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Abstract: One of the challenges in the healthcare sector is making accurate forecasts across insurance
years for claims reserve. Healthcare claims present huge variability and heterogeneity influenced by
random decisions of the courts and intrinsic characteristics of the damaged parties, which makes
traditional methods for estimating reserves inadequate. We propose a new methodology to estimate
claim reserves in the healthcare insurance system based on generalized linear models using the
Overdispersed Poisson distribution function. In this context, we developed a method to estimate the
parameters of the quasi-likelihood function using a Gauss–Newton algorithm optimized through a
genetic algorithm. The genetic algorithm plays a crucial role in glimpsing the position of the global
minimum to ensure a correct convergence of the Gauss–Newton method, where the choice of the
initial guess is fundamental. This methodology is applied as a case study to the healthcare system of
the Tuscany region. The results were validated by comparing them with state-of-the-art measurement
of the confidence intervals of the Overdispersed Poisson distribution parameters with better outcomes.
Hence, local healthcare authorities could use the proposed and improved methodology to allocate
resources dedicated to healthcare and global management.

Keywords: healthcare; claims reserving; generalized linear models; medical malpractice; error estimation

1. Introduction

The term “medical malpractice” is intended to define those damages (tending to be
biological, but also in perspective moral) arising from errors in the health sector of the
practitioner and closely related to clinical activity in the strict sense USI (2000). This damage
is closely correlated with civil liability in healthcare, which profoundly impacts the economy
and society. Indeed, healthcare expenditure was estimated for 2019 at 8.7% of the national
Gross Domestic Product (GDP), which is below the EU average of 9.9% OECD (2021). It
should be noted that approximately 15% of hospital expenditure in high-income countries
is used to correct complications of care and patient harm OECD (2018). However, in these
countries which have efficient healthcare systems, adverse events seem to be progressively
decreasing. It is estimated that 10% of patients experience an adverse event during medical–
surgical treatment resulting in a malpractice injury. The most frequently reported types
of adverse events, on a global level, undoubtedly include surgical procedures—with
significant peaks among orthopaedics and traumatology, general surgery, and obstetrics and
gynaecology Mushinski et al. (2022)—diagnostic errors, accidental falls, and the contraction
of nosocomial infections, in reference to which specific investigation would be due. In
Italy, no official national published statistics on medical adverse events and/or claims exist.
However, some regions have published independent reports on hospital claims in the past,
showing that most complaints are received in the above-mentioned operational areas Bertoli
and Grembi (2018); Grembi and Garoupa (2013). When an adverse event occurs, Italian
healthcare liability is imposed on healthcare organizations and, potentially, the healthcare
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professionals who committed the error. Public and private healthcare institutions are liable
with contractual liability for the behaviour of healthcare professionals whose services they
employ, with reference to professionals, including researchers, under any contract of the
National Health Service. For this reason, public and private health and social care facilities
must be provided with insurance coverage or other similar measures for third parties’
liability and that of employees. Other measures include the possibility for organizations
to utilize cover funds from internal provisions to cover all or part of the health liability
risk. The money to pay insurance premiums or to provide coverage funds is derived from
the national health fund, which is then distributed to different regions. In turn, they may
distribute the money to their health organizations or centralize the resources to shield
against claims. Therefore, insurance or self-insurance coverage must be provided to be
operative in the event of a medical malpractice claim. However, given the significant
fluctuation in medical malpractice claims, the challenge arises regarding how much money
should be allocated annually to guarantee the fulfilment of financial commitments and
the payment of compensation for damages. In this study, the authors aim to address the
following research questions: (1) Which models are appropriate for estimating claims
reserves in the healthcare sector? (2) How can the models be adapted to enhance the
state-of-the-art (SoA) models to fit our specific context?

The proposed work can be positioned in the context described above to build a
solid procedure to estimate and manage the claims reserve. The treatment developed
here will be technical because the authors want to provide a complete mathematical and
computational tool for the healthcare system to allocate appropriate resources. The paper
is organized as follows: (1) the first part is focused on the mathematical background
behind the GLM to underline the foundation of the applied methodology, jointly with
the definition of the quasi-likelihood function to model the response variables, as well
as the algorithms to locate the best parameters that maximize these functions and the
corresponding errors associated to the parameters of the quasi-likelihood function; (2) the
second part of the work is focused on the validation of the developed models by providing
a detailed comparison with the present SoA, based on the confidence intervals of the
parameters that maximize the quasi-likelihood function; (3) in the third part, the authors
illustrate an application of the developed methodology to the disposable data coming from
the Tuscany region1 to show its capability compared to the available SoA; (4) finally, a
discussion and conclusions are provided with improvements and future development. All
the numerical analyses and computations described in this work have been implemented
with the Matlab software package (R2022b release).

2. Structure and Main Ideas

The generalized linear model (GLM) has become a significant reality in claims reserve
analysis in the last few years England and Verrall (1999, 2002); Kendall and Stuart (1967);
Larsen (2007); Verrall (2000). The present work supplies the context of their forecast and
applicability. The authors found the necessity, at first, to better describe and elucidate
the mathematical background of the subject and to assemble a coherent and well-defined
model. In this context, the authors contributed to creating a new framework that could
provide adequate and complete results in claims reserve.

The basis to estimate the claims reserve is through the construction of Run-Off triangles
Schmidt (2006) that estimate the total paid amount of claims incurred that are not yet
reported to the insurance agency. A common methodology to estimate claims reserve is the
Chain-Ladder (CL) method Hindley (2017); Schmidt (2012); Verrall (1991). The CL method
aims to approximate the value of claims reserves that have been incurred but not yet
reported and to predict the ultimate loss amounts in general insurance. The fundamental
assumption on which the CL is based is that the patterns observed in historical loss
development must hold for future loss development. The previous assumption represents
one of the limitations of the CL and other deterministic methods because they do not
extrapolate the tail factors England and Verrall (2002) to increase the prediction performance
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for the paid amount. Several modifications of the CL have been proposed in the literature
to improve the prediction of the claims reserve Hess and Schmidt (2002); Verdonck et al.
(2009), and various stochastic claim reserving models have been developed for general
insurance to extrapolate the tail factors.

The employment of stochastic models replicates the conventional reserve estimates
produced by the CL methods, including parametric curves and smoothing techniques to
reshape the Run-Off triangles, enabling estimation of the tail factors through extrapolation.
Stochastic models offer a significant benefit in providing precision measures for claims
reserve, particularly emphasising the mean squared error of the prediction. However,
understanding the stochastic distribution function of the claims reserve outcome is crucial
to provide good prediction performance Renshaw and Verrall (1998). In this regard, the
GLM has become, in the last years, a robust stochastic methodology for predicting claims
reserve Hindley (2017); Nelder and Wedderburn (1972). The GLM represents a wide
range of models that allow the definition and estimation of parameters by maximizing
the likelihood function Nelder and Wedderburn (1972). In this framework, the likelihood
function is employed to evaluate the goodness of fit for a distribution that belongs to the
exponential family of random variables. To define the likelihood function, one must specify
the analytical form of the response variable distribution. In the works of Wedderburn (1974,
1976), the last assumption has been overcome by introducing the quasi-likelihood function,
which only needs the definition of the mean–variance relation of the response variable
without any assumption on the shape of its distribution. Following the work of Strascia and
Tripodi (2018), the authors assume a logarithmic mean–variance relation, which provides
the well-known Overdispersed Poisson (ODP) distribution model. The maximization of
the ODP quasi-likelihood function is performed using the Gauss–Newton (GN) algorithm
Fletcher (2000); Strascia and Tripodi (2018). This methodology has several benefits, but at the
same time, it presents some crucial weaknesses that need to be considered and addressed.

Concerning the SoA, we propose a methodology to compute parameters in the frame-
work of the GLM, which allows making good predictions for expectation value and errors
without increased computational costs. Compared with other methods proposed in the SoA,
our approach allows forecasting the claims reserve values and the corresponding standard
errors by optimizing two different residuals. Consequently, it gives a better overview of
the claims reserve in the healthcare sector, where the strong aleatory and peculiar nature of
claims’ lifespan needs particular attention. The authors performed specific tests on different
data-sets to validate the developed model. Firstly, the authors conducted a validation of
the developed model to estimate the claims reserve on the data-sets present in the SoA,
particularly from Strascia and Tripodi (2018) and Verdonck et al. (2009). These validation
tests helped to understand whether the developed model outperforms the ones in the
literature. Subsequently, the developed model was tested in the health insurance claims
database of the Tuscany region (Italy), which covers the period from 2010 to 2021. Dealing
with this kind of database in the healthcare system is extremely rare and represents a flaw
in estimating the claims reserve.

3. Theoretical Background

In this Section, the authors present the theoretical background for estimating claims
reserve. Section 3.1 describes the CL approach and how to construct the Run-Off triangles
that represent the applied basis of the developed methodology. Section 3.2 provides an
introduction to GLM to understand the context in which our methodology is applied.
Section 3.3 introduces the definition of the quasi-likelihood function to make predictions of
the response variable defined in the GLM framework. Section 3.4 describes the implemen-
tation of the Gauss–Newton (GN) algorithm that maximizes the quasi-likelihood function
and its limitation. Section 3.5 depicts the deployment of the genetic algorithm (GA), which
overcomes the limitation problems of the GN algorithm, to provide consistent results and
predictions. Finally, Section 3.6 provides a workflow for how to estimate the errors of the
quasi-likelihood function.
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3.1. Run-Off Triangles and Chain-Ladder Approach

The characteristic feature of claims is their recognizable time lag from the point of
incidence until they are reported to the insurance agency. As the reported claims are
documented yearly, the insurance agency will face a significant amount of claims in a
given calendar year, where each of them has a typical time delay. In this context, Run-Off
triangles Schmidt (2006) estimate the total paid amount of claims incurred during a period
(e.g., fiscal year) that are not yet reported, and they help insurance agencies to estimate the
amount of money that they will need to set aside to cover future claims that have already
been incurred but have not been reported. For this reason, a reserve must be set aside for
this purpose.

