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Abstract: The study compares model approaches in predictive modeling for claim frequency and
severity within the cross-border cargo insurance domain. The aim is to identify the optimal model
approach between generalized linear models (GLMs) and advanced machine learning techniques.
Evaluations focus on mean absolute error (MAE) and root mean squared error (RMSE) metrics to
comprehensively assess predictive performance. For frequency prediction, extreme gradient boosting
(XGBoost) demonstrates the lowest MAE, indicating higher accuracy compared to gradient boosting
machines (GBMs) and a generalized linear model (Poisson). Despite XGBoost’s lower MAE, it shows
higher RMSE values, suggesting a broader error spread and larger magnitudes compared to gradient
boosting machines (GBMs) and a generalized linear model (Poisson). Conversely, the generalized
linear model (Poisson) showcases the best RMSE values, indicating tighter clustering and smaller
error magnitudes, despite a slightly higher MAE. For severity prediction, extreme gradient boosting
(XGBoost) displays the lowest MAE, implying better accuracy. However, it exhibits a higher RMSE,
indicating wider error dispersion compared to a generalized linear model (Gamma). In contrast, a
generalized linear model (Gamma) demonstrates the lowest RMSE, portraying tighter clustering and
smaller error magnitudes despite a higher MAE. In conclusion, extreme gradient boosting (XGBoost)
stands out in mean absolute error (MAE) for both frequency and severity prediction, showcasing
superior accuracy. However, a generalized linear model (Gamma) offers a balance between accuracy
and error magnitude, and its performance outperforms extreme gradient boosting (XGBoost) and
gradient boosting machines (GBMs) in terms of RMSE metrics, with a slightly higher MAE. These
findings empower insurance companies to enhance risk assessment processes, set suitable premiums,
manage reserves, and accurately forecast claim occurrences, contributing to competitive pricing for
clients while ensuring profitability. For cross-border trade entities, such as trucking companies and
cargo owners, these insights aid in improved risk management and potential cost savings by enabling
more reasonable insurance premiums based on accurate predictive claims from insurance companies.

Keywords: machine learning; prediction model; cargo insurance; generalized linear model; gradient
boosting; extreme gradient boosting

1. Introduction

As of 2020, road transport constituted a significant 79.7% share of all goods movement
within Thailand. This dominance in transportation modes results from successive Thai
government policies that have emphasized prioritizing the development of the road system
over alternative transport networks. Consequently, roads currently account for a staggering
91.6% of the total distance covered by various transportation methods within the country.
The deliberate focus on road infrastructure has notably favored road haulage as the primary
means of transport. Its distinct advantage lies in offering door-to-door transportation
services, enabling shippers to seamlessly move goods from their source or origin directly to
the recipient in a single stage. This convenience and efficiency in door-to-door transit have
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significantly contributed to the prevalence of road transport for moving goods throughout
Thailand and border trade (Krungsri Research 2022).

Thailand’s road freight industry boasts significant advantages in the realm of cross-
border transportation. Situated strategically in Southeast Asia, recent trade patterns have
revealed a notable surge in connectivity, particularly concerning import and export border
trade between Thailand and its key mainland Southeast Asian neighbors: Cambodia, Laos,
Malaysia, and Myanmar (Chirathivat and Cheewatrakoolpong 2015). This trend under-
scores a significant evolution in cross-border trade relationships within the region. Thailand
has experienced an upswing in trade activities, emphasizing enhanced connectivity and
collaboration with these neighboring countries. Furthermore, Thailand’s dedication to
enhancing connectivity is exemplified by its ongoing infrastructure development endeav-
ors. Initiatives like the enhancement of road networks play a pivotal role in fortifying
cross-border trade and fostering increased opportunities for investment (Deputy Prime
Minister and Minister of Foreign Affairs of Thailand 2023).

However, amid the success and extensive reliance on road transport, there is a signifi-
cant concern: the vulnerability of cargo during transportation, particularly in cross-border
operations. Despite the robustness of Thailand’s road freight industry, the risk of cargo dam-
age remains a pressing issue. Historical data spanning from 2016 to 2022 underscore this
concern, showcasing consistent evidence of cargo damage risks, especially in cross-border
transportation, as shown in the below table.

The data in Table 1 cover the period from 2016 to 2022, showcasing the claims data
within cargo insurance for road freight pertaining to import/export activities between
Thailand and Myanmar, Laos, Cambodia, and Malaysia. Sourced from the Insurance
Premium Rating Bureau in Thailand, this comprehensive record provides historical insights
into the diverse array of reasons causing cargo insurance claims in road freight.

Table 1. Causes of claims from 2016 to 2022.

Claim Cause Category
Loss Year

2016 2017 2018 2019 2020 2021 2022

Breakage × × × × × × ×
Bend/Dent/Scratch × × × × × × ×

Tear/Cut × × × × × × ×
Rainwater Damage × × × × ×

Overturning × × ×
Shortage/Leakage × ×

Contamination × × × ×
Theft/Pilferage/Missing × × ×

Stain × ×
Rust/Oxidation/Corrosion ×

Others × × × × × × ×
Source: The Insurance Premium Rating Bureau (Thailand).

It encompasses various causes such as breakage, bending/denting/scratching, tear-
ing/cutting, rainwater damage, overturning, shortage/leakage, contamination, theft/pilferage/
missing, staining, rust/oxidation/corrosion, and an ‘others’ category. Each classification
represents distinctive challenges and risks encountered during road freight transit. Span-
ning from 2016 to 2022, this expansive dataset shows the common risks and incidents
impacting cargo shipments by road freight. It offers crucial insights to fortify strategies
aimed at safeguarding shipments and mitigating financial liabilities from various threats.

This detailed understanding directly correlates with Thailand’s notable surge in road
freight cargo insurance participation during the same period. The increase in net premium
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amounts paid from 2016 to 2022 signifies an industry-wide recognition of these risks,
leading to a proactive approach to protecting cargo during transit. Furthermore, the
alignment between the dataset’s insights and the heightened engagement in cargo insurance
underscores a collective effort within Thailand’s road freight industry. This concerted action
aims to mitigate risks and fortify protection measures for cargo in transit.

Thailand is experiencing a significant increase in road freight cargo insurance partic-
ipation, as indicated by the net premium amounts paid from 2016 to 2022, as shown in
Figures 1 and 2.
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Figure 1 depicts the trend of net premium amounts paid from 2016 to 2022. It is evident
that the trend lines of destination countries such as Malaysia, Myanmar, and Cambodia
show a clear increase over this period. However, in contrast, Laos exhibits a decreasing
trend during the same timeframe.

Figure 2, which delineates the importation data, shows the trends of origin countries
such as Malaysia, Myanmar, and Cambodia.

In Figure 2, the trends in net premium amounts paid between 2016 and 2022 are
depicted. The trend lines from the origin countries of Malaysia, Myanmar, and Cambodia
demonstrate a noticeable increase over this period. Conversely, Laos displays a declining
trend during the same timeframe.
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The trends in net premium amounts paid, as depicted in Figures 1 and 2, further
emphasize this connection. The increasing trend lines for cargo exportation to countries
like Malaysia, Myanmar, and Cambodia, as well as the rising trends in importation from
these countries, demonstrate a growing awareness of the risks associated with road freight.
Conversely, the declining trend in Laos indicates potential areas where further attention
might be needed to address vulnerabilities in cargo transit.

The dataset covering cargo insurance claims from 2016 to 2022 for road freight be-
tween Thailand and neighboring countries like Myanmar, Laos, Cambodia, and Malaysia
provides valuable insights into the risks faced during transit. It highlights various chal-
lenges, from breakage and theft to contamination and weather-related damages, offering a
comprehensive view of vulnerabilities impacting cargo shipments.

The correlation between these data and the rise in net premium amounts paid for
cargo insurance in Thailand is significant. The increase in premiums reflects the industry’s
acknowledgment of these risks. It signifies a proactive shift towards safeguarding cargo
during transportation. Essentially, the insights drawn from the dataset directly influenced
the surge in cargo insurance participation, indicating a collective effort within the industry
to mitigate risks and protect shipments.

Cargo insurance plays a pivotal role in mitigating financial liabilities arising from
diverse perils encountered during transit. The alignment between the insights gleaned
from the dataset and the increased engagement in cargo insurance underlines the strategic
response of the industry to fortify protection measures. Ultimately, this trend signifies a
proactive approach to safeguarding shipments and minimizing the financial impact of the
risks inherent in road freight transportation. Cargo insurance in cross-border transportation
serves as a critical safeguard against a spectrum of uncontrollable risks that threaten goods
during transit. Despite meticulous packaging and handling, unforeseen incidents like
accidents, theft, breakage, and environmental damage can jeopardize cargo integrity. This
insurance covers a myriad of potential risks, including theft, pilferage, breakage, rainwater
damage, shortages, contamination, and more. And despite the abundance of research
on supply chain risk management, there remains a notable gap in addressing the risk
associated with cargo accumulation. This aspect has received limited attention in existing
studies, despite past events demonstrating its potential for significant damage (Freichel et al.
2022). The core aim of insurance or coverage revolves around shifting risk and providing
compensation in case of loss or damage (Ritonga et al. 2021). It acts as a financial shield,
alleviating the burden of lost or damaged goods and ensuring stability for both shippers,
consignees, and the trucking company. Lacking suitable cargo insurance coverage can
lead to dire consequences for exporters/importers or businesses, resulting in devastating
outcomes (Socorro and Karina 2019). Additionally, in many instances, cargo insurance
is not just a best practice; it is a legal or contractual necessity, ensuring compliance with
regulations and agreements.

The correlation between the insights derived from cargo insurance data and the
increased engagement in fortifying protection measures through insurance aligns with
the evolving landscape of predictive modeling in the insurance domain, particularly in
Thailand. The traditional use of generalized linear models (GLMs) for actuarial purposes
has been the foundation for risk assessment and premium calculations (Thai General
Insurance Association 2016). In recent years, there has been a notable increase in research
that compares generalized linear models (GLMs) with advanced machine learning (ML)
approaches, including extreme gradient boosting (XGBoost) and gradient boosting. These
studies have demonstrated the superior performance of ML models across many domains,
as shown in Table 2.

In essence, the increased reliance on ML models reflects an industry-wide response to
leverage more robust and versatile tools for risk evaluation and prediction. This parallels
the proactive approach observed in the cargo insurance realm, where the insights gleaned
from historical data drive a strategic response to fortify protection measures.
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Table 2. Comprehensive reviews of machine learning in non-life insurance actuarial science.

