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Abstract: The study compares model approaches in predictive modeling for claim frequency and
severity within the cross-border cargo insurance domain. The aim is to identify the optimal model
approach between generalized linear models (GLMs) and advanced machine learning techniques.
Evaluations focus on mean absolute error (MAE) and root mean squared error (RMSE) metrics to
comprehensively assess predictive performance. For frequency prediction, extreme gradient boosting
(XGBoost) demonstrates the lowest MAE, indicating higher accuracy compared to gradient boosting
machines (GBMs) and a generalized linear model (Poisson). Despite XGBoost’s lower MAE, it shows
higher RMSE values, suggesting a broader error spread and larger magnitudes compared to gradient
boosting machines (GBMs) and a generalized linear model (Poisson). Conversely, the generalized
linear model (Poisson) showcases the best RMSE values, indicating tighter clustering and smaller
error magnitudes, despite a slightly higher MAE. For severity prediction, extreme gradient boosting
(XGBoost) displays the lowest MAE, implying better accuracy. However, it exhibits a higher RMSE,
indicating wider error dispersion compared to a generalized linear model (Gamma). In contrast, a
generalized linear model (Gamma) demonstrates the lowest RMSE, portraying tighter clustering and
smaller error magnitudes despite a higher MAE. In conclusion, extreme gradient boosting (XGBoost)
stands out in mean absolute error (MAE) for both frequency and severity prediction, showcasing
superior accuracy. However, a generalized linear model (Gamma) offers a balance between accuracy
and error magnitude, and its performance outperforms extreme gradient boosting (XGBoost) and
gradient boosting machines (GBMs) in terms of RMSE metrics, with a slightly higher MAE. These
findings empower insurance companies to enhance risk assessment processes, set suitable premiums,
manage reserves, and accurately forecast claim occurrences, contributing to competitive pricing for
clients while ensuring profitability. For cross-border trade entities, such as trucking companies and
cargo owners, these insights aid in improved risk management and potential cost savings by enabling

more reasonable insurance premiums based on accurate predictive claims from insurance companies.

Keywords: machine learning; prediction model; cargo insurance; generalized linear model; gradient
boosting; extreme gradient boosting

1. Introduction

As of 2020, road transport constituted a significant 79.7% share of all goods movement
within Thailand. This dominance in transportation modes results from successive Thai
government policies that have emphasized prioritizing the development of the road system
over alternative transport networks. Consequently, roads currently account for a staggering
91.6% of the total distance covered by various transportation methods within the country.
The deliberate focus on road infrastructure has notably favored road haulage as the primary
means of transport. Its distinct advantage lies in offering door-to-door transportation
services, enabling shippers to seamlessly move goods from their source or origin directly to
the recipient in a single stage. This convenience and efficiency in door-to-door transit have
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significantly contributed to the prevalence of road transport for moving goods throughout
Thailand and border trade (Krungsri Research 2022).

Thailand’s road freight industry boasts significant advantages in the realm of cross-
border transportation. Situated strategically in Southeast Asia, recent trade patterns have
revealed a notable surge in connectivity, particularly concerning import and export border
trade between Thailand and its key mainland Southeast Asian neighbors: Cambodia, Laos,
Malaysia, and Myanmar (Chirathivat and Cheewatrakoolpong 2015). This trend under-
scores a significant evolution in cross-border trade relationships within the region. Thailand
has experienced an upswing in trade activities, emphasizing enhanced connectivity and
collaboration with these neighboring countries. Furthermore, Thailand’s dedication to
enhancing connectivity is exemplified by its ongoing infrastructure development endeav-
ors. Initiatives like the enhancement of road networks play a pivotal role in fortifying
cross-border trade and fostering increased opportunities for investment (Deputy Prime
Minister and Minister of Foreign Affairs of Thailand 2023).

However, amid the success and extensive reliance on road transport, there is a signifi-
cant concern: the vulnerability of cargo during transportation, particularly in cross-border
operations. Despite the robustness of Thailand’s road freight industry, the risk of cargo dam-
age remains a pressing issue. Historical data spanning from 2016 to 2022 underscore this
concern, showcasing consistent evidence of cargo damage risks, especially in cross-border
transportation, as shown in the below table.

The data in Table 1 cover the period from 2016 to 2022, showcasing the claims data
within cargo insurance for road freight pertaining to import/export activities between
Thailand and Myanmar, Laos, Cambodia, and Malaysia. Sourced from the Insurance
Premium Rating Bureau in Thailand, this comprehensive record provides historical insights
into the diverse array of reasons causing cargo insurance claims in road freight.

Table 1. Causes of claims from 2016 to 2022.

Loss Year
Claim Cause Category
2016 2017 2018 2019 2020 2021 2022
Breakage X X X X X X X
Bend /Dent/Scratch X X X X X X X
Tear/Cut X X X X X X X
Rainwater Damage X X X X X
Overturning X X X
Shortage/Leakage X X
Contamination X X X X
Theft/Pilferage/Missing X X X
Stain X X
Rust/Oxidation/Corrosion X
Others X X X X X X X

Source: The Insurance Premium Rating Bureau (Thailand).

It encompasses various causes such as breakage, bending/denting/scratching, tear-
ing/cutting, rainwater damage, overturning, shortage /leakage, contamination, theft/pilferage/
missing, staining, rust/oxidation/corrosion, and an ‘others’ category. Each classification
represents distinctive challenges and risks encountered during road freight transit. Span-
ning from 2016 to 2022, this expansive dataset shows the common risks and incidents
impacting cargo shipments by road freight. It offers crucial insights to fortify strategies
aimed at safeguarding shipments and mitigating financial liabilities from various threats.

This detailed understanding directly correlates with Thailand’s notable surge in road
freight cargo insurance participation during the same period. The increase in net premium
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amounts paid from 2016 to 2022 signifies an industry-wide recognition of these risks,
leading to a proactive approach to protecting cargo during transit. Furthermore, the
alignment between the dataset’s insights and the heightened engagement in cargo insurance
underscores a collective effort within Thailand’s road freight industry. This concerted action
aims to mitigate risks and fortify protection measures for cargo in transit.