The Run-Off triangle is divided into cells where the row corresponds to the ith “in-
curred” year with i ∈ [1, I], i.e., the year in which the claims happen, and the column
corresponds to the jth “progression” year with j ∈ [0, J], i.e., the delayed year of the pay-
ments from when the claims have been incurred. Each cell of the Run-Off triangle indicates
the total paid amount yi,j for claims that have been incurred in the ith year and effectively
paid in the jth year. In the following, Table 1 shows a representation of a Run-Off triangle.

Table 1. Example of Run-Off triangle. The variable yi,j indicates the paid amount relative to a claim
that has occurred in the ith incurred year where the effective payment has been delayed in the jth year.

i/j 0 1 . . . j . . . J − 1 J

1 y1,0 y1,1 . . . y1,j . . . y1,J−1 y1,J

2 y2,0 y2,1 . . . y2,j . . . y2,J−1
...

...
...

...
i yi,0 yi,1 . . . yi,j
...

...
...

I − 1 yI−1,0 yI−1,1

I yI,0

The most common approach used to calculate the claims reserve is the CL approach.
Considering the definition of the Run-Off triangle represented in Table 1, and according
to Strascia and Tripodi (2018) and Schmidt (2006), the first step of the CL approach is
the definition of a Run-Off triangle of the cumulative payments, which is shown in the
following Equation (1):

Ci,j =
j

∑
k=0

yi,k (1)

where the variable Ci,j represents the cumulative payment concerning the incurred year
i relative to the delayed year j. The idea behind the CL method is that the cumulative
payments of two adjacent anti-duration years, i.e., the yi,j−1 and yi,j year, are proportional
to each other, barring an erratic component ϵ with zero expectation value. Another vital
assumption of the CL is that the system is not susceptible to structural changes over time.
Therefore, the estimate of the ultimate cumulative paid Ĉi,J is obtained through the dilation

factors f̂ (t)j (called link-ratio), according to Equation (2):

Ĉ(t)
i,J = Ci,t−i

J−1

∏
j=t−i

f̂ (t)j (2)
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where the index t ∈ [1, I] indicates the generic budget year, while the term f̂ (t)j represents
the link-ratio which is defined through the following Equation (3):

f̂ (t)j =
∑

t−j−1
k=1 Ck,j+1

∑
t−j−1
k=1 Ck,j

(3)

Hence, given Equations (2) and (3), the CL method is able to estimate the claims reserve
R̂(t)

i given by Equation (4):

R̂(t)
i = Ĉ(t)

i,J − Ci,t−1 (4)

In addition, in order to estimate the claims reserve per year, the stochastic approach allows
the calculation of the complete claims reserve, which predicts the total payment amount
for all the incurred and delayed years. In the following Sections, the authors will show the
procedure to develop the stochastic model with the related theoretical approach to estimate
the entire claims reserve, including the associated errors.

3.2. Generalized Linear Model

The GLM was introduced in the work of Nelder and Wedderburn (1972) as a method-
ology to unify and generalize various statistical methods such as linear regression, logistic
regression, etc. In ordinary linear regression, given a random variable Y, called response
variable, one can assume that it is defined as a linear combination of some explicative vari-
ables or predictors with small variation ε with expectations value E[ε] = 0 and variance
var[ε] = σ2. In this framework, the estimation of Y became an algebraic problem of in-
verting matrices, but despite the simplicity of this methodology, this method has strong
limitations, specifically when:

• The relation between the response variable and the explicative variables is not linear;
• The explicative variables Y do not take values from the interval (−∞, ∞);
• The variance σ2 is not constant;
• It is not possible to assume the response variable Y following the normal distribution.

The GLM allows the user to overcome previous limitations by expanding the sets of
applicability of the standard linear model and has became a common tool in statistical
analysis and prediction theory. Indeed, the GLM needs a unique starting hypothesis about
the behaviour of the probability distribution function (PDF) of Y, which is only required to
belong to the class of exponential family PDF, which includes Normal, Poisson, Binomial,
Gamma, and Inverse Gaussian distribution. Moreover, if more response variables (Y) exist,
they must be stochastically independent. Therefore, in general terms, the authors consider
a response variable that follows a PDF parameterized by β as defined in Equation (5):

f (y; β, ϕ) = eα(ϕ)[yβ−g(β)+h(y)]+α(ϕ,y) (5)

where y stands for a single realization of Y, while the variable ϕ represents the nuisance
parameter2 and α(ϕ) is a positive definite function. In order to define the moments of the
distributions, we introduce the likelihood L(β|y) and the log-likelihood L(β|y) functions
as shown in Equation (6). In the following, the single realization (y) of the response variable
(Y) refers to incremental payments as shown in Table 1.

L(β|y) = lnL(β|y) = ln
m

∏
i=1

f (yi; β, ϕ) =
m

∑
i=1

f (yi; β, ϕ) (6)

For the sake of simplicity, the authors moved from a matrix-like notation to a vector-like
notation (with a single index). Therefore, the vectorial response variable yi, which is in
one-to-one correspondence with the previous yi,j, is defined as in the following Table 2:
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Table 2. One-to-one correspondence between matrix-like and vector-like notation.

Response Variable Entries

Matrix-like Notation

(Table 1)
yi,j y1,1, y1,2, . . . , yk,l , . . . , ym,n

Vector-like Notation yi y1, y2, . . . , yk, . . . , ym

Based on the results of Kendall and Stuart (1967), it is possible to derive two crucial
properties of the log-likelihood function shown in Equation (7):

E
[

∂L
∂β

]
= 0

E
[

∂2L
∂β2

]
= −E

[
∂L
∂β

]2 (7)

which provides the statement shown in Equation (8) for the generic exponential function
(Equation (6)):

E
[

∂L
∂β

]
= E

[
α(ϕ)[y − g′(β)]

]
= 0

⇒ E[y] ≡ µ = g′(β)

(8)

together with the quadratic expectation value:

E
[

∂2L
∂β2

]
= E[−α(ϕ)g′′(β)]

⇒ E[α(ϕ)g′′(β)] = E[α2(ϕ)(y − µ)2]

(9)

and hence,
g′′(β) = α(ϕ)E[(y − µ)2] (10)

which finally provides the expression for the variance of y (Equation (11)):

α(ϕ)var(y) = g′′(β) = V(µ) (11)

It is easy to prove that for a response variable Y normally distributed, the GLM reduces to
the ordinary linear model.

3.3. Quasi-Likelihood Function

To make predictions and estimations concerning the response variables Y in the
GLM frameworks, it is necessary at first to estimate parameters of the log-likelihood
function, commonly with the least-squares method. This procedure has a substantial
limitation: the necessity to make a forecast hypothesis on the specific shape of the dis-
tribution (Equation (6)). In the work of Wedderburn (1974), a new methodology was
proposed introducing the so-called quasi-likelihood function, which only needs to fix the
relationship between the first two moments of the distribution, so, mean and variance. The
mean–variance relation is entirely defined by the link function (g) as shown in Equation (12).

var(y) =
1

α(ϕ)
V(µ)

=
1

α(ϕ)
g′′(β)

=
1

α(ϕ)
g′′((g′)−1(µ))

(12)
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In Equation (12), the term (g′)−1 represents the inverse function of the first derivative of
the link function (g) according to Equation (8).

Furthermore, we will assume, without any lack of generality, an exponential link
function. Our proposed model robustly represents the well-known GLM with Overdispersed
Poisson distribution (ODP). It is possible to prove that the overall function α(ϕ) is pro-
portional to the inverse of the nuisance parameter multiplied by a proportional constant
representing a weight parameter relative to the single realization of Y. For the sake of
simplicity, we will assume all the weights equal to unity. Therefore, Equation (12) can be
written as indicated in Equation (13):

var(y) = ϕg′′((g′)−1(µ)) (13)

Consequently, for an exponential link function, the mean–variance relation is given by
Equation (14):

E[y] = µ =
1
ϕ

var(y) = V(µ) (14)

Considering that V(µ) = µ in Equation (14), the nuisance parameter is estimated by the
Pearson statistics:

ϕ ≡ ϕ̂ =
1

m − n

m

∑
i=1

(yi − µi)
2

V(µi)
=⇒ ϕ =

1
m − n

m

∑
i=1

(yi − µi)
2

µi
(15)

where m is the number of observable data, n is the number of parameters of the quasi-
likelihood function, and the difference m − n, indeed, represents the degree of freedom
(DOF) of the system.

