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Abstract: This paper studies a long short-term memory (LSTM)-based coherent mortality forecasting
method for developing countries or regions. Many of such developing countries have experienced a
rapid mortality decline over the past few decades. However, their recent mortality development trend
is not necessarily driven by the same factors as their long-term behavior. Hence, we propose a time-
varying mortality forecasting model based on the life expectancy and lifespan disparity gap between
these developing countries and a selected benchmark group. Here, the mortality improvement trend
for developing countries is expected to converge gradually to that of the benchmark group during
the projection phase. More specifically, we use a unified deep neural network model with LSTM
architecture to project the life expectancy and lifespan disparity difference, which further controls
the rotation of the time-varying weight parameters in the model. This approach is applied to three
developing countries and three developing regions. The empirical results show that this LSTM-based
coherent forecasting method outperforms classical methods, especially for the long-term projections
of mortality rates in developing countries.

Keywords: coherent mortality forecasting; LSTM; developing countries; life expectancy; lifespan
disparity

1. Introduction

In the last few decades, human mortality has improved significantly in several coun-
tries, especially in developing regions. These mortality reductions can generate important
longevity risks for life insurance companies and pension schemes. The study of these
longevity improvements is fundamental in life insurance and annuity research in actuarial
science literature.

There are statistical techniques for the forecasting of future mortality. A popular
method, proposed by Lee and Carter (1992), is the so-called Lee–Carter (LC) model, where
the log force of mortality ln(mx,t) is represented as the sum of an age component ax plus the
product of an age-specific function bx and a time component kt. Obviously, such a model
cannot be fitted as a regular regression model because of the product of parameter terms.
In work by Lee and Carter (1992), a two-step method was applied, where singular value
decomposition (SVD) is used to fit the model, followed by an autoregressive component, or
random walk, to forecast the time component kt.

In the last two decades, the LC method has been used in the practice frequently, and
several papers propose various extensions of the method; interested readers can refer to
Lee (2000), Pitacco (2004), Wong-Fupuy and Haberman (2004), as well as the Cairns–Blake–
Dowd (CBD) model (Cairns et al. 2006), and references therein. This literature has shown
how the original LC method can lack flexibility with regard to the effect of age. Renshaw
and Haberman (2003) extended the LC method to a multi-factor version adding an age-
specific enhancement. In addition, a single-factor model with cohort effects is proposed
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by Renshaw and Haberman (2006). For a comprehensive review of the early literature on
these various forecasting methods, refer to Cairns et al. (2008) and Cairns et al. (2011a).

Note that apart from the LC method and its extensions, another approach developed
in the literature for mortality modeling is based on generalized linear models (GLMs); for
example, see Brouhns et al. (2002), Renshaw and Haberman (2006), and O’Hare and Li
(2012). For a comprehensive survey on fitting GLMs to mortality data, refer to Currie (2016).
In addition, the Bayesian approach appears in the literature on mortality modeling. For
example, Czado et al. (2005) and Pedroza (2006) extend the LC model to Bayesian analyses
using Markov chain Monte Carlo (MCMC) methods. Cairns et al. (2011b) further extended
Bayesian stochastic mortality modeling to two populations; see Antonio et al. (2015) for an
application of a Bayesian method under multiple populations. For more recent studies on
mortality modeling with a Bayesian approach, refer to Li and Lu (2018), Li et al. (2019), and
Wong et al. (2023), and references therein.

The LC method, and many of its early extensions, focuses on a single population (for
example, modeling only one gender at a time or combined genders, and only one country).
In particular, let mx,t denote the mortality rate of age x at time t for t = 0, 1, 2 . . . , T and
x = 0, 1, 2 . . . ω for a given population. Then, let ax denote the mean log mortality rate over
time, that is, ax = 1

T+1 ∑T
t=0 ln

(
mx,t

)
. Using the LC method, one obtains

ln
(
mx,t

)
= ax + bxkt + ϵx,t, (1)

where ϵx,t is the mean zero random noise, and kt is modeled using random walk with drift:

kt = d + kt−1 + δt, δt ∼ N(0, σ2), E(δtδs) = 0, for t ̸= s. (2)

The literature shows that it is difficult for the LC method to forecast mortality rates for
two genders at the same time in one population or in multiple populations and regions,
where a certain divergence could be reached due to the differences in bx and d (and in turn,
different kt) in the model. For example, Carter and Lee (1992) suggested using the same kt,
but gender-specific bx values to forecast male and female mortality rates separately in the
U.S. Lee and Nault (1993) used the same kt and bx for mortality forecasting in each province
of Canada, which works only when the bx values of different provinces, as obtained from
historical data, are similar.

However, some early discussions on the convergence of life expectancy around the
world (see, e.g., White 2002, Wilmoth 1998, and Vaupel and Schnabel 2004) show that
there is convergence in long-term life expectancy, diverging forecasts of mortality rates for
different populations in a group of countries is unrealistic. Therefore, Li and Lee (2005)
introduced the so-called coherent extension of the LC method for mortality forecasting of
a group of populations (we call it the Li–Lee method), where the log mortality rates for
each member in the group are decomposed into three parts, namely, member-specific ai,x,
common age and period effects Bx and Kt, and member-specific age and period effects, bi,x
and ki,t. More precisely, the log mortality rates ln(mi,x,t), for member i in the group at age x
and time t, can be expressed as

ln
(
mi,x,t

)
= ai,x + BxKt + bi,xki,t + εi,x,t, (3)

with
Kt = d0 + Kt−1 + νt, ki,t = α0,i + α1,iki,t−1 + ϵi,t, (4)

where ai,x measures the average mortality level at age x in country i. Kt is the common
period effect for all countries and is modeled by a random walk with drift d0. Bx is the
common age effect, i.e., the common mortality sensitivity at age x, with respect to Kt. In
addition, ki,t and bi,x are the country-specific period and age effects, respectively, which
measure the fluctuations around the common mortality patterns in the group for country i.
Finally, εi,x,t, νt, and ϵi,t are normally distributed i.i.d. errors. It turns out that the additional
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information provided by similar members/countries in the group can improve the forecast
accuracy for individual countries.

On the other hand, according to Hanewald (2011), there is a strong long-term connec-
tion between the mortality dynamics and the gross domestic product (GDP) per capita and
unemployment rate in a country, which points to the essential difference of the mortality
improvements between developed countries and developing countries during the same
period of time. Based on such an observation, Niu and Melenberg (2014) improved the LC
model with an extra factor (namely, GDP) describing the economic growth; see Boonen
and Li (2017) for the study under multiple populations. More recently, Ma and Boonen
(2023) further argued that the consumer price index (CPI) is a more suitable factor, added
to the LC model, to explain the mortality trends in a country. It explains the affordability of
healthcare, food, and housing in that country. The above-mentioned studies verify, from
a different point of view, that life expectancy (or any other similar indexes) can play an
important role in mortality forecasting.

Moreover, as mentioned by Li et al. (2013), mortality decline decelerates in younger
ages and accelerates at older ages in many developed countries. Such a “rotation" can
generate problems in the results of long-term mortality projections using the LC method
for developing countries that do not exhibit such a subtle rotation in their historical data,
e.g., the projected mortality rates are low for younger ages. Hence, Li et al. (2013) developed
a rotation-based LC method, where the out-of-sample bx was assumed to be converging to
an ultimate structure based on the development of life expectancy. But, as argued by Li and
Lu (2017), mortality rates should change smoothly and continuously across ages; such a
problem, known as age–coherent mortality forecasting, is present in the above-mentioned
Li–Lee model. Thus, Gao and Shi (2021) proposed two alternative extensions to the ordinary
LC method: the LC-Geometric and LC-Hyperbolic models. The goal was to achieve long-term
age coherence in mortality forecasts while retaining the short-term rotation-type forecasting
adopted by Li et al. (2013). Here, Geometric and Hyperbolic refer to the type of decay allowed
in the autoregressive (AR) model.

Recently, borrowing the concept of “rotation" proposed by Li et al. (2013), Li et al.
(2021) developed a so-called rotation algorithm for the coherent mortality projections of
less developed countries, which included all regions of Africa, Asia (except Japan), Latin
America, the Caribbean, Melanesia, Micronesia, and Polynesia. Using Li–Lee’s model,
where “rotation" refers to the effects of age and time components in the projection phase
for developing countries; rotation may occur in bi,x and di, based on their own historical
data and the corresponding data from a group of developed countries used as the bench-
mark group. In their model, the rotation algorithm is controlled by a life expectancy gap
function, between the target developing country and the benchmark group, where the gap
function can be fitted by (double) logistic functions with some selected threshold levels for
convergence of the gap.

