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Abstract: This study delves into a critical examination of the Size of Loss distribution patterns in the
context of auto insurance during pre- and post-pandemics, emphasizing their profound influence on
insurance pricing and regulatory frameworks. Through a comprehensive analysis of the historical
Size of Loss data, insurers and regulators gain essential insights into the probabilities and magnitudes
of insurance claims, informing the determination of precise insurance premiums and the management
of case reserving. This approach aids in fostering fair competition, ensuring equitable premium rates,
and preventing discriminatory pricing practices, thereby promoting a balanced insurance landscape.
The research further investigates the impact of the COVID-19 pandemic on these Size of Loss patterns,
given the substantial shifts in driving behaviours and risk landscapes. Also, the research contributes
to the literature by addressing the need for more studies focusing on the implications of the COVID-19
pandemic on pre- and post-pandemic auto insurance loss patterns, thus offering a holistic perspective
encompassing both insurance pricing and regulatory dimensions.

Keywords: rate-making; predictive analytics; insurance rate regulation; COVID-19 pandemic; Size of
Loss distribution

1. Introduction

The study of Size of Loss distributions in auto insurance is essential for insurance
pricing, and it also has significant implications for auto insurance rate regulation (Lee
et al. 2022; Mohamed 2022). Insurance companies and regulators can effectively evaluate
the risks linked to specific groups of claim amounts by looking into the historical Size of
Loss distributions across different coverages or territories. This analysis aids in estimating
both the probabilities and magnitudes of incurred claims so that the overall premium
level can be better determined. Moreover, insurers utilize this historical data to ascertain
suitable premiums for reinsurance contracts (Kelly et al. 2020; Mert and Selcuk-Kestel 2021)
by further looking into the large loss distribution based on the Size of Loss distribution.
These insurance contracts are often called stop-loss insurance (Denuit and Robert 2021). A
profound comprehension of the Size of Loss empowers insurers to make well-informed
decisions regarding the acceptance or rejection of reinsurance contracts and the establish-
ment of suitable terms and conditions for coverage. Moreover, as insurance companies
must allocate funds to cover possible claims and incurred losses that have yet to be paid, a
comprehensive study of the Size of Loss distribution enables them to efficiently manage
case reserves, ensuring the availability of adequate funds for claim payouts in the future.
Understanding typical loss sizes helps establish appropriate reserve levels, which are often
determined via modern machine learning approaches (Blier-Wong et al. 2020; De Felice
and Moriconi 2019).

Shifting the attention away from examining the impact of the Size of Loss distribution
on insurance pricing, it is crucial to uncover the underlying patterns within the Size
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of Loss distribution for different major coverages, regions and across different accident
years. This critical focus is important for auto insurance regulators as they evaluate and
authorize rate changes in the auto insurance sector. It ensures insurers apply precise and
equitable premium rates, avoiding excessive charges. The study of the Size of Loss data
empowers regulators to foster healthy competition and pre-empt market disruptions that
might otherwise have adverse effects on policyholders. In this aspect, regulators need to
study the historical Size of Loss data to evaluate the normal level loss distribution and
large loss distributions. By considering the Size of Loss patterns, regulators can ensure
that insurance rates remain fair and accurately reflect the risk associated with different
insurance coverages or presented by various groups of drivers from other territories. This
practice actively combats discriminatory pricing strategies, promoting equitable insurance
for all drivers (Kelly and Kleffner 2003) and making insurance regulation more effective (Li
et al. 2010).

Investigating the impact of the COVID-19 pandemic on auto insurance loss patterns
is important as it has led to significant shifts in driving behaviours, which may lead to
completely different loss patterns before and after the COVID-19 pandemic (Dong et al.
2022; Katrakazas et al. 2020; Stavrinos et al. 2020). By comprehensively understanding these
changes, insurers can adjust their risk assessments and future policies to accurately reflect
the new norms and behaviours exhibited by drivers both during and after the pandemic.
With the considerable changes in travel patterns and work-from-home arrangements, the
risk landscape for auto insurance has fundamentally transformed. This necessitates a
thorough investigation of the COVID-19 pandemic impact on the Size of Loss patterns,
enabling insurers to evaluate the revised risk levels associated with driving during and
post-pandemic (Ciuffini et al. 2023). Based on this evaluation, insurers can then make
informed decisions regarding premium adjustments for policyholders.

Furthermore, the impact of the COVID-19 pandemic on auto insurance loss patterns
calls for necessary adjustments in underwriting practices. Insurers must consider various
factors, including changes in commuting distances, usage frequency, and the types of road
users during the pandemic (Gupta et al. 2021; Katrakazas et al. 2021; Sutherland et al. 2020)
to refine their underwriting processes accurately. This understanding of the evolving risk
profiles of drivers and vehicles is imperative for maintaining the financial sustainability
of insurance companies. With precise insights into the shifting risk landscape, insurers
can effectively manage their case reserves and pricing strategies, thereby ensuring their
financial stability and ability to provide coverages and pay out claims as required.

Understanding the pandemic’s impact on auto insurance loss patterns also empowers
insurance companies to tailor their policies to meet the evolving needs of their policy-
holders. By grasping the changes in risk exposure, insurers can develop more pertinent
and responsive insurance products and services that effectively address the current and
future demands of policyholders. Thoroughly investigating the COVID-19 pandemic’s
impact on auto insurance loss patterns thus equips insurers to make informed decisions,
adapt their strategies, and secure the long-term sustainability of their operations amidst
changing circumstances.

In this research, we developed statistical models using the Size of Loss data corre-
sponding to different accident years, aiming to assess the impact of the COVID-19 pandemic.
These statistical models were constructed based on different coverages, regions (Urban
and Rural), and statistical territories. This consideration arose from the observation that
auto insurance loss patterns often exhibit distinct variations across different coverages and
regions. The novelty of this study lies in its examination of the COVID-19 impact from both
insurance pricing and regulation perspectives, a facet that has yet to be explored in existing
literature focusing on pre- and post-pandemic loss patterns.

The remainder of the paper is organized as follows: Section 2 reviews the current
state of the art, drawing parallels to our study. In Section 3, we delve into the data used,
statistical models employed to analyze the Size of Loss data. Section 4 presents the findings
and analysis. Finally, Section 6 reports the key findings and offers concluding remarks.
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2. Literature Review

The COVID-19 pandemic has had far-reaching consequences, affecting various aspects
of society, including finance, risk management, insurance and economic modelling. This
literature review provides an overview of recent research papers that shed light on the
impact of COVID-19 on these domains. Particularly, we focus on the study of the impact of
COVID-19 on financial market dynamics. This aspect of literature analysis is related to loss
distributions and helps us better understand the direct and indirect influence on auto insur-
ance pricing and market dynamics. Azimli (2020) investigates how COVID-19 has affected
the dependence and structure of the risk-return relationship in US financial markets using
quantile regression. The results indicate a left-tailed asymmetric dependence structure
of sectoral returns with a market portfolio. That is, increased investor attention towards
coronavirus, measured as GSIC (Google Search Index for Coronavirus), has negative and
higher effects on industries in the lower tail of distribution but positive and lower effects
on industries in the upper tail of distribution. This observation is similar to the effect of
COVID-19 on the Size of Loss distributions by major coverage, which impacted the lower
tails distribution more. Ji et al. (2020) examine the impact of a safe-haven asset in a simple
mean-variance portfolio and whether it can be used to offset a tail change in the equity in-
dex during the COVID-19 pandemic. In particular, they introduce a sequential monitoring
procedure to detect changes in the left-quantiles of asset returns. Again, studying the tail
behaviour of return distribution and its COVID-19 pandemic effect could provide insights
into how the insurance investment portfolio should satisfy the requirement of return on
equality in auto insurance rate regulation.

The reliability and accuracy of the case reserving in auto insurance depends on the
investment outcomes in both domestic and international financial markets. The dynamics of
major financial indexes provide an overall big picture of how they are related, particularly
for periods before and during the COVID-19 pandemic. Ghorbe et al. (2022) analyzes
the risk spillover between China and G7 stock markets before and during COVID-19
pandemic. They found that downside and upside risk spillovers were significantly larger
before the COVID-19 pandemic in all cases except between CAC 40/DAX and S&P/SSE
pairs. They also find a significant and asymmetrical two-way risk transmission between
the majority of pair markets. The degree of asymmetry is highly sensitive to the choice
of the entire cumulative distributions or distribution tails. The study of the financial
market dynamics can go from traditional financial indexes to cryptocurrency markets,
which are much more volatile. Such a study is also crucial when addressing market
uncertainty during the COVID-19 crisis. The techniques or focuses used to uncover the
financial dynamics may include extreme value regressions or tail distributions, or others.
Thazhungal (2022) delves into the application of extreme value theory to cryptocurrency
markets in the context of COVID-19. In particular, it finds that after including the technical
trading indicators as control variables in the extreme value regressions, the predictive
power significantly improved during the COVID-19 crisis. This may indicate the market
dynamics are heavily affected by a major global health crisis. Nehrebecka (2023) tracks
the evolution of tail risk in banks’” non-performing loan portfolios before and during the
COVID-19 pandemic and evaluates the impact of sector concentration risk on economic
capital. Using a multi-factor structural model, the study identifies increased tail risk
during 2015-2017, followed by a decline. As auto insurance reserving highly depends
on investment returns, insurance companies may have to consider this when investing
their income from insurance premiums. These studies contribute to a more nuanced
understanding of the factors influencing investment returns in the auto insurance industry
amid the COVID-19 pandemic. By considering the sectoral impacts, identifying safe-haven
assets, managing global risk spillover, diversifying across asset classes, and assessing tail
risk in financial institutions, insurers can make more informed investment decisions to
optimize returns in a challenging economic environment.

