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Section S1– Extension of Theorem 1 to Intermediate Income and Consumption 

Consider investors who maximize time-separable expected utility defined over both 

intermediate and terminal consumption of the form: 𝐸𝑈 = 𝐸(∑ 𝜌 𝑢 (𝐶 )), where 𝐶  is the 

period t consumption and 𝜌 is a discount rate reflecting time preference. The utility function 

may generally be age-dependent, hence the subscript t in 𝑢 . The only assumption about the 

utility function is that it is non-decreasing, i.e. 𝑢 ≥ 0 for all t. The investor may also have a 

stream of stochastic and periodic time-dependent labor income, 𝑌 . Following Fama and 

Schwert (1977) and Cocco et. al. (2005), it is assumed that 𝑌  is independent of stock returns, 

and also across time (but it could be correlated across investors). As before, expectations about 

the return parameters are assumed to be homogeneous, the 1-period returns are assumed to be 

normally distributed, and returns are independent over time. Consider strategy G of investing 

in portfolio 𝐺  in period 1, in portfolio 𝐺  in period 2, etc., where at least some of these 

portfolios are mean-variance inefficient. The alternative strategy F implies investment in 

portfolio 𝐹  vertically above 𝐺 , in period 1, in 𝐹  vertically above 𝐺  in period 2, etc., as 

illustrated by Figure 1. Consider an investor who follows strategy G and dynamically chooses 

his optimal consumption in each period so as to maximize his lifetime expected utility. We 

prove that if the investor invests in strategy 𝐹 instead, he can obtain the exact same stochastic 

consumption stream, but with a terminal wealth distribution that FSD dominates the terminal 

wealth distribution obtained by investing following strategy G.  

Assume, without loss of generality, that the period-t labor income and the portfolio 

returns are realized, and then the consumption decision for the next period is made. Namely, at 

time t the labor income and returns for the period (t-1, t) are realized, and then the investor 

determines 𝐶 , which is the optimal consumption for the time period (t, t+1). As the labor 

income and returns are random variables, so is the optimal consumption. We denote the optimal 

period-t consumption for an investor who follows strategy G by 𝐶 (𝑅 , 𝑌 ), where the “~” 

indicates that the optimal consumption is a random variable that depends on the random return 

and labor realizations (and possibly on other parameters, such as current wealth, expectations, 

and preferences). To prove our result, we do not need to explicitly solve for the optimal 𝐶 .  



 
 

This is a big advantage, as the optimal consumption depends on the investor’s utility function, 

and our goal here is a general result for all non-decreasing utility functions.  

If the investor invests in portfolio 𝐺  in period 1, her wealth at the end of the period is given 

by: 

   𝑊 = 𝑊 𝑅 + 𝑌 − 𝐶 (𝑅 , 𝑌 ),              (S1) 

where 𝑊  denotes the initial wealth (after the initial consumption, 𝐶 ), and 𝑅  is the total 

return on portfolio 𝐺  in period 1 (i.e. 1+rate of return). Now consider the following alternative: 

investing in the FSD dominating portfolio 𝐹 . We denote the consumption of the investor 

holding portfolio 𝐹  by 𝐶 (𝑅 , 𝑌 ). Below we prove that 𝐶  can be constructed so that it has 

the following two properties: 

i) 𝐶  has the exact same univariate distribution as 𝐶 ;  

ii)  𝐶  ensures that 𝑊  dominates 𝑊  by FSD,  

where 𝑊  is the wealth of the investor investing in the portfolio 𝐹   at the end of period 1, 

which is given by: 

   𝑊 = 𝑊 𝑅 + 𝑌 − 𝐶 (𝑅 , 𝑌 ).                        (S2) 

Thus, the investor obtains the same distribution of intermediate consumption, but an FSD 

dominating distribution of period-1 wealth.  Note that in contrast to 𝐶 ,  𝐶   is not necessarily 

the optimal consumption for the investor holding portfolio 𝐹 . As we prove below dominance 

with non-optimal consumption, such dominance a fortiori exists with optimal consumption - 

the investor holding portfolio 𝐹  could potentially obtain even higher expected utility by 

choosing her consumption optimally.  