Therefore, reliable mortality projection methods, especially the long-term projections
of age-specific mortality rates, are crucial for developing countries. However, the recent fast
decline in aggregate mortality might not be a long-term behavior (according to Müller and
Krawinkel (2005), Austin and McKinney (2012), and Jeuland et al. (2013), the main factors
contributing to recent mortality improvements in developing countries (especially for in-
fants, the young, and the working-age population) are modernization, improved healthcare
coverage, better nutrition, and prevention of infectious diseases, which can obviously
only last for a short period of time); in the long run, the mortality patterns of developing
countries could more closely resemble those of more developed countries (see, e.g., Li and
Lee 2005). Therefore, predicting long-term, age-specific mortality rates in a developing
country by simply extrapolating its historical patterns may lead to implausible results.

Hence, a method with the aforementioned “rotation" helps find a balance between the
historical mortality pattern of the developing country and the average mortality patterns
of a group of developed countries (the benchmark group). Note that for different target
countries, the method proposed by Li et al. (2021) needs to use expert judgments and fit
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different gap functions with possible different gap thresholds. This can bring restrictions to
the unified application of the method.

On the other hand, as mentioned by Aburto et al. (2020), populations with the same
life expectancy level may experience substantial differences in the time of death. This
indicates that the mortality pattern of a developing country can still be different from
the benchmark group even if there is a convergence in the life expectancy gap. Hence,
the lifespan disparity, which describes life expectancy lost due to death by an individual
at different ages and times (see, e.g., Vaupel and Romo (2003) and Zhang and Vaupel
(2009)), may provide additional information when examining the convergence of mortality
development between the developing country and the benchmark group. Therefore, to
continue the study of coherent mortality forecasting (especially long-term projections
based on lifespan disparity) for developing countries, here we propose a unified coherent
mortality forecasting method with time-dependent rotation weights based on a benchmark
group. A deep neural network, in particular a long short-term memory (LSTM), is used
for the projection of the life expectancy and lifespan disparity gaps between the target
developing country and the corresponding benchmark group. The projected gaps are
used in the control of the rotated time-varying weight parameters in the model during the
projection phase for mortality forecasting of the developing country.

In the last decade, neural networks, especially deep neural networks (DNNs), have
gained attention in the human mortality modeling and forecasting literature. The purpose
of building neural network models for human mortality is to extend the modeling and
forecasting ability passed by classical parametric models, such as the LC method and its
many extensions. For example, Hainaut (2018) proposed a type of neural network analyzer,
which uses an encoding and decoding network structure in the approximation of the non-
linearity among ages, for each year in the data, for a single country. The model is essentially
a feedforward neural network extension of the LC method, where a simple, fully connected
feedforward neural network was used to learn the common nonlinearities in the lower
dimensional structure of the log-forces of mortality, for different ages crossing the years.

Nigri et al. (2019) extended the classical LC method by introducing an LSTM model
for the time series prediction in the forecasting phase of the LC method, where the related
time series (i.e., kt) were extracted by following the same SVD method by Lee and Carter
(1992). Their results show the prediction power of LSTM, compared to the classical time
series prediction method (e.g., ARIMA), especially in capturing the nonlinearities.

More recently, Lindholm and Palmborg (2022) discussed the procedures to efficiently
use training data in mortality forecasting when applying an LSTM-based Poisson LC
method. Marino et al. (2022) further confirmed that an LSTM model can improve the
predictive power of the classical LC method by providing a rigorous analysis of the pre-
diction interval for their so-called LC–LSTM model. Note that Nigri et al. (2021) also used
the LSTM model for life expectancy and lifespan disparity forecasting. According to
the above-mentioned literature, the LSTM model has shown great prediction power for
the forecasting of period effects in the classical LC model, as well as the forecasting of
life expectancy and lifespan disparity. It is interesting to further consider the question of
whether such a powerful tool (LSTM) can help improve long-term mortality forecasting for
developing countries.

On the other hand, deep feedforward neural networks (FNNs), as a different way of
extending the LC method, may also be applied to mortality modeling; e.g., see Richman
and Wüthrich (2021), where they treat human mortality modeling as a classical supervised
learning problem. For the application of convolution neural networks (CNNs) in mortality
modeling, refer to Wang et al. (2021) and Schnürch and Korn (2022). However, their neural
networks and methods are fundamentally different from the LSTM-based neural network
structure here; therefore, their results are not directly comparable. Furthermore, some non-
neural network machine learning models have appeared in the literature to forecast human
mortality rates; for example, see Deprez et al. (2017) and Levantesi and Pizzorusso (2019).
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As a result, in this paper, we develop an LSTM-based coherent mortality forecasting
method with time-varying rotation structures based on a benchmark group. It provides a
unified and model-free mortality projection method for developing countries. The paper is
organized as follows: Section 2 introduces some preliminaries, including neural networks,
the LSTM, the classical LC, and the Li–Lee model, as well as the definitions of life expectancy
and lifespan disparity. The LSTM-based coherent mortality forecasting model is presented
in Section 3. Finally, the mortality data and the empirical results are presented in Section 4,
followed by the conclusion and some remarks in Section 5.

2. Preliminaries
2.1. RNN with LSTM Architecture

Recurrent neural networks (RNNs) are a class of artificial neural networks (ANNs),
that can store representations of recent input data through their feedback connections.
RNNs have many significant applications in the areas of the speech process, non-Markov
control, or time series prediction (see, e.g., Mozer 1991). For instance, let {x1, x2, . . . , xn}
denote the time sequence of input vectors, and {h1, h2, . . . , hn} denote the time sequence of
output vectors; for the simple RNN, the output vector at time-step t is defined as follows:

ht = ϕ(Whhht−1 + Whxxt + bh),

where ϕ is an activation function, Whh and Whx are the kernel weights for previous time
step outputs and current inputs, respectively, and bh is the corresponding bias.

However, with the conventional gradient-based back-propagation through time (BPTT)
algorithm (see Williams and Zipser (1995)), simple RNNs suffer from the problem of van-
ishing or exploding gradients (Pascanu et al. 2013). Then, RNNs with an LSTM architecture,
or simply LSTMs, were introduced by Hochreiter and Schmidhuber (1997) in order to
overcome such vanishing gradient problems. Instead of using all the memory dynamically
when processing the data, the LSTM architecture relies both on the memory block and a
few gates for controlling data elaborations.

LSTMs have shown great power in natural language processing and time series
predictions. According to Marino et al. (2022), the LSTM can be expressed in the following
mathematical form. Let N0 denote the number of neurons within the input layer, Np
denote the number of neurons of the p-th hidden layer with n ∈ {1, . . . , P}, and NP+1
denote the number of neurons of the output layer, where P, N0, and Np for p ∈ {1, . . . , P}
and NP+1 ∈ N. Then, the activation of the p-th hidden layer may expressed as an affine
mapping, A(p) : RNp−1 → RNp , where RNp−1 refers to the output produced by the (p− 1)-th
hidden layer. The output of an LSTM neuron at any time t in the p-th hidden layer can be
expressed as follows:

h(p)
t = ot

(p) ⊙ tanh(c(p)
t ),

where ⊙ denotes the element-wise product. The key to the LSTM lies in the following
equations, which describe the outputs of four different gates in the architecture:

Forget gate: f (p)
t = σf ◦ A(p) = σ

(
⟨W (p)

f , h(p−1)
t ⟩+ ⟨U(p)

f , h(p)
t−1⟩+ b(p)

f

)
,

Input gate: i(p)
t = σi ◦ A(p) = σ

(
⟨W (p)

i , h(p−1)
t ⟩+ ⟨U(p)

i , h(p)
t−1⟩+ b(p)

i

)
,

Output gate: o(p)
t = σo ◦ A(p) = σ

(
⟨W (p)

o , h(p−1)
t ⟩+ ⟨U(p)

o , h(p)
t−1⟩+ b(p)

o

)
,

Memory state: c(p)
t = f (p)

t ⊙ c(p)
t−1 + i(p)

t ⊙ tanh
(
⟨W (p)

c , h(p−1)
t ⟩+ ⟨U(p)

c , h(p)
t−1⟩+ b(p)

c

)
,

where σ(x) = (1 + ex)−1 is the sigmoid activation function, tanh(x) = ex−e−x

ex+e−x is the

hyperbolic tangent activation function, W (p)
k for k = f , i, o, c are, respectively, the weight

matrices for the four different gates of feedforward connections in the structure, U(p)
k for
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k = f , i, o, c are the corresponding weight matrices for the gates of recurrent connections,
and b(p)

k for k = f , i, o, c are the bias terms in the model.