Thailand is experiencing a significant increase in road freight cargo insurance partic-
ipation, as indicated by the net premium amounts paid from 2016 to 2022, as shown in
Figures 1 and 2.

Net Premium amount: Export from Thailand [THB]
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Figure 1. Net Premium Amount Data for Road Freight Exports from Thailand from 2016-2022.
Source: The Insurance Premium Rating Bureau (Thailand).
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Figure 2. Net Premium Amount Data for Road Freight Imports to Thailand from 2016-2022. Source:
The Insurance Premium Rating Bureau (Thailand).

Figure 1 depicts the trend of net premium amounts paid from 2016 to 2022. It is evident
that the trend lines of destination countries such as Malaysia, Myanmar, and Cambodia
show a clear increase over this period. However, in contrast, Laos exhibits a decreasing
trend during the same timeframe.

Figure 2, which delineates the importation data, shows the trends of origin countries
such as Malaysia, Myanmar, and Cambodia.

In Figure 2, the trends in net premium amounts paid between 2016 and 2022 are
depicted. The trend lines from the origin countries of Malaysia, Myanmar, and Cambodia
demonstrate a noticeable increase over this period. Conversely, Laos displays a declining
trend during the same timeframe.
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The trends in net premium amounts paid, as depicted in Figures 1 and 2, further
emphasize this connection. The increasing trend lines for cargo exportation to countries
like Malaysia, Myanmar, and Cambodia, as well as the rising trends in importation from
these countries, demonstrate a growing awareness of the risks associated with road freight.
Conversely, the declining trend in Laos indicates potential areas where further attention
might be needed to address vulnerabilities in cargo transit.

The dataset covering cargo insurance claims from 2016 to 2022 for road freight be-
tween Thailand and neighboring countries like Myanmar, Laos, Cambodia, and Malaysia
provides valuable insights into the risks faced during transit. It highlights various chal-
lenges, from breakage and theft to contamination and weather-related damages, offering a
comprehensive view of vulnerabilities impacting cargo shipments.

The correlation between these data and the rise in net premium amounts paid for
cargo insurance in Thailand is significant. The increase in premiums reflects the industry’s
acknowledgment of these risks. It signifies a proactive shift towards safeguarding cargo
during transportation. Essentially, the insights drawn from the dataset directly influenced
the surge in cargo insurance participation, indicating a collective effort within the industry
to mitigate risks and protect shipments.

Cargo insurance plays a pivotal role in mitigating financial liabilities arising from
diverse perils encountered during transit. The alignment between the insights gleaned
from the dataset and the increased engagement in cargo insurance underlines the strategic
response of the industry to fortify protection measures. Ultimately, this trend signifies a
proactive approach to safeguarding shipments and minimizing the financial impact of the
risks inherent in road freight transportation. Cargo insurance in cross-border transportation
serves as a critical safeguard against a spectrum of uncontrollable risks that threaten goods
during transit. Despite meticulous packaging and handling, unforeseen incidents like
accidents, theft, breakage, and environmental damage can jeopardize cargo integrity. This
insurance covers a myriad of potential risks, including theft, pilferage, breakage, rainwater
damage, shortages, contamination, and more. And despite the abundance of research
on supply chain risk management, there remains a notable gap in addressing the risk
associated with cargo accumulation. This aspect has received limited attention in existing
studies, despite past events demonstrating its potential for significant damage (Freichel et al.
2022). The core aim of insurance or coverage revolves around shifting risk and providing
compensation in case of loss or damage (Ritonga et al. 2021). It acts as a financial shield,
alleviating the burden of lost or damaged goods and ensuring stability for both shippers,
consignees, and the trucking company. Lacking suitable cargo insurance coverage can
lead to dire consequences for exporters/importers or businesses, resulting in devastating
outcomes (Socorro and Karina 2019). Additionally, in many instances, cargo insurance
is not just a best practice; it is a legal or contractual necessity, ensuring compliance with
regulations and agreements.

The correlation between the insights derived from cargo insurance data and the
increased engagement in fortifying protection measures through insurance aligns with
the evolving landscape of predictive modeling in the insurance domain, particularly in
Thailand. The traditional use of generalized linear models (GLMs) for actuarial purposes
has been the foundation for risk assessment and premium calculations (Thai General
Insurance Association 2016). In recent years, there has been a notable increase in research
that compares generalized linear models (GLMs) with advanced machine learning (ML)
approaches, including extreme gradient boosting (XGBoost) and gradient boosting. These
studies have demonstrated the superior performance of ML models across many domains,
as shown in Table 2.

