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Abstract: There is growing concern that climate change poses a serious threat to the sustainability of
the insurance business. Understanding whether climate warming is a cause for an increase in claims
and losses, and how this cause–effect relationship will develop in the future, are two significant open
questions. In this article, we answer both questions by particularizing the geographical area of Spain,
and a precise risk, hailstorm in crop insurance in the line of business of wine grapes. We quantify
climate change using the Spanish Actuarial Climate Index (SACI). We utilize a database containing all
the claims resulting from hail risk in Spain from 1990 to 2022. With homogenized data, we consider
as dependent variables the monthly number of claims, the monthly number of loss costs equal to one,
and the monthly total losses. The independent variable is the monthly Spanish Actuarial Climate
Index (SACI). We attempt to explain the former through the latter using regression and quantile
regression models. Our main finding is that climate change, as measured by the SACI, explains
these three dependent variables. We also provide an estimate of the increase in the monthly total
losses’ Value at Risk, corresponding to a future increase in climate change measured in units of
the SACI. Spanish crop insurance managers should carefully consider these conclusions in their
decision-making process to ensure the sustainability of this line of business in the future.

Keywords: climate change; crop insurance; hail risk; quantile regression; regression

1. Introduction

According to the United Nations Climate Action Forum, “climate change refers to long-
term shifts in temperatures and weather patterns. Such shifts can be natural, due to changes
in the sun’s activity or large volcanic eruptions. But since the 1800s, human activities have
been the main driver of climate change, primarily due to the burning of fossil fuels like coal, oil
and gas. Burning fossil fuels generates greenhouse gas emissions that act like a blanket wrapped
around the Earth, trapping the sun’s heat and raising temperatures” UN (2023). This process
is a long-term one, affecting human beings in many ways, such as their lives, properties,
transportation infrastructures, etc. (see, for instance, Pryor 2017; Warren-Myers et al. 2018;
Dundon et al. (2016)). As the insurance business permeates all aspects of economic and
individual human life, providing protection against various claims and substituting ran-
dom losses with assured indemnities, the question of how climate change is affecting
the insurance business has emerged as a critical concern for its present management and
future sustainability.

In recent years, numerous extreme events, such as fires, floods, droughts, storms, and
pandemics, have adversely impacted the balance sheets of insurance companies, prompting
them to withdraw from certain lines of business in geographical areas where losses have
surged to unaffordable levels (see, for instance, AP 2023). In the scientific world, the
concern for the sustainability of the insurance business has led to numerous efforts to
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understand how insurance companies should incorporate the effects of climate change into
their medium- and long-term management (see Wagner 2022; Rao and Li 2023; Courbage
and Golnaraghi 2022; Thistlethwaite and Wood 2018; Savitz and Dan Gavriletea 2019).
The efforts to technically cope with the new situation involve the application of advanced
statistical and data science methodologies (see, for instance, Li and Tang 2022; Lyubchich
et al. 2019; Miljkovic et al. 2018; Heranval et al. 2022). General insurance principles such
as risk insurability, pooling, and diversification are also under discussion in the context
of climate shift (Charpentier 2008). The insurance areas analyzed from the perspective of
climate change include those related to mortality and property losses (see, for instance,
Li and Tang 2022; Miljkovic et al. 2018). Another significant field of research is agricultural
insurance (Al-Maruf et al. 2021; Jørgensen et al. 2020), which is the focus of our paper. In
crop insurance, all weather-related extreme events are relevant and may be influenced by
climate change.

This paper focuses on hailstorm risk in the Spanish crop insurance line of business of
wine grapes. This poses a daunting challenge for insurance managers due to its variability
in both time and space and the fact that its occurrences are relatively local and ubiquitous.
Hail risk in agricultural insurance has been analyzed in previous studies, such as Portmann
et al. (2023), Simbürger et al. (2022), and Reyes et al. (2020). While hailstorms can be
highly damaging to crops, their evolution under global warming has seldom been studied.
In Raupach et al. (2021), the authors explore the influence of conditions such as moisture
and convective instability on the generation of hailstones, providing a geographical outlook
on the future frequency evolution of hailstorms. Notably, it suggests a potential increase
in Europe as anthropogenic warming continues. Another study, Botzen et al. (2010),
employs Tobit regressions and finds a strong positive relationship between hailstorm
activity and damage, correlated with minimum temperatures. This relationship implies that
hailstorm damage may escalate in the future if global warming leads to further temperature
increases. Finally, Niall and Walsh (2005) observe a significant influence of climate change,
measured by Convective Available Potential Energy (CAPE) and the totals–totals index
(TT index), on the frequency and intensity of hail events in various locations around
southeastern Australia. The study utilizes reanalysis data (a dataset comprising a blend of
observations and model simulations) and direct data obtained from the Australian National
Climate Centre.