 𝑊 𝑅    FSD dominates 𝑊 𝑅  (because the return on portfolio 𝐹 , 𝑅 , FSD dominates 

the return on portfolio 𝐺 ,  𝑅 ). Note that in general, if a random variable 𝑥 FSD dominates 

another random variable 𝑦, then adding a third random variable �̃� to both 𝑥 and 𝑦 preserves the 

dominance relationship if �̃� is independent of both 𝑥 and 𝑦 (Levy and Sarnat 1971). If �̃� is not 

independent of 𝑥 and 𝑦, the dominance may remain, but it is not guaranteed. As the labor 

income is independent of the stock and bond returns, we have that 𝑊 𝑅 + 𝑌   FSD dominates 𝑊 𝑅 + 𝑌 .  In contrast, the consumption generally  does depend on the labor income and  on 

the  portfolio  return   realization, and  therefore  the dominance  of  𝑊 𝑅 + 𝑌 − 𝐶 (𝑅 , 𝑌 )  

over 𝑊 𝑅 + 𝑌 − 𝐶 (𝑅 , 𝑌 ) is not guaranteed. However, we can define 𝐶 (𝑅 , 𝑌 )  to have 



 
 

properties i) and ii) above, ensuring dominance. To do so, consider a particular labor income 

realization 𝑌 . Given this value, the optimal consumption of the investor holding portfolio 𝐺  

is a function of the portfolio 𝐺  return, i.e.  𝐶 (𝑅 , 𝑌 ).  For the investor holding portfolio 𝐹 , 

we choose the consumption as a function of the stock portfolio return 𝑅  in the following way:  

if the portfolio 𝐹  return realization is 𝑅 , the investor consumes  𝐶 (𝑅 , 𝑌 ) ≡ 𝐶 (𝑅 , 𝑌 ), 

where 𝑅   is the portfolio 𝐺  return that satisfies:  𝐺(𝑅 ) = 𝐹(𝑅  ),                (S3) 

and 𝐺(∙)  and 𝐹(∙)  denote the cumulative distribution functions of portfolios 𝐺  and 𝐹 , 

respectively. Thus, 𝑅  is defined by: 

     𝑅 ≡ 𝑄 𝐹(𝑅  ) ,                 (S4) 

where 𝑄  is quantile distribution of portfolio 𝐺 . This implies that in the case of a portfolio 𝐹  

return realization of 𝑅 , the investor consumes what she would have consumed if holding 

portfolio 𝐺 and realizing a return 𝑅  with the same quantile value as 𝑅 .  

            By construction, 𝐶  and  𝐶  have the same univariate distribution. To see that 𝑊  

dominates  𝑊   by FSD, consider a specific quantile value q, and define the returns 𝑅  and 𝑅   by  𝐹(𝑅  ) = 𝐺(𝑅  ) = 𝑞.  As 𝑅  FSD dominates 𝑅 , we are ensured that 𝑅 ≥ 𝑅  (and 

this is true for any value of q, see Levy and Kroll 1978, Theorem 1). By construction, we have 𝐶 (𝑅 , 𝑌 ) = 𝐶 (𝑅 , 𝑌 ). Thus: 𝑊 = 𝑊 𝑅 + 𝑌 − 𝐶 (𝑅 , 𝑌 )   ≥   𝑊 = 𝑊 𝑅 + 𝑌 − 𝐶 (𝑅 , 𝑌 ).               (S5) 

As this holds for any quantile value q and any labor income realization 𝑌 , we have that 𝑊  

dominates  𝑊   by FSD (Levy and Kroll 1978, Theorem 1). 

To illustrate the idea behind eq.(S5), it is convenient to consider the case of a discrete 

return distribution with N equally-likely outcomes. Let us arrange the N possible period-1 

portfolio 𝐺  returns by ascending order: 𝑅 ≤ 𝑅 ≤ ⋯ ≤ 𝑅 ,  and similarly for the returns 

of portfolio 𝐹 : 𝑅 ≤ 𝑅 ≤ ⋯ ≤ 𝑅 . The FSD dominance of portfolio 𝐹   over portfolio 𝐺  implies that: 

  𝑅 ≤ 𝑅  

  𝑅 ≤ 𝑅                                      (S6)                        ⋮ 



 
 

  𝑅 ≤ 𝑅 , 

Eqs.(S3) and (S4) imply that if the worst portfolio 𝐹  return (𝑅 ) is realized, the investor 

consumes what he would have optimally consumed if he had held portfolio 𝐺 , and the worst 

portfolio 𝐺  return ( 𝑅 )  would have been realized. Hence 𝐶 (𝑅 , 𝑌 ) ≡ 𝐶 (𝑅 , 𝑌 ) . 

