality
of the estimator θn and we refer to Theorem 2 in their paper for a precise statement.

This estimation procedure seems a very promising approach compared to existing methodologies and
will be taken up in a future article for an estimation on insurance catastrophe data.
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5. Simulation

Efficient simulation algorithms are often the key to widespread application of a model. In particular,
when closed-form results are expensive or not at hand, Monte-Carlo simulation always provides an
alternative which is nowadays often feasible due to available computer power. Similar to [36] we
can give general simulation routines for counting processes in a doubly-stochastic setting following
the methodology in [14].

Consider a fixed time horizon T . We will use the fact (see Lemma 4), that conditional on the number
of jumps of a Poisson process its jump times are equal in distribution to the order statistics of i.i.d.
uniform random variables on [0, T ]. The second key ingredient will be the time-transform: Ñ(Λ(t)) is a
inhomogeneous Poisson process if Ñ is a standard Poisson process.

We shortly recall our model: N = Ñ ◦ Λ is a time-inhomogeneous Poisson process with intensity
function λ and jump times τ1, τ2, . . . . The shots ξ1, ξ2, . . . are i.i.d. and Rd-valued. We denote the
distribution of ξ1 by Fξ. Then our shot-noise process is given by

St :=
∑
n≥1

1{τn≤t}g(t− τn, ξn), t ≥ 0

following Equation (4). The insurance claims arrive at times T1, T2, . . . which are doubly-stochastic
random times with cumulated intensity process

Lt = A(t) +
∑
n≥1

1{τn≤t}G(t− τn, ξn)

The claim sizes Z1, Z2, . . . itself are i.i.d. with distribution function FZ .
Algorithm 1. Simulate one path of the shot-noise process S and, afterwards, a vector of claim arrivals

together with associated claim sizes. A realized path may be found in Figure 3.

1. Draw the number of jumps N from a Poisson(Λ(T ))-distribution.

2. Simulate N i.i.d. U[0,Λ(T )] random variables η1, η2, . . . and set taui := Λ−1(ηi:N), i = 1, . . . , N ,
ηi:N being the i-th order statistic.

3. Simulate N i.i.d. random variables ξ1, . . . , ξN (jump heights) according to the chosen
distribution Fξ.

4. Compute the path L(t) = A(t) +
∑N

i=1 Vih(t− Ti).

5. Simulate the claim arrival times by taking i.i.d. exponential(1)-random variables E1, E2, . . .

and calculating
Ti = inf{t ≥ 0 : L(t) ≥ E1 + · · ·+ Ei}, i ≥ 1

6. Simulate the claim sizes Z1, Z2, . . . from the distribution FZ .
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Figure 3. Simulation of a claims process driven by a shot-noise process with rational
structure. The graph shows the intensity process ` (Top), the cumulated intensity process
L(t) =

∫ t
0
`(s)ds (Middle) and the simulated claims process

∑
1{Tn≤t} (Bottom).
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6. Kühn, C. Shot-noise processes. In Encyclopedia of Actuarial Science; John Wiley & Sons:
Chichester, UK, 2004; pp. 1556–1558.

7. Mikosch, T. Non-Life Insurance Mathematics: An Introduction with the Poisson Process, 2nd ed.;
Universitext, Springer-Verlag: Berlin, Germany, 2009.

8. Dassios, A.; Jang, J. Pricing of catastrophe reinsurance & derivatives using the Cox process with
shot noise intensity. Financ. Stoch. 2003, 7, 73–95.

9. Scherer, M.; Schmid, L.; Schmidt, T. Shot-noise multivariate default models. Eur. Actuar. J.
2010, 2, 161–186.

10. Jang, J.; Herbertsson, A.; Schmidt, T. Pricing basket default swaps in a tractable shot noise model.
Stat. Probab. Lett. 2011, 8, 1196–1207.
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