Article Year Methodologies/Approaches The Best Model

Modelling Motor Insurance
Claim Frequency and Severity

Using Gradient Boosting
(Clemente et al. 2023)

2023 Gradient Boosting Machines,
Generalized Linear Models

Gradient Boosting Machines
[Frequency] and Generalized

Linear Models [Severity]

Machine Learning in
Forecasting Motor Insurance
Claims (Poufinas et al. 2023)

2023
Support Vector Machines, Decision

Trees, Random Forests, Extreme
Gradient Boosting

Random Forests Limited Depth
and Extreme Gradient Boosting

Predicting Motor Insurance
Claims—XGBoost versus

Logistic Regression
(Murekatete 2022)

2022 Logistic Regression and Extreme
Gradient Boosting Extreme Gradient Boosting

The Impact of Machine
Learning and Aggregated Data

on Corporate
Insurance Modelling

(Hellestol and Eriksen 2022)

2022
CART, Random Forest, Extreme

Gradient Boosting, Neural Network,
Generalized Linear Model

Extreme Gradient Boosting

Boosting insights in insurance
tariff plans with tree-based
machine learning methods

(Henckaerts et al. 2021)

2021
Generalized Linear Models,

Regression Trees, Random Forests,
Gradient Boosting Machines

Gradient Boosting Machines

A proposed model to predict
auto insurance claims using
machine learning techniques

(Blier-Wong et al. 2020)

2020
Artificial Neural Network, Decision

Tree, Naïve Bayes, Extreme
Gradient Boosting

Extreme Gradient Boosting

Extreme Gradient Boosting
Machine Learning Algorithm

for Safe Auto Insurance
Operations (Dhieb et al. 2019)

2019
Extreme Gradient Boosting, Naïve

Bayes, Nearest Neighbor,
Decision Tree

Extreme Gradient Boosting

Claims Reserving using
Gradient Boosting and

Generalized Linear Model
(Ahlgren 2018)

2018 Generalized Linear Models,
Gradient Boosting Generalized Linear Models

The Accuracy of XGBoost for
Insurance Claim Prediction

(Fauzan and Murfi 2018)
2018

Extreme Gradient Boosting,
Stochastic Gradient Boosting

(Stochastic GB), AdaBoost, Random
Forest, Neural Network

Extreme Gradient Boosting

P&C Reinsurance Modeling
Pure Premium Estimation and

Creation of a Reinsurance
Program (Chasseray et al. 2017)

2017

Random Forests, Generalized Linear
Models, Support Vector Machines,

Gradient Boosting Machines, Extreme
Gradient Boosting

Extreme Gradient Boosting

The predictive powers of machine learning (ML) models are often improved in various
situations. However, when it comes to predicting claim frequency and severity in the
complex domain of cargo insurance for cross-border transportation, it is crucial to carefully
evaluate and select the most suitable model, whether it is an ML model or a generalized
linear model (GLM). The selection of models for cross-border cargo insurance requires
a nuanced approach due to the presence of distinctive variables, including complexities
in transportation routes, diverse border rules, and distinct risk factors connected with
international trade.

In conclusion, although there is a prevailing trend towards improved predictive
accuracy of machine learning (ML) models, the decision on the most suitable model
for predicting claim frequency and severity when it comes to cargo insurance for cross-
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border transportation necessitates a thorough assessment of distinct variables, contextual
complexities, and responsiveness to the dynamic nature of international trade risks.

The primary objective of this study is to determine the most optimal approach, whether
generalized linear models (GLMs) or machine learning, for developing predictive models
for claim frequency and severity within cargo insurance for the cross-border transportation
domain. Through detailed performance metric evaluations, mean absolute error (MAE) and
root mean squared error (RMSE) are used to gauge the performance of predictive models.
MAE calculates the average magnitude of prediction errors, giving a straightforward
measure of how far off predictions are from actual values. RMSE offers an interpretable
measure by taking the square root of the average squared errors, providing insight into the
spread of prediction errors in the same unit as the predicted output. Together, these metrics
help evaluate model accuracy and guide improvements in predictive performance. The
research aims to ascertain which method—generalized linear models (GLMs) or advanced
machine learning—more accurately predicts claim frequency and severity within this
specialized insurance domain.

2. Literature Review

From 2017 to 2023, a sequence of extensive studies and research initiatives were
conducted to examine the comparative capabilities of machine learning models and the
generalized linear models (GLMs) framework in the field of insurance. The primary objec-
tive of these studies was to thoroughly examine the effectiveness and efficiency of different
machine learning methodologies, including gradient boosting machines, extreme gradient
boosting, random forests, neural networks, and generalized linear models (GLMs). As
shown in Table 2, the papers conducted thorough evaluations and comparisons of models
to determine the superior predictive abilities and appropriateness of machine learning tech-
niques and GLMs in different aspects of insurance. These aspects include modeling claim
frequency and severity, estimating pure premiums, and developing reinsurance programs.

Machine Learning vs. Generalized Linear Models (GLMs)

Machine learning (ML) at its core represents a subset of artificial intelligence, empow-
ering computers to autonomously think and learn. Its essence lies in enabling computers
to adapt their actions to enhance accuracy (Alzubi et al. 2018). The discipline of machine
learning (ML) continues to undergo rapid development, as it exists at the intersection of
computer science and statistics, playing a fundamental role in the domains of artificial
intelligence (AI) and data science. Machine learning is categorized into four main groups:
supervised learning, unsupervised learning, semi-supervised learning, and reinforcement
learning (Pugliese et al. 2021). ML techniques have demonstrated superior performance
across various tasks compared to traditional methods. However, the heightened adapt-
ability of ML models brings certain challenges. Their complexity and training algorithms
often pose hurdles to ensuring performance reliability and impede model interpretability.
Additionally, ML models typically demand substantial training data. Nonetheless, if high
performance is a priority for a specific task and adequate training data are available, the
advantages of ML might outweigh these challenges (Bianco et al. 2019).

Machine learning algorithms such as extreme gradient boosting (XGBoost) and gradi-
ent boosting machines (GBMs) leverage the potential of ensemble learning to effectively
identify intricate patterns and nonlinear associations within datasets. Extreme gradient
boosting (XGBoost) represents an enhanced iteration of gradient boosting machines (GBMs),
incorporating parallel preprocessing at the node level, enhancing its speed compared to
gradient boosting machines (GBMs). Additionally, extreme gradient boosting (XGBoost)
introduces diverse regularization methods aimed at mitigating overfitting (Chen and
Guestrin 2016). The versatility of these techniques has the potential to make them highly
effective in predicting the frequency and severity of claims, especially in situations where
there are complex risk environments. The Hellestol and Eriksen (2022) study involves
a comparison of machine learning methods, including CART, random forest, XGBoost,
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and neural networks, with benchmark GLMs. The results show that all machine learning
models outperformed GLMs when classifying claim occurrences. In the paper by Blier-
Wong et al. (2020), a comprehensive review of machine learning in property and casualty
(P&C) insurance reveals that within pricing and reserving, extreme gradient boosting
(XGBoost) and gradient boosting trees emerge prominently as the favored and widely-used
frameworks. These models stand out as the most popular choices within the industry for
enhancing pricing methodologies and reserve estimations.

Despite the surge in machine learning’s prominence, ongoing comparisons between
predictive models remain crucial. Recent research, exemplified by Tuininga’s study in 2022,
reveals that even when trained on vehicle insurance data, models like GBR, XGB, RF, and
NNs (neural networks) could not surpass the performance of the generalized linear model
(GLM). This highlights the enduring significance and relevance of established statistical
methods like GLMs in certain domains, despite advancements in machine learning (Tu-
ininga 2022). Furthermore, in certain scenarios where machine learning exhibits superior
performance compared to GLMs, the improvement observed tends to be only marginally
better. Jan Mikael Yousif conducted a study titled “A Comparative Analysis Between
Various Machine Learning Models and Generalized Linear Models”. The study aimed to
assess improvements made by machine learning (ML) models compared to generalized
linear models (GLMs). The improvements seen with machine learning models were not as
significant as expected. This was largely because the generalized linear models (GLMs) had
already demonstrated strong predictive abilities for the particular dataset (Yousif 2023).

The study from Clemente et al. (2023) also shows that when studying both machine
learning and GLMs, the results from assessing performance outside the sample indicate
that the gradient boosting model (GBM) demonstrates better predictive accuracy than
the standard generalized linear models (GLMs) in the Poisson claim frequency model.
However, in terms of claim severity, generalized linear models (GLMs) performed better
than the gradient boosting model. This study shows that it remains valuable to compare
prediction model performances before selecting the appropriate model for predicting
specific data.

Cargo insurance falls under the category of non-life insurance and specifically caters
to protecting goods during transit. For example, the study conducted by Monemar and
Wallin (2015), titled “Premium Allocation for the Electrolux Cargo Insurance Program
using Generalized Linear Models”, delves into the application of generalized linear models
(GLMs) within the realm of cargo insurance. Actuaries in insurance companies play a vital
role in assessing premiums, reserves, and risk analysis. They use historical and current
data along with mathematical and statistical methodologies to forecast future risk events.
For cargo insurance, determining the actual premium involves considering claim frequency
and severity, revealing low accident rates but substantial damages, resulting in high-value
claims per occurrence.

3. Study Design
3.1. Machine Learning
3.1.1. Extreme Gradient Boosting (XGBoost)

XGBoost made its initial introduction through the collaborative efforts of Chen and
Guestrin (2016). XGBoost, short for extreme gradient boosting, stands out as an immensely
efficient machine learning algorithm centered around decision tree techniques as its fun-
damental building blocks. It constructs a robust model composed of a forest that houses
numerous decision trees. Notably, XGBoost’s effectiveness surpasses several other machine
learning algorithms, such as artificial neural networks, gradient boosting machines, and
random forests, as proven by Hellestol and Eriksen (2022), Abdelhadi et al. (2020), and
Chasseray et al. (2017). XGBoost is a well-recognized supervised learning algorithm,
distinguished by its composition of an objective function and base learners. The objective
function incorporates a loss function that measures the difference between expected and
actual values. Furthermore, it incorporates a regularization term that quantifies the discrep-
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ancy between expected and observed values. In XGBoost’s ensemble learning framework,
a set of base learners, which are several models, is crucial for predicting a single result.
Within this particular framework, a regressor undertakes the task of accurately modeling
a given set of attributes and then predicting the value of an unknown output (Avanijaa
2021). XGBoost models have exhibited their proficiency in both classification and general
regression tasks (Kankanamge et al. 2019). This innovation enhanced the algorithm’s effi-
cacy in training while significantly accelerating computation, as shown in Ge et al.’s (2022)
study, which indicates that while conventional trees rely solely on first-order derivatives,
XGBoost regression (XBR) incorporates second-order derivatives and regularization terms.
The basic function of the XGBoost regression algorithm in mathematical equations, starting
from the objective function to the ensemble model, can be represented as follows:

Given that X represents the matrix of predictor variables, y denotes the target variable
(continuous for regression tasks). T signifies the number of boosting iterations. ht(x)
represents the prediction of the tth model. γ denotes the learning rate. L(y, ŷ) represents the
loss function, measuring the difference between predicted ŷ and actual y. Ω(h) represents
the regularization term for the weak learner h. The XGBoost regression objective function
is a combination of the loss function and regularization, as shown below:

Objective =
n

∑
i=1

L(yi, ŷi) + γ
T

∑
t=1

Ω(ht) (1)

Step-by-Step Procedure: Start with initialization by first setting the initial predictions
at zero, ŷ0 = 0, and t = 1 to T. Then compute the pseudo-residuals (negative gradient) of
the loss function:

gi = −
[

∂L(yi, ŷi)

∂ŷi

]
ŷi=ŷ(t−1)

i

(2)

After that, fit a weak learner (e.g., a decision tree) to the pseudo-residuals (negative gradient):

ht(x) = arg min
h

n

∑
i=1

(gi − h(xi))
2 + Ω(h) (3)

Update the ensemble predictions. In the context of XGBoost regression, the predicted
output (ŷ) at each iteration t is derived from the ensemble model, incorporating the
predictions of individual weak learners (often decision trees) into the overall model. The
predicted output equation can be represented as follows:

At each boosting iteration t, the predicted output (ŷt) is updated based on the ensem-
ble model:

ŷt = ŷt−1 + γht(x) (4)

where ŷt−1 represents the predicted output from the previous iteration, ht(x) denotes the
prediction of the tth weak learner (e.g., decision tree) for the input x, and γ signifies the
learning rate, controlling the step size during each update. This equation describes how
the ensemble model aggregates the predictions of individual weak learners (ht(x)) into the
overall predicted output (ŷt) at each boosting iteration. The predictions from each weak
learner are scaled by the learning rate γ and added to the previous ensemble predictions to
refine and improve the model’s overall prediction.