Generally, eq.(S3) implies 𝐶 (𝑅 , 𝑌 ) ≡ 𝐶 (𝑅 , 𝑌 ) for all i=1…N.  We can now write the 

wealth after labor income and consumption according to this same order of ascending returns: 

 

 𝑊 𝑅 + 𝑌 − 𝐶 (𝑅 , 𝑌 ) ≤ 𝑊 𝑅 + 𝑌 − 𝐶 (𝑅 , 𝑌 ) 𝑊 𝑅 + 𝑌 − 𝐶 (𝑅 , 𝑌 ) ≤ 𝑊 𝑅 + 𝑌 − 𝐶 (𝑅 , 𝑌 )          (S7)                                             ⋮ 
 𝑊 𝑅 + 𝑌 − 𝐶 (𝑅 , 𝑌 ) ≤ 𝑊 𝑅 + 𝑌 − 𝐶 (𝑅 , 𝑌 ), 

where we have replaced 𝐶 (𝑅 , 𝑌 ) with 𝐶 𝑅 , 𝑌  on the right hand sides, as these are 

equal by construction (i.e. by eq.(S3)). Inequalities (S7) hold because of the FSD inequalities 

in (S6), and because the consumption is the same on both sides of each inequality. Equations 

(S7) imply that given a labor income realization of 𝑌 , 𝑊 𝑅 + 𝑌 − 𝐶 (𝑅 , 𝑌 )    FSD 

dominates 𝑊 𝑅 + 𝑌 − 𝐶 (𝑅 , 𝑌 ). As such dominance holds for any realization of  𝑌 , we 

have an FSD dominance of 𝑊 𝑅 + 𝑌 − 𝐶 𝑅 , 𝑌  over 𝑊 𝑅 + 𝑌 − 𝐶 𝑅 , 𝑌 . 1 

Moving to the second period, we have: 𝑊 = 𝑊 𝑅 + 𝑌 − 𝐶 (𝑅 , 𝑌 )                                 (S8) 𝑊 = 𝑊 𝑅 + 𝑌 − 𝐶 (𝑅 , 𝑌 ). 

As we have established above that 𝑊  dominates 𝑊  by FSD, and 𝑅  dominates 𝑅   by FSD 

and as the period-2 returns are independent of the period-1 wealth, we have that 𝑊 𝑅  FSD 

dominates 𝑊 𝑅 .2 For any labor income realization 𝑌  we define the portfolio 𝐹 consumption 

again by (S3), and obtain the inequality in (S5) with the time index 2 replacing 1. Thus, it 

follows that 𝑊  FSD dominates 𝑊 . Iterating over all time periods, we finally obtain that 𝑊   

FSD dominates 𝑊 . This proves that by investing in strategy F the investor can achieve in 

every period the exact same stochastic consumption distribution as obtained when investing in 

 
1 Note that this does not imply that strategy F yields the same consumption as strategy G in every state of nature, 
only that the distribution of consumption is the same under both strategies. A similar approach is employed by 
Levy and Levy (2021) in the context of the question of stocks versus bonds in the long-run.    
2  If 𝑥  dominates 𝑦   by FSD, 𝑥  dominates 𝑦   by FSD,  𝑥  and 𝑥  are independent, and 𝑦  and 𝑦  are 
independent, then 𝑥 ∙ 𝑥  dominates 𝑦 ∙ 𝑦   by FSD (Levy 1973). 



 
 

strategy G and consuming optimally, but with a dominating terminal wealth distribution. It 

follows that all investors with increasing utility functions select strategy F, i.e. their optimal 

equity portfolio will be the 1-period mean-variance tangency portfolio.   

 

Section S2– Results with Randomly Selected Stocks 

 

 
Figure S1: Equilibrium in a market with heterogeneous preferences and investment horizons, and 
the empirical monthly return distributions. Firms are selected randomly from the set of all firms in 
our sample (rather than taking the largest firms). Monthly returns are assumed to be independent 
across time, as opposed to the analysis in the main text, which employs the empirical autocorrelations. 
Panel A: Investor’s equity portfolios, shown in the 1-month mean-variance plane. The solid circle 
represents the mean-variance tangency portfolio. The hollow circles represent investors’ portfolios. 
The area of each hollow circle represents the number of investors holding the portfolio. The star is 
the market portfolio, which is the aggregate portfolio of all individuals. Panel B: The relationship 
between beta and expected returns.  