Then let D =
{
(xt, yt), xt ∈ RN0 , yt ∈ RNP+1

}
be a dataset where xt and yt are

the input variables and associated responses at time t, respectively. Hence, the LSTM is
essentially a function, say gLSTM : RN0 → RNP+1 , with

yt = gLSTM(xt; W) + γt = ψ ◦
(

h(p)
t ◦ h(p−1)

t ◦ · · · ◦ h(1)
t

)
(xt; W) + γt, (5)

where ψ : RNp → RNP+1 is the activation function at the output layer, W is the set of all
weight parameters in the network, and γt is a noise term, with zero mean and variance σ2

t ,
independent of gLSTM.

2.2. The Mortality Models

Here, we use two classical mortality projection methods, namely the LC models and
Li–Lee model. Specifically, we use the LC method for a rough/first-step mortality forecast
of the target developing countries. That is, for such single populations, the Lee–Carter
method (Lee and Carter 1992) assumes that the logarithm of the crude death rates (mx,t)
for each age x and year t satisfies (1) and (2), where ax summarizes the average level of
mortality throughout the time at age x, kt provides the overall level of mortality at year t,
and bx measures the age effect of mortality on different periods. Note that the following is
also assumed in the LC method (for identification purposes):

ax =
1

T + 1

T

∑
t=0

log
(
mx,t

)
,

ω

∑
x=0

bx = 1.

On the other hand, the Li–Lee method introduced by Li and Lee (2005) is an extension
of the classical LC method, which can generate coherent mortality projections for multiple
countries. In this study, the Li–Lee method (given by (3) and (4)) is used as the first step
in mortality forecasting of the benchmark countries (i.e., a selected group of developed
countries). Note that Kt, in general, can be fitted by a random walk with drift (i.e., non-
stationary), whereas ki,t for all i is assumed to be stationary; that is, ki,t shall be fitted by a
random walk without drift or first-order autoregressive model AR(1) with a coefficient
that yields a bounded short-term trend; for more details, refer to Li and Lee (2005).

It is obvious that under the Li–Lee method, the long-term mortality trend is uniquely
determined by the common period effect Kt, which makes the mortality forecasts coherent
for all member countries in the group. In the empirical application, if the ki,t of a country is
non-stationary, then this country is considered non-coherent with other countries in the
group, i.e., there is significant divergence between the historical mortality experience and
the common mortality patterns Bx and Kt. Hence, we may need to exclude them from the
selected benchmark group.

Note that in order to ensure comparability between the parameters in the LC and
Li–Lee methods in our subsequent analysis, one should impose the same normalization
constraints on the key parameters of the two methods (see, e.g., Li et al. 2018).

2.3. Life Expectancy and Lifespan Disparity

Most mortality forecasting methods aim to predict how many additional years of life
people will gain in the future. Life expectancy at birth, which measures the central tendency,
is frequently applied to evaluate the precision of mortality forecasting methods. However,
as mentioned by Aburto et al. (2020), populations with the same life expectancy level might
experience substantial differences in the time of death, i.e., life expectancy cannot detect
distributional variations in lifespan. Therefore, lifespan disparity can serve as an additional
indicator to evaluate mortality forecasting methods (see, e.g., Bohk-Ewald et al. 2017).
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Let us introduce the notation and definitions of life expectancy and lifespan disparity.
Let S(x, t) and µ(x, t) denote the survival function and the force of mortality for an indi-
vidual age x at time t, respectively, for a given population. These are assumed to be two
continuous functions with respect to x and t. Also, denote by ex,t the life expectancy for
age x at time t as

ex,t =

∫ ∞
x S(y, t)dy

S(x, t)
, (6)

where

S(x, t) = exp
(
−
∫ x

0
µ(a, t)da

)
,

and µ(a, t) is the corresponding force of mortality at age a and time t.
To measure lifespan disparity, we take the average number of life years lost at birth

(see Vaupel and Romo 2003; Zhang and Vaupel 2009):

e†
0,t =

∫ ∞

0
ey,td(y, t)dy, (7)

where d(y, t) are the deaths at age y and time t, and ey,t is the remaining life expectancy at
age y and time t. Obviously, (7) shows that lifespan disparity is an indicator representing
the life expectancy lost due to death by an individual at age x at time t. Note that lifespan
disparity can be described by other measures, such as the standard deviation, interquartile
range, Gini coefficient, or prolate index. However, we shall use e†

0,t for lifespan disparity in
our analysis. Demographically, apart from its interpretation as the average life years lost or
lost living potential, it also provides information about the capacity for further increases in
life expectancy (see Bohk-Ewald et al. 2017).

3. LSTM-Based Coherent Method

In this section, we introduce our LSTM-based coherent mortality forecasting method
with an embedded rotation in the time-varying model weight parameters during the
projection phase for developing countries. The key to our method is a time-varying LC
model, see (8) below, with an LSTM-based component that controls the rotation of the
weight parameters in the model. Here, the rotation is referred to as the gradual change
in the mortality development pattern during the projection phase (see Li et al. 2021). The
time-varying parameters are defined through time-dependent weighted averages of the
corresponding projected parameters based on the historical data from the target developing
country and the selected benchmark group, respectively, where the weights are rotated
based on how close the target developing country is to the benchmark group, under
given criteria.

More specifically, we consider the following projection method for the logarithm
of central death rate mj

x,t for a particular developing country, say j at age x and year t,
such that

ln
(
mj

x,t
)
= aj

x + bj
x,tk

j
t + εx,t,

kj
t = dj

t + kj
t−1 + ϵt,

(8)

where aj
x can be estimated by the average mortality level at age x for developing country j.

Here, kj
t is the period effect and εx,t and ϵt are two zero mean random noises.

The main difference between our method, in (8), and the classical LC method is the
time-varying bj

x,t that measures a time-dependent age effect on mortality at different periods,

and dj
t describes a time-dependent drift in the random walk model used to project kj

t.
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Then, we select a group of developed countries as the benchmark group, where the
classical Li–Lee method is applied in the projection of the logarithm of the central death
rates mi,x,t, for member i in the group, that is,

ln
(
mi,x,t

)
= ai,x + BxKt + bi,xki,t + εi,x,t,

with
Kt = d0 + Kt−1 + νt, ki,t = α0,i + α1,iki,t−1 + ϵi,t.

Bx measures the common age effect in the benchmark group, and d0 gives the drift
in the random walk model of the common period effect Kt. Bx and d0 are the two key
components to be extracted from the benchmark group, using the Li–Lee model, to then be
used in the rotation during the projection phase.

Here is how the rotation works in our method. As explained in Section 2, first select
the life expectancy and lifespan disparity, respectively, as the criteria to describe the gap in
terms of mortality levels, between the target developing country and the benchmark group.
The varying gap will control the rotation of age and period effects in the projection phase
for developing countries.

However, instead of selecting and fitting various (double) logistic functions as well as
tailored threshold levels for the gap (see Li et al. 2021), we propose using a unified LSTM
model for the gap forecasting. In addition, we use life expectancy, given by (6), and lifespan
disparity, given by (7), respectively, in the construction of the gap function that describes
the mortality distance between the target developing country and the benchmark group.

In particular, for notation simplicity, we let ei
u and e†i

u denote, respectively, the (pro-
jected) life expectancy and lifespan disparity at birth for the i-th member in the benchmark
group, in year u, and define the corresponding average life expectancy and lifespan dispar-
ity at birth, in year u, for the whole benchmark group as follows:

eb
u =

1
N

N

∑
i=1

ei
u, for u = . . . , T, . . . ,

e†b
u =

1
N

N

∑
i=1

e†i
u , for u = . . . , T, . . . ,

where T is the number of years in the training/in-sample data and N is the total number of
members in the benchmark group.