In this research, we employ successive regression and quantile regression models to
investigate whether climate change influences hailstorm risk at both the expectation and
high quantile levels of certain insurance-relevant variables, such as the monthly number
of claims, loss costs equal to one, and total losses. Regression is a crucial methodology in
insurance rate making (see, for instance, Lemaire 2012; Denuit et al. 2007; De Jong and
Heller 2008; and Vilar-Zanón et al. 2020 for posterior rate making in agricultural insurance).
Quantile regression is a non-parametric methodology that extends the idea of regression
to quantiles and traces back to Koenker and Bassett (1978). We will apply it using the R
package quantreg (Koenker 2015). This methodology is more recent in its application to
insurance and is basically oriented to rate making; see, for instance, Heras et al. (2018) and
Baione and Biancalana (2021).

The cultivation of Spanish wine grapes constitutes a particularly significant segment
in agricultural insurance, especially considering that Spain boasts the largest cultivated
area for wine grapes among all of the European countries (Statista 2023). Based on our
model results, we conclude that climate change accounts for the observed increase in the
related variables from 1990 to 2022.

2. Materials and Methods
2.1. The Database on Hail Risk in Spanish Wine Grapes

The database on wine grape hailstorm claims is sourced from Agroseguro, the Spanish
coinsurance pool of agricultural insurance, grouping seventeen insurance companies.
Agroseguro manages the risks and policies on behalf of those companies and participates
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in the Spanish system of agricultural insurance, together with the Spanish State and
professional agricultural associations and cooperatives. During the year 2022, its wine
grapes line of business has insured 46.44% of the total 860,791 ha of cultivated surface,
and the total value of the production (total insured sum) has been EUR 1091.28 M (see
Agroseguro 2023).

The database comprises 7,547,286 records spanning from 1990 to 2022, containing
information on 49 provinces and 240 regions, with 893,144 yearly policies. Over the 33 years,
there have been 692,733 claims, and relevant yearly figures are presented in Table 1. Figure 1
visually depicts the evolution of both the number of plots and hailstorm claims during the
specified period. Consequently, this comprehensive database offers a detailed perspective
on hailstorm risk in the Spanish wine grapes line of business from 1990 to 2022. The ’Crop
Yield’ column in Table 1 is derived from individual plot information within the database,
representing the expected potential production in each insured plot based on its normal
edaphic, climatic, planting, sowing, and cultivation conditions.

The claim data have been aggregated monthly, and months without claims have been
filled with zeros, as shown in the blank spaces in Table 2. This approach enables a nuanced
understanding of seasonal patterns and trends over the years. Such detail is crucial for
studying the impact of climate change, particularly in determining the relevant season for
hailstorms, which will be later defined as a sequence of months.

Table 1. Spanish wine grape insurance data, yearly figures.

Year Total Insured Sum (EUR) Total Loss (EUR) Crop Yield (kg) Number of Policies Number of Plots Number of Claims

1990 217,652,835 6,200,518 1,388,430,463 28,100 134,050 15,291
1991 248,557,853 3,560,276 1,550,473,335 31,621 152,005 12,000
1992 307,714,572 7,904,540 1,912,566,029 39,929 198,611 19,235
1993 284,919,972 6,826,730 1,829,365,370 37,832 195,007 17,456
1994 297,271,994 2,738,423 1,901,295,250 38,984 204,313 8619

1995 242,077,610 5,569,047 1,400,284,025 29,129 167,305 18,063
1996 327,901,655 4,593,910 1,605,894,257 32,859 193,004 9282
1997 395,633,563 14,096,834 1,957,379,446 37,049 225,642 25,611
1998 441,049,489 13,007,045 1,971,311,184 34,288 213,158 17,656
1999 437,265,055 14,794,992 1,917,674,498 32,706 206,014 24,029

2000 568,328,639 9,741,835 2,090,534,475 34,000 219,489 10,682
2001 560,603,175 6,759,693 2,011,166,692 30,996 201,894 7641
2002 522,149,823 7,945,331 1,943,561,894 28,876 190,731 13,152
2003 562,951,706 18,847,196 2,076,438,149 29,037 195,308 16,855
2004 598,344,779 18,271,523 2,163,019,536 28,823 199,977 17,954

2005 595,592,273 10,960,930 2,098,146,664 26,412 198,760 14,503
2006 551,669,449 23,246,532 1,899,984,824 23,194 183,900 22,537
2007 577,020,427 42,553,289 1,964,259,110 22,665 189,357 22,043
2008 653,256,796 15,265,573 2,230,822,485 24,461 210,449 14,725
2009 628,159,377 19,773,933 2,097,168,866 21,950 204,072 14,280