In essence, the increased reliance on ML models reflects an industry-wide response to
leverage more robust and versatile tools for risk evaluation and prediction. This parallels
the proactive approach observed in the cargo insurance realm, where the insights gleaned
from historical data drive a strategic response to fortify protection measures.
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Table 2. Comprehensive reviews of machine learning in non-life insurance actuarial science.
Article Year Methodologies/Approaches The Best Model
Mpdelllng Motor Insuranc.e . . . Gradient Boosting Machines
Claim Frequency and Severity Gradient Boosting Machines, .
. . . 2023 . . [Frequency] and Generalized
Using Gradient Boosting Generalized Linear Models Linear Models [Severity]
(Clemente et al. 2023) Y
Machme Learning in Support Vector Machines, Decision Random Forests Limited Depth
Forecasting Motor Insurance 2023 Trees, Random Forests, Extreme and Extreme Gradient Boostin
Claims (Poufinas et al. 2023) Gradient Boosting &
Predicting Motor Insurance
Clalmsf?(GBoost versus 2022 Logistic RegFessmn an.d Extreme Extreme Gradient Boosting
Logistic Regression Gradient Boosting
(Murekatete 2022)
The Impact of Machine
Learning and Aggregated Data CART, Random Forest, Extreme
on Corporate 2022 Gradient Boosting, Neural Network, Extreme Gradient Boosting
Insurance Modelling Generalized Linear Model
(Hellestol and Eriksen 2022)
B?;?;?%;ﬂ?iﬂ:; 1tr; égsbtgrsaer:ice Generalized Linear Models,
P . 2021 Regression Trees, Random Forests, Gradient Boosting Machines
machine learning methods Gradient Boosting Machines
(Henckaerts et al. 2021) 8
12 15;051 Ziiir?cleoccigiiﬁ sp ljzi:d Artificial Neural Network, Decision
. . 1SIng 2020 Tree, Naive Bayes, Extreme Extreme Gradient Boosting
machine learning techniques Gradient Boostin
(Blier-Wong et al. 2020) &
hf:;(;?rrgeLGe;iiilf\ntflo (c))iltr;li Extreme Gradient Boosting, Naive
& A8 2019 Bayes, Nearest Neighbor, Extreme Gradient Boosting
for Safe Auto Insurance Decision Tree
Operations (Dhieb et al. 2019)
Claims Reserving using
Gradient Boosting and Generalized Linear Models, . .
Generalized Linear Model 2018 Gradient Boosting Generalized Linear Models
(Ahlgren 2018)
The Accuracy of XGBoost for Extreme? Gradu?nt BOOStH.lg'
. L Stochastic Gradient Boosting . .
Insurance Claim Prediction 2018 . Extreme Gradient Boosting
(Fauzan and Murfi 2018) (Stochastic GB), AdaBoost, Random
) Forest, Neural Network
P&C Reinsurance Modeling Random Forests, Generalized Linear
Pure Premium Estimation and 2017 Models, Support Vector Machines, Extreme Gradient Boosting

Creation of a Reinsurance
Program (Chasseray et al. 2017)

Gradient Boosting Machines, Extreme
Gradient Boosting

The predictive powers of machine learning (ML) models are often improved in various
situations. However, when it comes to predicting claim frequency and severity in the
complex domain of cargo insurance for cross-border transportation, it is crucial to carefully
evaluate and select the most suitable model, whether it is an ML model or a generalized
linear model (GLM). The selection of models for cross-border cargo insurance requires
a nuanced approach due to the presence of distinctive variables, including complexities
in transportation routes, diverse border rules, and distinct risk factors connected with
international trade.

In conclusion, although there is a prevailing trend towards improved predictive
accuracy of machine learning (ML) models, the decision on the most suitable model
for predicting claim frequency and severity when it comes to cargo insurance for cross-
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border transportation necessitates a thorough assessment of distinct variables, contextual
complexities, and responsiveness to the dynamic nature of international trade risks.

The primary objective of this study is to determine the most optimal approach, whether
generalized linear models (GLMs) or machine learning, for developing predictive models
for claim frequency and severity within cargo insurance for the cross-border transportation
domain. Through detailed performance metric evaluations, mean absolute error (MAE) and
root mean squared error (RMSE) are used to gauge the performance of predictive models.
MAE calculates the average magnitude of prediction errors, giving a straightforward
measure of how far off predictions are from actual values. RMSE offers an interpretable
measure by taking the square root of the average squared errors, providing insight into the
spread of prediction errors in the same unit as the predicted output. Together, these metrics
help evaluate model accuracy and guide improvements in predictive performance. The
research aims to ascertain which method—generalized linear models (GLMs) or advanced
machine learning—more accurately predicts claim frequency and severity within this
specialized insurance domain.

2. Literature Review

From 2017 to 2023, a sequence of extensive studies and research initiatives were
conducted to examine the comparative capabilities of machine learning models and the
generalized linear models (GLMs) framework in the field of insurance. The primary objec-
tive of these studies was to thoroughly examine the effectiveness and efficiency of different
machine learning methodologies, including gradient boosting machines, extreme gradient
boosting, random forests, neural networks, and generalized linear models (GLMs). As
shown in Table 2, the papers conducted thorough evaluations and comparisons of models
to determine the superior predictive abilities and appropriateness of machine learning tech-
niques and GLMs in different aspects of insurance. These aspects include modeling claim
frequency and severity, estimating pure premiums, and developing reinsurance programs.

Machine Learning vs. Generalized Linear Models (GLMs)

Machine learning (ML) at its core represents a subset of artificial intelligence, empow-
ering computers to autonomously think and learn. Its essence lies in enabling computers
to adapt their actions to enhance accuracy (Alzubi et al. 2018). The discipline of machine
learning (ML) continues to undergo rapid development, as it exists at the intersection of
computer science and statistics, playing a fundamental role in the domains of artificial
intelligence (AI) and data science. Machine learning is categorized into four main groups:
supervised learning, unsupervised learning, semi-supervised learning, and reinforcement
learning (Pugliese et al. 2021). ML techniques have demonstrated superior performance
across various tasks compared to traditional methods. However, the heightened adapt-
ability of ML models brings certain challenges. Their complexity and training algorithms
often pose hurdles to ensuring performance reliability and impede model interpretability.
Additionally, ML models typically demand substantial training data. Nonetheless, if high
performance is a priority for a specific task and adequate training data are available, the
advantages of ML might outweigh these challenges (Bianco et al. 2019).

Machine learning algorithms such as extreme gradient boosting (XGBoost) and gradi-
ent boosting machines (GBMs) leverage the potential of ensemble learning to effectively
identify intricate patterns and nonlinear associations within datasets. Extreme gradient
boosting (XGBoost) represents an enhanced iteration of gradient boosting machines (GBMs),
incorporating parallel preprocessing at the node level, enhancing its speed compared to
gradient boosting machines (GBMs). Additionally, extreme gradient boosting (XGBoost)
introduces diverse regularization methods aimed at mitigating overfitting (Chen and
Guestrin 2016). The versatility of these techniques has the potential to make them highly
effective in predicting the frequency and severity of claims, especially in situations where
there are complex risk environments. The Hellestol and Eriksen (2022) study involves
a comparison of machine learning methods, including CART, random forest, XGBoost,
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and neural networks, with benchmark GLMs. The results show that all machine learning
models outperformed GLMs when classifying claim occurrences. In the paper by Blier-
Wong et al. (2020), a comprehensive review of machine learning in property and casualty
(P&C) insurance reveals that within pricing and reserving, extreme gradient boosting
(XGBoost) and gradient boosting trees emerge prominently as the favored and widely-used
frameworks. These models stand out as the most popular choices within the industry for
enhancing pricing methodologies and reserve estimations.