Let ej
u and e†j

u denote the corresponding life expectancy and lifespan disparity at birth
for the target developing country/region j, in year u, for u = . . . , T, . . .. A unified LSTM
model is introduced to forecast the life expectancy and lifespan disparity for both the target
developing country and the benchmark group, such that the projected gaps in mortality
levels between the developing country and the benchmark group can be expressed as the
forecast for life expectancy or lifespan disparity difference.

More specifically, we construct LSTM models for the projection of e·t and e†·
t for both

target developing countries/regions (i.e., ej
t and e†j

x,t) and the benchmark group (i.e., eb
t and

e†b
t ) as follows:

e·t = ge
LSTM(e·t−1; W e) + ϵe

t , e†·
t = ge†

LSTM(e†·
t−1; W e†) + ϵe†

t , (9)

where ϵe
t and ϵe†

t are zero mean errors. ge
LSTM and ge†

LSTM are given by (5), respectively,
for life expectancy and lifespan disparity. And W e and W e† are the weight parameters in
the corresponding LSTM models (see for example Nigri et al. 2021). The parameters in the
LSTM model (i.e., the functional form of ge

LSTM and ge†
LSTM) are optimized using an L2 loss

function, namely

min
W e

1
2 ∑

t

(
e·t − ge

LSTM(e·t−1; W e)
)2, min

W e†

1
2 ∑

t

(
e†·

t − ge†
LSTM(e†·

t−1; W e†)
)2

.
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Note that, to show the long-term projection power of our method, we need a sufficient
number of years of mortality rates in the out-of-sample data, which results in a limited size
of the in-sample mortality data for the training of the neural network model. Therefore,
in this paper, we only consider a first-order autoregressive approach in the LSTM model,
as illustrated in (9), where the neural network learns at each time step the relationship
between two consecutive values during the training period (i.e., one-to-one structure). In
addition, the method can be extended to more complex LSTM models with the structure of
many-to-one or many-to-many, given that the available data are sufficiently large.

Next, we illustrate in detail our LSTM-based coherent mortality forecasting method.
Consider the method based on lifespan disparity; for the case with life expectancy, one
simply replaces all e†·

t by e·t in the corresponding equations. As noted, at the core of the
method is the time-varying LC model given in (8), where the term for the age effect, bj

x,t,

and the drift term, dj
t, of the period effect, depend on time t. The time dependence is

described through a set of time-varying weights, in terms of lifespan disparity gaps, linking
the mortality improvements between the target developing country and the benchmark
group. Let b̂j

x and d̂j denote the estimated age effect term and the drift parameter of the
period effect term for the target developing country j, based on the classical LC method.

Now, let B̂x denote the estimated common age effect term and d̂0 denote the drift
parameter of the common period effect term, obtained by using Li–Lee’s method for the
benchmark group. These two parameters provide information on the common mortality
improvements of the benchmark group. Then, the next step is to specify how the time-
varying bj

x,t and dj
t in (8) are defined in the mortality projection phase. To be specific, at the

beginning of the projection phase, one can simply rely on the historical mortality data of
the developing country when forecasting the short-term mortality rates.

In addition, denote the lifespan disparity at birth at time t projected through the LSTM
model given in (9) as e†j

t and e†b
t for the developing country/region j and the benchmark

group, respectively. Then, define the lifespan disparity gap at time t between the target
country/region and the benchmark group as follows:

g†
t := e†b

t − e†j
t . (10)

Then, for intermediate or long-term projections, include data from the benchmark
group so that the long-term mortality development of the developing country converges
gradually to the common trend in this benchmark group. Hence, redefine the age effect
and drift terms of the period effect in the LC model as

bj
x,t+1 := (1 − ωt)b̂

j
x + ωt B̂x,

dj
t+1 := (1 − ωt)d̂j + ωtd̂0,

(11)

where

ωt =

{
1
2

(
1 + sin

[
π

2

(
2 max

(
g†

T − g†
t

g†
T

, 0

)
− 1

)])}p

, (12)

for each age x and t = T, T + 1, . . ., and g†
· is given by (10). ωt denotes the time-varying

weights that link the projected time-dependent age and period effect parameters, in year
t + 1, to the weighted average of the estimated b̂j

x and d̂j, respectively, with B̂x and d̂0 in
the first step (see, e.g., Li et al. 2013). To simplify the analysis, we apply here the same
weight parameter for both bj and dj in (11). In addition, p ∈ [0, 1] in (12) is a tuning
parameter that controls the functional form of ωt. We set p = 1 in our analysis such that
ωt has a considerably low rate of change when its value is close to zero or one. Note that
when t = T, we have ωt = 0, which means that at the beginning of the projection phase,
the method relies only on the historical data from the developing country. For t > T, the
lifespan disparity gap decreases, such that ωt increases smoothly to one if the lifespan
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disparity gap diminishes in the future projection phase. Note that if the projected lifespan
disparity gap for a particular developing country diverges (e.g., g†

t > g†
T for t > T), we

simply forecast the mortality based on its own historical data (that is ωt = 1 for all t > T).
Finally, we summarize the model structure schematically in Figure 1 below. To be

specific, the LSTM-based coherent mortality forecasting model contains two parts: (1) on
the left of Figure 1 is a neural network component that contains an input layer, two layers
of the LSTM structure (both LSTM layers contain 128 neurons with accompanied dropout
layers), and two (fully connected) dense layers that contain 64 and 32 neurons, respectively,
with accompanied dropout layers for the output. Note that adding dense layers in the
model can provide flexibility in the control of the non-linearity of the model. (2) On the
right of Figure 1, the projected life expectancy or lifespan disparity is transferred into
a component of the rotation algorithm for the calculating of time-varying weights, and
then the projected weights are applied to the time-varying LC model for the forecasting of
mortality rates.

Input layer (Life expectancy/Lifespan disparity)

Neural network layer

Dense layer

Target dataBenchmark data

Gap function

LSTM Layer

LSTM Layer

Linear

Soft Max
Rotation algorithm

ExposureDeaths

Time-varying LC

Mortality Output layer

Figure 1. LSTM-based coherent mortality forecasting model.

4. Empirical Analysis

This section presents the application of our LSTM-based coherent mortality forecast-
ing method to three developing countries, namely China, Brazil, and Nigeria, which
are the most populous countries in their respective continents and also belong to the
emerging/emerged markets in the world. According to BBVA (2014), China and Brazil
are classified as EAGLEs, i.e., emerging and growth-leading economies that are expected
to have GDP increments larger than the average of G7 economies, excluding the US, in
the next ten years. Nigeria is classified as NEST, i.e., an emerging country that is expected
to have GDP increments lower than the average of the G7—excluding the US but higher
than Italy’s—in the next ten years. In addition, we apply our method to three develop-
ing regions, namely less developed region(s) (LDR), less developed regions excluding
China (LDRexChina), and less developed regions excluding the least developed countries
(LDRexLDC). The United Nations defines the less developed countries/regions as all
regions of Africa, Asia (except Japan), Latin America, and the Caribbean, plus Melanesia,
Micronesia, and Polynesia, and categorizes 45 countries as the least developed countries
(UN Source: https://unctad.org/topic/least-developed-countries/list (accessed on 21
November 2023)), including 33 countries in Africa, 8 countries in Asia, 1 in the Caribbean,
and 3 in the Pacific. To proceed with the empirical results, we first introduce the mortality
data used in the analysis.

https://unctad.org/topic/least-developed-countries/list
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4.1. Mortality Data

In this study, the benchmark group is made up of nine selected developed countries,
namely Denmark, Finland, France, the Netherlands, Switzerland, Sweden, the UK, the US,
and Japan. The mortality rates of these countries are obtained from the Human Mortality
Database. In particular, we use the central death rates in the one-age and one-year blocks,
i.e., ages equal to 0, 1, 2, 3, . . . , 97, 98, 99, and years ranging from 1950 to 2019.