At this point, given the i-realization of the response variable Y, the quasi-likelihood
function K(yi, µi) is defined in Equation (16):

∂K(yi, µi)

∂µi
=

yi − µi
var(yi)

=
yi − µi
ϕV(µi)

(16)

or equivalently employing its integral form (Equation (17)):

K(yi, µi) =
∫ yi − µ′

i
ϕV(µ′

i)
dµ′

i + c(yi) (17)

where the index i indicates the single observations. The variable c(yi) represents a function
of yi, which in the future will be omitted for simplicity. For a complete overview of
the properties and theorems concerning the quasi-likelihood function, we refer to the
work of Wedderburn (1974). Therefore, substituting Equation (14) into Equation (17) and
integrating over the i-interval [yi, µi], we obtain the following expression (Equation (18))
for the quasi-likelihood function of the ODP model:

K(yi, µi) =
∫ µi

yi

yi − µ′
i

ϕV(µ′
i)

dµ′
i =

∫ µi

yi

yi − µ′
i

ϕµ′
i

dµ′
i

=
1
ϕ

[
yi ln

µi
yi

− µi + yi

] (18)

Finally, summing over the complete set of the Y realization, it is possible to obtain the
complete quasi-likelihood function in terms of y, β, and ϕ:

K(y, β, ϕ) =
1
ϕ

m

∑
i=1

[
yi ln

µi
yi

− µi + yi

]
(19)

At this point, in the quasi-likelihood analysis, to obtain correct predictions for the
response variable, it is necessary to estimate the parameters which maximize the function
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K(yi, µi). In this regard, the non-linear link function requires an iterative algorithm to solve
the problem. The adopted solution to estimate the parameters which maximize the function
K(yi, µi) is the Gauss–Newton algorithm (GN). The following Section will present the GN
iterative methodology to estimate the parameters that maximize the K(yi, µi) function.
For clarity, the variable µi will be indicated as µi(β) because it represents the model that
contains the parameters β that maximize the quasi-likelihood function. Additionally, the
details of its convergence problem and a solution to this problem will be proposed for
a better choice of initial guesses. In the following Sections, the authors will employ the
vectorial notation for the β parameters for completeness.

3.4. Gauss–Newton Algorithm

Taking β = (β1, · · · , βn) as the vector of parameters on which the response variable
depends, to determine the β∗ vector that maximizes the quasi-likelihood function (see
Equation (18)), we need to solve the following system of non-linear Equation (20):

∂K(yi, µi(β))

∂βk
= 0 (20)

An iterative algorithm is required to locate the kth parameters of the β vector, where
k ∈ [1, n], that solve the non-linear equation system shown in Equation (20). Therefore,
the GN algorithm has been deployed based on the guidelines provided in the work of
Wedderburn (1974). Given a set of generic functions (called residuals) {ri(β)}m

i=1, the GN
locates the set of βk parameters that minimize the function S(β) defined in Equation (21):

S(β) =
m

∑
i=1

r2
i (β) (21)

where the specific choice of the residual function ri(β) is crucial in the entire process of
parameter estimation. Furthermore, the authors tested two different ri(β) functions, which
we will define later, providing different results. Starting from the quasi-likelihood function
K(yi, µi(β)), the Taylor expansion around the parameters β is needed to minimize the
function S(β). Considering an expansion step δ given by Equation (22):

δ = β∗ − β (22)

The first-order Taylor expansion in δ can be written in Equation (23):

K(yi, µi(β∗)) = K(yi, µi(β)) +
∂K(yi, µi(β))

∂β

∣∣∣∣
β

δ + o(δ2) (23)

It is important to note that, because the function K(yi, µi(β)) is maximized by β∗, its first
derivative in Equation (23) is null when β = β∗; therefore, a maximization procedure
must be developed to locate the δ∗ parameters. The GN works directly on the function
S(β) defined in Equation (21), which has no triviality problem. Subsequently, it remains
to define a consistent definition of the function ri(β) to start the optimization procedure
properly and minimize the S(β) function through the GN methodology. In this Section, we
propose two different definitions of residuals ri(β), which allows us to work separately on
forecasting the claims reserves and their corresponding standard errors. The two definitions
are consistent with providing the best estimation for the reserves and trying to reduce the
related CI.

The first formulation of the residuals, as characterised by Strascia and Tripodi (2018),
concerns the direct optimization of the parameters inside the quasi-likelihood K(yi, µi(β)),
and it is given by Equation (24):

ri(β) =
yi
ϕ
− K(yi, µi(β)) =⇒ ri(β) =

1
ϕ

[
µi(β)− yi ln

µi(β)

yi

]
(24)
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The second formulation of the residuals, developed by the authors, concerns the
optimization of the dispersion parameters (ϕ-see Equation (15)), and it is given by the
Equation (25):

ri(β) =
yi − µi(β)√

µi(β)
(25)

Regarding the following steps, the authors will not use one of the previous definitions
of residuals but will keep the discussion in general terms. The comparison of the two
specific formulations of ri(β) (Equations (24) and (25)) will be discussed in Sections 4 and 5,
where the results related to comparison with the SoA, and the data from the Tuscany
region are presented, respectively. The function S(β) does not present triviality problems
compared to the quasi-likelihood function. Therefore, the first-order Taylor expansion of
Equation (21) can be performed in δ (see Equation (22)) around the initial point β using a
vectorial formalism which provides Equation (26):

S(β∗) = S(β) +
∂S(β)

∂β

∣∣∣∣
β

δ + o(δ2)

= S(β) + 2 rT(β) · ∂r(β)

∂β

∣∣∣∣
β

δ + o(δ2)

(26)

The first derivative in Equation (26) represents the Jacobian matrix of the residuals com-
puted in the initial point β. More precisely, the first derivative appearing in Equation (26)
depends on the definition of residuals (see Equations (24) and (25)). Therefore, the single
elements of the Jacobian matrix can be defined by the following Equations (27) and (28):

∂ri(β)

∂βk

∣∣∣∣
β

= − 1
ϕ

∂µi(β)

∂βk

∣∣∣∣
β

yi − µi(β)

µi(β)
≡ Jik(β) (see Equation (24)) (27)

∂ri(β)

∂βk

∣∣∣∣
β

= −1
2

∂µi(β)

∂βk

∣∣∣∣
β

yi + µi(β)

µi(β)
3
2

≡ Jik(β) (see Equation (25)) (28)

The term appearing on the left-hand side of Equations (27) and (28) represents the derivative
of the ith-residual ri(β) space with respect to every βk-parameter. The variable Jik(β)
appearing on the right-hand side of Equations (27) and (28) represents the i-row and k-
column of the Jacobian matrix defined in Equation (26); thus, the Jacobian matrix has a
dimension of m × n where m is the number of residuals and n represents the number of
parameters (i.e., the length of the β vector). At this step, the previous Taylor expansion
shown in Equation (26) can be rewritten as follows (Equation (29)):

S(β∗) = S(β) + 2 rT(β) · J(β) · δ + o(δ2)

= rT(β) · r(β) + 2 rT(β) · J(β) · δ + o(δ2)
(29)

The term J(β) appearing in Equation (29) represents the Jacobian matrix in a vectorial
formalism computed in the initial point β. The variable S(β) in Equation (29) is expressed
by performing the dot product between the residuals r(β) and its vectorial transpose. For
the sake of simplicity, the variables J(β) and r(β) will be indicated as J and r, respectively.
At this point, it is possible to compute the gradient of the S(β) function in the stationary
point β∗ as it appears in Equation (29):

∂S(β)

∂β

∣∣∣∣
β∗
= 2 JTr + 2 JT Jδ + 2 rT ∂J

∂β

∣∣∣∣
β

δ (30)

Since the gradient of S(β) is computed in the stationary point β∗, the derivatives of this
gradient are null. Additionally, Equation (30) can be further simplified by neglecting the
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term containing the derivative of the Jacobian matrix. Therefore, Equation (30) can be
rewritten as follows:

∂S(β)

∂β

∣∣∣∣
β∗
= 2 JTr + 2 JT Jδ = 0 (31)

Therefore, the δ can be recalculated as a function of β∗ (see Equation (22)) as follows:

δ = −(JT J)−1 JTr =⇒ β∗ = β − (JT J)−1 JTr (32)

In practice, the GN algorithm computes a β(s) value at every iterative step (s) starting from
an initial guess of β(0). Therefore, the δ(s) value is calculated using Equation (33):

δ(s) = −(JT(β(s)) · J(β(s)))−1 JT(β(s)) · r(β(s)) (33)

The iterative procedure described in Equation (33) is carried on until the following condition
is verified (Equation (34)): ∥∥∥δ(s)

∥∥∥ ≡
∥∥∥β(s+1) − β(s)

∥∥∥ < ϵ (34)

where the variable ϵ represents an arbitrary user-defined tolerance which the GN algo-
rithm must reach to stop the iterations. At this point, the GN algorithm has found the β
parameters which minimize the function S(β) and therefore, the final value of β is given as
follows (Equation (35)):

β∗ ≡ β(s+1) = β(s) − (JT(β(s)) · J(β(s)))−1 JT(β(s)) · r(β(s)) (35)

The described procedure represents an iterative methodology to locate the stationary
point that maximizes the quasi-likelihood function K(yi, µi(β)), and it can be iterated until
the ∥δ∥ reaches an arbitrary tolerance value (ϵ = 10−15) defined by the user. For each step of
the iterative method, the β is updated closer to the value that minimizes the S(β) function.
The choice of a good initial guess for β is a crucial point for the iterative GN method to
have success in locating the global minimum of the S(β) function. However, estimating
a good initial guess of the multi-parametric function S(β) to force the convergence of
the GN method to a global minimum requires additional concerns and tools that must
be addressed.