Despite the surge in machine learning’s prominence, ongoing comparisons between
predictive models remain crucial. Recent research, exemplified by Tuininga’s study in 2022,
reveals that even when trained on vehicle insurance data, models like GBR, XGB, RF, and
NNs (neural networks) could not surpass the performance of the generalized linear model
(GLM). This highlights the enduring significance and relevance of established statistical
methods like GLMs in certain domains, despite advancements in machine learning (Tu-
ininga 2022). Furthermore, in certain scenarios where machine learning exhibits superior
performance compared to GLMs, the improvement observed tends to be only marginally
better. Jan Mikael Yousif conducted a study titled “A Comparative Analysis Between
Various Machine Learning Models and Generalized Linear Models”. The study aimed to
assess improvements made by machine learning (ML) models compared to generalized
linear models (GLMs). The improvements seen with machine learning models were not as
significant as expected. This was largely because the generalized linear models (GLMs) had
already demonstrated strong predictive abilities for the particular dataset (Yousif 2023).

The study from Clemente et al. (2023) also shows that when studying both machine
learning and GLMs, the results from assessing performance outside the sample indicate
that the gradient boosting model (GBM) demonstrates better predictive accuracy than
the standard generalized linear models (GLMs) in the Poisson claim frequency model.
However, in terms of claim severity, generalized linear models (GLMs) performed better
than the gradient boosting model. This study shows that it remains valuable to compare
prediction model performances before selecting the appropriate model for predicting
specific data.

Cargo insurance falls under the category of non-life insurance and specifically caters
to protecting goods during transit. For example, the study conducted by Monemar and
Wallin (2015), titled “Premium Allocation for the Electrolux Cargo Insurance Program
using Generalized Linear Models”, delves into the application of generalized linear models
(GLMs) within the realm of cargo insurance. Actuaries in insurance companies play a vital
role in assessing premiums, reserves, and risk analysis. They use historical and current
data along with mathematical and statistical methodologies to forecast future risk events.
For cargo insurance, determining the actual premium involves considering claim frequency
and severity, revealing low accident rates but substantial damages, resulting in high-value
claims per occurrence.

3. Study Design
3.1. Machine Learning
3.1.1. Extreme Gradient Boosting (XGBoost)

XGBoost made its initial introduction through the collaborative efforts of Chen and
Guestrin (2016). XGBoost, short for extreme gradient boosting, stands out as an immensely
efficient machine learning algorithm centered around decision tree techniques as its fun-
damental building blocks. It constructs a robust model composed of a forest that houses
numerous decision trees. Notably, XGBoost's effectiveness surpasses several other machine
learning algorithms, such as artificial neural networks, gradient boosting machines, and
random forests, as proven by Hellestol and Eriksen (2022), Abdelhadi et al. (2020), and
Chasseray et al. (2017). XGBoost is a well-recognized supervised learning algorithm,
distinguished by its composition of an objective function and base learners. The objective
function incorporates a loss function that measures the difference between expected and
actual values. Furthermore, it incorporates a regularization term that quantifies the discrep-
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ancy between expected and observed values. In XGBoost’s ensemble learning framework,
a set of base learners, which are several models, is crucial for predicting a single result.
Within this particular framework, a regressor undertakes the task of accurately modeling
a given set of attributes and then predicting the value of an unknown output (Avanijaa
2021). XGBoost models have exhibited their proficiency in both classification and general
regression tasks (Kankanamge et al. 2019). This innovation enhanced the algorithm’s effi-
cacy in training while significantly accelerating computation, as shown in Ge et al.’s (2022)
study, which indicates that while conventional trees rely solely on first-order derivatives,
XGBoost regression (XBR) incorporates second-order derivatives and regularization terms.
The basic function of the XGBoost regression algorithm in mathematical equations, starting
from the objective function to the ensemble model, can be represented as follows:

Given that X represents the matrix of predictor variables, y denotes the target variable
(continuous for regression tasks). T signifies the number of boosting iterations. h¢(x)
represents the prediction of the tth model. -y denotes the learning rate. L(y, ) represents the
loss function, measuring the difference between predicted 7 and actual y. Q(h) represents
the regularization term for the weak learner #. The XGBoost regression objective function
is a combination of the loss function and regularization, as shown below:

n T
Objective = Z L(y;, 7i) +v Z Q(hy) (1)
i=1 =1

Step-by-Step Procedure: Start with initialization by first setting the initial predictions
at zero, o = 0, and t = 1 to T. Then compute the pseudo-residuals (negative gradient) of

the loss function: .
l 97 =gV

i

After that, fit a weak learner (e.g., a decision tree) to the pseudo-residuals (negative gradient):

iu(x) = arg min Y — h(x) -+ O ®

Update the ensemble predictions. In the context of XGBoost regression, the predicted
output () at each iteration t is derived from the ensemble model, incorporating the
predictions of individual weak learners (often decision trees) into the overall model. The
predicted output equation can be represented as follows:

At each boosting iteration ¢, the predicted output (7) is updated based on the ensem-
ble model:

Gt =71+ v (x) (4)

where §J;_1 represents the predicted output from the previous iteration, /;(x) denotes the
prediction of the tth weak learner (e.g., decision tree) for the input x, and - signifies the
learning rate, controlling the step size during each update. This equation describes how
the ensemble model aggregates the predictions of individual weak learners (h;(x)) into the
overall predicted output (;) at each boosting iteration. The predictions from each weak
learner are scaled by the learning rate oy and added to the previous ensemble predictions to
refine and improve the model’s overall prediction.