The insurance loss pattern may be significantly changed due to the changes in claim
frequency and severity, and various research work has been devoted to the study of the
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COVID-19 pandemic’s impact on insurance losses. This impact caused by the COVID-19
pandemic may further affect the changes in the insurance underwriting process. Qiu (2020)
examines the insured losses incurred due to COVID-19 and their impact on the insurance
industry. It further assesses the current modelling capabilities for pandemic risk and how
the insurance industry utilizes these models. The paper recommends enhancing these
models in the future and leveraging them for effective pandemic risk insurance, which
may provide insights into the effect on auto insurance due to future global health crises.
Also, the risk associated with the pandemic may lead to new types of insurance, and
the study of the insurability of pandemic risk becomes fundamental. Richter and Wilson
(2020) examines how the insurability of pandemic risk can be improved by establishing
resilience upfront and planning contingency actions for crisis scenarios if underwriting
policies and scenario analysis are appropriately employed. They conclude that business
interruption is not an insurable risk if it is caused by containment activities to manage
a global pandemic, and insurers need to improve policy wording, focusing on increased
harmonization, transparency, and enforceability. On the other hand, it is highly desirable
to have consistency between insurance price and the underlying loss distribution. This
means that accurate pricing can be done only when the characteristics of loss distribution
are properly captured. Grundl et al. (2021) delves into the private market’s capacity
for pandemic insurance, introducing a theoretical framework that explicates how the
equilibrium price of pandemic insurance is influenced by accumulation risk, covariance
with other claims, and covariance with stock market performance. They estimate the
relationship between insurance price markup and the tail characteristics of loss distribution
using the natural catastrophe (NatCat) insurance market data. It shows the process of
calibrating the loss distribution of a hypothetical insurance contract designed to mitigate
the pandemic’s impact on small businesses.

3. Materials and Methods
3.1. Data

This research focuses on analyzing regulatory Size of Loss data sourced from the Gen-
eral Insurance Statistical Agency of Canada, which can be accessed at the following URL:
https:/ /www.gisa.ca (accessed on 3 July 2023). To initiate our investigation, the first crucial
step involves data preprocessing, ensuring the data is sanitized, uniform, and prepared
for comprehensive analysis. The main objective is to consolidate claim counts and loss
amounts, taking into account various factors, including rural-urban indicators, statistical
territories, accident years, and major coverage types, including Accident Benefit (AB), Third
Part Liability (TPL), and Collision (CL). AB, CL, and TPL coverages are integral compo-
nents of auto insurance, each serving a specific purpose in providing financial protection to
policyholders and third parties involved in car accidents. Analyzing regulatory insurance
claims data separated by coverage types is essential for insurers to effectively manage risks,
underwrite policies accurately, set appropriate pricing, and develop innovative insurance
solutions that meet the evolving needs of their customers.

One particular characteristic of the Size of Loss data is the irregular length of the
interval. Since the Size of Loss distribution is a grouped frequency distribution, and
the theoretical range of claim amount is zero to oo, it is practically necessary to have an
increasing interval length with a dramatic change at the right tail. To evaluate the COVID-19
pandemic effect, we undertake a comparative study of the Size of Loss distributions before
and during the pandemic. The years 2017, 2018, and 2019 represent the pre-pandemic
period, while the subsequent years will signify the period during the pandemic. This
comparative analysis through a predictive modelling using Generalize Linear Models
(GLM) seeks to identify any significant alterations or trends in the Size of Loss distributions,
particularly in response to the unprecedented events brought about by the pandemic.
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3.2. Generalized Linear Model

GLM is a statistical modeling technique employed to investigate relationships between
a dependent variable and one or more independent variables. This approach enhances the
flexibility of linear regression by allowing the modeling of a wide range of data distributions,
surpassing the limitations associated with the conventional normal distribution. The main
elements of a GLM are as follows:

¢ Link function: GLMs integrate a link function that establishes a connection between
the linear predictor (a weighted sum of the independent variables) and the mean of the
dependent variable. This link function aims to capture the mathematical relationship
between the response variable and predictors and it can be a linear or non-linear
function. Often the canonical link function is chosen based on the distribution of the
response variable and is defined such that it relates the linear predictor to the mean
of the response variable in a natural way according to that distribution. Choosing
the canonical link ensures that the GLM estimation procedure is efficient and that
the resulting model is mathematically well-defined. The canonical link function for a
Gaussian distribution is the identity function, the logarithmic function is the canonical
link or a Poisson distribution, and the logit function is for a binomial distribution.

e Error distribution: GLMs have the capacity to model a broad spectrum of probability
distributions for the response variable, such as Gaussian (normal), Poisson, binomial,
gamma, and others. The selection of the distribution relies on the characteristics of the
data and its variability.

¢ Linear predictor: The linear predictor of a GLM combines independent variables
using their respective coefficients. The link function transforms this linear combi-
nation to ensure that the predicted values align with the appropriate scale for the
chosen distribution.

GLMs employ deviance as a metric to assess the model’s alignment with the data. De-
viance serves as a measure of the difference between observed data and model predictions,
where lower values signify a superior model fitting. The estimation of model parameters
can be accomplished through diverse techniques, including Maximum Likelihood Estima-
tion (MLE) or Iteratively Reweighted Least Squares (IRLS), depending on the selected error
distribution. Employing the GLM model in this study offers the advantage of capturing
the linear effects induced by each level of the predictor, facilitating the interpretation of the
model’s results.

GLM stands out as a good choice for investigating the impact of the COVID-19 pan-
demic on the Size of Loss distribution of auto insurance due to its versatile nature. Offering
flexibility in error probability distribution, GLMs can accommodate a wide range of re-
sponse variable types. This adaptability is crucial when exploring the diverse outcomes
associated with events. The incorporation of a link function enables the modelling of
relationships between explanatory variables and the response, allowing for a nuanced rep-
resentation of the event’s impact. Moreover, the capacity to capture non-linear relationships
is valuable when dealing with complex insurance system dynamics. The model’s ability to
incorporate categorical predictors is essential when characterizing events with categorical
factors. Statistical inference within the GLM framework supports the assessment of event
significance and parameter estimation uncertainty. Additionally, the interpretability of
GLM facilitates a clear understanding of how specific events influence the system, making
it a powerful tool for drawing meaningful conclusions and informing decisions across
various domains, including complex insurance systems.

3.3. Predictive Modelling of Size of Loss Distributions

In our modelling phase, using GLM, we explore how claim frequency is affected by
the Size of Loss interval and other factors, including different accident years that will reflect
the COVID-19 pandemic effect. The choice of error distribution family and link function is
crucial and depends on the nature of the response variable and the research objectives. To
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model the claim counts, which is a numerical variable representing the number of claims,
we considered two different GLM configurations:

*  Gaussian distribution with identity link function: We opted for the Gaussian distribu-
tion with identity link function when modelling the data. This combination assumes
that the response variable follows a normal distribution, making it suitable for mod-
elling continuous numerical variables. In this case, we used it to capture some models
where the distribution of the response variable resembled a normal distribution.

¢  Poisson distribution with log link function: We have used the Poisson distribution
with a log link function. The choice of Poisson distribution is particularly appropriate
when dealing with count data, such as the number of claims. The Poisson distribution
is well suited to modelling rare events whose variance is roughly equal to the mean.
The logarithmic link function ensures that predicted values remain non-negative,
essential in the context of count data. Using the Poisson distribution as the error
distribution in GLMs offers a flexible and interpretable framework for modeling count
data, with implications for the ease of interpretation of coefficients.