This stepwise representation outlines the XGBoost regression algorithm in mathemati-
cal equation, detailing the objective function, computation of pseudo-residuals (negative
gradient), fitting of weak learners, and the iterative update of the ensemble predictions.

3.1.2. Gradient Boosting Machines (GBMs)

A Gradient Boosting Machine (GBM) is a powerful ensemble machine learning tech-
nique used for regression and classification tasks. A GBM operates by sequentially com-
bining multiple weak predictive models, often decision trees, to create a more robust and
accurate final model. In the realm of regression, gradient boosting machines work by
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iteratively minimizing the errors or residuals of the preceding models. A formulation of
boosting methods based on gradient descent was developed (Friedman 2001). Each new
model is built to correct the mistakes made by its predecessors, optimizing the overall
prediction performance by focusing on the remaining errors. This sequential approach in-
volves fitting the new model to the residuals of the combined ensemble, gradually reducing
prediction errors (Ridgeway 2007). Gradient boosting stands out for its dual capacity to
achieve superior predictive accuracy while enabling model interpretability. This distinc-
tive trait holds immense value, particularly in business environments where models are
assessed by decision-makers without statistical expertise. These stakeholders prioritize
comprehensibility, requiring an understanding of the model’s outputs. Its capability to
balance accuracy with interpretability caters well to this need, empowering non-statistically
trained individuals to grasp and trust the insights gleaned from the model’s predictions
(Cordeiro 2023). However, a GBM is not immune to challenges. It can be sensitive to
overfitting, especially when the number of trees is too high or when the individual trees
become overly complex. Regularization techniques are implemented to calibrate the model
training process, aiming to strike a balance between the accuracy of the model on the
training data and its predictive capability on new data (Elith et al. 2008). The success of
gradient boosting machines has led to the development of optimized implementations
like XGBoost (Chen and Guestrin 2016) and LightGBM (Ke et al. 2017), which enhance
training efficiency and scalability, making them suitable for large-scale datasets and real-
time applications. In essence, gradient boosting machines, especially in regression tasks,
leverage the strengths of ensembling weak learners to create a powerful predictive model
by iteratively minimizing errors and handling complex data relationships, albeit requiring
careful tuning to avoid overfitting. The basic function of a gradient boosting regression
algorithm in mathematical equation, starting from the objective function to the ensemble
model, can be represented as follows:

Given that X represents the matrix of predictor variables, y denotes the target variable
(continuous for regression tasks). T signifies the number of boosting iterations. ht(x)
represents the prediction of the tth model. γ denotes the learning rate. L(y, ŷ) represents the
loss function, measuring the difference between predicted ŷ and actual y. Ω(h) represents
the regularization term for the weak learner h. The gradient boosting regression objective
function is defined as follows:

Objective =
n

∑
i=1

L(yi, ŷi) (5)

L(yi, ŷi) denotes the loss function, typically squared error loss or another regression-
specific loss function. However, the below step is very similar to XGBoost. Start with
initialization by setting the initial predictions at zero, ŷ0 = 0, and t = 1 to T, then compute
the pseudo-residuals (negative gradient) of the loss function:

gi = −
[

∂L(yi, ŷi)

∂ŷi

]
ŷi=ŷ(t−1)

i

(6)

Fit a weak learner (e.g., a decision tree) to the pseudo-residuals (negative gradient):

ht(x) = argmin
h

n

∑
i=1

(gi − h(xi))
2 + Ω(h) (7)

Update the ensemble model predictions:

ŷt = ŷt−1 + γht(x) (8)

where ŷt−1 represents the predicted output from the previous iteration, ht(x) denotes the
prediction of the tth weak learner (e.g., decision tree) for the input x, and γ signifies the



Risks 2024, 12, 25 10 of 33

learning rate, controlling the step size during each update. This equation describes how
the ensemble model aggregates the predictions of individual weak learners (ht(x)) into
the overall predicted output (ŷt) at each boosting iteration. This stepwise representation
outlines the gradient boosting regression algorithm in mathematical terms. The algorithm
sequentially fits weak learners to the negative gradient (pseudo-residuals) and updates the
ensemble model to minimize the loss function and improve predictions iteratively.

In both gradient boosting machines (GBMs) and extreme gradient boosting (XGBoost),
computing the negative gradient of the loss function is a fundamental step during each
boosting iteration. However, while the concept of computing the negative gradient remains
the same, the detailed implementation might differ between the two algorithms due to
optimizations and additional features introduced in extreme gradient boosting (XGBoost).
The concept of computing the negative gradient remains consistent between gradient
boosting machines (GBMs) and extreme gradient boosting (XGBoost). However, the actual
implementation might differ in extreme gradient boosting (XGBoost) due to optimizations
like approximate algorithms, weighted quantile sketches, and other advanced techniques.
These enhancements aim to make the computation more efficient without fundamentally
changing the underlying principle of computing the negative gradients. In summary, while
the fundamental concept of computing the negative gradient of the loss function is shared
between gradient boosting machines (GBMs) and extreme gradient boosting (XGBoost),
extreme gradient boosting (XGBoost) might employ optimizations and improvements in
its implementation to compute these gradients more efficiently or accurately compared to
traditional gradient boosting.

3.2. Generalized Linear Models (GLMs)

The generalized linear model (GLM) is a fundamental statistical framework that
extends traditional linear regression to accommodate a broader range of data distributions
and relationships between variables. It was introduced by Nelder and Wedderburn in 1972,
revolutionizing statistical modeling (Nelder and Wedderburn 1972). At the core of the
GLM is the linear predictor, which combines predictors linearly to model the relationship
with the response variable. A GLM incorporates a link function that connects the linear
predictor to the expected value of the response variable. Different link functions are
utilized based on the nature of the response variable, including the logit, log-link, and
identity functions. Unlike traditional linear regression, a GLM is not limited to the normal
distribution. It can handle various distributions such as binomial, Poisson, gamma, and
others, making it versatile for analyzing different types of data. A GLM’s flexibility in
handling diverse data distributions and accommodating non-linear relationships between
variables has made it widely applicable across numerous fields, including epidemiology,
ecology, finance, and social sciences. A generalized linear model (GLM) employs iterative
algorithms like iteratively reweighted least squares or maximum likelihood estimation
to estimate parameters efficiently. It allows for hypothesis testing on model coefficients,
aiding in determining the significance of predictors in explaining the response variable’s
variance. The ability of generalized linear models (GLMs) to handle a wide range of data
distributions and incorporate various link functions (Abhishek 2023) has significantly
contributed to their popularity and utility in statistical modeling, offering researchers and
practitioners a powerful and adaptable tool for analyzing complex datasets. A GLM’s
fundamental principles underpin more advanced modeling techniques and have spurred
the development of extensions and variations, allowing for the creation of tailored models
to suit specific research questions and datasets. Its versatility continues to be a cornerstone
in statistical analysis and predictive modeling. In the framework of generalized linear
models (GLMs), Poisson regression is utilized to model count data by assuming a Poisson
distribution for the response variable. This model expresses the logarithm of the expected
counts as a linear combination of predictor variables. The canonical link function for
Poisson regression is the logarithm, linking the mean of the response variable to the linear
combination of predictors. Its application is particularly effective when dealing with
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count-based outcomes such as the number of events, occurrences, or frequencies in a fixed
period or area. Gamma regression, another component of GLMs, is designed for continuous,
positively skewed data, assuming a gamma distribution for the response variable. It models
the logarithm of the expected value of the dependent variable as a linear combination of
predictors. The structural equation for the Poisson and Gamma regressions within the
framework of generalized linear models (GLMs) is indeed the same. Both regressions
utilize a log-linear relationship between the expected value (µ) of the dependent variable
and the predictors. The notation for the model equation for both Poisson and Gamma
regressions is detailed below.

Y is the dependent variable, representing the counts of events (assumed to follow
a Poisson distribution) for Poisson and continuous, positively skewed data for Gamma.
β0, β1, β2, . . . , βp are coefficients corresponding to the intercept and predictor variables.
x1, x2, . . . , xp are predictor variables. µ is the expected value (mean) of the dependent
variable Y, given the values of the predictors. e is the base of the natural logarithm. The
Poisson and Gamma regression model assumes a log-linear relationship between the
expected value of the dependent variable µ and the predictors. The model equation for the
ith observation is:

log(µi) = β0 + β1xi1 + β2xi2 + · · ·+ βpxip (9)

log(µi) is the natural logarithm of the expected value of Y for the ith observation.
xi1, xi2, . . . , xip are the values of the predictor variables for the ith observation. β0, β1, . . . , βp
are coefficients corresponding to the intercept and predictor variables. The relationship
between µ and Y is detailed below.

The expected value µi of the dependent variable Y is related to the model through the
exponential function:

µi = eβ0+β1xi1+β2xi2+···+βpxip (10)

For the model, log(µi) = β0 + β1xi1 + β2xi2 + · · ·+ βpxip, and for the expected count
and value, µi = eβ0+β1xi1+β2xi2+···+βpxip . This model helps to estimate the expected count
of events and the expected value of the independent Y based on the given predictors
x1, x2, . . . , xp using a logarithmic link function.

Extreme gradient boosting (XGBoost), gradient boosting machines (GBMs), and gen-
eralized linear models (GLMs) stand out as models of choice for cargo insurance due to
their unique strengths aligning with the intricacies of this domain. XGBoost’s speed and
ability to handle voluminous data and complex relationships suit the analysis of diverse
cargo-related variables, aiding in predicting and mitigating risks associated with trans-
portation. A GBM’s iterative learning and adaptability to different loss functions make
it adept at capturing patterns among heterogeneous cargo-related factors, allowing for
nuanced risk assessment. Meanwhile, a GLM’s flexibility in accommodating various data
distributions is invaluable for modeling different types of cargo damage or loss occurrences,
enhancing predictive capabilities within the context of specific damage scenarios. Together,
these models offer a comprehensive toolkit to address the multifaceted challenges of cargo
insurance, from complex risk patterns to nuanced damage predictions.