This stepwise representation outlines the XGBoost regression algorithm in mathemati-
cal equation, detailing the objective function, computation of pseudo-residuals (negative
gradient), fitting of weak learners, and the iterative update of the ensemble predictions.

3.1.2. Gradient Boosting Machines (GBMs)

A Gradient Boosting Machine (GBM) is a powerful ensemble machine learning tech-
nique used for regression and classification tasks. A GBM operates by sequentially com-
bining multiple weak predictive models, often decision trees, to create a more robust and
accurate final model. In the realm of regression, gradient boosting machines work by
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iteratively minimizing the errors or residuals of the preceding models. A formulation of
boosting methods based on gradient descent was developed (Friedman 2001). Each new
model is built to correct the mistakes made by its predecessors, optimizing the overall
prediction performance by focusing on the remaining errors. This sequential approach in-
volves fitting the new model to the residuals of the combined ensemble, gradually reducing
prediction errors (Ridgeway 2007). Gradient boosting stands out for its dual capacity to
achieve superior predictive accuracy while enabling model interpretability. This distinc-
tive trait holds immense value, particularly in business environments where models are
assessed by decision-makers without statistical expertise. These stakeholders prioritize
comprehensibility, requiring an understanding of the model’s outputs. Its capability to
balance accuracy with interpretability caters well to this need, empowering non-statistically
trained individuals to grasp and trust the insights gleaned from the model’s predictions
(Cordeiro 2023). However, a GBM is not immune to challenges. It can be sensitive to
overfitting, especially when the number of trees is too high or when the individual trees
become overly complex. Regularization techniques are implemented to calibrate the model
training process, aiming to strike a balance between the accuracy of the model on the
training data and its predictive capability on new data (Elith et al. 2008). The success of
gradient boosting machines has led to the development of optimized implementations
like XGBoost (Chen and Guestrin 2016) and LightGBM (Ke et al. 2017), which enhance
training efficiency and scalability, making them suitable for large-scale datasets and real-
time applications. In essence, gradient boosting machines, especially in regression tasks,
leverage the strengths of ensembling weak learners to create a powerful predictive model
by iteratively minimizing errors and handling complex data relationships, albeit requiring
careful tuning to avoid overfitting. The basic function of a gradient boosting regression
algorithm in mathematical equation, starting from the objective function to the ensemble
model, can be represented as follows:

Given that X represents the matrix of predictor variables, y denotes the target variable
(continuous for regression tasks). T signifies the number of boosting iterations. h¢(x)
represents the prediction of the tth model. iy denotes the learning rate. L(y, ) represents the
loss function, measuring the difference between predicted § and actual y. Q)(h) represents
the regularization term for the weak learner h. The gradient boosting regression objective
function is defined as follows:

n

Objective = Y L(v;, 1) ()
i=1

L(y;, ;) denotes the loss function, typically squared error loss or another regression-
specific loss function. However, the below step is very similar to XGBoost. Start with
initialization by setting the initial predictions at zero, fjo = 0, and t = 1 to T, then compute
the pseudo-residuals (negative gradient) of the loss function:

gi=— [aL(yl/yAl)

97; ] gi=g\V ©)

Fit a weak learner (e.g., a decision tree) to the pseudo-residuals (negative gradient):
- 2
i (x) = argmin } (gi — h(xi))” + Q(h) )
i=1

Update the ensemble model predictions:

Ut = Pp—1 + vhe(x) (8)

where 7J;_1 represents the predicted output from the previous iteration, /;(x) denotes the
prediction of the tth weak learner (e.g., decision tree) for the input x, and < signifies the
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learning rate, controlling the step size during each update. This equation describes how
the ensemble model aggregates the predictions of individual weak learners (h;(x)) into
the overall predicted output (7;) at each boosting iteration. This stepwise representation
outlines the gradient boosting regression algorithm in mathematical terms. The algorithm
sequentially fits weak learners to the negative gradient (pseudo-residuals) and updates the
ensemble model to minimize the loss function and improve predictions iteratively.

In both gradient boosting machines (GBMs) and extreme gradient boosting (XGBoost),
computing the negative gradient of the loss function is a fundamental step during each
boosting iteration. However, while the concept of computing the negative gradient remains
the same, the detailed implementation might differ between the two algorithms due to
optimizations and additional features introduced in extreme gradient boosting (XGBoost).
The concept of computing the negative gradient remains consistent between gradient
boosting machines (GBMs) and extreme gradient boosting (XGBoost). However, the actual
implementation might differ in extreme gradient boosting (XGBoost) due to optimizations
like approximate algorithms, weighted quantile sketches, and other advanced techniques.
These enhancements aim to make the computation more efficient without fundamentally
changing the underlying principle of computing the negative gradients. In summary, while
the fundamental concept of computing the negative gradient of the loss function is shared
between gradient boosting machines (GBMs) and extreme gradient boosting (XGBoost),
extreme gradient boosting (XGBoost) might employ optimizations and improvements in
its implementation to compute these gradients more efficiently or accurately compared to
traditional gradient boosting.