The mortality data for the six target developing countries/regions mentioned above are
not included in the Human Mortality Database. Hence, the corresponding data are obtained
from the population division of the United Nations (UN Source: https://population.un.
org/wpp/Download/Standard/Mortality/ (accessed on 21 November 2023)). Note that, a
necessary condition for the application of our method is that the life expectancy or lifespan
disparities of the target countries/regions converge to the ones of the benchmark group.
Hence, a preliminary study is needed to select developed countries that can form a proper
benchmark group. Figure 2 illustrates the convergence of life expectancy and lifespan
disparity at birth between China and the benchmark group. The life expectancy and
lifespan disparity at birth in the Ukraine do not converge. According to Figure 2, one can
recognize a spike around the year 1960 in both the life expectancy and lifespan disparity in
China. Such mortality outliers are due to the so-called Great Chinese Famine of 1959 to 1961.
Hence, in order to reduce the effects of such extreme outliers from China, in the following
analysis, we use only the data from the year 1962 to 2019 whenever the data of China are
involved (i.e., the cases with China, LDR, and LDRexLDC).
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(a) Life expectancy gap.
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(b) Lifespan disparity gap.
Figure 2. China and Ukraine vs. benchmark group.

4.2. LSTM for Life Expectancy and Lifespan Disparity

As discussed above, in order to construct time-varying weights that depend on the
convergence of the life expectancy and lifespan disparity of a developing country to those
of the benchmark group, one needs to develop projection models for the corresponding life
expectancy or lifespan disparity gap.

Note that in the literature, (see Li et al. 2021), the forecasting of the life expectancy
gap based on statistical methods uses different functions (logistic or double logistic) for
developing countries/regions. Also, exogenous thresholds need to be introduced to test
convergence in the model. The situation is even more complex if the lifespan disparity gap
is also introduced in the method.

Here, instead of fitting various functions with thresholds to the life expectancy and
lifespan disparity gaps, we use a unified LSTM model (see, e.g., Nigri et al. 2021) for the
forecasting and identification of the gaps, compared with the benchmark group, for both
the life expectancy and lifespan disparity of all six countries/regions. The projected life ex-
pectancy and lifespan disparity using the LSTM model for the six target countries/regions
are presented in Appendix A.1. For similar results regarding the projection of life ex-
pectancy and lifespan disparity of other countries selected from the Human Mortality
Database, refer to Nigri et al. (2021).

https://population.un.org/wpp/Download/Standard/Mortality/
https://population.un.org/wpp/Download/Standard/Mortality/
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4.3. Empirical Results

In this empirical study, we carry out an out-of-sample test when training the model
with the above-mentioned mortality dataset. For the purpose of long-term predictions, the
data are divided into two parts, where the first 35 years of data, from 1950 to 1984 (from
1962 to 1984 for China, LDR, and LDRexLDC), are used for training, and the rest of the data,
from 1985 to 2019, are set aside as the test data. To avoid possible overfitting to the training
dataset, 20% of the training data are selected randomly as a validation part at each epoch.

To assess our models’ projections accuracy, the criteria used are mean square error, root
mean square error, and mean absolute error for the projected log-mortality rates in the test
data. The forecasting results for the LSTM-based, time-varying LC method, which includes
life expectancy and lifespan disparity, respectively, are compared with the traditional LC
and Li–Lee methods. All the experiments were performed using Keras with TensorFlow in
Python, for the LSTM model, the R package “StMoMo" for LC, and the Li–Lee method for
the initial mortality data processing. Note that in the following tables, we use LSTM–ex to
denote our forecasting model based on life expectancy, and use LSTM–disp to denote our
model based on lifespan disparity.

4.4. Results for China, Brazil, and Nigeria

The first empirical results are for the application of our model to the mortality data
of China, Brazil, and Nigeria. These selected target developing countries represent de-
mographic trends in their continents. This strategy removes the effect of different ethnic
groups on life expectancy or lifespan disparity and demonstrates the generality of the
model. The six-year average projection errors are listed in Tables 1–3; more detailed results
are presented in Appendix A.2, in terms of projection errors for each year, for males and
females, respectively.

Table 1. Six-year (average) prediction errors for China.

1985–
1991

1992–
1998

1999–
2005

2006–
2012

2013–
2019 Total

MSE

LC 0.0881 0.0965 0.0856 0.0799 0.0912 0.0883
LL 0.0204 0.0284 0.0317 0.0363 0.0513 0.0336

LSTM–ex 0.0092 0.0234 0.0245 0.0351 0.0501 0.0284
LSTM–disp 0.0073 * 0.0166 * 0.0119 * 0.0083 * 0.0104 * 0.0109 *

MAE

LC 0.2105 0.2294 0.2129 0.215 0.2331 0.2202
LL 0.1148 0.132 0.1294 0.1308 0.1543 0.1323

LSTM–ex 0.0594 0.0942 0.1094 0.1383 0.1738 0.115
LSTM–disp 0.0586 * 0.0849 * 0.0677 * 0.0569 * 0.0681 * 0.0672 *

RMSE

LC 0.2483 0.2906 0.2894 0.2818 0.289 0.2798
LL 0.1388 0.1673 0.1733 0.1793 0.2014 0.172

LSTM–ex 0.0959 0.1531 0.1565 0.1873 0.2238 0.1685
LSTM–disp 0.0854 * 0.1288 * 0.1091 * 0.0911 * 0.1021 * 0.1044 *

* indicates the smallest value of MSE/MAE/RMSE.

Tables 1–3 (see Figures A5–A7) show a clear cumulative error in long-term forecasts,
which reveals the difficulty of long-term mortality forecasting, especially for the classical
LC method. In our method, especially that based on lifespan disparity, this accumulation
error is reduced to some extent, making long-term forecasting more reliable.

The results clearly show that the classical LC method underperforms, as it is based on
only the historical mortality data of the target country or region. If the current mortality
development trend in a developing country is not sustainable, mortality rates will gradually
approach those of developed countries (like the benchmark group selected here). Hence,
in such a setting, projections based solely on national mortality data are not reasonable.
From the above results, the LSTM-based, time-varying LC method with lifespan disparity
controlling the rotation in the time-dependent weights, is the most accurate one among the
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four methods examined here, especially for long-term projections. On the other hand, it is
interesting to observe that Nigeria has the most significant projection error reduction when
transferring from the classical LC method to our LSTM-based time-varying LC method.

Table 2. Six-year (average) prediction errors for Brazil.

1985–
1991

1992–
1998

1999–
2005

2006–
2012

2013–
2019 Total

MSE

LC 0.0094 0.0259 0.0848 0.1661 0.2691 0.1111
Li–Lee 0.0061 0.0198 0.0647 0.1236 0.1999 0.0829

LSTM–ex 0.0049 0.0195 0.0624 0.1125 0.1701 0.0739
LSTM–disp 0.0038 * 0.0024 * 0.0157 * 0.0205 * 0.0566 * 0.0198 *

MAE

LC 0.0762 0.1191 0.2081 0.3084 0.4108 0.2245
Li–Lee 0.0642 0.1033 0.1729 0.2442 0.3212 0.1811

LSTM–ex 0.0506 0.1075 0.1996 0.2563 0.3161 0.1861
LSTM–disp 0.0501 * 0.0324 * 0.0839 * 0.0837 * 0.1536 * 0.0807 *

RMSE

LC 0.0955 0.1461 0.2663 0.3924 0.5119 0.3239
Li–Lee 0.0773 0.1335 0.2419 0.3457 0.4455 0.2845

LSTM–ex 0.0697 0.1397 0.2496 0.3354 0.4121 0.2718
LSTM–disp 0.0614 * 0.0488 * 0.1165 * 0.1239 * 0.2281 * 0.1332 *

* indicates the smallest value of MSE/MAE/RMSE.

Table 3. Six-year (average) prediction errors for Nigeria.

1985–
1991

1992–
1998

1999–
2005

2006–
2012

2013–
2019 Total

MSE

LC 0.0035 0.0082 0.0362 0.0961 0.1726 0.0633
Li–Lee 0.0007 0.0022 0.0102 0.0286 0.0542 0.0192

LSTM–ex 0.0045 0.0291 0.0334 0.0422 0.0521 0.0323
LSTM–disp 0.0011 * 0.0008 * 0.0002 * 0.0006 * 0.0013 * 0.0008 *

MAE

LC 0.0432 0.0689 0.1631 0.2771 0.3778 0.1861
Li–Lee 0.0209 0.0369 0.0835 0.1469 0.2059 0.0988

LSTM–ex 0.0583 0.1582 0.1686 0.1955 0.2164 0.1594
LSTM–disp 0.0247 * 0.0209 * 0.0102 * 0.0144 * 0.0203 * 0.0181 *

RMSE

LC 0.0507 0.0759 0.1825 0.3059 0.4116 0.2481
Li–Lee 0.0224 0.0391 0.0959 0.1663 0.2302 0.1361

LSTM–ex 0.0645 0.1681 0.1822 0.2045 0.2262 0.1796
LSTM–disp 0.0306 * 0.0278 * 0.0121 * 0.0221 * 0.0331 * 0.0261 *

* indicates the smallest value of MSE/MAE/RMSE.