However, after the comparative study, the Gaussian distribution has been selected as
the primary modeling framework for characterizing the variability in claim frequencies
within each interval (i.e., Size of Loss) across various accident years. This choice is rooted
in its capacity to yield results that are readily interpretable, thereby facilitating a clearer
understanding of the obtained insights. Moreover, given the repeated nature of the data,
with multiple measurements taken over time, the Gaussian distribution emerges as a par-
ticularly fitting choice. Utilizing the Gaussian distribution enables us to effectively capture
the uncertainty inherent in observations spanning different major insurance coverages,
geographical regions, and statistical territories. By leveraging this distribution, we aim to
provide a robust framework for analyzing and interpreting the complexities of the data,
thereby enhancing the reliability and validity of our findings. Unfortunately, the Poisson
distribution with a log link does not lead to better results when compared with the Gaus-
sian distribution case. This may be because Gaussian distribution is a natural choice for
capturing the measurement errors as our data is the repeated measures across different
accident years.

3.4. Modelling Claim Frequency by Region and Major Coverage

The following predictive model is proposed to model claim frequency of Size of Loss:

TotalClaimCount,(c;j) = 'y(()ij) + 'y(ij) X SizeOfLossRange,(fj) + ')/(7) X AccidentYear; + 8;{:‘/), (1)

1k 2

where, 'y(()l] ) represents the model intercept, 'y&])
range, and 'yéll] ) accounts for the effect of the Ith accident year. The superscript ij indicates
ith region and jth coverage. There are two regions: Urban and Rural, and three major
coverages: AB, CL, and TPL. The error term sl((ll] ) represents the unexplained variability
associated with the model for the ith region and jth major coverage. These models allowed
us to quantify the relationships between the predictor variables, SizeOfLossRange and
AccidentYear, and the response variable, TotalClaimCount. The SizeO f LossRange consists
of a set of irregular, consecutive intervals, and for the ease of presenting these intervals, we
only give the upper limit in the reported results. For instance, Upper Limit 2000 denotes
interval [1000, 2000), and Upper Limit 2,000,000 in the reported results means interval
[1,000,000, 2,000,000). The resulting coefficients provide insights into the magnitude and
direction of these relationships, shedding light on how changes in these predictors are
associated with changes in claim counts.

captures the impact of the kth size of the loss

3.5. Model with COVID-19 Indicator

In Model (1), the covariate AccidentYear serves to estimate the effects attributed to
various accident years. This estimation helps discern the impact of the COVID-19 pan-
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demic, specifically in relation to the accident years 2020 and 2021. Nonetheless, the use of
Model (1) for estimation entails the consideration of combined effects stemming from both
the accident year and the influence of COVID-19. Consequently, we redefine the levels of
AccidentYear in an effort to potentially mitigate the influence stemming from the accident
year itself. We transform the covariate AccidentYear into covidindicator. Below are two
strategies we employ to tackle this issue by restructuring the accident years.

¢ COVID-19 Single Level Effect:
- Each of the accident years 2017, 2018, and 2019 is assigned a COVID indicator
of 0.
—  Each of the accident years 2020 and 2021 is assigned a COVID indicator of 1.
e COVID-19 Two Levels Effect:
—  Each of the accident years 2017, 2018, and 2019 is assigned a COVID indicator
of 0.
—  The accident year 2020 is assigned a COVID indicator of 1.
—  The accident year 2021 is assigned a COVID indicator of 2.

The covariate AccidentYear in Model (1) is replaced by covidindicator, and the new
equation is re-written with new coefficient parameters, which is given as follows

TotalClaimCount,({éj) = zx(()ij) + DC(ZZ) X SizeOfLossRangel((ij) + txééj) x covidindicator; + elilz), (2)

1

3.6. Model with Statistical Territory and Major Coverage

In Ontario of Canada, the concept of ’statistical territories” holds significant importance
within the insurance industry, particularly for the assessment of auto insurance pricing and
risk evaluation performed by auto insurance regulators. These territories represent defined
geographical areas within the province, utilized by insurance companies to effectively
calculate insurance premiums. The demarcation of these territories relies on multiple
factors, including fundamental infrastructures, traffic patterns, population density, and
other pertinent statistics. Insurance firms leverage statistical territories to evaluate the
risks associated with insuring vehicles across different regions. Typically, areas with a
history of higher accident rates, frequent thefts, or increased exposure to risk factors tend
to warrant higher insurance premiums. Conversely, regions with lower risk profiles often
attract comparatively lower premiums. In fact, the initial definitions of these statistical
territories were not intended for insurance purposes; instead, their primary purpose is to
assess the socio-economic status of the respective regions. However, these territories play a
crucial role in the actuarial pricing to establish insurance rates for their policyholders. In
this work, the introduction of statistical territories replaces the concept of 'region” while
maintaining the same model structure as Model (1).

4. Results
4.1. Results Based on Dot-Plots of Size of Loss

This section presents the findings obtained from the dot plots of the Size of Loss
distribution, considering the aggregation of claim counts based on key factors such as rural-
urban indicators, accident years, and main coverage types. Figure 1 displays the breakdown
of the Size of Loss concerning the number of claim counts across the years 2017 to 2021,
with a specific focus on distinguishing between rural and urban areas under AB coverage.
Upon close examination, a distinct trend emerges, showing remarkable consistency in
data from the pre-pandemic years (2017, 2018, and 2019). However, an observable shift
becomes apparent in the years impacted by the COVID-19 pandemic (2020 and 2021),
suggesting a notable influence of the pandemic on claim numbers. Similar observations
are made for TPL coverage, as demonstrated in Figure 2, where a significant change in
the pattern during 2020 and 2021 closely mirrors the trends observed in the context of AB
coverage. Notably, this change is most pronounced in the claim size range of $1001 to $5000,
possibly attributed to pandemic-induced shifts in driving behaviour, accident frequency,
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or other factors specific to liability claims within this range. The striking resemblance
in the results for both CL (see Figure 3) and TPL coverage implies a shared response to
external factors, reflecting their exposure to diverse risks. The parallel shift in patterns
during 2020 and 2021, compared to earlier years, strongly indicates a pandemic-related
effect, influenced by various factors such as the pandemic’s economic impact, changes
in driving behaviour, potential delays in seeking medical care, and insurers” adaptability
to the evolving risk landscape. Thus, while claim counts associated with CL and TPL
coverages may differ in specific accident years, their consistent response to the pandemic
underscores the significant role of external events and changing circumstances in shaping
insurance claims.
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Figure 1. Size of Loss Distributions during pre-pandemic and pandemic periods for AB coverage,
separated by Urban and Rural.
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Figure 2. Size of Loss Distributions during pre-pandemic and pandemic periods for TPL coverage,
separated by Urban and Rural.
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4.2. Results on Predictive Modelling of Size of Loss

Tables 1-3 present a comprehensive overview of the model fitting outputs derived
from our implementation of GLMs employing both Poisson and Gaussian families as
error distribution functions. The results are categorized by Urban and Rural areas, and
separated by different major coverages, namely AB, CL and TPL. Upon examination of
the Akaike Information Criterion (AIC) values, it is evident that modelling the discrete
structure of claim counts, particularly concerning various levels of loss size, using a normal
distribution yields more favourable outcomes than utilizing a Poisson distribution. This
preference for a normal distribution may be attributed to the aggregate nature of claim
counts, suggesting that the modelling focus is on the overall sum of claims rather than the
frequency of claims associated with individual risk exposures. Because of this, the further
modelling in terms of selection of error distribution, we use the Gaussian distribution as a
family for GLM. Tables 1-3 also reveal a noteworthy observation regarding the statistical
significance of the effects attributed to the accident years 2020 and 2021. These results
strongly indicate a substantial impact of the COVID-19 pandemic on the distribution of loss
sizes. Across both Urban and Rural settings, the claim counts exhibit a significant decrease
compared to the reference level, corresponding to the accident year 2017. This reduction in
claim counts is plausibly linked to the implementation of stay-at-home policies during the
pandemic, resulting in a considerable decline in driving frequency for motorists. The data
thus suggests a direct correlation between the pandemic-related restrictions and a notable
decrease in the incidence of claims across both urban and rural areas. In Tables 1-3, as
well as subsequent tables, standard deviation estimates are provided for each level. These
estimates are derived from the overall estimates associated with the factor. Our approach
involves estimating the standard deviation of each level by extrapolating from the results
obtained for the factor. This method is necessary because we possess summary data for
each size of loss rather than individual observations within each interval.

Tables 4 and 5 showcase the outcomes of the model considering a single-level COVID-19
effect, categorized as pre-pandemic and during the pandemic. Notably, a substantial de-
crease in claim counts is evident across all major coverages and in both Urban and Rural
contexts, with a pronounced impact on TPL coverage. Moreover, our analysis extends to
a model incorporating a two-level COVID-19 effect, distinguishing between the during-
pandemic period (2020 accident year) and the post-pandemic phase (2021 accident year).
The obtained results are presented in Table 6. Interestingly, no statistically significant
difference is observed between these two levels. This suggests a persistent and consistent
influence of COVID-19 on claim frequencies, emphasizing the enduring impact of the pan-
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demic across the considered periods. From a modelling point of view, the little difference
between the estimates of two-level effects suggests that a single-level COVID-19 pandemic
effect model suffices.