3.3. Mathematical Formulation for Claim Frequency and Severity Prediction Models
3.3.1. Claim Frequency Prediction Problem Formulation

Predicting the frequency of insurance claims based on various shipment and policy
parameters.

Objective: To estimate the count of insurance claims based on various input features
provided, including the nature of the shipment, countries involved, and insurance details.

In assessing the factors that contribute to claim frequency, various variables were considered.
As detailed in Table 3, the variables include the status of goods, cargo type, packaging
type, the countries of origin and destination, the sum insured amount, and the number of
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claims. These variables are categorized accordingly, with some being categorical and others
continuous numerical.

Table 3. Features for claim frequency prediction.

Variable Sub-Variable Features

Status of Goods Import, Export Categorical

Cargo Type Cargo Type Group 1, Cargo Type Group 2, Cargo Type Group 3,
Cargo Type Group 4, Cargo Type Group 5, Cargo Type Group 6

Categorical

Packaging Type In bulk, Carton/Box, Case/Crate, Tin/Drum, Bag/Sack,
Pallet/Skid, Bundle/Bale, Roll/Coil, Others

Categorical

Start Country Thailand, Laos, Myanmar, Cambodia, Malaysia Categorical

Destination Country Thailand, Laos, Myanmar, Cambodia, Malaysia Categorical

Sum Insured Amount 0,. . .,∞ Continuous numerical

Number of Claims 0,. . .,∞ Continuous numerical

Prediction Target: The number of insurance claims within a specific context or time frame
[Claim Frequency].

Mathematical Equations

Input:

X represents the feature matrix, with each row xi containing the mentioned features.
Xi1: Status of Goods (Si)
Xi2: Cargo Type (Ci)
Xi3: Packaging Type (Pi)
Xi4: Start Country (SCi)
Xi5: Destination Country (DCi)
Xi6: Sum Insured Amount (SIi)
Xi7: Number of Claims (NCi)

Output:

Y represents the predicted claim frequency (CF).

The prediction problem can be represented as finding a function f that maps input
features X to the predicted claim frequency CF:

CF = f (S, C, P, SC, DC, SI, NC) + ϵ (11)

where f is the regression function, S, C, P, SC, DC, SI, NC represent the input features, CF
is the predicted count of claim frequency, and ϵ represents the residual error term.

This formulation defines the problem of predicting claim frequency based on specific
features and aims to model the count of insurance claims by leveraging these features.

3.3.2. Claim Severity Prediction Problem Formulation

Predicting the severity of insurance claims based on various shipment and policy
parameters.

Objective: To estimate the monetary value or cost associated with individual insurance
claims based on various input features, including shipment details, countries involved, and
insurance details.

In assessing the factors that contribute to claim severity, various variables were considered.
As detailed in Table 4, the variables include the status of goods, cargo type, packaging
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type, the countries of origin and destination, the sum insured amount, and the Incurred
claims. These variables are categorized accordingly, with some being categorical and others
continuous numerical.

Table 4. Features for claim severity prediction.

Variable Sub-Variable Features

Status of Goods Import, Export Categorical

Cargo Type Cargo Type Group 1, Cargo Type Group 2, Cargo Type Group 3,
Cargo Type Group 4, Cargo Type Group 5, Cargo Type Group 6

Categorical

Packaging Type In bulk, Carton/Box, Case/Crate, Tin/Drum, Bag/Sack,
Pallet/Skid, Bundle/Bale, Roll/Coil, Others

Categorical

Start Country Thailand, Laos, Myanmar, Cambodia, Malaysia Categorical

Destination Country Thailand, Laos, Myanmar, Cambodia, Malaysia Categorical

Sum Insured Amount 0,. . .,∞ Continuous numerical

Incurred Claims 0,. . .,∞ Continuous numerical

Prediction Target: The monetary value or cost associated with individual insurance claims
[Claim Severity].

Mathematical Equations

Inputs:

X represents the feature matrix, with each row xi containing the mentioned features.
Xi1: Status of Goods (Si)
Xi2: Cargo Type (Ci)
Xi3: Packaging Type (Pi)
Xi4: Start Country (SCi)
Xi5: Destination Country (DCi)
Xi6: Sum Insured Amount (SIi)
Xi7: Incurred Claims (ICi)

Output:

Y represents the predicted claim severity (CS).

The prediction problem can be represented as finding a function g that maps input
features X to the predicted claim severity CS:

CS = g(S, C, P, SC, DC, SI, IC) + ϵ (12)

where g is the regression function, S, C, P, SC, DC, SI, IC represent the input features, CS is
the predicted severity of claims, and ϵ represents the residual error term.

This formulation defines the problem of predicting claim severity based on specific
features and aims to model the monetary value associated with individual claims using
these features.

3.4. Hyperparameter Tunning

Hyperparameter tuning is the process of optimizing the hyperparameters of a ma-
chine learning model to enhance its performance. These parameters are set prior to the
training process and influence the learning process’s behavior and complexity. Selecting
the right hyperparameters is crucial, as they directly impact a model’s ability to learn
and generalize from the training data to new, unseen data (Yang and Abdallah 2020).
Various methods exist for hyperparameter tuning, such as grid search, random search,
Bayesian optimization, and evolutionary algorithms. In Python, libraries like Scikit-learn,
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TensorFlow, and Keras offer built-in functionalities to perform hyperparameter tuning
efficiently, enabling researchers and practitioners to automate and optimize this critical
aspect of model development. The effectiveness of machine learning models significantly
relies on hyperparameters, which control the learning process. For example, in the extreme
gradient boosting (XGBoost) model, parameters like criteria, maximum depth, and the
number of estimators is pivotal. These settings notably impact how easily a model can
be trained. Hyperparameter optimization aims to uncover the best combination of these
values, ensuring optimal model performance within a feasible time frame and enhancing
its learning and predictive capabilities (Dalal et al. 2022).

In Table 5 provides descriptions of several parameters: the learning rate, the number
of estimators, the maximum depth of the trees, and the alpha value.

Table 5. Description of the parameters.

Parameter Description

learning_rate Initial learning rate

n_estimators Number of decision trees

max_depth Maximum tree depth

alpha_value Controls the shape of the distribution
Source: learning_rate, n_estimators, and max_depth descriptions from Zhao et al. (2022).

3.5. Outlier Detection

Outliers, in data analysis, are observations that significantly differ from the majority
of the dataset. Detecting outliers is vital to ensuring data integrity, as they can distort
statistical analyses and model performances. Various techniques exist for outlier detection,
aiming to identify these anomalies and investigate their potential causes (Chandola et al.
2009). Outlier detection serves as a crucial task. This practice is contingent on the domain
and has undergone comprehensive exploration, finding significant utility in pinpointing
uncommon instances across various real-world applications. Its applications span diverse
domains, encompassing network intrusion detection, medical diagnosis, fraud detection,
and the identification of manufacturing defects (Alimohammadi and Chen 2022).

3.6. Z-Score Method

The Z-score method is a prevalent statistical technique used for outlier detection based
on standard deviations from the mean. It involves calculating the Z-score for each data
point, indicating how many standard deviations it is from the mean. Typically, a Z-score
threshold of 3 or −3 is employed to identify outliers. This implies that any data point
with a Z-score exceeding 3 or falling below −3 is considered an outlier (Yaro et al. 2023).
Frequently utilized in diverse fields, basic statistical tools like the Z-score play a routine
role in outlier identification within datasets. The Z-score calculates the distance between a
data point and its mean, with values exceeding ±3 commonly categorized as outliers (Jha
et al. 2022).

3.7. Data Encoding

One-hot encoding is an approach utilized to transform categorical variables into a
numerical format suitable for machine learning algorithms (Tuininga 2022). This encoding
creates a binary column for each category present in the variable, setting the corresponding
bit to 1 for the category and 0 for all others.

Figure 3 displays a sample representation of one-hot encoding, where each category
within the variable is transformed into a unique binary column.
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3.8. K-Fold Cross-Validation

In machine learning studies, the dataset is typically divided into training and test
sets. The training set is utilized by a machine learning model to establish a mathematical
correlation between features and target variables. The training set typically outweighs
the test set in size, leading to a potential issue with an unrepresentative test set structure
affecting model performance—either excessively well or poorly. K-fold cross-validation ad-
dresses this by repetitively using the same dataset for both training and testing, mitigating
biases and enhancing the model’s robustness (Tuininga 2022). K-fold cross-validation is
adept at enhancing the model’s generalization, while an ensemble model can yield superior
predictive accuracy compared to an individual model (Zhu et al. 2019).

Figure 4 presents a visual example of the K-fold cross-validation process with k set
to 5, demonstrating how the data set is partitioned into five distinct subsets for validation
and training.
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The figure above illustrates a standard K-fold cross-validation with k = 5.

3.9. Model Comparison

The Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are commonly
utilized measures for assessing the performance of models (Hodson 2022). RMSE highlights
large errors by squared differences, while MAE measures absolute differences and is less
sensitive to outliers. The choice of metric relies on data characteristics and desired sensitiv-
ity to diverse error types, offering distinct insights into model performance. A combination
of metrics is often necessary for a comprehensive assessment of model performance (Chai
and Draxler 2014).

Root mean squared error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (13)

where n is the number of samples, yi represents the actual value for the ith sample, and ŷi
denotes the predicted value for the ith sample.

Mean absolute error (MAE):

MAE =
1
n

n

∑
i=1

|yi − ŷi| (14)
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where n is the number of samples, yi represents the actual value for the ith sample, and ŷi
denotes the predicted value for the ith sample.

These equations provide a mathematical representation of how RMSE and MAE are
calculated based on differences between predicted (ŷi) and actual (yi) values across a
dataset of n samples.

Comparing MAE and RMSE offers diverse insights into prediction accuracy. MAE
focuses on average error magnitude, and RMSE balances sensitivity to larger errors with
interpretability. These metrics aid a nuanced understanding of model behavior; for instance,
lower RMSE implies better accuracy, while MAE is suitable for outlier sensitivity. Selecting
the right metric hinges on specific objectives and the data context. This comparison guides
informed decisions in model selection and fine-tuning, offering clarity on trade-offs between
error types in various applications.

4. Research Methodology
4.1. Data Collection

The dataset gathered for this study was acquired from the Insurance Premium Rating
Bureau in Thailand, covering cargo insurance data related to road transportation from 2016
to 2022. This dataset stands as an extensive repository of information specifically concerning
cargo insurance within the specified timeframe and in the context of road transportation.

4.2. Dataset Size

The cargo insurance dataset from 2016 to 2022 is composed of 9803 insurance data
points collected for this research.