4.5. Results for LDR, LDRexChina, LDRexLDC

Finally, in order to demonstrate the projection accuracy of our method, the following
illustration is for the mortality data of three developing regions, denoted as less devel-
oped region(s) (LDR), less developed regions excluding China (LDRexChina), and less
developed regions excluding least developed country (LDRexLDC); see Tables 4–6 and also
Figures A8–A10 in Appendix A.3).

Note that the error fluctuations in the prediction results for most of these less devel-
oped regions are reduced significantly (see Figures A8–A10), which is reasonable since the
less developed regions contain larger populations (i.e., more stable) compared to individual
countries. Overall, the LSTM-based, time-varying LC method with lifespan disparity as
the control of the rotation in time-varying weights provides the most accurate projections
within the four methods examined here.

It is worth mentioning that both our LSTM-based–time-varying LC method and the Li–
Lee method incorporate mortality trend corrections based on a benchmark group. However,
the empirical results show that, for developing countries or regions, such corrections are
better modeled through the projection of life expectancy or lifespan disparity difference
with an LSTM model, especially for long-term forecasts.
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Table 4. Six-year (average) prediction errors for LDR.

1985–
1991

1992–
1998

1999–
2005

2006–
2012

2013–
2019 Total

MSE

LC 0.0094 0.0307 0.0675 0.1033 0.1578 0.0738
LL 0.0032 0.0114 0.0293 0.0524 0.0829 0.0358

LSTM–ex 0.0011 * 0.00905 0.02425 0.0402 0.05095 0.0251
LSTM–disp 0.0019 0.00135 * 0.0008 * 0.0031 * 0.00335 * 0.0021 *

MAE

LC 0.0808 0.1537 0.2269 0.2772 0.3472 0.2172
LL 0.0441 0.0906 0.1408 0.1847 0.2443 0.1409

LSTM–ex 0.0253* 0.071 0.1161 0.1576 0.1807 0.1101
LSTM–disp 0.0344 0.0275 * 0.0216 * 0.0427 * 0.0372 * 0.033 *

RMSE

LC 0.0969 0.1736 0.2585 0.3223 0.397 0.2497
LL 0.0529 0.1078 0.1688 0.2273 0.2876 0.1689

LSTM–ex 0.0322 * 0.0897 0.1511 0.1975 0.2229 0.1387
LSTM–disp 0.0433 0.0349 * 0.0285 * 0.0554 * 0.0549 * 0.0434 *

* indicates the smallest value of MSE/MAE/RMSE.

Table 5. Six-year (average) prediction errors for LDRexChina.

1985–
1991

1992–
1998

1999–
2005

2006–
2012

2013–
2019 Total

MSE

LC 0.0091 0.0271 0.0711 0.1358 0.2241 0.0934
Li–Lee 0.0037 0.0126 0.0365 0.0738 0.1249 0.0504

LSTM–ex 0.0008 * 0.0056 0.0146 0.0202 0.0205 0.0123
LSTM–disp 0.0023 0.0008 * 0.0011 * 0.0031 * 0.0032 * 0.0021 *

MAE

LC 0.0556 0.1115 0.1861 0.2527 0.3404 0.1893
Li–Lee 0.0732 0.1378 0.2191 0.3067 0.4022 0.2278

LSTM–ex 0.0233 * 0.0562 0.0898 0.1136 0.1115 0.0789
LSTM–disp 0.0368 0.0221 * 0.0222 * 0.0411 * 0.0369 * 0.0317 *

RMSE

LC 0.0938 0.1643 0.2664 0.3677 0.4727 0.3051
Li–Lee 0.0604 0.1112 0.1889 0.2692 0.3511 0.2227

LSTM–ex 0.0283 * 0.0747 0.1203 0.1422 0.1428 0.1109
LSTM–disp 0.0476 0.0283 * 0.0332 * 0.0541 * 0.0516 * 0.0447 *

* indicates the smallest value of MSE/MAE/RMSE.

Table 6. Six-year (average) prediction errors for LDRexLDC.

1985–
1991

1992–
1998

1999–
2005

2006–
2012

2013–
2019 Total

MSE

LC 0.0199 0.0328 0.05 0.0733 0.1025 0.0557
LL 0.0074 0.0126 0.0182 0.0306 0.0454 0.0228

LSTM–ex 0.0014 * 0.0065 0.0254 0.0493 0.064 0.0293
LSTM–disp 0.0044 0.0032 * 0.0009 * 0.0061 * 0.0022 * 0.0034 *

MAE

LC 0.1183 0.1675 0.203 0.2406 0.2903 0.204
LL 0.0722 0.0983 0.1165 0.1485 0.1897 0.1251

LSTM–ex 0.0301 * 0.059 0.1176 0.1726 0.1956 0.115
LSTM–disp 0.0551 0.045 * 0.023 * 0.0639 * 0.037 * 0.0448 *

RMSE

LC 0.1399 0.181 0.2224 0.2689 0.32 0.2264
LL 0.0855 0.1073 0.1313 0.1714 0.2117 0.1414

LSTM–ex 0.0368 * 0.0772 0.1582 0.2217 0.2526 0.1493
LSTM–disp 0.0661 0.0541 * 0.0297 * 0.0782 * 0.0467 0.055 *

* indicates the smallest value of MSE/MAE/RMSE.

To end this section, we draw heatmaps that show the relative prediction errors (i.e.,
(predicted value − actual value)/actual value) across all ages and years for the out-of-
sample data. The results are presented in Figures 3 and 4. For most ages and years in the six
target developing countries/regions (except young males in China and females in Brazil),



Risks 2024, 12, 27 15 of 24

our model performs well. However, we also observe some cohort effects in the results,
especially for the data from China. A possible improvement could be to extend (11) and
(12) to include age dependency in our model. This is a non-trivial extension that will be left
for future studies.
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Figure 3. Relative prediction errors for three developing countries (males at the top, females at the
bottom).
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bottom).
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5. Conclusions

Mortality improvements are linked to social progress, for instance, in terms of health,
nutrition, education, hygiene, and access to medical assistance. It is difficult to accurately
predict mortality development trends, especially over a long-term period. For developing
countries or regions, it is particularly important to provide accurate long-term predictions
of mortality rates for each age in the population, given that the current mortality data might
not reveal sustainable development trends in the long–run.

The proposal here is an LSTM-based coherent mortality forecasting method for devel-
oping countries, where the life expectancy and lifespan disparity gaps between the target
developing country and the selected benchmark group are used for long-term projections.
In particular, we allow the mortality development pattern of a developing country to be a
weighted average of trends generated by its own historical data and the selected benchmark
group. And the rotation in the time-varying weights is controlled by the projected life
expectancy and lifespan disparity gaps between the developing country and the benchmark
group. In addition, we introduce a unified deep neural network model with an LSTM ar-
chitecture for the long-term forecasting of the gaps in life expectancy and lifespan disparity
for all six developing countries and regions in our analysis.

We apply this LSTM-based coherent mortality forecasting method to three developing
countries, China, Brazil, and Nigeria, and three developing regions defined by the United
Nations, namely LDR, LDRexChina, and LDRexLDC. The empirical results show that the
LSTM-based coherent forecasting method with lifespan disparity outperforms the classical
LC and Li–Lee methods, as well as the one with life expectancy, especially for long-term
projections.
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Appendix A

Appendix A.1. Life Expectancy and Lifespan Disparity Forecasts
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Figure A1. Historical (dotted lines) and forecast (blue for ARIMA, red for LSTM) values of e0,t for
three target countries.
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Figure A2. Historical (dotted lines) and forecast (blue for ARIMA, red for LSTM) values of e0,t for
three target regions.
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Figure A3. Historical (dotted lines) and forecast (blue for ARIMA, red for LSTM) values of e†
0,t for

three target countries.
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Appendix A.2. Projection Errors for China, Brazil, and Nigeria
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Figure A5. Forecasting errors by year for China (females at the top, males at the bottom).
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Figure A6. Forecasting errors by year for Brazil (females at the top, males at the bottom).