2010 597,317,970 10,530,360 1,951,036,257 19,993 193,284 13,732
2011 516,300,441 23,659,028 1,746,476,820 17,927 174,013 21,883
2012 644,892,414 15,259,638 2,292,548,909 21,480 209,162 11,043
2013 630,157,964 30,235,918 2,268,987,633 21,075 231,153 32,294
2014 687,759,537 18,986,141 2,389,698,870 20,650 238,865 26,823

2015 704,818,295 33,449,574 2,426,866,357 20,139 243,458 37,138
2016 772,792,789 11,049,778 2,633,586,202 20,947 268,232 11,205
2017 821,585,396 20,152,939 2,768,418,806 21,023 284,922 25,283
2018 939,523,058 37,068,415 3,010,843,844 22,839 333,156 39,809
2019 1,028,808,795 29,643,282 3,154,082,113 23,467 359,053 34,916

2020 1,038,651,982 41,498,451 3,159,232,107 23,636 368,346 40,465
2021 1,056,633,225 53,137,810 3,192,077,192 23,537 372,611 48,217
2022 1,091,289,076 30,551,509 3,279,107,478 23,520 387,991 28,479
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Figure 1. Yearly numbers of plots (blue) and claims (pink) over the time period.

Table 2. The normalized monthly number of claims.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1990 0.0015 0.3081 2.3514 0.4118 1.5308 3.1197 3.6792
1991 0.0408 0.4092 0.1895 2.2058 0.3756 4.6512 0.0164 0.0007
1992 0.0030 1.6162 1.2416 2.4082 3.4349 0.9415 0.0227
1993 0.0021 0.3123 1.3200 2.8835 1.5353 1.9061 0.9230 0.0692
1994 0.0015 0.4033 1.0053 1.2045 0.3132 0.9862 0.2966 0.0078
1995 0.0048 0.7208 1.0663 1.0185 0.9091 5.9801 1.0831 0.0030
1996 0.0047 0.3280 0.4000 0.9746 1.4430 1.0098 0.6124 0.0326
1997 0.0004 0.0049 0.0315 1.3145 0.6107 3.8978 4.5687 0.9161 0.0031
1998 0.0033 0.0009 0.0033 1.6504 1.3586 2.4189 0.4372 1.9502 0.4199 0.0403
1999 0.0005 0.0010 0.2451 0.9053 2.4848 3.5968 0.4713 3.9575
2000 0.0023 0.0838 1.5768 0.8388 0.5627 1.0215 0.7795
2001 0.0490 1.2437 0.0064 0.9000 0.6142 0.8524 0.1184
2002 0.0005 0.0661 0.2144 0.6218 1.0785 3.7844 1.0963 0.0131
2003 0.0005 0.0046 0.5765 2.2529 0.9503 3.6619 1.1833
2004 0.0020 0.1340 0.5636 1.4272 1.8632 1.7572 3.1424 0.0835
2005 0.0010 0.0795 0.4593 2.3747 2.2228 1.3232 0.8226 0.0136
2006 1.0962 0.5753 4.6688 4.4209 1.0120 0.4818
2007 0.0037 1.1259 8.2833 0.9670 0.0438 0.7763 0.4309 0.0048
2008 0.0048 0.0889 2.6448 0.7579 1.5101 0.6781 1.2972 0.0048 0.0010
2009 0.0304 2.0101 1.7969 0.6243 2.0924 0.4425 0.0010
2010 0.0005 0.0021 0.5143 1.8755 1.2003 1.8227 1.3855 0.3032
2011 0.0086 1.0183 6.0122 1.5964 1.8861 1.9119 0.1419
2012 0.0010 0.4174 2.0032 0.6574 1.7685 0.3151 0.1143 0.0029
2013 0.0017 0.0346 4.3339 0.7419 4.9547 1.7841 1.3454 0.7735
2014 0.0599 0.6962 3.8486 4.4770 0.8302 1.3162 0.0013
2015 0.0008 0.2234 2.6530 2.7483 4.9491 3.2531 1.4265
2016 0.0112 0.1831 1.0293 0.4351 1.0908 0.2427 1.1151 0.0701
2017 0.8560 1.1796 3.4915 2.5200 0.5728 0.2538
2018 0.0018 0.3554 1.8739 1.9648 4.4922 2.0924 1.1679 0.0006
2019 0.0042 0.3228 0.9428 0.0089 4.6236 2.9622 0.8600
2020 0.0176 0.6532 0.9893 2.9904 3.8605 2.2446 0.2259 0.0041
2021 0.3387 0.7536 5.1348 0.6975 2.4414 3.5740 0.0003
2022 0.0034 0.1925 0.5289 0.1497 2.3617 3.7429 0.3593 0.0018