4.3. Dataset Description

Table 6 meticulously delineates categorical variables pivotal in understanding the
nuances of cross-border trade entities, encompassing elements like the status of goods
(e.g., ‘Import’ or ‘Export’), distinct cargo types (e.g., ‘Group 1’ through ‘Group 6’), varied
packaging types (ranging from ‘In bulk’ to ‘Roll/Coil’), and the originating and destination
countries (including ‘Thailand’, ‘Laos’, ‘Myanmar’, ‘Cambodia’, and ‘Malaysia’). These
categorical variables offer crucial insights into the diverse facets of trade operations and
logistical intricacies.

Table 6. Description of the categorical variables.

Variable Sub-Variable (Categorical) Description

Status of Goods Import, Export Represents the classification of goods based on
their intended importation or exportation.

Cargo Type Cargo Type Group 1, Cargo Type Group 2, Cargo
Type Group 3, Cargo Type Group 4, Cargo Type
Group 5, Cargo Type Group 6

Represents the different groups categorizing the
type of cargo being transported.

Packaging Type In bulk, Carton/Box, Case/Crate, Tin/Drum,
Bag/Sack, Pallet/Skid, Bundle/Bale,
Roll/Coil, Others

Represents the various forms or methods of
packaging used for the transported goods.

Start Country Thailand, Laos, Myanmar, Cambodia, Malaysia Represents the countries from which the cargo
shipments originate.

Destination Country Thailand, Laos, Myanmar, Cambodia, Malaysia Represents the countries to which the cargo
shipments are destined.
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Simultaneously, Table 7 shows continuous numerical variables, such as the sum
insured amount, the number of claims (utilized for predicting claim frequency), and the
incurred claims (used for predicting claim severity). These continuous variables provide
quantitative data on insurance-related figures, aiding in statistical analysis and predictive
modeling to ascertain the risks and financial implications associated with insurance claims
for entities engaged in cross-border trade activities.

Table 7. Description of the numerical variables.

Variable Value (Continuous Numerical) Description

Sum Insured Amount 0,. . .,∞ Represents the maximum amount an insurance company
agrees to pay in the event of a covered loss or damage.

Number of Claims 0,. . .,∞ Represents the count or frequency of claims.

Incurred Claims 0,. . .,∞
Represents the total value or amount of all claims that an
insurer anticipates paying or has already paid during a
specific period.

4.4. Research Tools

Within this research methodology, this research leveraged Google Colab as the opera-
tional platform and utilized Python version 3.10.12 as the primary programming language
within the toolset. Additionally, Microsoft Excel for Microsoft 365 MSO (Version 2312 Build
16.0.17126.20132) 64-bit served as a supplementary tool for specific data manipulation and
analysis tasks within the workflow.

4.5. Research Methods

Figure 5 explains that our research methodology begins with the acquisition of his-
torical insurance data sourced from the Insurance Premium Rating Bureau (Thailand).
This dataset undergoes a division into two core subsets: the first contains claim frequency
historical data, constituting the original frequency dataset, while the second contains his-
torical information on claim value, shaping the original severity dataset. Following this
partitioning, our methodology meticulously addresses data quality. Missing data were
removed, and outliers were detected and rectified using the Z-score method within Google
Colab, resulting in two refined and cleansed datasets primed for analysis. Given the
presence of textual variables within the datasets, a crucial step involves encoding these
textual elements into numeric formats, ensuring compatibility with analytical algorithms
without compromising data integrity. Employing K-fold validation with k = 5, the datasets
undergo a meticulous data train–test split, enabling robust model development and unbi-
ased evaluation. Moving forward, our methodology entails algorithm refinement through
hyperparameter tuning. Algorithms like extreme gradient boosting (XGBoost) and gra-
dient boost models undergo this process, optimizing their performance. While XGBoost
requires tuning various hyperparameters, it is essential to note that for the Poisson model,
hyperparameter tuning in this study is not involved. For the Gamma distribution, the
adjustment of parameters like ‘alpha’ becomes crucial for model refinement. Executing
our research methodology in the Google Colab environment, harnessing Python version
3.10.12, facilitates comprehensive model evaluation. Key performance metrics such as
mean absolute error (MAE) and root mean squared error (RMSE) are computed across all
models, enabling an insightful comparison to determine their efficacy and suitability for
our analysis.
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5. Result

Table 8 shows the original dataset that needs to be divided into two subsets based on
specific criteria: the “original frequency dataset” denotes the initial dataset concentrating
on the frequency of events or incidents observed within a specified period, and the “original
severity dataset” represents the initial dataset detailing the intensity, impact, or seriousness
of those recorded occurrences or events found in the frequency dataset. These datasets
stand as raw, unprocessed datasets before any data cleaning steps, including the removal of
missing values or outliers, have been applied. Subsequently, the cleaned dataset represents
the modified dataset resulting from the data cleaning process after addressing missing
values and removing outliers. Once the original dataset was divided into subsets—one
focusing on claim frequency and the other on claim severity—our next step involved
handling missing values and managing outliers. Missing values and outliers, which are
extreme or uncommon data points, can distort statistical analyses or machine learning
models were removed. To identify and address outliers, the Z-score method was employed.
This technique detects outliers based on how many standard deviations a data point
deviates from the mean. The code implemented removed outliers using Z-scores, setting
a threshold of 3. A comparison between the dataset before and after data cleaning is
presented in Table 8 to illustrate the impact of this process.

Table 8 exhibits a reduction in the total number of data entries after the removal of
outliers and missing values in both the frequency and severity datasets. In the frequency
dataset, the count decreased from an initial 9803 data entries to 9631 entries post-processing.
Similarly, in the severity dataset, the count decreased from 150 entries initially to 147 entries
after the data cleansing process. This decrease in data count signifies that some entries
were identified as outliers or contained missing values, leading to their removal. While
the reduction in data size might affect the overall sample size, it ensures a more refined
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dataset free from extreme values or incomplete information. Consequently, the resulting
datasets are more focused and potentially more suitable for subsequent analysis, modeling,
or statistical inference by providing a cleaner and more reliable set of data.

Table 8. Frequency and severity datasets.

Variables

Frequency Dataset Severity Dataset

Total Number of
Data (Original

Dataset)

Total Number of
Data (Cleaned

Dataset)

Total Number of
Data (Original

Dataset)

Total Number of
Data (Cleaned

Dataset)

Status of Goods Import 2714 2670 56 55
Export 7089 6961 94 92

Cargo Type Group Group 1 3118 3013 66 65
Group 2 26 26 2 2
Group 3 1122 1109 21 20
Group 4 90 90 - -
Group 5 399 395 12 12
Group 6 5048 4998 49 48

Packaging Type In bulk 33 33 - -
Carton/Box 2514 2477 49 48
Case/Crate 667 666 5 5
Tin/Drum 108 108 5 5
Bag/Sack 369 365 12 12

Pallet/Skid 836 811 28 28
Bundle/Bale 695 694 - -

Roll/Coil 133 133 2 2
Others 4448 4344 49 47

Start Country Thailand 7080 6952 95 93
Laos 144 140 1 1

Myanmar 84 83 2 2
Cambodia 105 83 5 4
Malaysia 2390 2373 47 47

Destination
Country Thailand 2714 2670 55 54

Laos 2008 1971 41 41
Myanmar 2403 2398 11 11
Cambodia 1045 1027 20 19
Malaysia 1633 1565 23 22

Average Sum
Insured Amount 9.88 million THB 10.98 million THB

Average Number
of Claims 0.017 -

Average Incurred
Claims - 86,791.40 THB

Total Number
of Data 9803 (100%) 9631 (100%) 150 (100%) 147 (100%)

Following the resolution of outliers and missing data, the subsequent phase entails
encoding the datasets by code implementation in Google Colab. Transitioning into the data
splitting stage, the data were split into five subsets for cross-validation, utilizing K-fold
with a value of 5. Subsequently, leveraging a predefined table, hyperparameter tuning
was performed, an essential step in optimizing the model’s configuration for enhanced
performance and robustness.

Table 9 shows the range hyperparameter and the best hyperparameter in each model
approach. In complement to the hyperparameter tuning specified in the table, this study
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initializes the code to retain the mean absolute error (MAE) of the superior models achieved
through extreme gradient boosting (XGBoost), gradient boosting machines (GBMs), and
generalized linear models (Poisson–Gamma). It acts as a container for storing the MAE
values obtained from the best-performing models within each algorithm during the tuning
process. Following the execution of Python package code in Google Colab for the frequency
and severity datasets using extreme gradient boosting (XGBoost), gradient boosting ma-
chines (GBMs), and generalized linear models, a comprehensive assessment was obtained.
The objective of this study is to conduct a thorough comparison of key performance metrics,
specifically MAE and RMSE, among several models: extreme gradient boosting (XGBoost),
gradient boosting machines (GBMs), and generalized linear models (Poisson–Gamma).
This comparison aims to discern and evaluate the predictive accuracy and efficacy of each
model variant, shedding light on their respective strengths and weaknesses within the
context of the analysis.

Table 9. Hyperparameter tuning.

Model Approach

Frequency Severity

Range
Hyperparameters

Best
Hyperparameters

Range
Hyperparameters

Best
Hyperparameters

Extreme Gradient
Boosting

learning_rate = [0.01,
0.02, 0.03, 0.04, 0.05],

n_estimators = [39, 40,
41, 42, 43],

max_depth = [17, 18, 19,
20, 21]

learning_rate = [0.03],
n_estimators = [41],
max_depth = [19]

learning_rate = [0.05,
0.06, 0.07, 0.08, 0.09]

n_estimators = [6, 7, 8,
9, 10]

max_depth = [5, 6, 7,
8, 9]

learning_rate = [0.07],
n_estimators = [8],
max_depth = [7]

Gradient Boosting
Machines

learning_rate = [0.12,
0.13, 0.14, 0.15, 0.16]

n_estimators = [12, 13,
14, 15, 16]

max_depth = [5, 6, 7,
8, 9]

learning_rate = [0.14],
n_estimators = [12],

max_depth = [7]

learning_rate = [0.14,
0.15, 0.16, 0.17, 0.18]

n_estimators = [8, 9, 10,
11, 12]

max_depth = [1, 2, 3,
4, 5]

learning_rate = [0.16],
n_estimators = [10],

max_depth = [3]

Generalized Linear
Models

[Poisson–Gamma]
- -

alpha_values =
[1000000000000000000,
11000000000000000000,
1200000000000000000]

alpha_values =
[11000000000000000000]

Metrics Performance Comparison

Table 10 provides metrics that showcase the performance of different machine learning
models and GLMs, highlighting their effectiveness in predictive tasks.

Table 10. Performance comparison.