3.4.1. The Hessian Modification

The convergence of the GN algorithm (Equation (35)) is not guaranteed for the resid-
uals defined in Equations (24) and (25). The main reason that the GN algorithm fails to
reach the convergence is due to the approximation introduced in Equation (31) where the
derivative of the Jacobian matrix (J) with respect to β is ignored. In order to be able to
apply Equation (35), the following approximation must hold:∣∣∣JT J

∣∣∣ ≫ ∣∣∣∣rT ∂J
∂β

∣∣∣∣ (36)

In order to expect the convergence of the GN algorithm using Equation (35), the approxi-
mation highlighted in Equation (36) must be valid in one of the two cases: (1) the residuals
r(β) are small compared to the derivatives of the Jacobian (∂J/∂β) around the stationary
point β∗; (2) the residuals r(β) are blandly non-linear in such a way that the derivatives of
the Jacobian are negligible Nocedal and Wright (2006). Therefore, in the case for which the
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approximation (36) cannot hold, the key equation of the GN algorithm (Equation (35)) must
be modified. Starting from Equation (30), it can be rearranged in the following equation:

∂S(β)

∂β

∣∣∣∣
β∗

= 2 JTr + 2

[
JT J + 2 rT ∂J

∂β

∣∣∣∣
β

]
· δ

∇S(β∗) = ∇S(β) + H(S(β)) · δ

(37)

The variable ∇S(β) in Equation (37) represents the gradient of the function S(β) (see
Equation (21)) computed in the initial point β; the term H(S(β)) indicates the Hessian of
the function S(β) computed in the initial point β. The Hessian is a matrix with a dimension
of n × n where n represents the number of parameters (i.e., the length of the β vector),
where each element of this matrix contains the second derivatives of the function S(β).
For simplicity, the gradient ∇S(β) will be indicated as g, and the Hessian H(S(β)) will
be indicated as H. Since the gradient ∇S(β∗) is computed in the stationary point β∗, the
derivatives of this gradient are null. Therefore, Equation (37) can be rewritten as follows:

∇S(β∗) = g + H · δ = 0 =⇒
δ = −H−1 · g

(38)

Therefore, the δ can be recalculated as function of β∗ (see Equation (22)) as follows:

β∗ = β − H−1 · g (39)

In this case, the GN algorithm computes a β(s) value at every iterative step (s) starting
from an initial guess of β(0). Therefore, the δ(s) value is calculated using the following
Equation (40):

δ(s) = −
(

H(β(s))
)−1

· g(β(s)) (40)

The iterative procedure described in Equation (40) is carried on until the condition ∥δ∥ < ϵ
is verified. The variable ϵ represents an arbitrary user-defined tolerance which the GN
algorithm must reach to stop the iterations. At this point, the GN algorithm has found the
β parameters which minimize the function S(β); therefore, the final value of β is given as
follows (35):

β∗ ≡ β(s+1) = β(s) −
(

H(β(s))
)−1

· g(β(s)) (41)

The described procedure represents an alternative iterative methodology to locate the
stationary point (β∗) that maximizes the quasi-likelihood function K(yi, µi(β)), and it can
be adopted when the previous methodology (see Section 3.4) fails completely to locate the
stationary point.

3.4.2. Limits of the GN Algorithm

The convergence of the GN algorithm using the Jacobian matrix (see Section 3.4)
and its Hessian modification (see Section 3.4.1) is not always guaranteed, as proved and
discussed by Nocedal and Wright (2006) and Mascarenhas (2013). Even local convergence
could fail for the following reasons: (1) the initial guess β(0) is far from the stationary
point β∗; (2) the JT J matrix described in Equation (32) is ill conditioned; (3) the Hessian
matrix H in Equation (39) is ill conditioned. Therefore, in order to perform claims reserve
estimation in this framework, it is necessary to address and solve the problem of GN
convergence and provide a method to ensure efficiency in finding the global minimum
by the algorithm. Local convergence allows us to predict acceptable results for the claims
reserve but could provide huge errors associated with the estimated β parameters. Thus,
providing an instrument that guarantees the GN algorithm’s global convergence is nec-
essary to offer good results for claims reserve estimation and associated errors without
increasing computational costs. In this regard, the author aims to derive a good initial
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guess of the β parameters to prevent divergence or local convergence of the GN algorithm.
The genetic algorithm (GA) has been employed to help locate a good initial guess of the β
parameters to solve the convergence problem.

3.5. The Genetic Algorithm

The GA is a methodology for solving constrained and unconstrained optimization
problems based on a natural selection process that mimics biological evolution. The GA
alters a present population of β parameters by randomly picking and processing them
as parents to create the next generation’s offspring. Over generations, the population
evolves to the solution represented by a global minimum. The GA behaves differently
from classical, derivative-based optimization algorithms, i.e., it can address issues that
conventional optimization algorithms may not be able to process, such as discontinuous,
non-differentiable, or highly non-linear objective functions. A detailed description and
explanation of how the GA works is presented in the following references: Conn et al.
(1991, 1997); Goldberg (1989). The algorithm, at each iteration, creates a sequence of new
populations of individuals starting from the current generation. In order to avoid a huge
computational cost, the author decided to implement a population of 2000 individuals,
with 20,000 generations as the maximum number of generations, and 5000 generations
as the maximum stall generation number for which the fitness function remains constant
during the optimization.

The creation process is based on the following steps. Each population individual is
associated with a score called “fitness” value, allowing the algorithm to select specific
members. The fitness value is calculated by a fitness function represented by the residuals
defined in Equation (24) or Equation (25). Individuals with high fitness are chosen as
the elite population. Hence, they are selected as the elite population to create the next
generation of individuals from which the children are produced by manipulating the β
parameters by combining them as an entry of a pair of parents-crossover or a single parent-
mutation. The parent-crossover procedure follows the well-known technique described by
Haupt and Haupt (2004), where two elite individuals are selected to generate the children
for the subsequent generation. Let us suppose that the two parents are labelled as a and b,
where their corresponding β-parameters are defined as the following vectors [βa

1, βa
2] and

[βb
1, βb

2], respectively. The procedure involves the random selection of a single βi-parameter
which will serve as the crossover point, and subsequently, a random number (η), which
ranges from 0 to 1, is introduced to determine the new βi-parameters for the children in
the next generation. The calculation of the new βi-parameter is given by the following
Equation (42):

βi1 = (1 − η)βa
i + ηβb

i (42)

βi2 = (1 − η)βb
i + ηβa

i (43)

The other β-parameter, which is β2 in our example, is directly inherited from each
respective parent chromosome. At this point, suppose that the two children are labelled
as c and d; the complete set of β-values for the next generation is given by the following
vectors: [βc

i1, βc
2] and [βd

i2, βd
2]. The described methodology combines the characteristics of

both parent chromosomes using a single crossover point jointly with a η random value
to obtain a new set of chromosomes. In contrast, the parent-mutation involves a random
change of a single βi-parameter within a user-defined range [βmin

i , βmax
i ]. The new parent

parameter for the next generation is given by the following relationship (44):

βi = βmin
i + η(βmax

i − βmin
i ) with η ∈ [0, 1] (44)

Additionally, the GA excludes individuals with low fitness who are not participating
in the selection process. Finally, the stopping criterion of the GA is given by reaching a
certain deviation threshold (fixed at 10−10) within the β-parameters in the fitness values
for all the selected population Conn et al. (1991, 1997). The employment of the GA
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enforces the stability of the GN algorithm by increasing the convergence speed with a
consequent reduction of the number of iterations needed to null the gradient represented
in Equation (38) and ensuring that the global minimum is reached within the user-defined
domain of the β parameter.

3.6. Expectation Values and Error Estimation

Following the approach described in Section 3.4, the parameterization of the β vector
for the quasi-likelihood function defined in Equation (17) must be carried out. The parame-
terization described by Strascia and Tripodi (2018) has been followed to define the β vector
as shown in Equation (45):

β = (c, a1, . . . , an, b1, . . . , bm) (45)

where the authors have used a different definition of the indexes n and m with respect
to Section 3.4, which is the one that will be used in the following. Therefore, the index is
k ∈ [1, n + m + 1] and it labels the k-parameters of the β vector. The variable c represents
the intercept, the variable ani (with ni ∈ [1, n]) is associated with the nth

i rows of the Run-Off
triangles, i.e., the incurred year, and the variable bmi (with mi ∈ [1, m]) corresponds to the
mth

i columns of the Run-Off triangles, i.e., the progression year. In this case, this notation
has the advantage that the subscript index (i) indicates the ith residual, which embeds the
index couple (ni, mi) where ni can be ̸= from mi. In the ODP framework, the exponential
function with the parameterization β is represented by Equation (46) and indicates the
expectation value of the yi observable:

E[yi] = µi(β) =


ec if ni = mi = 1
ec+ani if mi = 1 and ni ̸= 1
ec+bmi if ni = 1 and mi ̸= 1
ec+ani+bmi otherwise

(46)

Once the ODP framework has been chosen, the methodology discussed in Section 3.4 can be
applied. The main goal is to find the best estimate of the β parameters associated with the
generic µi model (Equation (46)) to fill the Run-Off triangle and estimate the claims reserve
jointly with their confidence interval. Therefore, it is necessary to find the parameters that
maximize the quasi-likelihood function (17) by substituting it in Equation (46). In this
manner, it is possible to obtain Equation (47):

K(yi, µi(β)) =
1
ϕ

[
yi(c + ani + bmi )− yi log yi − ec+ani+bmi + yi

]
(47)

At this step, the function S(β) defined in Equation (21) has been built with the two residuals
ri(β) (Equations (24) and (25)) defined in Section 3.4 and it depends directly on the param-
eter β. In the ODP framework, the residuals are defined as the following Equations (48)
and (49):

ri(β) =
1
ϕ

[
ec+ani+bmi + yi log yi − yi(c + ani + bmi )

]
(Equation (24)) (48)

ri(β) =
yi − ec+ani+bmi

e
1
2 (c+ani+bmi )

(Equation (25)) (49)

At this step, considering the total number of residuals (N) which corresponds to the number
of observations, the Jacobian matrix (J) to apply the GN algorithm (see Equation (35)) is
defined as follows (Equation (50)):
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J =



∂r1

∂c
∂r1

∂a1
. . .

∂r1

∂an

∂r1

∂b1
. . .

∂r1

∂bm
...

...
...

...
...

...
...