2.1.1. The Normalized Number of Claims, N

We normalize the number of claims (yearly or monthly) by dividing it by the num-
ber of plots for that year. In essence, we calculate the proportion of policies on which
claims occurred compared to the total number of plots for that year (refer to Table 2 for
monthly figures).
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The plot of normalized yearly claims is illustrated in Figure 2. It showcases the actual
yearly trend in the number of hailstorm claims in the Spanish wine grape line of business
from 1990 to 2022, considering the growth in the number of plots. The graph reveals a
jagged shape, indicating significant variation in the yearly number of claims, reflecting the
high uncertainty and variability of hailstorm risk. Nevertheless, its upward trend suggests
an increase in the frequency of the normalized number of hailstorm events, a phenomenon
we aim to explain through climate warming.

Figure 2. Yearly normalized number of hailstorm claims and its linear trend.

Figure 3 illustrates the trend in the number of monthly hailstorm claims from January
1990 to December 2022. The data are normalized to more accurately depict the relative
changes in the number of claims from month to month.

Figure 3. Monthly number of claims (normalized) from January 1990 to December 2022.

Additionally, in Table 2 and Figure 3, we observe a significant and clear seasonal pat-
tern. The majority of hail claims occur from April to September, a pattern likely associated
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with the weather conditions that lead to hailstorms and the growth cycle of wine grapes.
This observation is crucial as it allows us to define the period from April to September as
the hailstorm season, which will be utilized in our models to explain insurance claims and
losses attributed to climate change.

2.1.2. The Normalized Number of Loss Costs Equal to One, LC1

The loss cost is determined by the ratio of severity over insured capital, offering a
straightforward measure of the extent of damage caused by a claim. Moving forward, we
will denote LC1 for the monthly number of loss costs equal to one (the time-frame, whether
monthly or yearly, will be evident from the context). When LC1 > 0, it signifies that the
number of losses equals the insured capitals, indicating the maximum level of burden for
the insurance company in those claims. In Figure 4, we present the yearly normalized LC1
as a percentage of the yearly number of claims. While the rate remains low in most years,
several spikes indicate instances where hailstorms resulted in significant economic losses.
The least squares line, overall, demonstrates an increasing trend, suggesting a rise in the
maximum damages over time. Our goal is to elucidate this long-term increase through the
influence of climate change.

Figure 4. Yearly normalized LC1.

2.1.3. The Homogenized Losses, L

Over time, factors such as inflation, increases in the number of policies and/or culti-
vated surfaces, and rising productivity levels may influence insurance losses. Consequently,
claims of similar intensity at different dates may lead to larger losses than in previous years.
Therefore, implementing a homogenization process becomes crucial when analyzing insur-
ance losses over time. This homogenization enables more accurate and fair comparisons
across time, facilitating a thorough understanding of the changing impacts of insurance
claims and their economic consequences (see Botzen et al. 2010; Pielke and Landsea 1998;
Barthel and Neumayer 2012).

In our research, we use a specific normalization formula to analyze hailstorm losses.
This formula allows us to effectively compare loss data across different years, even in
changing market conditions and agricultural productivity. The formula for normalized
insurance loss is:

Homogeneous Monthly Lossj,k =
Monthly Lossj,k

Insurance Value Indexk
, (1)
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where Monthly Lossj,k represents the total insurance losses, where j = Jan, Feb, . . . , Dec,
and k = 1990, . . . , 2022. The Insurance Value Indexk is a specially designed index that
accounts for annual changes in insurance capital and crop yields since 1990. The calculation
method for the insurance value index is as follows:

Insured Value Indexk =
Insured Capitalk

Insured Capital1990
· Yield1990

Yieldk
, k = 1990, . . . , 2022. (2)

This index is an annual time series that comprehensively accounts for changes in total insur-
ance capital and crop yields since 1990. Specifically, the index reflects the relative changes
in annual insurance capital compared to the baseline level in 1990. It also incorporates
yearly variations in crop yield to reflect fluctuations in agricultural production and market
conditions. Through this approach, our insurance value index effectively homogenizes
hailstorm loss data across different years, enabling fair and consistent comparisons. Thus,
even amid changes in market conditions and agricultural productivity, we can accurately
measure and analyze the trends and impacts of hailstorm losses. Henceforth, we will
consistently work with homogenized losses, even when briefly referred to as losses.

The consideration of the logarithm of insurance losses is motivated by two key factors.
Firstly, this transformation helps moderate the impact of outliers on the model by reducing
data dispersion, contributing to a more robust model. Secondly, the logarithmic transforma-
tion stabilizes the variance structure of the data, enhancing the accuracy of the regression
(see Benoit 2011). As depicted in Figure 5, logarithmic losses exhibit greater stability than
the original ones. Notably, we apply the logarithmic transformation only to months with
claims, while months with no claims are recorded as zeroes.