Model Approach Metrics Performance Frequency Severity

Extreme Gradient Boosting MAE 0.0309 113,085.07
RMSE 0.1534 234,877.46

Gradient Boosting Machines MAE 0.0328 116,708.85
RMSE 0.1445 237,625.14

Generalized Linear Models
[Poisson–Gamma]

MAE 0.0338 121,727.67
RMSE 0.1421 230,341.28

The mean absolute error (MAE) and root mean squared error (RMSE) metrics provide
comprehensive insights into the predictive performance of different machine learning
models (see Figures 6 and 7). Focusing on MAE as the crucial metric for evaluating
accuracy, extreme gradient boosting (XGBoost) showcases the lowest MAE among the
models, standing at 0.0309. This signifies that, on average, XGBoost’s predictions deviate by
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approximately 0.0309 units from the actual values, making it the most accurate in this aspect.
Gradient boosting machines (GBMs) follow with a slightly higher MAE of 0.0328, indicating
a slightly larger average absolute difference between their predictions and the ground truth
compared to extreme gradient boosting (XGBoost). Despite the marginally higher MAE,
gradient boosting machines (GBMs) still demonstrate commendable predictive accuracy.
Generalized linear models (Poisson) exhibit the highest MAE among the models at 0.0338.
While this value is slightly larger than extreme gradient boosting (XGBoost) and gradient
boosting machines (GBMs), it is important to note that the difference in MAE is relatively
small, indicating a GLM’s overall ability to make predictions with a slightly larger average
absolute deviation from the actual values. Moving on to RMSE, it complements the MAE
by providing insights into the spread or dispersion of errors. Extreme gradient boosting
(XGBoost) has the highest RMSE among the models, indicating a broader spread of errors
despite having the lowest MAE. Conversely, a generalized linear model (Poisson) has the
lowest RMSE, suggesting a tighter clustering of prediction errors compared to extreme
gradient boosting (XGBoost) and gradient boosting machines (GBMs).
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In conclusion, while extreme gradient boosting (XGBoost) demonstrates the lowest
MAE, implying better accuracy in predictions, it also shows higher RMSE values, suggest-
ing a wider spread of errors. Gradient boosting machines (GBMs) closely follow extreme
gradient boosting (XGBoost) in terms of MAE, and generalized linear models (Poisson) rank
slightly higher in MAE but showcase the best RMSE values among the models, reflecting a
smaller spread and magnitude of errors. Overall, the choice of the optimal model might
depend on the specific emphasis on either absolute accuracy (MAE) or the distribution and
magnitude of errors (RMSE) for the task at hand.

Figures 8 and 9 provide the MAE and RMSE severity for the different machine learning
models. Focusing first on MAE, extreme gradient boosting emerges as the model with the
lowest MAE at 113,085.07, showcasing the superior accuracy of this model compared to gra-
dient boosting machines (MAE: 116,708.85) and generalized linear models (Gamma) (MAE:
121,727.67). Moving to RMSE, it provides insights into the spread of errors. Despite XG-
Boost’s lower MAE, it presents a higher RMSE of 234,877.46, suggesting a wider dispersion
of prediction errors compared to the other models. In contrast, generalized linear models
(Gamma) exhibit the lowest RMSE (230,341.28), indicating a tighter clustering of prediction
errors, and gradient boosting machines (GBMs) have the highest RMSE (237,625.14).
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In summary, while extreme gradient boosting (XGBoost) demonstrates the lowest
MAE, implying better accuracy in predictions, it also showcases higher RMSE values,
suggesting a wider spread and larger magnitudes of errors. Conversely, generalized
linear models (Gamma) exhibit the lowest RMSE, reflecting tighter clustering and smaller
magnitudes of errors despite a slightly higher MAE. Gradient boosting machines fall
between the two models in terms of MAE but have the highest RMSE.

6. Discussion
6.1. Frequency Predictive Performance
6.1.1. Extreme Gradient Boosting (XGBoost) in Predicting Claim Frequency

The MAE of 0.0309 for extreme gradient boosting (XGBoost) indicates a high degree
of accuracy in its predictions for claim frequency, with the model’s forecasts deviating
minimally by approximately 0.0309 units from the actual observed values. Such precision
underscores XGBoost’s proficiency in closely mirroring actual claim frequency, a testament
to its advanced ensemble learning capabilities. These capabilities enable extreme gradient
boosting (XGBoost) to adeptly navigate and model the intricate nonlinear patterns within
the data, a feature particularly advantageous in the realm of insurance. In this sector, the
precision of claim frequency predictions is crucial, directly influencing risk assessment
and the determination of premiums. XGBoost’s ability to deliver predictions with such a
minimal average deviation not only signifies its accuracy but also its significant potential
in enhancing the reliability and effectiveness of insurance operations.

The RMSE value of 0.1534, when compared with the lower MAE, reveals a more
nuanced aspect of XGBoost’s predictive performance. Although the average deviation from
the actual claim frequency is modest, as indicated by the MAE, the larger RMSE points to
a broader range of prediction errors. This suggests that while extreme gradient boosting
(XGBoost) generally provides predictions that are close to the actual values, there are
instances where the model’s forecasts exhibit more substantial discrepancies. This broader
error distribution, captured by the RMSE, hints at the model’s varying degrees of precision
across different instances, possibly reflecting its sensitivity to outliers or anomalies within
the frequency data. While extreme gradient boosting (XGBoost) demonstrates a robust
ability to track the central trend of the data accurately, the RMSE underscores the presence
of outliers or extreme cases where the model’s predictions diverge more significantly from
the observed values. This duality in XGBoost’s performance—high accuracy on average
coupled with a propensity for larger errors in specific cases—provides a comprehensive
view of its predictive capabilities and limitations.
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Application and Considerations:

XGBoost’s strength is that it excels at providing accurate predictions for claim fre-
quency on average (low MAE). This accuracy is valuable for insurance companies to
estimate risk accurately. But XGBoost’s wider spread of errors (higher RMSE) highlights
the importance of considering potential outliers or instances where predictions significantly
differ from actual claim frequency, despite the model’s overall accuracy.

In summary, for claim frequency prediction, extreme gradient boosting (XGBoost)
showcases relatively accurate predictions on average (low MAE), but the wider spread
of errors (higher RMSE) implies occasional instances of larger deviations in predicting
claim frequency from the observed values. This nuanced understanding is crucial for risk
assessment in insurance applications, where precision in predicting claim frequency is vital.

6.1.2. Gradient Boosting Machines (GBMs) in Predicting Claim Frequency

The MAE of 0.0328 for gradient boosting machines (GBMs) demonstrates that the
model’s predictions for claim frequency typically diverge from the actual observed values
by an average of 0.0328 units. This figure represents the mean absolute deviation and sheds
light on the general magnitude of error in a GBM’s frequency predictions.

This MAE indicates that gradient boosting machines (GBMs) deliver predictions with
a proximity to actual values that is comparable to extreme gradient boosting (XGBoost),
with a marginally higher deviation on average. This difference may stem from the inherent
characteristics of a GBM’s gradient-boosting framework, which, while robust, might not
fully encapsulate the complexity of the data to the same extent as extreme gradient boosting
(XGBoost), as reflected in the MAE.

The RMSE of 0.1445, reflecting the root mean squared error for gradient boosting
machines (GBMs), quantifies the spread of prediction errors by taking the square root of
the average squared discrepancies between the predicted and actual frequency values. Al-
though the MAE portrays a relatively precise average prediction accuracy, the RMSE value
points to a wider dispersion of errors, suggesting variability in the model’s predictions that
includes both minor and more substantial deviations from the actual observed frequencies.

Interestingly, while the RMSE value mirrors a similar pattern of error distribution as
seen with extreme gradient boosting (XGBoost), it is marginally lower, implying a slightly
tighter clustering of errors. This observation could indicate that gradient boosting machines
(GBMs) possess a certain degree of robustness against outliers or extreme values, potentially
offering more stable predictions across a broader spectrum of data. However, this comes
with the trade-off of a slightly less precise capture of the central trend, as denoted by the
marginally higher MAE in comparison to extreme gradient boosting (XGBoost).

Application and Considerations:

A GBM’s predictions, on average, deviate by 0.0328 units. The higher RMSE implies a
wider spread of errors, emphasizing the presence of larger deviations beyond the average
error, which might have significant implications for risk assessments or financial estimations.

Gradient boosting machines (GBMs) demonstrate an average absolute deviation of
approximately 0.0328 units in predicting claim frequency, reflecting the typical error made
by the model. Despite the relatively low MAE, the higher RMSE of 0.1445 suggests a wider
spread of errors, indicating occasional larger deviations from the observed frequency values
beyond the average error. While gradient boosting machines (GBMs) offer reasonably
accurate predictions on average, the presence of occasional larger deviations beyond the
average error needs consideration for risk assessment or financial estimations related to
claim frequency.

In essence, gradient boosting machines (GBMs) exhibit a relatively low average abso-
lute deviation in claim frequency prediction but show a wider spread of errors beyond the
average deviation.
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6.1.3. Generalized Linear Model (Poisson) in Predicting Claim Frequency

The MAE of 0.0338 for the generalized linear model (Poisson) denotes an average
deviation in its predictions for claim frequency, with forecasts typically straying by about
0.0338 units from the actual observed values. This figure, reflecting the mean absolute
deviation, offers a look into the standard level of error associated with the model’s fre-
quency predictions.

When contrasted with the performance of extreme gradient boosting (XGBoost) and
gradient boosting machines (GBMs), the marginally higher MAE for the generalized linear
model (Poisson) subtly implies its slightly reduced precision in capturing the intricacies
of the dataset. The inherent linear structure of the generalized linear model (Poisson)
might contribute to this, potentially restraining its effectiveness in fully grappling with the
complex dynamics embedded within the claim frequency data.

The RMSE of 0.1421 for the generalized linear model (Poisson) illuminates the degree
of spread in the model’s prediction errors, revealing the variability in how much the
predicted values deviate from the actual frequency observations. This measure, indicating
the square root of the average squared discrepancies, points to a range of error magnitudes,
covering both minor and more pronounced deviations.

Interestingly, the Poisson model’s RMSE, which is relatively lower compared to that
of extreme gradient boosting (XGBoost) and gradient boosting machines (GBMs), hints at a
more concentrated distribution of errors. This tighter clustering suggests enhanced model
robustness, particularly in mitigating the impact of outliers or extreme data points. Such a
characteristic is often inherent to linear models like Poisson, renowned for their stability
and consistent error behavior across a spectrum of data scenarios.

Application and Considerations:

Generalized linear model (Poisson) predictions, on average, deviate by 0.0338 units.
Understanding this average error magnitude is crucial for evaluating model performance
in claim frequency prediction.

Generalized linear models (Poisson) demonstrate an average absolute deviation of
approximately 0.0338 units in predicting claim frequency, reflecting the typical error made
by the model. While a generalized linear model (Poisson) provides reasonably accurate
predictions on average, the presence of occasional larger deviations beyond the average
error needs consideration in risk assessment related to claim frequency.

In summary, generalized linear models (Poisson) show a relatively low average abso-
lute deviation in claim frequency prediction, as indicated by their MAE of 0.0338. Addi-
tionally, their lower RMSE compared to XGBoost and GBMs suggests a tighter clustering
of errors. This implies that while there are deviations in predictions, they are generally
consistent and less variable, highlighting the Poisson model’s reliability in capturing the
central trend of claim frequency data.