∂ri
∂c

∂ri
∂a1

. . .
∂ri
∂an

∂ri
∂b1

. . .
∂ri
∂bm

...
...

...
...

...
...

...
∂rN
∂c

∂rN
∂a1

. . .
∂rN
∂an

∂rN
∂b1

. . .
∂rN
∂bm


(50)

Starting from the initial guess β(0) provided by the GA (Section 3.5), the GN algorithm
updates the Jacobian matrix (Equation (50)) using one of the two residuals defined in
Equations (48) or (49) to compute iteratively the parameters β∗ which minimize the function
S(β) through Equation (35). During the iterative process using the Jacobian matrix, the
relation (36) must hold to reach the convergence of the calculus. If Equation (36) cannot
hold, the Hessian modification of the GN algorithm (Section 3.4.1) must be applied. In this
case, the gradient (g) and the Hessian (H) of the function S(β) are defined as follows (for
simplicity, the variable S(β) is denoted as S):

g =

[(
∂S
∂c

)
,
(

∂S
∂a1

)
, . . . ,

(
∂S
∂an

)
,
(

∂S
∂b1

)
, . . . ,

(
∂S

∂bm

)]T
(51)

H =



∂2S
∂c2

∂2S
∂c ∂a1

. . .
∂2S

∂c ∂an

∂2S
∂c ∂b1

. . .
∂2S

∂c ∂bm
∂2S

∂a1 ∂c
∂2S
∂a2

1
. . .

∂2S
∂a1 ∂an

∂2S
∂a1 ∂b1

. . .
∂2S

∂a1 ∂bm
...

...
...

...
...

...
...

∂2S
∂an ∂c

∂2S
∂an ∂a1

. . .
∂2S
∂a2

n

∂2S
∂an ∂b1

. . .
∂2S

∂an ∂bm
∂2S

∂b1 ∂c
∂2S

∂b1 ∂a1
. . .

∂2S
∂b1 ∂an

∂2S
∂b2

1
. . .

∂2S
∂b1 ∂bm

...
...

...
...

...
...

...
∂2S

∂bm ∂c
∂2S

∂bm ∂a1
. . .

∂2S
∂bm ∂an

∂2S
∂bm ∂b1

. . .
∂2S
∂b2

m



(52)

At that point, it is possible to fill the entire Run-Off table with the complete set of
estimations given by Equation (53):

µi(β∗) =


ec∗ if ni = mi = 1

ec∗+a∗ni if mi = 1 and ni ̸= 1

ec∗+b∗mi if ni = 1 and mi ̸= 1

ec∗+a∗ni
+b∗mi otherwise

(53)

Concurrently with the estimation of the expectation values, the corresponding errors on
the β∗ parameters have been computed starting from the Hessian matrix H(K(y, β∗, ϕ)) of
the complete quasi-likelihood function defined in Equation (19), where each element of the
Hessian matrix (Hjk) is computed using Equation (54):

Hjk =
∂2K(y, β∗, ϕ)

∂β j∂βk
(54)

Therefore, the variance (δβ2) associated with each β∗ parameter is computed by performing
the inverse of the Hessian matrix (H), and then taking the diagonal elements of the matrix
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changing the sign as shown in Equation (55). For the sake of simplicity, the β∗ term is
indicated as β, and the variable H indicates the Hessian of the complete quasi-likelihood
function H(K(y, β∗, ϕ)).

δβ2 =
(

δc2, δa2
1, . . . , δa2

n, δb2
1, . . . , δb2

m

)
= −diag(H−1) (55)

In order to provide the complete estimation of the standard errors for the expectation values
µi(β), the authors applied the theory of error propagation. Therefore, they computed the
differential of the generic expectation values µi(β) (see Equation (53)), which is given by
Equation (56):

dµi = d(ec+ani+bmi ) = ec+ani+bmi (dc + dani + dbmi ) (56)

Hence, substituting the parameter errors δc, δani , and δbmi with the corresponding differen-
tials in Equation (56):

δµi = ec+ani+bmi (δc + δani + δbmi ) (57)

The variance δµi of the expectation values is given by the squared sum of the single term of
the previous Equation (57):

δµ2
i = e2(c+ani+bmi )(δc2 + δa2

ni
+ δb2

mi
+ 2 δc δani + 2 δc δbmi + 2 δani δbmi ) (58)

where the mixed terms are negligible for independent variables. In this framework, the
standard errors of the expectation value ∆µi are defined as follows (59):

∆µi = ec+ani+bmi

√
dc2 + da2

ni
+ db2

mi
(59)

This Section completes the treatment of the GLM methods using the GN algorithm to
estimate parameters with an initial guess provided via the GA algorithm. Starting from
the SoA approach, the procedure developed in Sections 3.3–3.5 is used by the authors to
provide results in the context of the healthcare sector, and specifically for the Tuscany region
case study. The aim is to provide results in the form given by the theoretical background of
Section 3.2, composed by expectation value and corresponding standard error. The authors
are now able to present, in the next Section, a validation of the developed approach by
comparison with the available SoA.

4. Comparison with SoA Models

To validate the proposed methodology, the authors performed a comparison with two
works present in the SoA. The first comparison concerns the work of Strascia and Tripodi
(2018), which primarily inspired the authors because it presents a similar methodology,
presenting a sweetened data-set from a context different from healthcare (i.e., RC cars in
Italy). The data-set of Strascia and Tripodi (2018) provides a complete calculation of the
expectation values with the corresponding errors to the estimated parameters (β). The
second comparison concerns the work of Verdonck et al. (2009), which is a good data-set
that contains predictions coming from a robustification of the CL method with highly
homogeneous data. The aim is to apply the methodology developed in the previous
Sections (i.e., Sections 3.4–3.6) and improve the results compared with the ones in the SoA.
Following, the authors show two different figures for each of the mentioned works to
compare the results coming from the different choices of the residuals defined, respectively,
in Equations (48) and (49). The key performance indicators (KPIs) used to compare our
methodology with the ones proposed in the literature are the function S(β) computed
as shown in Equation (21) using the values of the β vector that minimize the residuals
after applying the GN algorithm (β∗), the dispersion parameter (ϕ) computed as shown in
Equation (15), and the claims reserve amount (Rtot) that must be set aside including the
corresponding errors of the expectation value.
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The developed stochastic model allows us to compute claims reserve differently with
respect to the CL method described in Section 3.1. After computing the β∗ parameters of the
stationary point through the GN algorithm, the expectation values shown in Equation (53)
can be calculated and they correspond to every single cell of the Run-Off triangle. Consid-
ering the two-indices notation adopted in the Run-Off triangle of Table 1, the developed
stochastic approach is able to calculate the complete set of expectation values in order to
estimate the entire claims reserve. For clarity, the expectation values are indicated in the
following Table 3.

Table 3. Complete set of expectation values µi,j computed using the developed stochastic model.

i/j 0 1 . . . j . . . J − 1 J

1 µ1,0 µ1,1 . . . µ1,j . . . µ1,J−1 µ1,J

2 µ2,0 µ2,1 . . . µ2,j . . . µ2,J−1 µ2,J
...

...
...

...
...

...
i µi,0 µi,1 . . . µi,j . . . µi,J−1 µi,J
...

...
...

...
...

...
I − 1 µI−1,0 µI−1,1 . . . µI−1,j . . . µI−1,J−1 µI−1,J

I µI,0 µI,1 . . . µI,j . . . µI,J−1 µI,J

The coloured cells in “light blue” as shown in Table 3 represent the expectation values
µi,j with i + j ≤ I coming from the application of the GN algorithm. In other words,
they correspond to the generic model µi(β∗) indicated in Section 3.6, for which they have
been used to construct the residuals ri(β) in the Equations (48) and (49). Additionally,
these expectation values (µi,j) are important to understand the dispersion of the observable
data (yi,j in Table 1) and therefore compute the dispersion parameter (ϕ). In contrast, the
coloured cells in “light orange” as shown in Table 3 represent the expectation values µi,j
with i + j > I that are estimated using Equation (53), and they are being used to predict the
claims reserve for the generic budget year (t > I) through Equation (60):

R(t) = ∑
i+j=t

µi,j with t ∈ [I + 1, I + J] (60)

In order to predict the entire claims reserve Rtot, i.e., the total amount to be set aside, it is
necessary to sum over every budget year t ∈ [I + 1, I + J], through Equation (61):

Rtot =
I+J

∑
t=I+1

R(t) (61)

Furthermore, concerning the comparison with the current SoA, the total paid amount for a
specific budget year (t ∈ [1, I]) is computed using Equation (62):

R(t) = ∑
i+j=t

yi,j with t ∈ [1, I] (62)

where the variable yi,j represents the single payments as indicated in Table 1 (see Section 3.1).
Since the variables yi,j represent the observation values, they are not used as KPIs to per-
form the comparison with the SoA. In the following Section, the comparison with the
literature using the developed stochastic model for both residuals will be shown, jointly
with the obtained values of the S(β) function for each residual, the dispersion parameters
ϕ, the prediction of the claims reserves for each individual budget year R(t), and the entire
claims reserve Rtot to be set aside with the associated absolute errors. For this comparison,
the authors used the data-sets of Strascia and Tripodi (2018) and Verdonck et al. (2009), both
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of which are accessible in their entirety within their respective articles. For the sake of sim-
plicity, in the following the authors will only report the results of the comparison between
the results in the aforementioned works and those given by their methodology, described
in Section 3. The source data, arranged in Run-Off triangles, were selected for comparison
as they relate to incremental payments over time in the claims reserve context, though not
appropriate to the healthcare context specifically addressed in this paper. The comparison,
based on the specific KPIs described above, is made to show how with the methodology
proposed by the authors the results of the SoA can be reproduced with greater absolute
and percentage accuracy, thanks to the implementation of the GA which is fundamental in
the choice of the initial guess, a step not envisaged in the proposed literature.