Figure 5. Monthly total losses for the period January 1990–December 2022. The light blue points are
the homogeneous losses and the dark blue points are their logarithms.

We can further analyze the total loss variable by examining its yearly figures in Figure 6,
where three of its yearly quantiles (90th, 95th, and 99th) are plotted, revealing increasing
trends over time in all three cases. This growth seems to support the idea that climate-
change influence might still be significant for higher probability levels, not only for means.
We aim to test this hypothesis later. Finally, it is worth noting that if the frequency and
severity of hailstorm extreme events continue to increase over time, this could potentially
impact the business’s sustainability. To what extent, though? We attempt to quantify this
effect in our later analysis.
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Figure 6. Yearly total loss quantiles p = 0.9, 0.95, 0.99.

2.2. The Spanish Actuarial Climate Index (SACI)

Up to this point, we have presented and explained the data related to the dependent
variables: the normalized monthly number of claims (N), the normalized number of loss
costs equal to one (LC1), and the homogenized monthly total losses (L). We now shift our
focus to the independent variable, where our aim is to use an index of climate change.

To assist insurance companies in measuring and managing climate risk, actuaries in
North America have defined the Actuaries Climate Index™ (ACI). This index combines
information from several crucial weather variables derived from the historical records of the
United States and Canada. The ACI divides the main geographical area (USA and Canada)
into a grid of cells corresponding to a specific resolution. It then collects relevant historical
meteorological data for each cell to calculate the six ACI components: days of warm
temperature (T90), days of cool temperature (T10), precipitation (P), drought (D), wind
speed (W), and sea level (S). For each cell, the ACI utilizes the reference period from 1961
to 1990. Mean and standard deviations are calculated for all the components during this
period. Subsequently, the data are normalized by these figures, allowing variations to be
measured in units of the corresponding reference period standard deviation. Subsequently,
the ACI calculates the mean of the six normalized components to derive a cell-wise index.
Notably, the T10 component is subtracted to ensure a meaningful magnitude:

ACI =
1
6
(T90std − T10std + Dstd + Pstd + Wstd + Sstd) (3)

Finally, the ACI relative to any geographical area within the main one is calculated as
the average of the cell-wise indexes covering the area of interest. Additionally, the ACI
can be customized for any given season by collecting the data specific to that season and
following the same process. In summary, any increase in ACI observed after 1990 will
indicate a warming trend in that area, approximately measured in standard deviation units
(see ACI 2018).

The Iberian Actuarial Climate Index (IACI) is the specific actuarial climate index for
the Iberian Peninsula, constructed using the ACI method (see Zhou et al. 2023), but utilizing
data specific to the Iberian Peninsula sourced from the ERA5 Re-Analysis. The ERA5-Land
reanalysis data is a high-resolution dataset with a horizontal resolution of 0.1° × 0.1° for
each grid cell, generated by replaying the land component of the ECMWF ERA5 climate
reanalysis. Reanalysis combines model data with observations from various sources,
including satellites, weather stations, and ocean buoys (see Zhou et al. 2023). For our
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analysis, we will leverage the Spanish regional monthly index derived from the Iberian
Actuarial Climatic Index (SACI), providing a comprehensive understanding of climatic
changes in Spain.

Figure 7 illustrates the variation in the SACI from April to September for each year
spanning from 1961 to 2022. Examining these subplots reveals noticeable trends, particu-
larly in certain months such as July and August, which exhibit a significant upward trend
in recent years. Conversely, other months, such as April and May, display relatively stable
fluctuations. The graph unveils changes in climatic conditions during the peak season of
hail disasters each year. Importantly, the rising trend observed from April to September
may indicate alterations in meteorological conditions within these months, potentially
linked to broader trends in global climate change.

Figure 7. Annual SACI variation from April to September (1961–2022) as an indicator of climate
change during the hailstorm season.

2.3. Methods: Linear and Quantile Regressions

This paper aims to investigate the relationship between the Spanish Actuarial Climate
Index (SACI) and its components and hailstorm damages in the Spanish wine grapes
insurance line of business. We utilize both linear regression models (Weisberg 2005) and
quantile regression methods (Koenker 2005) to analyze the data. Linear regression is a
commonly employed technique for estimating the linear association between a dependent
variable and one or more independent variables. Its general formula is expressed as follows:

E(Y) = β0 + β1X1 + β2X2 + . . . + βnXn + ε, (4)

In (4), Y represents the dependent variable, X1, X2, . . . , Xn are the independent variables,
β0 is the intercept, β1, β2, . . . , βn are the coefficients, and ε is the error term. For the sake of
concision, linear models such as (4) will be noted as:

Y ∼ X1 + X2 + . . . + Xn (5)

For quantile regression, the general form is:

Qτ(Y|X) = Xβτ , (6)
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where Qτ(Y|X) denotes the τ − th quantile of the conditional distribution of the response
variable Y given the design matrix X with columns X1, . . . , Xn, and the vector βτ represents
the quantile regression coefficients. Again for the sake of concision, a model such as (6) will
be noted as:

Qτ(Y) ∼ X1 + . . . + Xn (7)

Linear regression offers insights into the relationship between the SACI and the expectations
of hailstorm claims variables, whereas quantile regression provides similar insights for
their quantiles.