3.2. Generalized Linear Models (GLMs)

The generalized linear model (GLM) is a fundamental statistical framework that
extends traditional linear regression to accommodate a broader range of data distributions
and relationships between variables. It was introduced by Nelder and Wedderburn in 1972,
revolutionizing statistical modeling (Nelder and Wedderburn 1972). At the core of the
GLM is the linear predictor, which combines predictors linearly to model the relationship
with the response variable. A GLM incorporates a link function that connects the linear
predictor to the expected value of the response variable. Different link functions are
utilized based on the nature of the response variable, including the logit, log-link, and
identity functions. Unlike traditional linear regression, a GLM is not limited to the normal
distribution. It can handle various distributions such as binomial, Poisson, gamma, and
others, making it versatile for analyzing different types of data. A GLM'’s flexibility in
handling diverse data distributions and accommodating non-linear relationships between
variables has made it widely applicable across numerous fields, including epidemiology,
ecology, finance, and social sciences. A generalized linear model (GLM) employs iterative
algorithms like iteratively reweighted least squares or maximum likelihood estimation
to estimate parameters efficiently. It allows for hypothesis testing on model coefficients,
aiding in determining the significance of predictors in explaining the response variable’s
variance. The ability of generalized linear models (GLMs) to handle a wide range of data
distributions and incorporate various link functions (Abhishek 2023) has significantly
contributed to their popularity and utility in statistical modeling, offering researchers and
practitioners a powerful and adaptable tool for analyzing complex datasets. A GLM’s
fundamental principles underpin more advanced modeling techniques and have spurred
the development of extensions and variations, allowing for the creation of tailored models
to suit specific research questions and datasets. Its versatility continues to be a cornerstone
in statistical analysis and predictive modeling. In the framework of generalized linear
models (GLMs), Poisson regression is utilized to model count data by assuming a Poisson
distribution for the response variable. This model expresses the logarithm of the expected
counts as a linear combination of predictor variables. The canonical link function for
Poisson regression is the logarithm, linking the mean of the response variable to the linear
combination of predictors. Its application is particularly effective when dealing with
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count-based outcomes such as the number of events, occurrences, or frequencies in a fixed
period or area. Gamma regression, another component of GLMs, is designed for continuous,
positively skewed data, assuming a gamma distribution for the response variable. It models
the logarithm of the expected value of the dependent variable as a linear combination of
predictors. The structural equation for the Poisson and Gamma regressions within the
framework of generalized linear models (GLMs) is indeed the same. Both regressions
utilize a log-linear relationship between the expected value (y) of the dependent variable
and the predictors. The notation for the model equation for both Poisson and Gamma
regressions is detailed below.

Y is the dependent variable, representing the counts of events (assumed to follow
a Poisson distribution) for Poisson and continuous, positively skewed data for Gamma.
Bo, B1, B2, - - -, Bp are coefficients corresponding to the intercept and predictor variables.
X1,X2,-..,Xp are predictor variables. y is the expected value (mean) of the dependent
variable Y, given the values of the predictors. e is the base of the natural logarithm. The
Poisson and Gamma regression model assumes a log-linear relationship between the
expected value of the dependent variable y and the predictors. The model equation for the
ith observation is:

log(pi) = Bo + B1xi1 + Baxin + -+ + BpXip )

log(y;) is the natural logarithm of the expected value of Y for the ith observation.
Xi1, Xj2/ - - -, Xjp aTE the values of the predictor variables for the ith observation. B, 1, ..., Bp
are coefficients corresponding to the intercept and predictor variables. The relationship
between y and Y is detailed below.

The expected value y; of the dependent variable Y is related to the model through the

exponential function:
i = eBotBrxin+Baxipt+Ppxip (10)

For the model, log(y;) = Bo + B1xi1 + P2Xi2 + - - - + BpXip, and for the expected count
and value, y; = ePoTPr¥inth2a¥a+FpXip  This model helps to estimate the expected count
of events and the expected value of the independent Y based on the given predictors
X1, X2, - -, Xp using a logarithmic link function.

Extreme gradient boosting (XGBoost), gradient boosting machines (GBMs), and gen-
eralized linear models (GLMs) stand out as models of choice for cargo insurance due to
their unique strengths aligning with the intricacies of this domain. XGBoost’s speed and
ability to handle voluminous data and complex relationships suit the analysis of diverse
cargo-related variables, aiding in predicting and mitigating risks associated with trans-
portation. A GBM'’s iterative learning and adaptability to different loss functions make
it adept at capturing patterns among heterogeneous cargo-related factors, allowing for
nuanced risk assessment. Meanwhile, a GLM’s flexibility in accommodating various data
distributions is invaluable for modeling different types of cargo damage or loss occurrences,
enhancing predictive capabilities within the context of specific damage scenarios. Together,
these models offer a comprehensive toolkit to address the multifaceted challenges of cargo
insurance, from complex risk patterns to nuanced damage predictions.

3.3. Mathematical Formulation for Claim Frequency and Severity Prediction Models
3.3.1. Claim Frequency Prediction Problem Formulation

Predicting the frequency of insurance claims based on various shipment and policy
parameters.

Objective: To estimate the count of insurance claims based on various input features
provided, including the nature of the shipment, countries involved, and insurance details.

In assessing the factors that contribute to claim frequency, various variables were considered.
As detailed in Table 3, the variables include the status of goods, cargo type, packaging
type, the countries of origin and destination, the sum insured amount, and the number of
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claims. These variables are categorized accordingly, with some being categorical and others
continuous numerical.

Table 3. Features for claim frequency prediction.

Variable Sub-Variable Features
Status of Goods Import, Export Categorical
Cargo Type Cargo Type Group 1, Cargo Type Group 2, Cargo Type Group 3, Categorical
Cargo Type Group 4, Cargo Type Group 5, Cargo Type Group 6
Packaging Type In bulk, Carton/Box, Case/Crate, Tin/Drum, Bag/Sack, Categorical
Pallet/Skid, Bundle/Bale, Roll/Coil, Others
Start Country Thailand, Laos, Myanmar, Cambodia, Malaysia Categorical
Destination Country Thailand, Laos, Myanmar, Cambodia, Malaysia Categorical
Sum Insured Amount 0,...,0 Continuous numerical
Number of Claims 0,...,00 Continuous numerical

Prediction Target: The number of insurance claims within a specific context or time frame
[Claim Frequency].

Mathematical Equations

Input:

X represents the feature matrix, with each row x; containing the mentioned features.
Xj1: Status of Goods (S;)

Xjp: Cargo Type (C;)

Xij3: Packaging Type (P;)

Xi4: Start Country (SC;)

Xis: Destination Country (DC;)

Xjg: Sum Insured Amount (SI;)

X;7: Number of Claims (NC;)

Output:
Y represents the predicted claim frequency (CF).