4.1. Comparison with Strascia and Tripodi (2018)

The data-set used in the work of Strascia and Tripodi (2018) presents a Run-Off triangle
filled in the context of “RC cars”, which is a well-known benchmark to test and validate the
new methodology and theory of forecasting model especially in claims reserve estimation
due to their small data dispersion and homogeneity. The authors applied the method
previously described, using both residuals defined in Section 3.4, to reproduce the results
of Strascia and Tripodi (2018). The developed stochastic approach has been applied to
predict the claims reserve R(t) for the generic budget year (t) using Equation (60), and it
has been compared with the one provided by the optimization of Strascia and Tripodi
(2018). The results concerning the predicted claims reserve R(t) for the generic budget
year (t), are depicted in the following two figures. Figure 1 shows the paid amount (R(t)

in Equation (62)) and the predicted claims reserve (R(t) in Equation (60)) relative to the
comparison between Strascia and Tripodi (2018) and our methodology using the residual
defined in Equation (48). Figure 2 shows the paid amount and the predicted claims reserve
relative to the comparison between Strascia and Tripodi (2018) and our methodology using
the residual defined in Equation (49). The obtained numerical results for the predicted
claims reserve for a specific budget year are summarized in Table 4.
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Figure 1. Computed reserve amount between our approach and the one provided by Strascia and
Tripodi (2018), using the residual defined in Equation (48) for the GN algorithm. The “blue” bars
indicate the paid amounts computed using Equation (62), while the “yellow” and the “orange” error-
bars indicate the predicted claims reserve computed using Equation (60) for Strascia and Tripodi
(2018) and our work, respectively.
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Figure 2. Computed reserve amount between our approach and the one provided by Strascia and
Tripodi (2018), using the residual defined in Equation (49) for the GN algorithm. The “blue” bars
indicate the paid amounts computed using Equation (62), while the “yellow” and the “orange” error-
bars indicate the predicted claims reserve computed using Equation (60) for Strascia and Tripodi
(2018) and our work, respectively.

Table 4. Comparison between our developed methodology and the work of Strascia and Tripodi (2018)
in predicting claims reserve R(t) for the specific budget year t ∈ [I + 1, I + J] for the two residuals.

Budget
Year (t)

Paid (103 e)
Literature

R(t) (103 e)
Literature

R(t) (103 e)
Residual (Equation (48))

R(t) (103 e)
Residual (Equation (49))

0 22.60 - 22.60 ± 1.43 22.60 ± 1.43
1 62.32 - 62.32 ± 5.70 62.32 ± 5.65
2 101.93 - 101.93 ± 9.25 101.93 ± 9.03
3 124.59 - 124.59 ± 12.12 124.59 ± 11.57
4 152.04 - 152.04 ± 14.82 152.04 ± 13.85
5 188.65 - 188.65 ± 17.33 188.65 ± 16.03
6 185.31 - 185.31 ± 19.72 185.31 ± 18.45
7 203.38 - 203.38 ± 21.77 203.38 ± 20.40
8 213.67 - 213.67 ± 23.03 213.67 ± 21.37
9 207.65 - 207.65 ± 23.39 207.65 ± 21.63

10 197.67 - 197.67 ± 23.64 197.67 ± 21.84
11 184.68 - 184.68 ± 24.99 184.68 ± 23.10
12 194.08 - 194.08 ± 29.10 194.08 ± 27.00
13 - 177.71 ± 41.39 183.87 ± 27.96 179.53 ± 25.78
14 - 139.04 ± 33.41 146.17 ± 22.90 140.69 ± 20.80
15 - 112.39 ± 27.91 119.75 ± 19.38 113.99 ± 17.43
16 - 93.69 ± 24.06 101.15 ± 16.98 95.37 ± 15.13
17 - 80.55 ± 21.36 85.66 ± 14.89 81.93 ± 13.48
18 - 66.73 ± 18.32 71.52 ± 12.90 67.97 ± 11.61
19 - 52.05 ± 14.84 57.26 ± 10.72 53.14 ± 9.43
20 - 38.71 ± 11.50 42.30 ± 8.21 39.44 ± 7.26
21 - 29.33 ± 9.05 32.14 ± 6.44 29.97 ± 5.71
22 - 23.89 ± 7.62 26.14 ± 5.41 24.38 ± 4.78
23 - 18.78 ± 6.39 20.36 ± 4.50 19.19 ± 4.00
24 - 12.95 ± 4.93 13.69 ± 3.40 12.85 ± 3.01
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The obtained numerical results describing the value of the S(β∗) function, the corre-
sponding dispersion parameter (ϕ), and the total predicted total claims reserve amount
Rtot are summarized in Table 5.

Table 5. Comparison between the work of Strascia and Tripodi (2018) and our proposed methodology
concerning the S(β∗) function (Equation (21)), the dispersion parameter ϕ (Equation (15)), and the
total predicted claims reserve amount Rtot (Equation (61)) for both residuals (Section 3.4).

Residual
(Equation (48))

Reference S(β∗) ϕ Rtot (105 e)
Strascia and Tripodi (2018) 3.65 × 105 4.11 × 102 8.46 ± 2.20

Our work 3.00 × 105 4.53 × 102 9.00 ± 1.54

Residual
(Equation (49))

Reference S(β∗) ϕ Rtot (105 e)
Strascia and Tripodi (2018) 2.71 × 104 4.11 × 102 8.46 ± 2.20

Our work 2.68 × 104 4.06 × 102 8.58 ± 1.38

It is essential to mention that in both cases, i.e., in the estimation provided by the
authors, the convergence of the GN algorithm is improved because the authors used the
GA to calculate the initial guess of parameters β (see Section 3.5). In contrast, concerning
the work of Strascia and Tripodi (2018), the algorithm’s convergence might converge to a
local minimum without starting with an appropriate initial guess, leading to an increase
in the errors associated with the β parameters. Additionally, it is important to mention
that the computed values of the S(β∗) function, the dispersion parameter (ϕ), and the
total predicted claims reserve amount Rtot for the work of Strascia and Tripodi (2018) have
been obtained using the β∗ parameters resulting from their calculation. The errors in the
predicted claims reserve for the specific year R(t) have been calculated using the error
propagation by summing the errors relative to every single cell of the predicted values
(∆µi—see Equation (59)). The error propagation theory has been applied to calculate the
entire predicted claims reserve Rtot. Furthermore, using the two different definitions of the
residuals, the estimation of the claims reserve performed by the authors provides confidence
intervals slightly lower than the ones provided by Strascia and Tripodi (2018). Even if
the difference between the two residuals is negligible for this case, the high dispersion
and aleatory data in other contexts, such as healthcare, might produce more prominent
confidence intervals.

4.2. Comparison with Verdonck et al. (2009)

In this Section, the authors performed the validation approach of Section 4.1 with the
Run-Off triangle presented in the work of Verdonck et al. (2009). In this case, Verdonck
et al. (2009) did not compute the errors associated with their stochastic model because they
focused on developing a robustification of the CL method. However, the possibility to
reproduce and improve the results presented in the work of Verdonck et al. (2009) represents
an excellent manner to validate further the methodology described in this paper since they
present a low-dispersion data-set. Following an identical procedure to the one of Section 4.1,
the authors show the results of the developed stochastic model using the two definitions of
the residuals in Equations (48) and (49), respectively. The results concerning the predicted
claims reserve R(t) for the generic budget year (t), are depicted in the following two figures.
Figure 3 shows the paid amount (R(t) in Equation (62)) and the predicted claims reserve
(R(t) in Equation (60)) relative to the comparison between Strascia and Tripodi (2018) and
our methodology using the residual defined in Equation (48). Figure 4 shows the paid
amount and the predicted claims reserve relative to the comparison between Verdonck
et al. (2009) and our methodology using the residual defined in Equation (49). The obtained
numerical results for the predicted claims reserve for a specific budget year are summarized
in Table 6.
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Table 6. Comparison between our developed methodology and the work of Verdonck et al. (2009) in
predicting claims reserve R(t) for the specific budget year t ∈ [I + 1, I + J] for the two residuals.

Budget

Year (t)

Paid (106 e)

Literature

R(t) (106 e)

Literature

R(t) (106 e)

Residual (Equation (48))

R(t) (106 e)

Residual (Equation (49))

0 135.34 - 135.34 ± 3.05 135.34 ± 2.92

1 216.03 - 216.03 ± 7.56 216.03 ± 7.38

2 294.31 - 294.31 ± 11.12 294.31 ± 10.84

3 353.38 - 353.38 ± 14.22 353.38 ± 13.84

4 431.01 - 431.01 ± 17.14 431.01 ± 16.69

5 463.80 - 463.80 ± 19.19 463.80 ± 18.65

6 478.03 - 478.03 ± 20.99 478.03 ± 20.33

7 493.10 - 493.10 ± 22.89 493.10 ± 22.20

8 507.59 - 507.59 ± 25.35 507.59 ± 24.53

9 535.26 - 535.26 ± 28.75 535.26 ± 27.84

10 - 401.96 403.74 ± 23.07 402.54 ± 22.35

11 - 309.07 310.82 ± 18.74 309.57 ± 18.13

12 - 236.98 238.43 ± 15.25 237.42 ± 14.75

13 - 178.16 179.39 ± 12.26 178.56 ± 11.86

14 - 129.86 131.02 ± 9.57 130.23 ± 9.24

15 - 92.78 93.62 ± 7.45 93.08 ± 7.19

16 - 62.85 63.36 ± 5.61 63.08 ± 5.43

17 - 36.63 37.03 ± 3.82 36.83 ± 3.69

18 - 15.12 14.87 ± 1.93 15.11 ± 1.90

In this case, the authors provided the results concerning the value of the S(β∗) function,
the corresponding dispersion parameter (ϕ), and the claims reserve amount applied to
the Run-Off in the work of Verdonck et al. (2009). The results are shown in Table 7. Since
Verdonck et al. (2009) did not provide the errors associated with their stochastic model,
the authors are unable to perform a consistent comparison with this work in the literature,
but they only provide the claims reserve amount coming from a robustification of the
CL method.