As mentioned earlier, hailstorm claims for Spanish wine grapes are predominantly re-
ported from April to September, corresponding to the primary occurrence of hail claims. In
the subsequent analysis, three independent variables related to hail claims will be utilized:

• Monthly normalized number of claims, N.
• Monthly number of loss costs equal to one, LC1.
• Monthly homogenized total losses, L.

In linear regression, R2 can be calculated as:

R2 = 1 − SSR
SST

(8)

where SSR = ∑n
i=1(Yi − Ŷi)

2 is the sum of squares of residuals and SST = ∑n
i=1(Yi − Ȳi)

2

is the total sum of squares. In quantile regression, we will calculate a pseudo-R2 for the
goodness of fit that is no longer based on Ordinary Least Squares (OLS) calculations but on
absolute errors (see Koenker and Machado 1999), using the R function goodfit().

3. Results
3.1. Monthly Normalized Number of Claims, N

In Table 3, we present the results of three linear regression models designed to explore
the relationship between climate variables, such as the SACI and its components, and the
mean of N.

In model 1
N ∼ SACI, (9)

we explore the influence of the monthly SACI on the mean of N and find it to be significant
at a 1% level. This suggests a certain influence on the number of hail claims. However, the
deficient R2 = 0.08 indicates that the SACI alone does not explain the variations well in the
mean of N.

In model 2,
N ∼ T90std + T10std + Dstd + Pstd + Wstd + Sstd (10)

we introduce the components of the SACI to discern their impact on the mean of N.
Notably, high-temperature days (T90std) and sea level (Sstd) are significant, suggesting
a potential link between these two SACI components and the mean. However, despite
their significance, the overall explanatory power of the model, as indicated by R2 = 0.14,
remains low. While extreme heat and sea level contribute to the predictive model, additional
variables are needed to enhance the accuracy of the analysis.

In model 3, we test the formula

N ∼ T90std + T10std + Dstd + Pstd + Wstd + Sstd + APR + · · ·+ SEP, (11)

which incorporates the months from April to September, covering the high-incidence
season of hailstorms. Despite the statistical significance observed for precipitation (Pstd)
and wind (Wstd) with coefficients of opposite signs, the overall explanatory power of
the model, indicated by the R-squared value R2 = 0.5, remains moderate, though it is
significantly improved from the preceding case. Notably, the month variables attain
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statistical significance at the 1% level, except for April, which is significant at the 10% level.
This affirms the seasonal pattern in the occurrence of hail events.

In summary, while the relationship between the mean of N and the SACI appears frag-
ile in model 1 (Equation (9)), evidence from models 2 (Equation (10)) and 3 (Equation (11))
suggests that components such as high-temperature days (T90std), precipitation (Pstd),
wind (Wstd), and sea level (Sstd) explain the variation of the mean of N up to a certain
point. Notably, the wind component is significant in model 3 (Equation (11)), with a nega-
tive β, indicating a potential opposite effect on N from the other significant components.
Additionally, the season variables from April to September are also significant, as expected.

Table 3. Linear regression results for N, models 1, 2, and 3 (see Equations (9)–(11)). For each
independent variable, we show the β value, the p-value ( *, **, ***), and the standard deviation
in parenthesis.

Dependent Variable:

Number of Claim

Model 1 Model 2 Model 3

SACI 0.008 ***
(0.001)

T90std 0.002 *** 0.001
(0.001) (0.001)

T10std 0.002 0.0005
(0.001) (0.001)

Pstd −0.002 0.003 ***
(0.001) (0.001)

Dstd −0.001 −0.0001
(0.001) (0.001)

Wstd −0.001 −0.003 ***
(0.001) (0.001)

Sstd 0.002 *** 0.0004
(0.0004) (0.0004)

April 0.003 *
(0.002)

May 0.017 ***
(0.002)

June 0.017 ***
(0.002)

July 0.023 ***
(0.002)

August 0.020 ***
(0.002)

September 0.013 ***
(0.002)

Constant 0.004 *** 0.003 *** −0.0002
(0.001) (0.001) (0.001)