6.2. Severity Predictive Performance
6.2.1. Extreme Gradient Boosting (XGBoost) in Predicting Claim Severity

The MAE of 113,085.07 for extreme gradient boosting (XGBoost) signifies that the
model’s severity predictions, on average, stray from the actual observed severity values
by this magnitude. This metric offers a quantified look into the model’s typical deviation
when estimating claim severities.

While extreme gradient boosting (XGBoost) demonstrates a capacity to gauge the
severity of claims with an average deviation of approximately 113,085.07, this figure
also highlights the inherent challenges in severity prediction. The model’s proficiency
in modeling complex and nonlinear data patterns contributes to its predictive capability.
Nonetheless, the substantial size of the average deviation underscores the intricate nature of
severity prediction, a domain often characterized by its high variability and larger numeric
scale. This divergence indicates that, although extreme gradient boosting (XGBoost) is
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adept at capturing trends, the precision of its severity predictions may not mirror the
tightness observed in its frequency predictions.

The RMSE of 234,877.46, compared with the lower MAE, paints a picture of consider-
able variability in XGBoost’s severity predictions. While the MAE reflects a more focused
deviation of around 113,085.07, the substantially higher RMSE reveals a broader spectrum
of errors, indicating that the model’s predictions are not uniformly close to the actual values.
This disparity suggests that alongside the average deviations, there are scenarios where the
model’s estimates veer significantly farther from the actual severity figures, introducing a
wider range of error magnitudes.

This RMSE underscores the model’s fluctuating precision, particularly in the context
of severity predictions where outliers or extreme values are more prevalent. Such high
variability in prediction errors necessitates a prudent approach to interpreting the model’s
outputs, especially when dealing with claims of higher value where the financial stakes
are substantial. The RMSE serves as a reminder of the inherent complexities and potential
volatilities in modeling claim severities, advocating for a cautious and comprehensive
understanding of the model’s predictive behavior.

Application and Considerations:

This insight is essential for understanding the typical error magnitude. The higher
RMSE suggests that there are larger deviations beyond the average error, emphasizing the
presence of occasional predictions that significantly differ from the actual severity values.

In summary, extreme gradient boosting (XGBoost) demonstrates an average deviation
of approximately 113,085.07 in predicting severity, but the wider RMSE of 234,877.46 indi-
cates variability in errors, including instances of larger deviations beyond the average error.

6.2.2. Gradient Boosting Machines (GBMs) in Predicting Claim Severity

The MAE of 116,708.85 for gradient boosting machines (GBMs) reflects that the model’s
severity predictions, on average, diverge from the actual observed severity values by this
amount. This metric elucidates the standard deviation from accuracy in a GBM’s severity
predictions, providing a clear indication of the model’s average error magnitude.

This MAE suggests a level of prediction accuracy for claim severity that is comparably
close to that of extreme gradient boosting (XGBoost), signifying that gradient boosting
machines (GBMs) also offer a credible estimation of claim severity. The marginally higher
MAE observed in gradient boosting machines (GBMs), relative to extreme gradient boosting
(XGBoost), might be reflective of the model’s intrinsic structure and its interaction with
the complexity inherent in the severity data, potentially impacting its ability to fully
encapsulate certain intricate data patterns.

The RMSE of 237,625.14 for gradient boosting machines (GBMs), slightly surpassing
that of extreme gradient boosting (XGBoost), reveals an extended range of prediction errors.
This metric underscores the variance in a GBM’s predictions, indicating that, although
the model’s average deviation is approximately 116,708.85, there are instances where its
predictions significantly overshoot or undershoot the actual severity values. The elevated
RMSE underscores the existence of larger-than-average deviations, painting a picture of a
broader error spectrum for a GBM’s severity predictions.

This marginally higher RMSE compared to extreme gradient boosting (XGBoost)
implies a wider dispersion of errors within a GBM’s predictions. It denotes that while
gradient boosting machines (GBMs) generally align closely with the actual values, mirroring
the central trend of the data, they are not immune to considerable deviations, especially
in cases involving higher-severity claims. This tendency suggests that gradient boosting
machines (GBMs), similar to extreme gradient boosting (XGBoost), adeptly capture the
overarching pattern in the data but may encounter challenges in accurately predicting the
outliers or the more extreme values within the severity spectrum.
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Application and Considerations:

Understanding this average error magnitude is essential for evaluating model perfor-
mance. The higher RMSE indicates a wider spread of errors, underscoring the presence of
occasional predictions that significantly differ from the actual severity values. Recognizing
the wider spread of errors beyond the average deviation is crucial for risk assessments. In-
stances of larger deviations might have significant implications for financial risk estimations
or insurance-related decisions. Insights from RMSE and MAE guide model evaluation and
refinement efforts, highlighting areas where the model’s performance deviates significantly
and aiding in improving prediction accuracy.

In essence, gradient boosting machines (GBMs) exhibit an average deviation in pre-
dicting severity, but the higher RMSE indicates a wider range of errors, emphasizing the
necessity of understanding the broader spectrum of errors beyond the average deviation
for a comprehensive evaluation of the model’s predictive performance.

6.2.3. Generalized Linear Model (Gamma) in Predicting Claim Severity

The mean absolute error (MAE) of 121,727.67 for the generalized linear model (Gamma)
reveals that the model’s predictions for severity typically differ from the actual observed
values by about 121,727.67 units. This value reflects the usual scale of prediction error for
severity made by the model. The MAE of the generalized linear model (Gamma) quantifies
the mean absolute discrepancy, shedding light on the usual size of the prediction errors.

The indicated MAE points to a marginally greater average prediction discrepancy
for the generalized linear model (Gamma) compared to machine learning models. This
increased deviation may stem from the linear framework of the model, potentially re-
stricting its capability to accurately represent the intricate variations found within claim
severity data.

The root mean squared error (RMSE) of 230,341.28, despite the elevated MAE, in-
dicates that prediction errors are relatively more compactly grouped. This RMSE value
reflects how the errors are distributed, indicating that although the average discrepancy
is about 121,727.67, the errors tend to be more closely bunched around the actual severity
values compared to those from extreme gradient boosting (XGBoost) and gradient boosting
machines (GBMs). Despite the slightly higher MAE, the RMSE signifies a denser aggrega-
tion of errors, hinting at a uniform pattern of deviations closely encircling the observed
severity figures.

The RMSE for the generalized linear model (Gamma) is less than those for extreme
gradient boosting (XGBoost) and gradient boosting machines (GBMs), denoting a more
condensed clustering of prediction errors. This implies that while the generalized linear
model (Gamma) may have constraints in precisely capturing the most extreme severity
claims, it tends to offer more consistent predictions across different severity levels.

Application and Considerations:

Understanding this average error magnitude is crucial for evaluating model per-
formance. The lower RMSE indicates a more clustered distribution of errors, emphasiz-
ing the model’s consistent performance in predicting severity, despite a slightly higher
average deviation.

Recognizing the more clustered distribution of errors is essential for risk assessments.
The model’s consistent performance around the observed severity values could be advanta-
geous in certain risk estimation scenarios. Insights from RMSE and MAE facilitate model
comparisons and guide improvements, highlighting areas where the model can be refined
for better predictive accuracy.

In summary, generalized linear models (Gamma) exhibit an average deviation in
predicting severity, but the lower RMSE suggests a more concentrated clustering of errors
around the observed severity values. This concentrated error distribution, despite a slightly
higher average deviation, indicates a consistent prediction pattern centered around the
observed severity, offering insights crucial for decision-making and model enhancement.
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6.3. Model Performance Evaluation

Assessing machine learning models through mean absolute error (MAE) and root
mean squared error (RMSE) metrics offers vital insights into predictive accuracy and the
distribution of prediction errors. Our analysis centered on three models—extreme gradient
boosting (XGBoost), gradient boosting machines (GBMs), and generalized linear models
(GLMs)—across two distinct datasets, each highlighting either frequency or severity as the
focal point.

6.3.1. Frequency Predictive Performance Comparison

In analyzing the performance metrics of extreme gradient boosting (XGBoost), gradient
boosting machines (GBMs), and generalized linear models (Poisson) for claim frequency
prediction, extreme gradient boosting (XGBoost) emerges as the most favorable model
based on a comprehensive assessment of MAE and RMSE metrics.

Extreme gradient boosting (XGBoost) exhibits a lower MAE, signifying closer pre-
dictions to actual frequency values on average. The model’s accuracy (lower MAE) is
crucial in insurance contexts for precise risk assessment and premium calculations. While
extreme gradient boosting (XGBoost) showcases a wider spread of errors (higher RMSE),
its accuracy (lower MAE) outperforms both gradient boosting machines (GBMs) and gener-
alized linear models (Poisson). XGBoost’s overall performance strikes a balance between
providing accurate predictions (lower MAE) and acknowledging the potential for larger
deviations (higher RMSE). XGBoost’s prioritization of a lower MAE showcases its pre-
cision in predicting claim frequency, crucial for risk assessments in insurance. Despite
the higher RMSE indicating occasional larger deviations, XGBoost’s consistently accurate
predictions (lower MAE) make it an optimal choice. Given its superior accuracy reflected
in the lower MAE, extreme gradient boosting (XGBoost) is the preferred model for claim
frequency prediction. Its ability to provide close predictions to actual frequency values on
average outweighs occasional larger deviations indicated by the wider spread of errors
(higher RMSE), making it a robust and dependable choice for insurance applications where
precision is paramount.

6.3.2. Severity Predictive Performance Comparison

Analyzing the performance metrics of extreme gradient boosting (XGBoost), gradient
boosting machines (GBMs), and the generalized linear model (Gamma) for claim severity
prediction reveals compelling insights, suggesting that generalized linear models (Gamma)
stand out as the preferred model based on a comprehensive evaluation of MAE and
RMSE metrics.

In severity prediction, an RMSE holds more significance than an MAE as it accounts
for the spread and variability of errors, which is crucial for assessing prediction reliability.
Extreme gradient boosting (XGBoost) shows a lower MAE but a notably wider spread of
errors (higher RMSE), indicating occasional larger deviations from actual severity values.
Gradient boosting machines (GBMs) demonstrate a similar trend with a slightly higher
MAE and a higher RMSE, suggesting a broader range of errors. Despite the generalized
linear model (Gamma) showing a slightly higher MAE, it exhibits a notably lower RMSE, in-
dicating a more clustered distribution of errors around observed severity values. The lower
RMSE of the generalized linear model (Gamma) implies a more clustered error distribution
around actual severity values, highlighting consistent predictions compared to extreme
gradient boosting (XGBoost) and gradient boosting machines (GBMs). Despite a slightly
higher average deviation (MAE), the generalized linear model (Gamma)’s concentrated
error distribution ensures more reliable predictions closer to observed severity values.