Table 7. Comparison between the work of Verdonck et al. (2009) and our proposed methodology
concerning the S(β∗) function (Equation (21)), the dispersion parameter ϕ (Equation (15)), and the
total predicted claims reserve amount Rtot (Equation (61)) for both residuals (Section 3.4).

Residual

(Equation (48))

Reference S(β∗) ϕ Rtot (109 e)

Verdonck et al. (2009) - - 1.46

Our work 8.57 × 106 2.02 × 105 1.47 ± 0.09

Residual

(Equation (49))

Reference S(β∗) ϕ Rtot (109 e)

Verdonck et al. (2009) - - 1.46

Our work 6.81 × 106 1.89 × 105 1.47 ± 0.09
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Figure 3. Computed reserve amount between our approach and the one provided by Verdonck et al.
(2009), using the residual defined in Equation (48) for the GN algorithm. The “blue” bars indicate
the paid amounts computed using Equation (62), while the “yellow” and the “orange” error-bars
indicate the predicted claims reserve computed using Equation (60) for Verdonck et al. (2009) and our
work, respectively.
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Figure 4. Computed reserve amount between our approach and the one provided by Verdonck et al.
(2009), using the residual defined in Equation (49) for the GN algorithm. The “blue” bars indicate
the paid amounts computed using Equation (62), while the “yellow” and the “orange” error-bars
indicate the predicted claims reserve computed using Equation (60) for Verdonck et al. (2009) and our
work, respectively.

Even in this case, and in both cases in the estimation provided by the authors, the
convergence of the GN algorithm is improved because the authors used the GA to calculate
the initial guess of parameters β (see Section 3.5). Furthermore, using the two different
definitions of the residuals, the calculation performed by the authors provides confidence
intervals for the claims reserve that include the values calculated by Verdonck et al. (2009)
using a completely different approach.
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5. The Healthcare Study: The Case of Claims in the Tuscany Region

The main objective is to apply the developed methodology to predict the total claims
reserve to be set aside by an insurance agency. Specifically, the authors worked on the
health insurance context of claims concerning the Tuscany region in Italy to provide results
for the reserve amount required by the region to manage the yearly balance finance system
in healthcare. It is essential to notice that the authors carried out a stochastic analysis on
claims reserve employing the two definitions of residuals described in Section 3.4, pro-
viding accordingly to the SoA a new methodology to deal with claims reserve and the
corresponding errors. The novelty and the contribution of our research take credit not
only from the improvements compared with the SoA but also in the healthcare context. In
order to test our methodology in the healthcare insurance system of the Tuscany region, the
authors proceeded in the following manner. Firstly, the authors performed a preliminary
analysis of the available healthcare insurance data-set to understand the useful information
that could be retrieved in order to compile the Run-Off triangle. Secondly, the authors
compared the CL methodology with the developed stochastic approach. The CL is a deter-
ministic method used in different contexts to compute a one-year reserve. Subsequently, the
authors reproduced the deterministic result with the developed stochastic model. Finally,
the authors found the optimal parameters of the ODP to perform prediction for the entire
claims reserve to provide an outcome for the region which could be used in management,
together with the corresponding confidence intervals.

5.1. Preliminary Analysis

The authors worked with the Centro Gestione Rischio Clinico of the Tuscany region
database concerning the healthcare claims reported from 2010 to 2021. In this Section, the
authors performed a preliminary analysis retrieving the following information:

• Time evolution of the paid claims;
• Single payment for years of the specific claim;
• Total paid amounts.

Starting from the provided data-set, it is possible to compile the following Run-Off
triangle, which is the base of our research (Section 3.1). The rows of the Run-Off triangle
are filled with the incurred years (i.e., from 2010 to 2021). The columns of the Run-Off
triangle are filled with the progression of the payments towards the years. In this way, each
cell represents the delayed payment with respect to the corresponding incurred year. The
Run-Off triangle of health insurance claims for the Tuscany region is shown in Table 8:

Table 8. Paid amount of the Run-Off triangle for health insurance claims for the Tuscany region from
2010 to 2021 (106 e).

yi,j 0 1 2 3 4 5 6 7 8 9 10 11

2010 2.80 5.94 10.1 5.00 4.06 4.28 2.74 1.98 2.64 1.06 1.20 1.27
2011 2.13 11.3 6.15 1.79 2.82 4.29 5.26 7.76 4.91 3.35 1.43
2012 0.95 7.61 7.19 3.25 4.77 3.08 5.03 5.65 3.64 1.74
2013 0.72 8.66 5.68 1.63 3.44 4.06 4.89 3.95 2.50
2014 0.97 9.76 7.67 6.49 4.07 5.66 4.41 3.90
2015 1.50 11.4 7.17 3.95 6.52 5.76 7.87
2016 1.15 5.14 9.14 9.74 3.33 2.95
2017 0.19 6.96 8.92 5.77 3.63
2018 0.10 5.90 9.36 3.68
2019 2.35 5.55 10.9
2020 0.27 6.57
2021 0.81

The variable yi,j in Table 8 identifies the paid amount of the payment for claims that
have been incurred in the ith year with a delay occurring in the jth year. As previously
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discussed, the authors present the deterministic analysis of the Run-Off triangle shown in
Table 8 employing the well-known CL approach. This analysis represents the benchmark
of our research, as it will be compared with the proposed stochastic method by the authors
in the following Sections.

5.2. Chain-Ladder Results

The CL method provides a mechanism to forecast future loss development trends
based on historical patterns. It offers a deterministic perspective on reserving losses for the
subsequent year. This Section outlines the results of the CL method applied to the previous
Run-Off triangle. This approach has been comprehensively explained in the referenced
studies Strascia and Tripodi (2018); Verrall (1991). The results obtained by applying the CL
method to the health insurance context of the Tuscany region are summarized in Table 9.

Table 9. Predicted claims reserve amount R(t) for every single incurred year (t) using the CL method.

t R(t) (e)

2011 1.56 × 106

2012 2.59 × 106

2013 3.97 × 106

2014 9.19 × 106

2015 16.83 × 106

2016 19.17 × 106

2017 22.24 × 106

2018 23.21 × 106

2019 34.07 × 106

2020 29.78 × 106

2021 31.70 × 106

In this case, the predicted claims reserve amount R(t) appearing in Table 9 has been
calculated using Equation (4), while the total predicted claims reserve amount for the
Tuscany region in the incurred years 2010–2021 is roughly: Rtot = 194.32 × 106 e. Figure 5
shows the predicted claims reserve amount R(t) for every single incurred year (2010–2021)
employing the CL methodology. Despite the simplicity of the CL method, several issues
make it unsuitable for performing our analysis. Indeed it cannot provide and predict
changes in the model, and it can only predict the one-year estimate of the claims reserve.
Therefore, a stochastic method is needed to provide more complete results for claims reserve
predictions and confidence intervals. In the following Section 5.3, the authors present the
developed stochastic approach with the corresponding numerical results compared to the
CL approach.

5.3. Stochastic Approach Results

The results obtained by applying the developed stochastic approach to estimate the
claims reserve for the Tuscany region are presented in this Section. Here, the values and
the corresponding errors of the parameters (β∗) resulting from the developed stochastic
approach are shown for the Tuscany region insurance claims using both residual defined in
Equations (48) and (49). The procedure described in Sections 3.4 and 3.5 has been applied
to calculate the β∗ parameters needed to compile the Run-Off triangle. The GA has been
applied firstly to obtain a good initial guess of β parameters, and subsequently, the GN
algorithm has been applied to reach the stationary point β∗. The following Table 10 provides
the results of the entire estimation for the β parameters and the corresponding errors.
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Figure 5. Predicted claims reserve amount R(t) for every single incurred year (2010–2021) using the
CL method.

Table 10. Estimated parameters (β∗) using both residuals defined in Equations (48) and (49).

Residual (Equation (48)) Residual (Equation (49))

Variable Value Error Variable Value Error

c 14.183 0.221 c 14.109 0.226

a1 0.175 0.155 a1 0.197 0.156

a2 −0.022 0.164 a2 0.002 0.165

a3 −0.103 0.170 a3 −0.114 0.172

a4 0.126 0.165 a4 0.140 0.166

a5 0.286 0.165 a5 0.313 0.166

a6 0.191 0.177 a6 0.178 0.179

a7 0.048 0.193 a7 0.055 0.195

a8 −0.011 0.209 a8 −0.047 0.213

a9 0.164 0.217 a9 0.190 0.216

a10 −0.158 0.313 a10 −0.191 0.320

a11 −0.572 0.889 a11 −0.498 0.883

b1 1.655 0.205 b1 1.701 0.210

b2 1.682 0.207 b2 1.740 0.212

b3 1.244 0.220 b3 1.247 0.226

b4 0.994 0.233 b4 1.034 0.237

b5 1.026 0.237 b5 1.075 0.241

b6 1.216 0.238 b6 1.248 0.242

b7 1.239 0.248 b7 1.252 0.253

b8 0.894 0.285 b8 0.925 0.289

b9 0.430 0.355 b9 0.418 0.364

b10 −0.186 0.522 b10 −0.124 0.519

b11 −0.125 0.724 b11 −0.051 0.719
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At this step, it is possible to compute the expectation value µi,j for each insurance year
(2010–2021) and fulfil the Run-Off triangle as shown in Section 4. The following Tables 11
and 12 represent the Run-Off triangles compiled with the estimation provided by the entire
procedure described in Sections 3.4 and 3.6.