Observations 396 396 396
R2 0.081 0.138 0.502
Adjusted R2 0.079 0.125 0.487
Residual Std. Error 0.012 (df = 394) 0.012 (df = 389) 0.009 (df = 383)
F Statistic 34.868 *** (df = 1; 394) 10.398 *** (df = 6; 389) 32.197 *** (df = 12; 383)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

Next, we move to the study of the influence of the SACI and its components on the
quantiles of N. For this, we begin with model 4:

Qτ(N) ∼ SACI, τ = 0.9, 0.95, 0.99. (12)

The results are reported in Table 4. At the 90th percentile, the SACI exhibits a sta-
tistically significant positive association with the number of claims (coefficient = 0.018,
p < 0.01). For the 95th percentile, although positive, the association is not significant
(coefficient = 0.014, p > 0.1); the confidence interval at 95% spans both negative and posi-
tive halves of the real line. At the 99th percentile, the positive relationship is marginally
significant (coefficient = 0.005, p < 0.1), but the confidence interval is similarly inconclusive.
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The confidence intervals for the 99th and 95th percentiles include both positive and negative
values, suggesting a degree of uncertainty regarding the precise impact of the SACI. The
two marginally significant positive coefficients, along with confidence intervals spanning
from slightly negative to positive values, indicate that the relationships between the SACI
and N at those percentiles are not as conclusively positive as observed at the lower 90th
percentile. The inclusion of zero in the intervals suggests the possibility of a null effect or a
very modest effect that is not statistically distinguishable from zero. In Table 4, we observe
that the pseudo-R-squared decreases as the quantile increases in quantile regression. This
decrease in pseudo-R-squared at higher quantiles suggests that the model’s explanatory
power diminishes for extreme observations. It indicates the presence of additional factors
or complexities contributing to the variability in the upper tail of the distribution.

Table 4. Quantile regression results for model 4 (Equation (12)).

Dependent Variable:

Number of Claim ( Normalized)

τ = 0.9 τ = 0.95 τ = 0.99

SACI 0.018 *** 0.014 0.005 *
(0.013, 0.023) (−0.004, 0.031) (−0.001, 0.011)

Constant 0.012 *** 0.026 *** 0.045 ***
(0.008, 0.015) (0.014, 0.038) (0.041, 0.049)

Observations 396 396 396
Pseudo R2 0.0928 0.0420 0.0173

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

The scatter plot in Figure 8 illustrates the influence of the SACI on the quantiles of N,
based on the information in Table 4. The quantile lines correspond to model 4 (Equation (12).
With caution, we observe that an increase in the SACI leads to an increase in all three levels
of Qτ . Additionally, it appears that the higher the probability level, the less steep the
quantile line.

In model 5, we introduce the months relevant to hail risk:

Qτ(N) ∼ SACI + APR + · · ·+ SEP, (13)

while in model 6 we introduce the SACI components together with the months as indepen-
dent variables:

Qτ(N) ∼ T90std + T10std + Dstd + Pstd + Wstd + Sstd + APR + · · ·+ SEP, (14)

In Table 5, the results for these two quantile regression models show that both the SACI
and its components, except for drought (Dstd), significantly impact the normalized number
of claims across different quantiles. For the significant variables, confidence intervals lie
on either side of the origin. In the cases of T90std, T10std, Pstd, and Sstd, they are on the
positive side, indicating an increasing influence on Qτ(N). For Wstd, this happens on the
negative side, indicating that an increase in the wind component results in a decrease
in the corresponding quantile of N (similar to what was observed in the mean of N; see
model 3, Equation (11)). These results suggest that the SACI, as a comprehensive climate
index, has a substantial impact on the extremes of the number of claims, N. The months
constituting the hailstorm season are all significant, as expected. As explained in the
previous section, pseudo-R-squared values are calculated following Koenker and Machado
(1999). The values obtained for these six models all exceed 0.5, indicating a not negligible
fitting score for all these models.
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Figure 8. Scatter plot of the monthly normalized number of claims, N, versus the SACI. Regression
and quantile regression (probabilities τ = 0.9, 0.95, 0.99) lines corresponding to model 1 (Equation (9),
Table 3) and model 4 (Equation (12), Table 4).

Table 5. Results for quantile regression for the normalized number of claims, N.