Table 1. Model coefficients, sampling error of the estimates and goodness of fit measures for model
with response associated with AB coverage, separated by Urban and Rural. Values are rounded
to integers.

Dependent Variable:
TotalClaimCount (U) TotalClaimCount (R)
Normal Poisson (Log Link) Normal Poisson (Log Link)

Upper Limit 2000 —9780 *** (1443) —0***(0) —3281 *** (387) —1**(0)
Upper Limit 3000 —11,383 *** (1443) —1**(0) —4445 *** (387) —1**(0)
Upper Limit 4000 —8953 *** (1443) —0***(0) —4435 *** (387) —1**(0)
Upper Limit 5000 —19,138 *** (1443) —1**(0) —6138 *** (387) —2*%(0)
Upper Limit 10,000 —8215 *** (1443) —0***(0) —3906 *** (387) —1**(0)
Upper Limit 15,000 —16,937 *** (1443) —1**(0) —5944 *** (387) —1**(0)
Upper Limit 20,000 —18,941 *** (1443) —1**(0) —6276 *** (387) —2**(0)
Upper Limit 25,000 —20,972 *** (1443) —2**(0) —6712 *** (387) —2**(0)
Upper Limit 30,000 —22,183 *** (1443) —2**(0) —6993 *** (387) —2**(0)
Upper Limit 40,000 —20,567 *** (1443) —2**(0) —6646 *** (387) —2**(0)
Upper Limit 50,000 —22,456 *** (1443) —2**(0) —6976 *** (387) —2*%(0)
Upper Limit 75,000 —21,721 *** (1443) —2**(0) —6768 *** (387) —2**(0)
Upper Limit 100,000 —24,146 *** (1443) —3**(0) —7289 *** (387) —3**(0)
Upper Limit 150,000 —24,458 *** (1443) —3**(0) —7347 *** (387) —3**(0)
Upper Limit 200,000 —25,343 *** (1443) —4 ***(0) —7585 *** (387) —4 ***(0)
Upper Limit 300,000 —25,354 *** (1443) —4**(0) —7562 ***(387) —4 **(0)
Upper Limit 400,000 —25,606 *** (1443) —4***(0) —7664 *** (387) —4 ***(0)
Upper Limit 500,000 —25,741 *** (1443) —5**(0) —7707 *** (387) —5*%(0)
Upper Limit 750,000 —25,726 *** (1443) —5**(0) —7702 *** (387) —5**(0)
Upper Limit 1,000,000 —25,841 *** (1443) —6***(0) —7741 *** (387) —5**(0)
Upper Limit 2,000,000 —25,806 *** (1443) —5**(0) —7727 *** (387) —5**(0)
Upper Limit Inf —25,916 *** (1443) —8**(0) —7773 *** (387) —8***(0)
AccidentYear2018 105 (673) 0**(0) 42 (180) 0 **(0)
AccidentYear2019 212 673) 0***(0) 8 (180) 0(0)
AccidentYear2020 —2585 *** (673) —0**(0) —431 ** (180) —0**(0)
AccidentYear2021 —2079 *** (673) —0***(0) —222 (180) —0***(0)
Constant 26,791 *** (1105) 10 *** (0) 7896 *** (296) 9 ***(0)
Observations 115 115 115 115
Log Likelihood —1038 —11,979 —887 —4125
Akaike Inf. Crit. 2130 24,012 1827 8305

Note: * p < 0.1; ** p < 0.05; *** p <0.01.

Table 2. Model coefficients, sampling error and goodness of fit measures for model with response
associated with CL coverage, separated by Urban and Rural.

Dependent Variable:
TotalClaimCount (U) TotalClaimCount (R)
Normal Poisson (Log Link) Normal Poisson (Log Link)
Upper Limit 2000 12,206 *** (1030) 25 (564) 4846 *** (320) 25 (935)
Upper Limit 3000 12,348 *** (1030) 25 (564) 4970 *** (320) 25 (935)
Upper Limit 4000 11,499 *** (1030) 25 (564) 4556 *** (320) 25 (935)
Upper Limit 5000 9970 *** (1030) 24 (564) 3832 *** (320) 25 (935)
Upper Limit 10,000 30,706 *** (1030) 26 (564) 10,937 *** (320) 26 (935)
Upper Limit 15,000 11,597 *** (1030) 25 (564) 3882 *** (320) 25 (935)
Upper Limit 20,000 4873 *** (1030) 24 (564) 1664 *** (320) 24 (935)
Upper Limit 25,000 2396 ** (1030) 23 (564) 839 ** (320) 23 (935)
Upper Limit 30,000 1336 (1030) 22 (564) 499 (320) 23 (935)
Upper Limit 40,000 1243 (1030) 22 (564) 538 * (320) 23 (935)
Upper Limit 50,000 458 (1030) 21 (564) 212 (320) 22 (935)
Upper Limit 75,000 302 (1030) 21 (564) 106 (320) 21 (935)

Upper Limit 100,000 48 (1030) 19 (564) 12 (320) 19 (935)
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Table 2. Cont.
Dependent Variable:
TotalClaimCount (U) TotalClaimCount (R)
Normal Poisson (Log Link) Normal Poisson (Log Link)
Upper Limit 150,000 20 (1030) 18 (564) 2 (320) 17 (935)
Upper Limit 200,000 3 (1030) 16 (564) 0(320) 15 (935)
Upper Limit 300,000 3 (1030) 16 (564) 0(320) —0(1322)
Upper Limit 400,000 0 (1030) 14 (564) 0(320) —0(1322)
Upper Limit 500,000 0 (1030) 14 (564) 0(320) —0(1322)
Upper Limit 750,000 0 (1030) 0 (798) 0(320) —0(1322)
Upper Limit 1,000,000 0 (1030) 0 (798) 0(320) —0(1322)
Upper Limit 2,000,000 0 (1030) 0 (798) 0(320) —0(1322)
Upper Limit Inf 0 (1030) 0 (798) 0(320) —0(1322)
AccidentYear2018 391 (480) 0***(0) 99 (149) 0 ***(0)
AccidentYear2019 631 (480) 0**(0) 169 (149) 0**(0)
AccidentYear2020 —1392 *** (480) —0***(0) —418 *** (149) —0***(0)
AccidentYear2021 —1375 *** (480) —0**(0) —423 *** (149) —0**(0)
Constant 349 (789) —15 (564) 115 (245) —16 (935)
Observations 115 115 115 115
Log Likelihood -999 —1359 —865 -920
Akaike Inf. Crit. 2053 2773 1784 1893

Note: * p < 0.1; ** p <0.05; *** p < 0.01.

Table 3. Model coefficients, sampling error and goodness of fit measures for model with response

associated with TPL coverage, separated by Urban and Rural.

Dependent Variable:
TotalClaimCount (U) TotalClaimCount (R)
Normal Poisson (Log Link) Normal Poisson (Log Link)

Upper Limit 2000 46,611 *** (4057) 2% (0) 13,389 *** (991) 2**(0)
Upper Limit 3000 41,798 *** (4057) 2 ***(0) 12,801 *** (991) 2 *(0)
Upper Limit 4000 33,905 *** (4057) 1**(0) 10,457 *** (991) 1*#*(0)
Upper Limit 5000 23,648 *** (4057) 1 (0) 6942 *** (991) 1+ (0)
Upper Limit 10,000 84,365 *** (4057) 2**(0) 22,389 *** (991) 2*%(0)
Upper Limit 15,000 20,537 *** (4057) 1% (0) 4844 *** (991) 1+ (0)
Upper Limit 20,000 1681 (4057) 0***(0) —6(991) —0(0)
Upper Limit 25,000 —4694 (4057) —1**(0) —1559 (991) —1**(0)
Upper Limit 30,000 —7296 * (4057) —1**(0) —2242 **(991) —1**(0)
Upper Limit 40,000 —5897 (4057) —1**(0) —1813 * (991) —1**(0)
Upper Limit 50,000 —8302 ** (4057) —1**(0) —2531 **(991) —1**(0)
Upper Limit 75,000 —7981 * (4057) —1**(0) —2511 ** (991) —1**(0)
Upper Limit 100,000 —9836 ** (4057) —2**(0) —2927 ***(991) —2**(0)
Upper Limit 150,000 —9959 ** (4057) —2**(0) —2924 *** (991) —2**(0)
Upper Limit 200,000 —10,721 *** (4057) —3**(0) —3082 *** (991) —3**(0)
Upper Limit 300,000 —10,704 *** (4057) —3**(0) —3054 *** (991) —3**(0)
Upper Limit 400,000 —11,100 *** (4057) —4**(0) —3189 *** (991) —3**(0)
Upper Limit 500,000 —11,220 *** (4057) —4**(0) —3245 *** (991) —4**(0)
Upper Limit 750,000 —11,196 *** (4057) —4**(0) —3231 *** (991) —4**(0)
Upper Limit 1,000,000 —11,304 *** (4057) —5**(0) —3280 *** (991) —4**(0)
Upper Limit 2,000,000 —11,262 *** (4057) —4**(0) —3265 *** (991) —4**(0)
Upper Limit Inf —11,380 *** (4057) —7**(0) —3316 *** (991) —6***(0)
AccidentYear2018 775 (1892) 0***(0) 177 (462) 0***(0)
AccidentYear2019 1504 (1892) 0***(0) 383 (462) 0 **+*(0)
AccidentYear2020 —6886 *** (1892) —0***(0) —1452 *** (462) —0***(0)
AccidentYear2021 —6713 *** (1892) —0***(0) —1491 *** (462) —0***(0)
Constant 13,656 *** (3109) 9 *** (0) 3800 *** (759) 8 *** (0)
Observations 115 115 115 115
Log Likelihood —1157 —7070 —995 —3081
Akaike Inf. Crit. 2368 14,195 2044 6216