Given the expectation values µi,j shown in the previous Tables 11 and 12, the authors
provide the following figures representing the paid amount and the predicted claims
reserve R(t) for the generic budget year (t) from 2010 to 2031 in the Tuscany region.

Referring to the previous Figures 6 and 7, Table 13 presents the complete set of values
concerning the paid amount and the predicted claims reserve R(t) for the generic budget
year (t) from 2010 to 2031 in the Tuscany region.

Table 11. Expectation values µi,j (106 e) computed using the residual defined in Equation (48).

µi,j 0 1 2 3 4 5 6 7 8 9 10 11

2010 1.44 7.55 7.76 5.01 3.90 4.03 4.87 4.98 3.53 2.22 1.20 1.27

2011 1.72 9.00 9.24 5.97 4.65 4.80 5.80 5.94 4.20 2.64 1.43 1.52

2012 1.41 7.39 7.59 4.90 3.82 3.94 4.77 4.87 3.45 2.17 1.17 1.25

2013 1.30 6.81 7.00 4.52 3.52 3.63 4.39 4.49 3.18 2.00 1.08 1.15

2014 1.64 8.57 8.80 5.68 4.42 4.57 5.52 5.65 4.00 2.52 1.36 1.44

2015 1.92 10.1 10.3 6.67 5.19 5.36 6.48 6.63 4.70 2.95 1.60 1.70

2016 1.75 9.14 9.39 6.06 4.72 4.88 5.89 6.03 4.27 2.69 1.45 1.54

2017 1.52 7.93 8.14 5.26 4.09 4.23 5.11 5.23 3.70 2.33 1.26 1.34

2018 1.43 7.47 7.68 4.96 3.86 3.99 4.82 4.93 3.49 2.20 1.19 1.26

2019 1.70 8.90 9.14 5.90 4.60 4.75 5.74 5.87 4.16 2.62 1.41 1.50

2020 1.23 6.45 6.63 4.28 3.33 3.44 4.16 4.25 3.01 1.90 1.02 1.09

2021 0.81 4.26 4.38 2.83 2.20 2.27 2.75 2.81 1.99 1.25 0.68 0.72

Table 12. Expectation values µi,j (106 e) computed using the residual defined in Equation (49).

µi,j 0 1 2 3 4 5 6 7 8 9 10 11

2010 1.34 7.35 7.64 4.67 3.77 3.93 4.67 4.69 3.38 2.04 1.18 1.27

2011 1.63 8.95 9.30 5.68 4.59 4.79 5.69 5.71 4.12 2.48 1.44 1.55

2012 1.34 7.36 7.66 4.68 3.78 3.94 4.68 4.70 3.39 2.04 1.19 1.28

2013 1.20 6.56 6.82 4.17 3.37 3.51 4.17 4.19 3.02 1.82 1.06 1.14

2014 1.54 8.45 8.79 5.37 4.34 4.52 5.37 5.40 3.89 2.34 1.36 1.47

2015 1.83 10.0 10.4 6.38 5.16 5.37 6.38 6.41 4.62 2.79 1.62 1.74

2016 1.60 8.78 9.13 5.58 4.51 4.70 5.58 5.61 4.04 2.43 1.42 1.52

2017 1.42 7.77 8.07 4.93 3.99 4.15 4.93 4.96 3.58 2.15 1.25 1.35

2018 1.28 7.01 7.29 4.45 3.60 3.75 4.46 4.48 3.23 1.94 1.13 1.22

2019 1.62 8.88 9.24 5.64 4.56 4.75 5.64 5.67 4.09 2.46 1.43 1.54

2020 1.11 6.07 6.31 3.86 3.12 3.25 3.86 3.88 2.79 1.68 0.98 1.05

2021 0.81 4.47 4.64 2.84 2.29 2.39 2.84 2.85 2.06 1.24 0.72 0.77



Risks 2024, 12, 24 26 of 29

2010 2015 2020 2025 2030

Year

0

1

2

3

4

5

6

7
10

7

Paid

Estimated

Figure 6. Paid amount and the predicted claims reserve R(t) for the generic budget year (t) from 2010
to 2031 in the Tuscany region computed using the residual defined in Equation (48).
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Figure 7. Paid amount and the predicted claims reserve R(t) for the generic budget year (t) from 2010
to 2031 in the Tuscany region computed using the residual defined in Equation (49).
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Table 13. Representation of the paid amount and predicted claims reserve R(t) for the generic budget
year provided with the two different definitions of the residuals. From the budget year 2022 to 2031,
the values of R(t) are fully predicted.

Budget Year (t)
R(t) (106 e)

Paid Amount

R(t) (106 e)

Residual (Equation (48))

R(t) (106 e)

Residual (Equation (49))

2010 2.80 1.44 ± 0.32 1.34 ± 0.30

2011 8.08 9.27 ± 2.74 8.98 ± 2.71

2012 22.3 18.2 ± 5.79 17.9 ± 5.83

2013 19.5 22.9 ± 7.61 22.5 ± 7.63

2014 22.7 25.9 ± 8.76 25.2 ± 8.69

2015 27.3 31.1 ± 10.6 30.3 ± 10.5

2016 33.6 38.6 ± 13.3 37.8 ± 13.3

2017 32.8 44.9 ± 15.7 43.7 ± 15.5

2018 43.7 47.7 ± 17.0 46.2 ± 16.8

2019 55.6 48.8 ± 17.9 47.0 ± 17.5

2020 46.6 50.5 ± 19.1 48.7 ± 18.8

2021 47.3 50.5 ± 20.7 48.8 ± 20.3

2022 - 46.1 ± 21.2 44.6 ± 21.0

2023 - 37.9 ± 18.1 36.7 ± 17.9

2024 - 30.7 ± 14.6 29.4 ± 14.3

2025 - 25.7 ± 12.6 24.8 ± 12.4

2026 - 21.3 ± 11.1 20.5 ± 10.9

2027 - 16.2 ± 9.27 15.5 ± 9.08

2028 - 11.0 ± 7.10 10.6 ± 6.97

2029 - 6.56 ± 4.75 6.39 ± 4.69

2030 - 3.78 ± 3.08 3.76 ± 3.06

2031 - 1.76 ± 1.60 1.77 ± 1.62

In Table 14, the authors provided the values of the KPIs resulting from the estimation
of the total reserve to be set aside for the Tuscany region insurance claims. Specifically,
the value of the S(β∗) function, the corresponding dispersion parameter (ϕ), the predicted
claims reserve amount for the 2021 incurred year R(2021), and the total predicted claims
reserve Rtot are computed using Equation (61).

The results in Table 14 illustrate the predictive accuracy of the stochastic model
developed by the authors, which was previously validated as described in Section 4. It is
important to note that the absolute errors on the predicted claims reserve are considerably
off an interval of acceptability (i.e., the estimated errors are roughly 50% of the predicted
values for the claims reserve). The reason for this is the high data dispersion that the
stochastic model is unable to overcome. Nevertheless, compared to the current SoA,
the analysis conducted by the authors for the healthcare sector is entirely satisfactory,
as it represents a notable initial approach to estimating the claims reserve in a highly
heterogeneous and mutable context.
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Table 14. Results concerning the Tuscany region analysis providing the values of the KPIs such
as S(β∗) function (Equation (21)), the dispersion parameter ϕ (Equation (15)), the predicted claims
reserve amount for the 2021 incurred year R(2021), and the total predicted claims reserve Rtot.

S(β∗) ϕ R(2021) (106 e) Rtot (106 e)

Measured - - 47.3 -

CL (Table 9) - - 31.7 -

Residual (Equation (48)) 6.78 × 103 6.05 × 105 50.5 ± 20.7 201 ± 103

Residual (Equation (49)) 3.27 × 107 5.94 × 105 48.8 ± 20.3 194 ± 102

6. Conclusions

In this work, the authors contributed to creating a robust protocol to deal with claims
reserve in the healthcare system context. Even if the SoA already presented a well-defined
approach for claims reserve, in the healthcare system, the wide variability, peculiarity,
and aleatory nature of claims made reformulation and subsequent improvements of the
stochastic methodology usually adopted necessary. Therefore, the authors contributed
to the SoA, improving the management of claims reserve in such a way that is easy to
reproduce by the institutions that are the final users (i.e., the Tuscany region) without
increasing computational costs. This study wants to prove how it is possible to handle
healthcare claims using the well-known GLM with an Overdispersed Poisson function with
an improvement in the estimation of the parameters of the quasi-likelihood function, with
an initial guess optimized by a genetic algorithm which glimpses the position of the global
minimum solving the convergence of the Gauss–Newton algorithm. This step is crucial
for the peculiarity and variability of healthcare databases. Possible developments of the
study concern the possibility of expanding the Run-Off tables, predicting the durability
of the entire claim life, and defining a method to better improve error estimations also for
highly dispersed databases such as the one treated in this work in the healthcare context.
Furthermore, it is necessary to create a unique protocol for data management to improve the
quality and accessibility of the data and develop a robust analysis of the incurred velocity.
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Notes
1 Data in the present paper are smoothed for policy and legal motivations.
2 A nuisance parameter is any unspecified parameter necessary to ensure that the model describes the system adequately. In our

case, it represents the dispersion of the measured data.
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