1985 1990 1995 2000 2005 2010 2015 2020
Year

0.0

0.1

0.2

0.3

0.4

0.5
MAE

rotation_dis
rotation_ex
ll
lc

1985 1990 1995 2000 2005 2010 2015 2020
Year

0.00

0.05

0.10

0.15

0.20

0.25

MSE
rotation_dis
rotation_ex
ll
lc

1985 1990 1995 2000 2005 2010 2015 2020
Year

0.00

0.05

0.10

0.15

0.20

0.25

RMSE
rotation_dis
rotation_ex
ll
lc

1985 1990 1995 2000 2005 2010 2015 2020
Year

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

MAE
rotation_dis
rotation_ex
ll
lc

1985 1990 1995 2000 2005 2010 2015 2020
Year

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
MSE

rotation_dis
rotation_ex
ll
lc

1985 1990 1995 2000 2005 2010 2015 2020
Year

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
RMSE

rotation_dis
rotation_ex
ll
lc

Figure A7. Forecasting errors by year for Nigeria (females at the top, males at the bottom).
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Appendix A.3. Projection Errors for LDR, LDRexChina, and LDRexLDC
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Figure A8. Forecasting errors by year for less developed regions (LDR) (females at the top, males at
the bottom).
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Figure A9. Forecasting errors by year for less developed regions, excluding China (LDRexChina)
(females at the top, males at the bottom).
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Figure A10. Forecasting errors by year for less developed regions, excluding least developed country
(LDRexLDC) (females at the top, males on the bottom).



Risks 2024, 12, 27 23 of 24

References
Aburto, José Manuel, Francisco Villavicencio, Ugofilippo Basellini, Søren Kjærgaard, and James W. Vaupel. 2020. Dynamics of life

expectancy and life span equality. Proceedings of the National Academy of Sciences 117: 5250–59. [CrossRef]
Antonio, Katrien, Anastasios Bardoutsos, and Wilbert Ouburg. 2015. Bayesian Poisson log-bilinear models for mortality projections

with multiple populations. European Actuarial Journal 5: 245–81. [CrossRef]
Austin, Kelly F., and Laura A. McKinney. 2012. Disease, war, hunger, and deprivation: A cross-national investigation of the

determinants of life expectancy in less-developed and sub-Saharan African nations. Sociological Perspectives 55: 421–47. [CrossRef]
BBVA. 2014. Eagles Economic Outlook Annual Report. Available online: https://www.bbvaresearch.com/wp-content/uploads/2014

/05/2014_EAGLEs_Economic_Outllok-Annual.pdf (accessed on 13 January 2024).
Bohk-Ewald, Christina, Marcus Ebeling, and Roland Rau. 2017. Lifespan disparity as an additional indicator for evaluating mortality

forecasts. Demography 54: 1559–77. [CrossRef]
Boonen, Tim J., and Hong Li. 2017. Modeling and forecasting mortality with economic growth: A multipopulation approach.

Demography 54: 1921–46. [CrossRef]
Brouhns, Natacha, Michel Denuit, and Jeroen K Vermunt. 2002. A Poisson log-bilinear regression approach to the construction of

projected lifetables. Insurance: Mathematics and Economics 31: 373–93. [CrossRef]
Cairns, Andrew J. G., David Blake, and Kevin Dowd. 2006. A two-factor model for stochastic mortality with parameter uncertainty:

Theory and calibration. Journal of Risk and Insurance 73: 687–718. [CrossRef]
Cairns, Andrew J. G., David Blake, and Kevin Dowd. 2008. Modelling and management of mortality risk: A review. Scandinavian

Actuarial Journal 2008: 79–113. [CrossRef]
Cairns, Andrew J. G., David Blake, Kevin Dowd, Guy D. Coughlan, David Epstein, and Marwa Khalaf-Allah. 2011a. Mortality density

forecasts: An analysis of six stochastic mortality models. Insurance: Mathematics and Economics 48: 355–67. [CrossRef]
Cairns, Andrew J. G., David Blake, Kevin Dowd, Guy D. Coughlan, and Marwa Khalaf-Allah. 2011b. Bayesian stochastic mortality

modelling for two populations. ASTIN Bulletin: The Journal of the IAA 41: 29–59.
Carter, Lawrence R., and Ronald D. Lee. 1992. Modeling and forecasting US sex differentials in mortality. International Journal of

Forecasting 8: 393–411. [CrossRef]
Currie, Iain D. 2016. On fitting generalized linear and non-linear models of mortality. Scandinavian Actuarial Journal 2016: 356–83.

[CrossRef]
Czado, Claudia, Antoine Delwarde, and Michel Denuit. 2005. Bayesian Poisson log-bilinear mortality projections. Insurance:

Mathematics and Economics 36: 260–84. [CrossRef]
Deprez, Philippe, Pavel V. Shevchenko, and Mario V. Wüthrich. 2017. Machine learning techniques for mortality modeling. European

Actuarial Journal 7: 337–52. [CrossRef]
Gao, Guangyuan, and Yanlin Shi. 2021. Age-coherent extensions of the Lee–Carter model. Scandinavian Actuarial Journal 2021: 998–1016.

[CrossRef]
Hainaut, Donatien. 2018. A neural-network analyzer for mortality forecast. ASTIN Bulletin: The Journal of the IAA 48: 481–508.

[CrossRef]
Hanewald, Katja. 2011. Explaining mortality dynamics: The role of macroeconomic fluctuations and cause of death trends. North

American Actuarial Journal 15: 290–314. [CrossRef]
Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9: 1735–80. [CrossRef]
Jeuland, Marc A., David E. Fuente, Semra Ozdemir, Maura C. Allaire, and Dale Whittington. 2013. The long-term dynamics of

mortality benefits from improved water and sanitation in less developed countries. PLoS ONE 8: e74804. [CrossRef] [PubMed]
Lee, Ronald D. 2000. The Lee–Carter method for forecasting mortality, with various extensions and applications. North American

Actuarial Journal 4: 80–91. [CrossRef]
Lee, Ronald D., and Lawrence R. Carter. 1992. Modeling and forecasting us mortality. Journal of the American Statistical Association 87:

659–71.
Lee, Ronald D., and Francois Nault. 1993. Modeling and forecasting provincial mortality in Canada. Paper presented at the World

Congress of the IUSSP, Montreal, QC, Canada, August 24–September 1.
Levantesi, Susanna, and Virginia Pizzorusso. 2019. Application of machine learning to mortality modeling and forecasting. Risks 7: 26.

[CrossRef]
Li, Hong, and Yang Lu. 2017. Coherent forecasting of mortality rates: A sparse vector-autoregression approach. ASTIN Bulletin: The

Journal of the IAA 47: 563–600. [CrossRef]
Li, Hong, and Yang Lu. 2018. A Bayesian non–parametric model for small population mortality. Scandinavian Actuarial Journal 2018:

605–28. [CrossRef]
Li, Hong, Yang Lu, and Pintao Lyu. 2018. Modeling and Forecasting Chinese Population Dynamics in a Multi-Population Context. SOA

Research Reports. Schaumburg: Society of Actuaries.
Li, Hong, Yang Lu, and Pintao Lyu. 2021. Coherent mortality forecasting for less developed countries. Risks 9: 151. [CrossRef]
Li, Johnny Siu-Hang, Kenneth Q. Zhou, Xiaobai Zhu, Wai-Sum Chan, and Felix Wai-Hon Chan. 2019. A Bayesian approach to

developing a stochastic mortality model for China. Journal of the Royal Statistical Society Series A: Statistics in Society 182: 1523–60.
[CrossRef]

http://doi.org/10.1073/pnas.1915884117
http://dx.doi.org/10.1007/s13385-015-0115-6
http://dx.doi.org/10.1525/sop.2012.55.3.421
https://www.bbvaresearch.com/wp-content/uploads/2014/05/2014_EAGLEs_Economic_Outllok-Annual.pdf
https://www.bbvaresearch.com/wp-content/uploads/2014/05/2014_EAGLEs_Economic_Outllok-Annual.pdf
http://dx.doi.org/10.1007/s13524-017-0584-0
http://dx.doi.org/10.1007/s13524-017-0610-2
http://dx.doi.org/10.1016/S0167-6687(02)00185-3
http://dx.doi.org/10.1111/j.1539-6975.2006.00195.x
http://dx.doi.org/10.1080/03461230802173608
http://dx.doi.org/10.1016/j.insmatheco.2010.12.005
http://dx.doi.org/10.1016/0169-2070(92)90055-E
http://dx.doi.org/10.1080/03461238.2014.928230
http://dx.doi.org/10.1016/j.insmatheco.2005.01.001
http://dx.doi.org/10.1007/s13385-017-0152-4
http://dx.doi.org/10.1080/03461238.2021.1918578
http://dx.doi.org/10.1017/asb.2017.45
http://dx.doi.org/10.1080/10920277.2011.10597622
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1371/journal.pone.0074804
http://www.ncbi.nlm.nih.gov/pubmed/24116011
http://dx.doi.org/10.1080/10920277.2000.10595882
http://dx.doi.org/10.3390/risks7010026
http://dx.doi.org/10.1017/asb.2016.37
http://dx.doi.org/10.1080/03461238.2017.1418420
http://dx.doi.org/10.3390/risks9090151
http://dx.doi.org/10.1111/rssa.12473