 
 

Figure S3– The Effect of Serial Correlations 

To analyze the effect of serial correlations on the results, we repeat the analysis when serial 

independence is assumed - each month is drawn randomly from the empirical sample (rather 

than drawing 12 consecutive months, as in the main text). The results, which are very similar 

to those with serial correlations, are given in Figure S1. We conclude that serial correlations 

do not have a large effect on the results, and most of the deviations from the theoretical 

predictions of Theorem 1 are due to the non-normality of the 1-month return distributions. This 

is not surprising given that the empirical serial correlations are close to zero. 

 

 
Figure S2: Equilibrium in a market with heterogeneous preferences and investment horizons, and 
the empirical monthly return distributions. Monthly returns are assumed to be independent across 
time, as opposed to the analysis in the main text, which employs the empirical autocorrelations. Panel 
A: Investor’s equity portfolios, shown in the 1-month mean-variance plane. The solid circle 
represents the mean-variance tangency portfolio. The hollow circles represent investors’ portfolios. 
The area of each circle represents the number of investors holding the portfolio. The star is the market 
portfolio, which is the aggregate portfolio of all individuals. Panel B: The relationship between beta 
and expected returns.  



 
 

Section S4– Return Parameters Adjusted to Make Tangency Portfolio Weights 
Consistent with Empirical Market Capitalizations 

 

The tangency portfolio derived based on the sample parameters usually involves many short 

positions. Levy and Roll (LR, 2010) show that small adjustments to the sample parameters, 

well within their estimation error bounds, are sufficient to make the tangency portfolio weights 

equal to the weights of the market proxy based on firms’ empirical market capitalizations. Here 

we repeat the analysis reported in the main text, but we employ the LR adjusted parameters 

instead of the sample parameters. Following LR we define the distance between the sample 

parameters and the adjusted parameters as: 
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where  𝜇  and 𝜎  are the sample mean and standard deviation of stock i, 𝜇  and 𝜎  are 

their adjusted counterparts, and 𝛼  is a constant determining the relative importance of 

deviations from the means and deviations from the standard deviations (the correlations are 

taken as their sample values, i.e. they are not adjusted). The optimal adjusted parameters,  *
iμ  

and *
iσ , are the parameters that ensure that the tangency portfolio weights coincide with the 

market proxy weights, while minimizing the distance D. 

We take the market proxy as value-weighted portfolio of the 100 stocks in our sample, with 

market values at March 31, 2022. As in LR, we find that small adjustments to the parameters 

suffice to make the tangency portfolio coincide with the market proxy. Table D1 provides the 

sample and adjusted parameters of the 20 largest stocks (the results for the other 80 stocks are 

very similar). Our goal is to examine the robustness of Theorem 1 to non-normal return 

distributions. Thus, we apply the LR parameter adjustments, but we maintain the discrete form 

of the empirical return distribution. Namely, we first multiply all sample returns by 
∗

 to 

obtain a discrete return distribution with the desired standard deviation of 𝜎∗. Then, a constant 

is added to all returns to ensure that the mean of the distribution is the desired *
iμ . 

 Figure S2 shows the 1-month mean-variance frontier, tangency portfolio, individual 

portfolios and the aggregate portfolio, when the adjusted monthly parameters are employed. 

As in the case that the sample parameters are used, the market portfolio obtained by aggregating 



 
 

the holdings of all investors in the market is close to the tangency portfolio, and the relationship 

between betas and expected returns is very close to linear (R2=0.97). The fit is even better than 

in the case of the unadjusted parameters. The reason could be that the adjusted parameters tend 

to be “shrunk” towards average values (see Table S1, and the discussion in Levy and Roll 

2010). Thus, the weights in individual’s portfolios tend to be less extreme, and to deviate less 

from the tangency portfolio (deviations that are mainly due to the non-normality of the return 

distributions). Hence, the cancelation of these deviations is more effective, and aggregation 

across investors leads to a market portfolio that is very close to the 1-month tangency portfolio.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Table S1 