The prediction problem can be represented as finding a function f that maps input
features X to the predicted claim frequency CF:

CF:f(S/C/P/SC,DC,SI,NC)+€ (11)

where f is the regression function, S,C, P, SC, DC, SI, NC represent the input features, CF
is the predicted count of claim frequency, and € represents the residual error term.

This formulation defines the problem of predicting claim frequency based on specific
features and aims to model the count of insurance claims by leveraging these features.

3.3.2. Claim Severity Prediction Problem Formulation

Predicting the severity of insurance claims based on various shipment and policy
parameters.

Objective: To estimate the monetary value or cost associated with individual insurance
claims based on various input features, including shipment details, countries involved, and
insurance details.

In assessing the factors that contribute to claim severity, various variables were considered.
As detailed in Table 4, the variables include the status of goods, cargo type, packaging
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type, the countries of origin and destination, the sum insured amount, and the Incurred
claims. These variables are categorized accordingly, with some being categorical and others
continuous numerical.

Table 4. Features for claim severity prediction.

Variable Sub-Variable Features
Status of Goods Import, Export Categorical
Cargo Type Cargo Type Group 1, Cargo Type Group 2, Cargo Type Group 3, Categorical
Cargo Type Group 4, Cargo Type Group 5, Cargo Type Group 6
Packaging Type In bulk, Carton/Box, Case/Crate, Tin/Drum, Bag/Sack, Categorical
Pallet/Skid, Bundle/Bale, Roll/Coil, Others
Start Country Thailand, Laos, Myanmar, Cambodia, Malaysia Categorical
Destination Country Thailand, Laos, Myanmar, Cambodia, Malaysia Categorical
Sum Insured Amount 0,...,00 Continuous numerical
Incurred Claims 0,...,0 Continuous numerical

Prediction Target: The monetary value or cost associated with individual insurance claims
[Claim Severity].

Mathematical Equations

Inputs:

X represents the feature matrix, with each row x; containing the mentioned features.
X;1: Status of Goods (S;)

Xjp: Cargo Type (C))

Xj3: Packaging Type (P;)

Xj4: Start Country (SC;)

Xis5: Destination Country (DC;)

Xje: Sum Insured Amount (SI;)

Xi7: Incurred Claims (IC;)

Output:
Y represents the predicted claim severity (CS).

The prediction problem can be represented as finding a function g that maps input
features X to the predicted claim severity CS:

CS=g4(S,C,P,SC,DC,SLIC) + ¢ (12)

where g is the regression function, S, C, P, SC, DC, S1, IC represent the input features, CS is
the predicted severity of claims, and e represents the residual error term.

This formulation defines the problem of predicting claim severity based on specific
features and aims to model the monetary value associated with individual claims using
these features.

3.4. Hyperparameter Tunning

Hyperparameter tuning is the process of optimizing the hyperparameters of a ma-
chine learning model to enhance its performance. These parameters are set prior to the
training process and influence the learning process’s behavior and complexity. Selecting
the right hyperparameters is crucial, as they directly impact a model’s ability to learn
and generalize from the training data to new, unseen data (Yang and Abdallah 2020).
Various methods exist for hyperparameter tuning, such as grid search, random search,
Bayesian optimization, and evolutionary algorithms. In Python, libraries like Scikit-learn,
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TensorFlow, and Keras offer built-in functionalities to perform hyperparameter tuning
efficiently, enabling researchers and practitioners to automate and optimize this critical
aspect of model development. The effectiveness of machine learning models significantly
relies on hyperparameters, which control the learning process. For example, in the extreme
gradient boosting (XGBoost) model, parameters like criteria, maximum depth, and the
number of estimators is pivotal. These settings notably impact how easily a model can
be trained. Hyperparameter optimization aims to uncover the best combination of these
values, ensuring optimal model performance within a feasible time frame and enhancing
its learning and predictive capabilities (Dalal et al. 2022).

In Table 5 provides descriptions of several parameters: the learning rate, the number
of estimators, the maximum depth of the trees, and the alpha value.

Table 5. Description of the parameters.

Parameter Description
learning_rate Initial learning rate
n_estimators Number of decision trees

max_depth Maximum tree depth
alpha_value Controls the shape of the distribution

Source: learning_rate, n_estimators, and max_depth descriptions from Zhao et al. (2022).

3.5. Outlier Detection

Outliers, in data analysis, are observations that significantly differ from the majority
of the dataset. Detecting outliers is vital to ensuring data integrity, as they can distort
statistical analyses and model performances. Various techniques exist for outlier detection,
aiming to identify these anomalies and investigate their potential causes (Chandola et al.
2009). Outlier detection serves as a crucial task. This practice is contingent on the domain
and has undergone comprehensive exploration, finding significant utility in pinpointing
uncommon instances across various real-world applications. Its applications span diverse
domains, encompassing network intrusion detection, medical diagnosis, fraud detection,
and the identification of manufacturing defects (Alimohammadi and Chen 2022).

3.6. Z-Score Method

The Z-score method is a prevalent statistical technique used for outlier detection based
on standard deviations from the mean. It involves calculating the Z-score for each data
point, indicating how many standard deviations it is from the mean. Typically, a Z-score
threshold of 3 or —3 is employed to identify outliers. This implies that any data point
with a Z-score exceeding 3 or falling below —3 is considered an outlier (Yaro et al. 2023).
Frequently utilized in diverse fields, basic statistical tools like the Z-score play a routine
role in outlier identification within datasets. The Z-score calculates the distance between a
data point and its mean, with values exceeding -3 commonly categorized as outliers (Jha
et al. 2022).

3.7. Data Encoding

One-hot encoding is an approach utilized to transform categorical variables into a
numerical format suitable for machine learning algorithms (Tuininga 2022). This encoding
creates a binary column for each category present in the variable, setting the corresponding
bit to 1 for the category and 0 for all others.