Risks 2024, 12, 27 24 of 24

Li, Nan, and Ronald D. Lee. 2005. Coherent mortality forecasts for a group of populations: An extension of the Lee–Carter method.
Demography 42: 575–94. [CrossRef] [PubMed]

Li, Nan, Ronald D. Lee, and Patrick Gerland. 2013. Extending the lee-Carter method to model the rotation of age patterns of mortality
decline for long-term projections. Demography 50: 2037–51. [CrossRef]

Lindholm, Mathias, and Lina Palmborg. 2022. Efficient use of data for LSTM mortality forecasting. European Actuarial Journal 12:
749–778. [CrossRef]

Ma, Qingxiao, and Tim J. Boonen. 2023. Longevity risk modeling with the consumer price index. North American Actuarial Journal 1–18.
[CrossRef]

Marino, Mario, Susanna Levantesi, and Andrea Nigri. 2023. A neural approach to improve the Lee–Carter mortality density forecasts.
North American Actuarial Journal 27: 148–165. [CrossRef]

Mozer, Michael C. 1991. Induction of multiscale temporal structure. Paper presented at the Advances in Neural Information Processing
Systems 4, NIPS Conference, Denver, CO, USA, December 2–5.

Müller, Olaf, and Michael Krawinkel. 2005. Malnutrition and health in developing countries. Cmaj 173: 279–86. [CrossRef]
Nigri, Andrea, Susanna Levantesi, and Mario Marino. 2021. Life expectancy and lifespan disparity forecasting: A long short-term

memory approach. Scandinavian Actuarial Journal 2021: 110–33. [CrossRef]
Nigri, Andrea, Susanna Levantesi, Mario Marino, Salvatore Scognamiglio, and Francesca Perla. 2019. A deep learning integrated

Lee–Carter model. Risks 7: 33. [CrossRef]
Niu, Geng, and Bertrand Melenberg. 2014. Trends in mortality decrease and economic growth. Demography 51: 1755–73. [CrossRef]
O’Hare, Colin, and Youwei Li. 2012. Explaining young mortality. Insurance: Mathematics and Economics 50: 12–25. [CrossRef]
Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of training recurrent neural networks. Paper presented

at International Conference on Machine Learning, Atlanta, GA, USA, June 16–21, pp. 1310–18.
Pedroza, Claudia. 2006. A Bayesian forecasting model: Predicting US male mortality. Biostatistics 7: 530–50. [CrossRef] [PubMed]
Pitacco, Ermanno. 2004. Survival models in a dynamic context: A survey. Insurance: Mathematics and Economics 35: 279–98. [CrossRef]
Renshaw, Arthur E., and Steven Haberman. 2003. Lee–Carter mortality forecasting with age-specific enhancement. Insurance:

Mathematics and Economics 33: 255–72. [CrossRef]
Renshaw, Arthur E., and Steven Haberman. 2006. A cohort-based extension to the Lee–Carter model for mortality reduction factors.

Insurance: Mathematics and Economics 38: 556–70. [CrossRef]
Richman, Ronald, and Mario V. Wüthrich. 2021. A neural network extension of the Lee–Carter model to multiple populations. Annals

of Actuarial Science 15: 346–66. [CrossRef]
Schnürch, Simo, and Ralf Korn. 2022. Point and interval forecasts of death rates using neural networks. ASTIN Bulletin: The Journal of

the IAA 52: 333–60. [CrossRef]
Vaupel, James W., and Vladimir Canudas Romo. 2003. Decomposing change in life expectancy: A bouquet of formulas in honor of

Nathan Keyfitz’s 90th birthday. Demography 40: 201–16. [CrossRef]
Vaupel, James W., and Sabine Schnabel. 2004. Forecasting best-practice life expectancy to forecast national life expectancy. Paper

presented at the 2004 Annual Meeting of the Population Association of America, Boston, MA, USA, April 1–3.
Wang, Chou-Wen, Jinggong Zhang, and Wenjun Zhu. 2021. Neighbouring prediction for mortality. ASTIN Bulletin: The Journal of the

IAA 51: 689–718. [CrossRef]
White, Kevin M. 2002. Longevity advances in high-income countries, 1955–96. Population and Development Review 28: 59–76. [CrossRef]
Williams, Ronald J., and David Zipser. 1995. Gradient-based learning algorithms for recurrent networks and their computational

complexity. In Back-Propagation: Theory, Architectures, and Applications, 1st ed. Edited by Yves Chauvin and David E Rumelhart.
London: Psychology Press, Taylor & Francis Group, chp. 13. [CrossRef]

Wilmoth, John R. 1998. Is the pace of Japanese mortality decline converging toward international trends? Population and Development
Review 24: 593–600. [CrossRef]

Wong, Jackie S. T., Jonathan J. Forster, and Peter W. F. Smith. 2023. Bayesian model comparison for mortality forecasting. Journal of the
Royal Statistical Society Series C: Applied Statistics 72: 566–86. [CrossRef]

Wong-Fupuy, Carlos, and Steven Haberman. 2004. Projecting mortality trends: Recent developments in the United Kingdom and the
United States. North American Actuarial Journal 8: 56–83. [CrossRef]

Zhang, Zhen, and James W. Vaupel. 2009. The age separating early deaths from late deaths. Demographic Research 20: 721–30. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1353/dem.2005.0021
http://www.ncbi.nlm.nih.gov/pubmed/16235614
http://dx.doi.org/10.1007/s13524-013-0232-2
http://dx.doi.org/10.1007/s13385-022-00307-3
http://dx.doi.org/10.1080/10920277.2023.2242910
http://dx.doi.org/10.1080/10920277.2022.2050260
http://dx.doi.org/10.1503/cmaj.050342
http://dx.doi.org/10.1080/03461238.2020.1814855
http://dx.doi.org/10.3390/risks7010033
http://dx.doi.org/10.1007/s13524-014-0328-3
http://dx.doi.org/10.1016/j.insmatheco.2011.09.005
http://dx.doi.org/10.1093/biostatistics/kxj024
http://www.ncbi.nlm.nih.gov/pubmed/16484288
http://dx.doi.org/10.1016/j.insmatheco.2004.04.001
http://dx.doi.org/10.1016/S0167-6687(03)00138-0
http://dx.doi.org/10.1016/j.insmatheco.2005.12.001
http://dx.doi.org/10.1017/S1748499519000071
http://dx.doi.org/10.1017/asb.2021.34
http://dx.doi.org/10.1353/dem.2003.0018
http://dx.doi.org/10.1017/asb.2021.13
http://dx.doi.org/10.1111/j.1728-4457.2002.00059.x
http://dx.doi.org/10.4324/9780203763247
http://dx.doi.org/10.2307/2808156
http://dx.doi.org/10.1093/jrsssc/qlad021
http://dx.doi.org/10.1080/10920277.2004.10596137
http://dx.doi.org/10.4054/DemRes.2009.20.29

	Introduction
	Preliminaries
	RNN with LSTM Architecture
	The Mortality Models
	Life Expectancy and Lifespan Disparity

	LSTM-Based Coherent Method
	Empirical Analysis
	Mortality Data
	LSTM for Life Expectancy and Lifespan Disparity
	Empirical Results
	Results for China, Brazil, and Nigeria
	Results for LDR, LDRexChina, LDRexLDC

	Conclusions
	Appendix A
	Life Expectancy and Lifespan Disparity Forecasts
	Projection Errors for China, Brazil, and Nigeria
	Projection Errors for LDR, LDRexChina, and LDRexLDC

	References