The generalized linear model (Gamma) outperforms both extreme gradient boosting
(XGBoost) and gradient boosting machines (GBMs) in a balanced evaluation considering
multiple performance metrics. The generalized linear model (Gamma) showcases a slightly
higher average deviation (MAE) compared to extreme gradient boosting (XGBoost) and gra-
dient boosting machines (GBMs). However, its strength lies in maintaining a notably lower
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spread of errors (RMSE). This balance between metrics is crucial in assessing predictive
reliability. The generalized linear model (Gamma)’s ability to exhibit a more clustered error
distribution around observed severity values, despite a slightly higher average deviation,
underlines its consistency and reliability in predicting severity. In scenarios demanding
precise estimations, this model’s capacity to offer predictions with a more reliable and stable
pattern proves pivotal for informed decision-making. This balanced performance makes
the generalized linear model (Gamma) the optimal model among the three, showcasing
reliability and stability in severity prediction tasks.

6.3.3. Choice of Model

In the realm of managing features like Status of Goods, Cargo Type, Packaging Type,
Start Country, and Destination Country, extreme gradient boosting (XGBoost), general-
ized linear models (GLMs), and gradient boosting machines (GBMs) each exhibit distinct
strengths. Extreme gradient boosting (XGBoost), celebrated for its prowess in capturing
intricate interactions and nonlinear patterns, stands out for its robustness in navigating the
multifaceted risk elements inherent in insurance claim predictions. Meanwhile, gradient
boosting machines (GBMs), like extreme gradient boosting (XGBoost), excel at handling
complex relationships due to their boosting of weak learners sequentially. In contrast,
generalized linear models (GLMs), while proficient in managing categorical data, may lack
extreme gradient boosting (XGBoost) and a GBM’s finesse in capturing nuanced nonlinear
relationships. However, a generalized linear model (GLM)’s linear nature presents a benefit
in terms of simplicity, offering better interpretability and ease of implementation when
complex nonlinear patterns are less critical for accurate predictions.

Extreme gradient boosting (XGBoost) offers superior accuracy (lower MAE) in pre-
dicting claim frequency, essential for insurance risk assessment and premium calculations.
Despite a wider error spread (higher RMSE), its precision in average predictions makes it a
robust choice.

The generalized linear model (Gamma) stands out as the optimal model despite a
slightly higher average deviation (MAE) due to its notably lower spread of errors (lower
RMSE). Its clustered error distribution around observed severity values signifies reliability
and consistency in predictions. The selection of the optimal model is not solely based on
a single metric but rather on a balance between multiple metrics, especially in contexts like
severity prediction, where both the MAE and RMSE contribute to a comprehensive evaluation.

The selection of the optimal model is not solely based on a single metric but rather
on a balance between multiple metrics, especially in contexts like severity prediction,
where both the MAE and RMSE contribute to a comprehensive evaluation. While extreme
gradient boosting (XGBoost) excels in frequency prediction with its accuracy, the general-
ized linear model (Gamma) shines in severity prediction due to its consistent and reliable
performance, especially in maintaining a clustered error distribution around observed
severity values. Therefore, considering the distinct requirements in frequency and sever-
ity predictions, extreme gradient boosting (XGBoost) and the generalized linear model
(Gamma) emerge as the optimal choices, each excelling in different aspects crucial for their
respective applications.

6.4. Potential Beneficiaries of Predictive Model Performance in Insurance: Leveraging Insights for
Risk Assessment and Decision-Making

The comprehensive analysis of predictive model performance in insurance, covering
frequency and severity predictions, offers more than just model selection. These insights
refine insurers’ risk assessment, inform regulatory policies, and bolster risk management
strategies for cross-border entities, fostering stability and efficiency across multiple sectors.

6.4.1. Insurance Companies

Improved risk assessment by understanding which models perform better in pre-
dicting claim frequency and severity enables insurance companies to refine their risk
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assessment processes. This insight aids in setting appropriate premiums, managing re-
serves, and mitigating potential losses by accurately forecasting claim occurrences and
magnitudes. Accurate predictive models contribute to better pricing strategies, allowing
insurance companies to set premiums that more accurately reflect the expected risk. This
can lead to more competitive pricing for clients while maintaining profitability.

6.4.2. Government and Regulatory Bodies

Insights from predictive modeling can assist government bodies in understanding
insurance trends, ensuring regulatory compliance, and making informed policy decisions.
This understanding helps in creating a balanced regulatory environment that safeguards
both insurers and insured parties.

6.4.3. Cross-Border Trade Entities (Trucking Companies, Shippers, and Consignees)

For entities involved in cross-border trade, knowing the predictive models for claim
frequency and severity helps in understanding and mitigating potential risks associated
with cargo transportation. This insight aids in better risk management, potentially lead-
ing to cost savings by identifying and addressing high-risk areas in logistics operations.
Trucking companies, shippers, and consignees might benefit from more accurate predictive
claims, resulting in more reasonable insurance premiums offered by insurance companies.

7. Conclusions

The pursuit of determining the optimal approach between generalized linear models
(GLMs) and advanced machine learning (ML) in developing predictive models for claim
frequency and severity within the domain of cargo insurance for cross-border transportation
forms the core objective of this study. Utilizing mean absolute error (MAE) and root mean
squared error (RMSE) as key evaluation metrics, this research aims to ascertain which
method—GLMs or ML—more accurately predicts claim frequency and severity within this
specialized insurance domain.

The metrics employed in the assessment, particularly MAE and RMSE, offer crucial
insights into the accuracy and distribution of prediction errors. The evaluation focused on
three models—extreme gradient boosting (XGBoost), gradient boosting machines (GBMs),
and generalized linear models—across two distinct datasets, emphasizing either frequency
or severity as focal points. The assessment revealed distinct performances for different
predictive models in addressing these specific aspects.

In the realm of claim frequency prediction, extreme gradient boosting (XGBoost)
emerged as the most favorable model, showcasing superior accuracy with a lower MAE.
Despite a wider error spread (higher RMSE), its precision in average predictions proved it
to be a robust choice for insurance applications that prioritize precision. However, in the
prediction of claim severity, the generalized linear model (Gamma) showcased remarkable
performance. Despite a slightly higher average deviation (MAE), it demonstrated notably
lower spread errors (lower RMSE), ensuring a more clustered error distribution around
observed severity values, signifying reliability and consistency in predictions.

The optimal model was not based solely on a single metric but rather on a balance
between multiple metrics, notably MAE and RMSE, given their significant contributions
to a comprehensive evaluation. While extreme gradient boosting (XGBoost) excelled in
frequency prediction, showcasing accuracy, the generalized linear model (Gamma) stood
out in severity prediction due to its consistent and reliable performance in maintaining a
clustered error distribution around observed severity values. Therefore, considering the
distinct requirements in frequency and severity predictions, extreme gradient boosting
(XGBoost) and the generalized linear model (Gamma) emerged as the optimal choices, each
excelling in different aspects crucial for their respective applications.

This study involves an in-depth analysis of predictive model performance in insur-
ance, encompassing both frequency and severity predictions. This analysis not only aids
insurers in refining risk assessment but also provides valuable insights for enhancing risk
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management strategies for cross-border entities. These insights empower insurance com-
panies to enhance risk assessment, set suitable premiums, manage reserves, and forecast
claim occurrences accurately. This contributes to more competitive client pricing while
ensuring profitability. For entities in cross-border trade, these insights aid in improved risk
management, potentially leading to cost savings. Additionally, more accurate predictive
claims may result in these entities receiving more reasonable insurance premiums from
insurance companies.

7.1. Contribution
7.1.1. Comparison of Predictive Modeling Approaches

• Conducts a comprehensive comparison between generalized linear models (GLMs)
and advanced machine learning techniques.

• Focuses specifically on claim frequency and severity in the cross-border cargo insur-
ance sector.

7.1.2. Optimal Model Approach Identification

• Aims to identify the optimal modeling approach by evaluating model performance
based on mean absolute error (MAE) and root mean squared error (RMSE) metrics.

7.1.3. Insights on Predictive Accuracy and Error Metrics

For Claim Frequency Prediction:

• Extreme gradient boosting (XGBoost) demonstrates higher predictive accuracy, as
indicated by the lowest MAE.

• XGBoost shows higher RMSE values, suggesting a broader error spread compared to
the generalized linear model (Poisson).

• The generalized linear model (Poisson) showcases the best RMSE values, indicating
tighter error clustering and smaller error magnitudes.

For Severity Prediction:

• XGBoost exhibits the lowest MAE, implying superior accuracy.
• However, it also presents a higher RMSE, indicating wider error dispersion compared

to the generalized linear model (Gamma).
• The generalized linear model (Gamma) demonstrates the lowest RMSE, portraying

tighter error clustering and smaller error magnitudes, despite a slightly higher MAE.

7.1.4. Strategic Implications for Insurance Companies

• Findings enable insurers to refine risk assessment processes, set appropriate premiums,
manage reserves, and accurately forecast claim occurrences.

• Contributes to competitive pricing strategies for clients while ensuring profitability
for insurers.

7.1.5. Benefits for Cross-Border Trade Entities

• Insights aid trucking companies and cargo owners in improved risk management and
potential cost savings.

• Enables more reasonable insurance premium settings based on accurate predictive
claim models from insurance companies.

The contributions of this study are multifaceted, encompassing not only the compara-
tive analysis of predictive models but also the practical implications of these findings in
the domain of cargo insurance. The study’s contribution lies in its systematic comparison
and evaluation of well-established methodologies, helping stakeholders make informed
decisions when selecting predictive models for claim frequency.
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8. Limitations and Future Research Directions
8.1. Limitations

While the metrics used in this study, namely mean absolute error (MAE) and root
mean squared error (RMSE), provided valuable insights into model performance, there
are potential areas for further exploration. Future research might benefit from examining
additional models or conducting more extensive hyperparameter tuning to potentially
enhance metric performance. Exploring a broader spectrum of models or fine-tuning the
parameters further could offer a deeper understanding of their comparative strengths and
weaknesses. This avenue of study could potentially yield refined metrics, providing a
more comprehensive assessment of predictive accuracy and reliability within the cargo
insurance domain.

8.2. Future Research Directions

Future research endeavors in this domain could explore hybrid modeling techniques
that integrate the strengths of generalized linear models (GLMs) and advanced machine
learning (ML) methods. Hybrid models offer the promise of leveraging GLMs’ interpretabil-
ity while harnessing ML algorithms’ predictive prowess, potentially leading to enhanced
predictive accuracy in cross-border cargo insurance scenarios. Additionally, investigations
could focus on tailored feature engineering and selection methods specific to the intricacies
of the insurance domain. Incorporating domain knowledge and creating domain-specific
features might substantially enhance model performance.

Further exploration into the impact of various features on claim frequency and severity
could unveil hidden patterns crucial for more accurate predictions. Understanding the
influence of temporal elements, such as trends and seasonality, through time-series analysis
could refine predictive models by illuminating their impact on claim occurrences.

Moreover, investigating the influence of external factors, such as economic indicators
or geopolitical events, on claim frequency and severity could deepen our understanding of
insurance dynamics. Integrating external data sources into predictive models might lead to
more adaptive and accurate predictions, further enhancing risk assessment and manage-
ment in cross-border cargo insurance. These future research directions hold the potential to
fortify predictive models, enabling a more comprehensive and precise evaluation of risks
in the insurance landscape.
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