The Sample Parameters and the Adjusted Parameters Ensuring that the Given 
Market Proxy Coincides with Tangency Portfolio 

For the sake of brevity, only the parameters of the first 20 stocks are reported.  The sample parameters are 
given in the second and fourth columns.  The adjusted expected returns and standard deviations which ensure 
that the tangency portfolio coincides with the market proxy and minimize the distance D in eq.(S9) are given 
in columns (3) and (5).  The t-values for the expected returns are given in column (6). The difference between 
the sample mean is significant only for stock 9 (it is also significant for 3 other stocks of the 80 stocks not 
reported here).  Column (7) reports the ratio between the adjusted variances and the sample variances.  The 
95% confidence interval for this ratio is [0.844-1.209]. 3   All of the ratios in the table, as well as the ratios 
for all other 80 stocks not shown here, fall within this interval.   

 

(1) 
Stock # 

 

(2) 
sam
iμ  

(3) 
*
iμ  

(4) 
sam
iσ  

(5) 
*
iσ  

(6) 
t-value for 

*
iμ  

(7) 
( ) ( )22 sam

i
*
i / σσ  

1 0.011 0.015 0.074 0.072 0.532 0.960 
2 0.014 0.015 0.066 0.065 0.044 0.980 
3 0.011 0.016 0.066 0.064 0.794 0.934 
4 0.011 0.013 0.063 0.062 0.221 0.985 
5 0.007 0.008 0.047 0.047 0.108 0.998 
6 0.007 0.010 0.062 0.062 0.473 0.970 
7 0.011 0.010 0.052 0.053 -0.456 1.029 
8 0.011 0.013 0.066 0.065 0.384 0.974 
9 0.001 0.014 0.086 0.081 2.073 0.881 

10 0.005 0.013 0.066 0.062 1.557 0.894 
11 0.008 0.009 0.044 0.045 -0.154 1.012 
12 0.013 0.009 0.066 0.067 -1.088 1.048 
13 0.012 0.014 0.088 0.088 0.097 0.991 
14 0.009 0.010 0.070 0.070 -0.165 1.009 
15 0.011 0.012 0.065 0.065 0.076 0.992 
16 0.031 0.023 0.096 0.104 -1.330 1.167 
17 0.012 0.020 0.097 0.093 0.992 0.923 
18 0.012 0.017 0.080 0.077 0.750 0.940 
19 0.011 0.011 0.066 0.066 -0.127 1.007 
20 0.015 0.014 0.072 0.073 -0.333 1.023 

 

 

 
3  The ratio ( )  is distributed according to the 𝜒 distribution, where 𝜎 is the population variance, 𝑠 is the 
sample variance (or (𝜎 ) in the notation used in this paper), and n is the number of observations.  We have 
240 monthly return observations, hence n=240.  As we are looking for the 95% confidence interval for 𝑠 𝜎⁄ , we 
need to find the critical values 𝑐  and 𝑐  for which 𝑃(𝜒 > 𝑐 ) = 0.025,  and  𝑃(𝜒 < 𝑐 ) = 0.025.  For large 
n, 2𝜒 − √2𝑛 − 1 can be approximated by the standard normal distribution.  Thus, the critical values 𝑐  and 𝑐  
satisfy 2𝑐 − √2 ⋅ 239 − 1 = 1.96  and 2𝑐 − √2 ⋅ 239 − 1 = −1.96, which yield:  𝑐 = 283.2 and 𝑐 =197 .6.  Thus, the 95% confidence interval for 𝑠 𝜎⁄ is given by  197.6 < 239 ⋅ 𝑠 𝜎⁄ < 283.2  or: 0.827 < 𝑠 𝜎⁄ < 1.185.  Alternatively, this range can be also stated as 0.844 < 𝜎 𝑠⁄ < 1.209. 



 
 

 

Figure S3: Equilibrium in a market with heterogeneous preferences and investment horizons, 
when the empirical monthly return distributions are adjusted according to Levy and Roll 
(2010). Panel A: Investor’s equity portfolios, shown in the 1-month mean-variance plane. 
The solid circle represents the mean-variance tangency portfolio. The hollow circles 
represent investors’ portfolios. The area of each hollow circle represents the number of 
investors holding the portfolio. The star is the market portfolio, which is the aggregate 
portfolio of all individuals. Panel B: The relationship between beta and expected returns. 

 