Figure 3 displays a sample representation of one-hot encoding, where each category
within the variable is transformed into a unique binary column.
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Country Thailand Malaysia  Cambodia
Thailand 1 0 0
Malaysia 0 1 0
Cambodia 0 0 1

Figure 3. Example of one-hot encoding.

3.8. K-Fold Cross-Validation

In machine learning studies, the dataset is typically divided into training and test
sets. The training set is utilized by a machine learning model to establish a mathematical
correlation between features and target variables. The training set typically outweighs
the test set in size, leading to a potential issue with an unrepresentative test set structure
affecting model performance—either excessively well or poorly. K-fold cross-validation ad-
dresses this by repetitively using the same dataset for both training and testing, mitigating
biases and enhancing the model’s robustness (Tuininga 2022). K-fold cross-validation is
adept at enhancing the model’s generalization, while an ensemble model can yield superior
predictive accuracy compared to an individual model (Zhu et al. 2019).

Figure 4 presents a visual example of the K-fold cross-validation process with k set
to 5, demonstrating how the data set is partitioned into five distinct subsets for validation
and training.

IstFold | [ [ l | |

2nd Fold | | | [ | |

3rd Fold | | | | | |

4th Fold | | [ | | |

5thFold | | | [ | |

- Traning Set - Validation Set

Figure 4. K-fold cross-validation (k = 5).
The figure above illustrates a standard K-fold cross-validation with k = 5.

3.9. Model Comparison

The Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are commonly
utilized measures for assessing the performance of models (Hodson 2022). RMSE highlights
large errors by squared differences, while MAE measures absolute differences and is less
sensitive to outliers. The choice of metric relies on data characteristics and desired sensitiv-
ity to diverse error types, offering distinct insights into model performance. A combination
of metrics is often necessary for a comprehensive assessment of model performance (Chai
and Draxler 2014).

Root mean squared error (RMSE):

RMSE = (i — 1) (13)

S| =
VMS

Il
—_

1

where 7 is the number of samples, y; represents the actual value for the ith sample, and 7;
denotes the predicted value for the ith sample.
Mean absolute error (MAE):

1y
MAE = — } |y; — §il (14)
i=1
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where 7 is the number of samples, y; represents the actual value for the ith sample, and 7;
denotes the predicted value for the ith sample.

These equations provide a mathematical representation of how RMSE and MAE are
calculated based on differences between predicted (7;) and actual (y;) values across a
dataset of n samples.

Comparing MAE and RMSE offers diverse insights into prediction accuracy. MAE
focuses on average error magnitude, and RMSE balances sensitivity to larger errors with
interpretability. These metrics aid a nuanced understanding of model behavior; for instance,
lower RMSE implies better accuracy, while MAE is suitable for outlier sensitivity. Selecting
the right metric hinges on specific objectives and the data context. This comparison guides
informed decisions in model selection and fine-tuning, offering clarity on trade-offs between
error types in various applications.

4. Research Methodology
4.1. Data Collection

The dataset gathered for this study was acquired from the Insurance Premium Rating
Bureau in Thailand, covering cargo insurance data related to road transportation from 2016
to 2022. This dataset stands as an extensive repository of information specifically concerning
cargo insurance within the specified timeframe and in the context of road transportation.

4.2. Dataset Size

The cargo insurance dataset from 2016 to 2022 is composed of 9803 insurance data
points collected for this research.

4.3. Dataset Description

Table 6 meticulously delineates categorical variables pivotal in understanding the
nuances of cross-border trade entities, encompassing elements like the status of goods
(e.g., Import” or “Export’), distinct cargo types (e.g., ‘Group 1’ through ‘Group 6’), varied
packaging types (ranging from ‘In bulk’ to ‘Roll/Coil’), and the originating and destination
countries (including ‘Thailand’, ‘Laos’, ‘Myanmar’, ‘Cambodia’, and ‘Malaysia’). These
categorical variables offer crucial insights into the diverse facets of trade operations and
logistical intricacies.

Table 6. Description of the categorical variables.

Variable Sub-Variable (Categorical) Description
Status of Goods Import, Export Represents the classification of goods based on
their intended importation or exportation.

Cargo Type Cargo Type Group 1, Cargo Type Group 2, Cargo Represents the different groups categorizing the
Type Group 3, Cargo Type Group 4, Cargo Type type of cargo being transported.
Group 5, Cargo Type Group 6

Packaging Type In bulk, Carton/Box, Case/Crate, Tin/Drum, Represents the various forms or methods of
Bag/Sack, Pallet/Skid, Bundle/Bale, packaging used for the transported goods.
Roll/Coil, Others

Start Country Thailand, Laos, Myanmar, Cambodia, Malaysia Represents the countries from which the cargo

shipments originate.

Destination Country

Thailand, Laos, Myanmar, Cambodia, Malaysia Represents the countries to which the cargo

shipments are destined.




Risks 2024, 12, 25

17 of 33

Simultaneously, Table 7 shows continuous numerical variables, such as the sum
insured amount, the number of claims (utilized for predicting claim frequency), and the
incurred claims (used for predicting claim severity). These continuous variables provide
quantitative data on insurance-related figures, aiding in statistical analysis and predictive
modeling to ascertain the risks and financial implications associated with insurance claims
for entities engaged in cross-border trade activities.

Table 7. Description of the numerical variables.

Variable

Value (Continuous Numerical) Description

Sum Insured Amount

Represents the maximum amount an insurance company
agrees to pay in the event of a covered loss or damage.

Number of Claims

0,...,0 Represents the count or frequency of claims.

Incurred Claims

Represents the total value or amount of all claims that an
0,...,00 insurer anticipates paying or has already paid during a
specific period.

4.4. Research Tools

Within this research methodology, this research leveraged Google Colab as the opera-
tional platform and utilized Python version 3.10.12 as the primary programming language
within the toolset. Additionally, Microsoft Excel for Microsoft 365 MSO (Version 2312 Build
16.0.17126.20132) 64