Note: * p < 0.1; **p <0.05; **p <0.01.
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Table 4. Model coefficients, sampling error and goodness of fit measures for model with response
associated with Urban, separated by AB, TPL and CL coverages, respectively, and two Levels of
Accident Years.

Dependent Variable:
TotalClaimCount (U)
AB TPL CL

Upper Limit 2000 —9780 *** (1424) 46,611 *** (4004) 12,206 *** (1023)
Upper Limit 3000 —11,383 *** (1424) 41,798 *** (4004) 12,348 *** (1023)
Upper Limit 4000 —8953 *** (1424) 33,905 *** (4004) 11,499 *** (1023)
Upper Limit 5000 —19,138 *** (1424) 23,648 *** (4004) 9970 *** (1023)
Upper Limit 10,000 —8215 *** (1424) 84,365 *** (4004) 30,706 *** (1023)
Upper Limit 15,000 —16,937 *** (1424) 20,537 *** (4004) 11,597 *** (1023)
Upper Limit 20,000 —18,941 *** (1424) 1681 (4004) 4873 *** (1023)
Upper Limit 25,000 —20,972 *** (1424) —4694 (4004) 2396 ** (1023)
Upper Limit 30,000 —22,183 *** (1424) —7296 * (4004) 1336 (1023)
Upper Limit 40,000 —20,567 *** (1424) —5897 (4004) 1243 (1023)
Upper Limit 50,000 —22,456 *** (1424) —8302 ** (4004) 458 (1023)
Upper Limit 75,000 —21,721 *** (1424) —7981 ** (4004) 302 (1023)
Upper Limit 100,000 —24,146 *** (1424) —9836 ** (4004) 48 (1023)
Upper Limit 150,000 —24,458 *** (1424) —9959 ** (4004) 20 (1023)
Upper Limit 200,000 —25,343 *** (1424) —10,721 ** (4004) 3(1023)
Upper Limit 300,000 —25,354 *** (1424) —10,704 *** (4004) 3(1023)
Upper Limit 400,000 —25,606 *** (1424) —11,100 *** (4004) 0(1023)
Upper Limit 500,000 —25,741 *** (1424) —11,220 *** (4004) 0(1023)
Upper Limit 750,000 —25,726 *** (1424) —11,196 *** (4004) 0(1023)
Upper Limit 1,000,000 —25,841 *** (1424) —11,304 *** (4004) 0(1023)
Upper Limit 2,000,000 —25,806 *** (1424) —11,262 *** (4004) 0(1023)
Upper Limit Inf —25,916 *** (1424) —11,380 *** (4004) 0(1023)
as.factor(covidindicator)1 —2438 *** (429) —7559 *** (1205) —1724 *** (308)
Constant 26,897 *** (1022) 14,415 *** (2872) 690 (734)
Observations 115 115 115
Log Likelihood —1038 —1157 —1000
Akaike Inf. Crit. 2125 2363 2049

Note: * p < 0.1; ** p < 0.05; **p <0.01.

Table 5. Model coefficients, sampling error and goodness of fit measures for model with response
associated with Rural, separated by AB, TPL and CL coverages, respectively, and two Levels of
Accident Years.

Dependent Variable:
TotalClaimCount (R)
AB TPL CL

Upper Limit 2000 —3281 *** (383) 13,389 *** (978) 4846 *** (317)
Upper Limit 3000 —4445 *** (383) 12,801 *** (978) 4970 *** (317)
Upper Limit 4000 —4435 *** (383) 10,457 *** (978) 4556 *** (317)
Upper Limit 5000 —6138 *** (383) 6942 *** (978) 3832 *** (317)
Upper Limit 10,000 —3906 *** (383) 22,389 *** (978) 10,937 *** (317)
Upper Limit 15,000 —5944 *** (383) 4844 *** (978) 3882 *** (317)
Upper Limit 20,000 —6276 *** (383) —6(978) 1664 *** (317)
Upper Limit 25,000 —6712 *** (383) —1559 (978) 839 *** (317)
Upper Limit 30,000 —6993 *** (383) —2242 **(978) 499 (317)
Upper Limit 40,000 —6646 *** (383) —1813 * (978) 538 * (317)
Upper Limit 50,000 —6976 *** (383) —2531 ** (978) 212 (317)
Upper Limit 75,000 —6768 *** (383) —2511 ** (978) 106 (317)
Upper Limit 100,000 —7289 *** (383) —2927 ***(978) 12 (317)
Upper Limit 150,000 —7347 *** (383) —2924 ***(978) 2 (317)
Upper Limit 200,000 —7585 *** (383) —3082 *** (978) 0(317)
Upper Limit 300,000 —7562 ***(383) —3054 *** (978) 0(317)
Upper Limit 400,000 —7664 *** (383) —3189 *** (978) 0(317)
Upper Limit 500,000 —7707 *** (383) —3245 *** (978) 0(317)
Upper Limit 750,000 —7702 *** (383) —3231 ***(978) 0(317)
Upper Limit 1,000,000 —7741 *** (383) —3280 *** (978) 0(317)
Upper Limit 2,000,000 —7727 *** (383) —3265 *** (978) 0(317)
Upper Limit Inf —7773 *** (383) —3316 *** (978) 0(317)
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Table 5. Cont.

Dependent Variable:
TotalClaimCount (R)
AB TPL CL

as.factor(covidindicator)1 —343 *** (115) —1658 *** (294) —510 *** (95)
Constant 7912 *** (275) 3987 *** (702) 204 (227)
Observations 115 115 115
Log Likelihood —887 —995 —866
Akaike Inf. Crit. 1823 2039 1779

Note: * p < 0.1; **p < 0.05; **p <0.01.

Table 6. Model coefficients, sampling error and goodness of fit measures for model with response

associated with Urban separated by AB, TPL and CL coverages, respectively, and three levels of
Accident Years.

Dependent Variable:
TotalClaimCount (U)

AB TPL CL
Upper Limit 2000 —9780 *** (1428) 46,611 *** (4026) 12,206 *** (1029)
Upper Limit 3000 —11,383 *** (1428) 41,798 *** (4026) 12,348 *** (1029)
Upper Limit 4000 —8953 *** (1428) 33,905 *** (4026) 11,499 *** (1029)
Upper Limit 5000 —19,138 *** (1428) 23,648 *** (4026) 9970 *** (1029)
Upper Limit 10,000 —8215 *** (1428) 84,365 *** (4026) 30,706 *** (1029)
Upper Limit 15,000 —16,937 *** (1428) 20,537 *** (4026) 11,597 *** (1029)
Upper Limit 20,000 —18,941 *** (1428) 1681 (4026) 4873 *** (1029)
Upper Limit 25,000 —20,972 *** (1428) — 4694 (4026) 2396 ** (1029)
Upper Limit 30,000 —22,183 *** (1428) —7296 * (4026) 1336 (1029)
Upper Limit 40,000 —20,567 *** (1428) —5897 (4026) 1243 (1029)
Upper Limit 50,000 —22,456 *** (1428) —8302 ** (4026) 458 (1029)
Upper Limit 75,000 —21,721 *** (1428) —7981 * (4026) 302 (1029)
Upper Limit 100,000 —24,146 *** (1428) —9836 ** (4026) 48 (1029)
Upper Limit 150,000 —24,458 *** (1428) —9959 ** (4026) 20 (1029)
Upper Limit 200,000 —25,343 *** (1428) —10,721 *** (4026) 3 (1029)
Upper Limit 300,000 —25,354 *** (1428) —10,704 *** (4026) 3(1029)
Upper Limit 400,000 —25,606 *** (1428) —11,100 *** (4026) 0(1029)
Upper Limit 500,000 —25,741 *** (1428) —11,220 *** (4026) 0(1029)
Upper Limit 750,000 —25,726 *** (1428) —11,196 *** (4026) 0(1029)
Upper Limit 1,000,000 —25,841 *** (1428) —11,304 *** (4026) 0(1029)
Upper Limit 2,000,000 —25,806 *** (1428) —11,262 *** (4026) 0(1029)
Upper Limit Inf —25,916 *** (1428) —11,380 *** (4026) 0 (1029)
as.factor(covidindicator)1 —2691 *** (543) —7646 *** (1,533) —1732 ***(392)
as.factor(covidindicator)2 —2185 *** (543) —7472 ***(1,533) —1716 *** (392)
Constant 26,897 *** (1024) 14,415 *** (2888) 690 (738)
Observations 115 115 115
Log Likelihood —1038 —1157 —1000
Akaike Inf. Crit. 2126 2365 2051

Note: * p < 0.1; ** p <0.05; *** p < 0.01.

4.3. Modelling Size of Loss by Statistical Territories

Statistical territories in auto insurance are defined based on geographic areas to
facilitate a more accurate risk assessment by insurance companies and insurance regulators.
This segmentation allows insurers and regulators to analyze historical loss data, and other
relevant factors within specific regions. The primary objective is to establish fair and precise
pricing for insurance policies, considering the varying risks associated with different
locations. By employing actuarial principles and statistical analysis, insurers can better
understand the likelihood of claims in each territory, leading to more informed pricing
strategies. However, the implementation of statistical territories has broader implications
beyond pricing. It incentivizes communities to actively address and reduce the risk of
accidents and theft in their areas. Local initiatives, such as improved traffic safety measures
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or increased law enforcement, can contribute to minimizing the frequency and severity
of insurance claims. In this way, statistical territories serve as a basis for fair pricing and
encourage proactive measures to enhance overall safety and reduce the economic impact
of insurance claims. Therefore, when evaluating the effects of the COVID-19 pandemic,
it is necessary to consider the analysis of loss patterns, separated by different statistical
territories, to ensure the impact estimate is homogeneous within the statistical territories.

In this work, to estimate the effect of the COVID-19 pandemic on different statistical
territories, we focus on the statistical territories that contain a sufficiently large number of
risk exposures. When the risk exposures within a statistical territory are small and lack
credibility, it poses significant challenges for insurance pricing and regulation. Actuarial
credibility, essential for making accurate risk assessments, becomes limited as the data
may not be statistically robust. This lack of reliability in the risk data within a specific
territory can result in difficulties for insurers in determining the true level of risk. Con-
sequently, the uncertainty associated with assessing risk in such territories may affect
the evaluation of the impact of the COVID-19 pandemic. Therefore, we only target the
selected statistical territories to ensure the reliability and robustness of the statistical analy-
sis and results. Tables 7-10 report the results obtained for statistical territory 702 (North
Bay/Thunder Bay), 704 (Halton/Hamilton-Wentworth),706 (Brantford /Guelph/Kitchener-
Waterloo/Cambridge), 707 (London), 710 (Oshawa/Aurora/Newmarket/Orangeville),
711 (Ottawa), 717 (Toronto/Markham/Richmond Hill/Vaughan/Peel), and 760 (Grey-
Bruce/Lake Simcoe/Parry Sound /Muskoka/Haliburton). Except for statistical territories
702 and 760, all are classified as Urban areas, mainly located in southern Ontario, which is a
more economically developed region. We observe a significant decrease in claim counts for
all statistical territories and all major coverages we consider during COVID-19 pandemic.
In particular, third-party liability claim counts dropped more significantly. This may be
due to reduced economic activity, business shutdowns, and altered driving behaviour.
Lockdowns and restrictions led to fewer accidents and incidents. Changes in insurance
policies, government regulations, and legal proceedings also played a role. With people
spending more time at home and businesses operating at limited capacity, opportunities
for incidents that typically result in third-party liability claims decreased significantly.

Table 7. Model outputs from total claim counts modelling for statistical territory 702 and 704 under
GLM with Gaussian family.

Dependent Variable:
TotalClaimCount (702) TotalClaimCount (704)
(AB) (TPL) (CL) (AB) (TPL) (CL)
Upper Limit 2000 —4(8) 294 ** (31) 296 *** (22) —36 (84) 2068 *** (228) 1407 *+* (115)
Upper Limit 3000 —29 ***(8) 280 *** (31) 310 *** (22) —128 (84) 1896 *** (228) 1466 *** (115)
Upper Limit 4000 —44 +++ (8) 244+ (31) 290 *** (22) —122 (84) 1451 *** (228) 1351 *** (115)
Upper Limit 5000 —65 *** (8) 131 *** (31) 234 *** (22) —453 *** (84) 830 *** (228) 1178 *** (115)
Upper Limit 10,000 —44 # (8) 545 * (31) 652 ** (22) —96 (84) 4255 *** (228) 3595 *** (115)
Upper Limit 15,000 —75 *%% (8) 62 * (31) 221 *** (22) —485 *** (84) 621 *** (228) 1328 *+* (115)
Upper Limit 20,000 —75 *#*(8) —66 ** (31) 97 ***(22) —553 *** (84) —476 ** (228) 533 *** (115)
Upper Limit 25,000 —81 *+* (8) —113 *+* (31) 45+ (22) —571 *** (84) —822 **++ (228) 259 ** (115)
Upper Limit 30,000 —79 ***(8) —131 ** (31) 29 (22) —596 *** (84) —969 *** (228) 144 (115)
Upper Limit 40,000 —77 #%% (8) —121 *** (31) 29 (22) —505 *** (84) —904 *** (228) 139 (115)
Upper Limit 50,000 —80 *** (8) —143 **+* (31) 10 (22) —565 *** (84) —1011 *** (228) 49 (115)
Upper Limit 75,000 — 74+ (8) —141 *+* (31) 5 (22) — 474+ (84) —999 **+ (228) 33 (115)
Upper Limit 100,000 —81 **(8) —151 *** (31) 0(22) —610 *** (84) —1095 *** (228) 5(115)
Upper Limit 150,000 —81 **(8) —148 *** (31) 0(22) —621 *** (84) —1,101 *** (228) 2 (115)
Upper Limit 200,000 —88 *** (8) —154 *** (31) 0(22) —680 *** (84) —1144 *** (228) 0 (115)
Upper Limit 300,000 —89 *+* (8) —152 #+* (31) —0(22) —688 *** (84) —1144 ** (228) 1(115)
Upper Limit 400,000 —90 *** (8) —156 *** (31) —0(22) —700 *** (84) —1169 *** (228) 0(115)
Upper Limit 500,000 —90 *** (8) —157 *** (31) —0(22) —705 *** (84) —1176 *** (228) 0(115)
Upper Limit 750,000 —91 **(8) —158 *** (31) 0(22) —699 *** (84) —1174 *** (228) 0(115)
Upper Limit 1,000,000 —89 ** (8) —159 *** (31) 0(22) —709 *** (84) —1181 *** (228) 0 (115)
Upper Limit 2,000,000 —90 ***(8) —158 *** (31) 0(22) —701 *** (84) —1176 *** (228) 0(115)
Upper Limit Inf —91 *+ (8) —159 **+* (31) —0(22) —714 *+* (84) —1184 *** (228) 0 (115)
AccidentYear2018 0(4) —1(14) 0(10) 3(39) 13 (106) 36 (53)
AccidentYear2019 0 (4) 2(14) 7 (10) 12 (39) 58 (106) 71 (53)
AccidentYear2020 —8* (4) —46 = (14) —27 ***(10) —92 ** (39) —418 *** (106) —154 *** (53)
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Table 7. Cont.
Dependent Variable:
TotalClaimCount (702) TotalClaimCount (704)

(AB) (TPL) (CL) (AB) (TPL) (CL)
AccidentYear2021 —6(4) —54 ** (14) —32**(10) —79 **(39) —395 *** (106) —154 *** (53)
Constant 94 *** (6) 179 ** (24) 10 (17) 746 *** (64) 1,333 *** (175) 40 (88)
Observations 115 115 115 115 115 115
Log Likelihood —443 —595 —558 —710 —826 —747
Akaike Inf. Crit. 940 1245 1169 1475 1706 1547

Note: * p < 0.1; * p <0.05; ***p <0.01.

Table 8. Model outputs from total claim counts modelling for statistical territory 706 and 707 under

GLM with Gaussian family.

Dependent Variable:
TotalClaimCount (706) TotalClaimCount (707)

(AB) (TPL) (CL) (AB) (TPL) (CL)
Upper Limit 2000 —70 (65) 1719 *** (150) 1253 *** (86) 9 (31) 820 *** (79) 681 *** (46)
Upper Limit 3000 —195 *** (65) 1516 *** (150) 1249 *** (86) —27(31) 711 *** (79) 686 *** (46)
Upper Limit 4000 —242 *** (65) 1202 *** (150) 1203 *** (86) —47 (31) 499 ***(79) 607 *** (46)
Upper Limit 5000 —479 *** (65) 677 *** (150) 1051 *** (86) —137 #* (31) 244+ (79) 525 *** (46)
Upper Limit 10,000 —175 ** (65) 3463 *** (150) 3194 *** (86) —40 (31) 1433 **+* (79) 1469 *** (46)
Upper Limit 15,000 —483 *** (65) 400 *** (150) 1140 *** (86) —158 *** (31) 79 (79) 525 *** (46)
Upper Limit 20,000 —527 *** (65) —458 *** (150) 473 *** (86) —188 *** (31) —297 ***(79) 200 *** (46)
Upper Limit 25,000 —565 *** (65) —770 *** (150) 222 **(86) —193 *** (31) —398 *** (79) 108 ** (46)
Upper Limit 30,000 —577 %+ (65) —880 *** (150) 126 (86) —199 *+* (31) —449 #+* (79) 58 (46)
Upper Limit 40,000 —515 *** (65) —835 *** (150) 115 (86) —166 *** (31) —418 *** (79) 52 (46)
Upper Limit 50,000 —557 *** (65) —926 *** (150) 37 (86) —188 *** (31) —473 **(79) 20 (46)
Upper Limit 75,000 —497 *** (65) —907 *** (150) 21 (86) —153 *** (31) —468 *** (79) 12 (46)
Upper Limit 100000 —582 *** (65) —978 *** (150) 3 (86) —194 #+* (31) —496 ** (79) 1 (46)
Upper Limit 150,000 —594 % (65) —983 *** (150) 1 (86) —203 *** (31) —491 ** (79) 1 (46)
Upper Limit 200,000 —650 *** (65) —1012 *** (150) 0 (86) —223 **(31) —508 *** (79) —0 (46)
Upper Limit 300,000 —657 *** (65) —1015 *** (150) —0(86) —232**(31) —507 *** (79) —0 (46)
Upper Limit 400,000 —664 *** (65) —1026 *** (150) —0(86) —236 *** (31) —516 ***(79) —0 (46)
Upper Limit 500,000 —669 *** (65) —1033 *** (150) —0(86) —236 ** (31) —520 *** (79) —0 (46)
Upper Limit 750,000 — 667 *** (65) —1032 *** (150) —0(86) —233 *# (31) —519 *** (79) —0 (46)
Upper Limit 1,000,000 —670 *** (65) —1036 *** (150) 0 (86) —239 *** (31) —523 ***(79) —0 (46)
Upper Limit 2,000,000 —669 *** (65) —1035 *** (150) 0 (86) —236 *** (31) —523 ***(79) —0 (46)
Upper Limit Inf —676 *** (65) —1041 *** (150) —0(86) —240 *** (31) —524 ***(79) —0 (46)
AccidentYear2018 14 (30) 80 (70) 72 % (40) 8 (14) 37 (37) 33 (21)
AccidentYear2019 58 * (30) 114 (70) 78 * (40) 10 (14) 47 (37) 45+ (21)
AccidentYear2020 —52*(30) —212 *** (70) —83** (40) —21 (14) —107 ** (37) —41+(21)
AccidentYear2021 —41 (30) —196 *** (70) —75% (40) —12 (14) —87 % (37) —32(21)
Constant 680 *** (50) 1084 *** (115) 2 (66) 243 *** (23) 547 *** (61) —1(35)
Observations 115 115 115 115 115 115
Log Likelihood —681 —778 —714 —595 —704 —641
Akaike Inf. Crit. 1417 1609 1482 1244 1463 1336

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

Table 9. Model outputs from total claim counts modelling for statistical territory 710 and 711 under

GLM with Gaussian family.

Dependent Variable:
TotalClaimCount (710) TotalClaimCount (711)
(AB) (TPL) (CL) (AB) (TPL) (CL)

Upper Limit 2000 —40 (93) 2147 *** (237) 1301 *** (112) —26(52) 1991 *** (203) 1579 *** (108)
Upper Limit 3000 —134 (93) 1803 *** (237) 1309 *** (112) —141 *** (52) 1547 *** (203) 1461 *** (108)
Upper Limit 4000 —111 (93) 1257 *** (237) 1173 #* (112) —195 *** (52) 973 ***(203) 1311 *** (108)
Upper Limit 5000 —479 *** (93) 658 *** (237) 1017 *** (112) —338 *** (52) 375 * (203) 1068 *** (108)
Upper Limit 10,000 —47 (93) 3965 *** (237) 3236 *** (112) —183 *** (52) 2526 *** (203) 2967 *** (108)
Upper Limit 15,000 —464 *** (93) 520 ** (237) 1217 *** (112) —382 *** (52) —130 (203) 998 *** (108)
Upper Limit 20,000 —536 *** (93) —476 ** (237) 533 ***(112) —406 *** (52) —801 *** (203) 375 *** (108)
Upper Limit 25,000 —574 *** (93) —846 *** (237) 267 ** (112) —431 *** (52) —1007 *** (203) 193 * (108)
Upper Limit 30,000 —580 *** (93) —997 *** (237) 155 (112) —432 ** (52) —1093 *** (203) 101 (108)
Upper Limit 40,000 —485 *** (93) —891 *** (237) 145 (112) —405 *** (52) —1070 *** (203) 95 (108)
Upper Limit 50,000 —559 ***(93) —1036 *** (237) 60 (112) —425 *** (52) —1140 *** (203) 33 (108)
Upper Limit 75,000 —467 *** (93) —1035 *** (237) 34 (112) —380 *** (52) —1137 ***(203) 16 (108)
Upper Limit 100,000 —621 *** (93) —1138 *** (237) 6 (112) —428 *** (52) —1176 *** (203) 3(108)
Upper Limit 150,000 —650 *** (93) —1151 *** (237) 2 (112) —430 *** (52) —1174 *** (203) 0(108)
Upper Limit 200,000 —730 *** (93) —1194 *** (237) 0(112) —467 *** (52) —1187 *** (203) 0(108)
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Table 9. Cont.
Dependent Variable:
TotalClaimCount (710) TotalClaimCount (711)

(AB) (TPL) (CL) (AB) (TPL) (CL)
Upper Limit 300,000 —735 ***(93) —1188 *** (237) —0(112) —468 *** (52) —1187 *** (203) 0(108)
Upper Limit 400,000 —750 *** (93) —1213 *** (237) —0(112) —477 *** (52) —1204 *** (203) 0(108)
Upper Limit 500,000 —754 *** (93) —1220 *** (237) —0(112) —477 *** (52) —1206 *** (203) 0 (108)
Upper Limit 750,000 —747 *** (93) —1221 *** (237) —0(112) —476 *** (52) —1202 *** (203) —0(108)
Upper Limit 1,000,000 —757 ***(93) —1226 *** (237) 0(112) —479 ** (52) —1209 *** (203) —0(108)
Upper Limit 2,000,000 —751 ***(93) —1224 *** (237) 0(112) —477 *** (52) —1207 *** (203) 0(108)
Upper Limit Inf —765 ***(93) —1230 *** (237) —0(112) —483 *** (52) —1210 *** (203) —0(108)
AccidentYear2018 14 (43) 28 (110) 27 (52) 3(24) 10 (95) 14 (50)
AccidentYear2019 9 (43) 61 (110) 51 (52) 2(24) 68 (95) 53 (50)
AccidentYear2020 —113 ** (43) —427 **(110) —162 *** (52) —49 ** (24) —308 *** (95) —149 *** (50)
AccidentYear2021 —101 ** (43) —420 *** (110) —165 *** (52) —40 (24) —317 ***(95) —149 *** (50)
Constant 803 *** (71) 1384 *** (181) 50 (86) 501 *** (39) 1320 *** (156) 46 (83)
Observations 115 115 115 115 115 115
Log Likelihood —723 —830 —744 —655 —813 —740
Akaike Inf. Crit. 1499 1714 1542 1364 1679 1534

Note: * p < 0.1; ** p <0.05; **p < 0.01.

Table 10. Model outputs from total claim counts modelling for statistical territory 717 and 760 under

GLM with Gaussian family.

Dependent Variable:
TotalClaimCount (717) TotalClaimCount (760)

(AB) (TPL) (CL) (AB) (TPL) (CL)
Upper Limit 2000 —138 (338) 7840 *** (1024) 4687 *** (486) —63 (59) 1304 *** (130) 1104 *** (81)
Upper Limit 3000 —219 (338) 6694 *** (1024) 4803 *** (486) —184 *** (59) 1255 *** (130) 1156 *** (81)
Upper Limit 4000 244 (338) 5193 ** (1024) 4555 *** (486) —220 ** (59) 960 *** (130) 1063 *** (81)
Upper Limit 5000 —1402 *** (338) 3142 *** (1024) 4036 *** (486) —363 *** (59) 549 *** (130) 963 *** (81)
Upper Limit 10,000 419 (338) 18,303 *** (1024) 13,100 *** (486) —152** (59) 2870 *** (130) 2826 *** (81)
Upper Limit 15,000 —1300 *** (338) 3258 *** (1024) 5282 *** (486) —393 *** (59) 424 ***(130) 1104 *** (81)
Upper Limit 20,000 —1534 *** (338) —1452 (1024) 2309 *** (486) —424 *** (59) —310 ** (130) 470 *** (81)
Upper Limit 25,000 —1741 *** (338) —3078 *** (1024) 1126 ** (486) —451 #* (59) —576 *** (130) 237+ (81)
Upper Limit 30,000 —1804 *** (338) —3753 *** (1024) 633 (486) —464 *** (59) —675 *** (130) 138 * (81)
Upper Limit 40,000 —1357 *** (338) —3373 *** (1024) 585 (486) —402 *** (59) —615 *** (130) 149 * (81)
Upper Limit 50,000 —1681 *** (338) —4004 *** (1024) 222 (486) —431 *** (59) —726 *** (130) 60 (81)
Upper Limit 75,000 —1249 *** (338) —3900 *** (1024) 160 (486) —375 *** (59) —718 *** (130) 26 (81)
Upper Limit 100,000 —1954 **+* (338) — 4430 ** (1024) 28 (486) — 466 ** (59) —791 ** (130) 5 (81)
Upper Limit 150,000 —2122 *** (338) —4478 *+ (1024) 14 (486) —473 ##+ (59) —794 #++ (130) 1(81)
Upper Limit 200,000 —2437 *** (338) —4678 *** (1024) 2 (486) —530 *** (59) —821 *** (130) 0(81)
Upper Limit 300,000 —2488 *** (338) —4679 *** (1024) 2 (486) —540 *** (59) —820 *** (130) —0(81)
Upper Limit 400,000 —2528 *** (338) —4770 *** (1024) 0 (486) —552 *** (59) —836 *** (130) 0 (81)
Upper Limit 500,000 —2556 *** (338) —4795 ** (1024) 0 (486) —554 * (59) —844 #* (130) —0(81)
Upper Limit 750,000 —2533 *** (338) —4793 *** (1024) —0 (486) —547 *** (59) —844 *** (130) 0(81)
Upper Limit 1,000,000 —2555 *** (338) —4816 *** (1024) 0 (486) —553 *** (59) —849 *** (130) 0(81)
Upper Limit 2,000,000 —2537 *** (338) —4803 *** (1024) 0 (486) —549 *** (59) —848 *** (130) 0(81)
Upper Limit Inf —2590 *** (338) —4830 ** (1024) —0 (486) —562 #* (59) —855 *** (130) —0(81)
AccidentYear2018 13 (158) 151 (478) 166 (227) 6 (28) 22 (61) 25 (38)
AccidentYear2019 —35 (158) 280 (478) 267 (227) 3(28) 42 (61) 59 (38)
AccidentYear2020 —538 *** (158) —1897 *** (478) —684 *** (227) —55*(28) —210 ** (61) —102 *** (38)
AccidentYear2021 —506 *** (158) —1894 *** (478) —683 *** (227) —38(28) —223 ** (61) —94 ** (38)
Constant 2805 *** (259) 5505 *** (785) 187 (372) 579 *** (45) 930 *** (100) 22 (62)
Observations 115 115 115 115 115 115
Log Likelihood —871 —999 —913 —671 —761 —706
Akaike Inf. Crit. 1797 2051 1880 1395 1577 1467

Note: * p < 0.1; * p < 0.05; ** p < 0.01.

5. Effects of COVID-19 on Insurance Pricing and Regulation

The findings from the analysis of the impact of the COVID-19 pandemic on insurance

claims, specifically within different coverage types and geographical regions, hold critical
implications for insurance pricing and rate regulation. Firstly, the observed changes in claim
patterns and frequencies during the pandemic underscore the need for insurers to reassess
their risk models. The noticeable shift in claim sizes within specific ranges, particularly in
the context of liability claims, suggests the importance of adjusting pricing structures to
account for the heightened risks associated with these particular claim categories. Insurers
may need to consider revising their premium rates and coverage terms to reflect the
evolving risk landscape, ensuring that the pricing adequately corresponds to the increased
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likelihood of claims within certain ranges influenced by pandemic related factors such as
changes in driving behaviour and accident frequency.

Moreover, the findings emphasize the significance of regulatory adaptation to accom-
modate the changing dynamics within the insurance industry. Regulators may need to
work closely with insurance companies to establish new guidelines and frameworks that
acknowledge the unique challenges posed by the pandemic. This may involve revisiting
existing rate regulation policies to incorporate provisions for accommodating the observed
fluctuations in claim patterns. Effective regulatory measures should promote a balance
between protecting actuarial fairness to drivers and ensuring the financial sustainability of
insurance companies, thereby fostering stability within the insurance market. Additionally,
the insights obtained from the study call for the integration of advanced data analytics
and statistical methodologies into insurance pricing strategies. The use of sophisticated
data analytics tools can aid insurers in accurately assessing the shifting risk profiles and
tailoring pricing models to reflect the changing dynamics influenced by the pandemic. By
leveraging data-driven insights, insurers can enhance their risk assessment accuracy and
develop more customized pricing structures, thereby improving their ability to effectively
manage and mitigate the impacts of unforeseen events such as the COVID-19 pandemic.

From a statistical standpoint, examining the loss distribution’s magnitude is crucial
for understanding the impact of the COVID-19 pandemic on the auto insurance industry.
This involves analyzing distinct frequency patterns across various accident years while
keeping the Size of Loss variable constant in a regression model. The application of diverse
strategies for handling different accident years has been integral to this investigation, and
the consistent findings have brought to light the notable influence of the COVID-19 pan-
demic on claim frequency. Remarkably, this impact is concentrated more prominently in the
lower tail of the distribution rather than the upper tail. This asymmetry in the distribution
suggests a more pronounced effect on the insurance companies, particularly affecting the
lower end of loss outcomes. Consequently, the implications of the pandemic may be more
significant for insurers, influencing their strategies and financial resilience. Notably, the
large loss loading, a critical aspect for insurers, may experience comparatively less impact
due to the pandemic. This suggests that the repercussions of COVID-19 may be less severe
for the reinsurance sector, which typically deals with larger and more catastrophic losses.
The statistical analysis thus implies a differential impact across various segments of the auto
insurance industry, emphasizing the importance of adaptive risk management strategies
for insurers and reinsurers alike in the wake of the ongoing pandemic.

Opverall, the findings underscore the need for a comprehensive approach to insurance
pricing and rate regulation that accounts for the dynamic nature of external events and
their influence on claim patterns and sizes. By embracing a proactive and adaptable stance,
insurers and regulators can effectively navigate the challenges posed by the pandemic and
lay the groundwork for a more resilient and responsive insurance industry in the face of
future uncertainties.

6. Conclusions and Future Work

Analyzing the Size of Loss distribution in auto insurance has significant implications
for insurers, influencing various risk management and decision-making aspects. One
critical impact is in risk assessment and insurance pricing. Insurers can adjust premium
rates accordingly by comprehending the range and severity of potential losses associated
with a particular group of policyholders or geographic area. This ensures that premiums
are set at right and exact levels to cover expected claims, contributing to the financial
sustainability and stability of the insurance business. Another crucial area influenced by
loss distribution analysis is reserving and financial planning. Insurers can estimate the
necessary reserves to cover potential claims accurately. This practice is vital for maintaining
financial stability, ensuring solvency, and meeting regulatory requirements. Accurate
reserve estimates enable insurers to fulfill their obligations to policyholders, reinforcing
trust in the insurance industry.
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The study of the COVID-19 pandemic’s impact on insurance pricing and rate regula-
tion using the Size of Loss regulatory datasets across various major coverages, regions and
statistical territories yields critical managerial implications and significance. By analyzing
these datasets, insurance companies and regulators can gain insights into the specific vul-
nerabilities and patterns within different regions, territories and coverage types, enabling
them to tailor pricing strategies or regulation rules accordingly. Understanding the differ-
ential effects of the pandemic on various insurance coverages and geographic locations is
crucial for refining risk models and ensuring compliance with evolving regulatory frame-
works. This comprehensive Size of Loss data modelling can aid in developing targeted
risk management approaches, fostering greater financial resilience and adaptability within
the insurance industry in the face of ongoing pandemic challenges. The present analysis
methodology relies on grouped data. Subsequent efforts in future will concentrate on
exploring the application of a parametric distribution approach to model grouped data.
This will involve extracting essential distribution parameters to more effectively illustrate
the distinctions between conditions before and after the COVID-19 pandemic.
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