Dependent Variable:

Number of Claims ( Normalized)

Model 5_0.9 Model 5_0.95 Model 5_0.99 Model 6_0.9 Model 6_0.95 Model 6_0.99

SACI 0.0001 *** 0.0001 *** 0.0008 ***
(0.00003, 0.0001) (0.0001, 0.0002) (0.0007, 0.0010)

T90std 0.00003 *** 0.0002 *** 0.0017 ***
(0.00002, 0.00005) (0.0001, 0.0002) (0.0015, 0.0019)

T10std 0.0001 *** 0.0001 ** 0.0009 ***
(0.00003, 0.0001) (0.000003, 0.0002) (0.0006, 0.0013)

Pstd 0.0001 *** 0.0003 *** 0.0019 ***
(0.00005, 0.0001) (0.0002, 0.0004) (0.0015, 0.0022)

Dstd −0.00002 0.0001 0.0003
(−0.0001, 0.00001) (−0.00002, 0.0002) (−0.0001, 0.0007)

Wstd −0.00005 *** −0.0001 *** −0.0017 ***
(−0.0001, −0.00003) (−0.0002, −0.0001) (−0.0020, −0.0015)

Sstd 0.00002 *** 0.0001 *** 0.0008 ***
(0.00002, 0.00003) (0.00002, 0.0001) (0.0007, 0.0010)

April 0.0101 *** 0.0111 *** 0.0153 *** 0.0099 *** 0.0105 *** 0.0163 ***
(0.0100, 0.0101) (0.0110, 0.0112) (0.0150, 0.0156) (0.0099, 0.0100) (0.0104, 0.0107) (0.0157, 0.0169)

May 0.0264 *** 0.0600 *** 0.0817 *** 0.0265 *** 0.0596 *** 0.0798 ***
(0.0264, 0.0265) (0.0599, 0.0601) (0.0814, 0.0819) (0.0264, 0.0265) (0.0594, 0.0598) (0.0792, 0.0804)

June 0.0348 *** 0.0465 *** 0.0495 *** 0.0347 *** 0.0461 *** 0.0422 ***
(0.0347, 0.0348) (0.0464, 0.0466) (0.0493, 0.0498) (0.0346, 0.0347) (0.0459, 0.0463) (0.0415, 0.0428)

July 0.0448 *** 0.0492 *** 0.0482 *** 0.0448 *** 0.0483 *** 0.0432 ***
(0.0448, 0.0449) (0.0491, 0.0493) (0.0480, 0.0485) (0.0447, 0.0448) (0.0481, 0.0484) (0.0426, 0.0439)

August 0.0373 *** 0.0455 *** 0.0589 *** 0.0372 *** 0.0449 *** 0.0572 ***
(0.0373, 0.0374) (0.0454, 0.0456) (0.0586, 0.0591) (0.0371, 0.0372) (0.0448, 0.0451) (0.0566, 0.0579)

September 0.0356 *** 0.0394 *** 0.0457 *** 0.0355 *** 0.0392 *** 0.0423 ***
(0.0356, 0.0357) (0.0393, 0.0395) (0.0454, 0.0460) (0.0355, 0.0356) (0.0390, 0.0394) (0.0416, 0.0429)

Constant 0.00003 *** 0.0001 *** 0.0006 *** 0.0001 *** 0.0003 *** 0.0020 ***
(0.00001, 0.0001) (0.00004, 0.0001) (0.0005, 0.0007) (0.0001, 0.0001) (0.0002, 0.0004) (0.0017, 0.0023)

Observations 396 396 396 396 396 396
Pseudo R2 0.5607 0.5771 0.5780 0.5609 0.5780 0.6475

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.
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3.2. Monthly Normalized Number of Loss Costs Equal to One, LC1

Next, we explore the relationship between LC1 as the dependent variable and the
SACI and its components as independent variables. It is important to note that a claim with
a loss cost equal to 1 implies that the loss equals the value of the insured capital, indicating
the full scale of damage for that claim.

In model 7, we investigate the linear regression with the SACI alone as an independent
variable:

LC1 ∼ SACI, (15)

while model 8 also includes the months composing hailstorms season:

LC1 ∼ SACI + APR + · · ·+ SEP, (16)

Results for both models are presented in Table 6. Model 7 (Equation (15)) indicates that the
SACI is statistically significant at the 1% level, with a β coefficient of 0.0003. However, the
R-squared value is extremely low, R2 = 0.024, suggesting a very weak explanatory power
of the model.

Table 6. Linear regression for number of loss cost = 1.

Dependent Variable:

Number of Claims (Loss Cost = 1)

Model 7 Model 8

SACI 0.0003 *** 0.0002 *
(0.0001) (0.0001)

April −0.00001
(0.0002)

May 0.001 ***
(0.0002)

June 0.0003
(0.0002)

July 0.001 ***
(0.0002)

August 0.0004 **
(0.0002)

September 0.0002
(0.0002)

Constant 0.0001 −0.0001
(0.0001) (0.0001)

Observations 396 396
R2 0.024 0.146
Adjusted R2 0.021 0.131
Residual Std. Error 0.001 (df = 394) 0.001 (df = 388)
F Statistic 9.608 *** (df = 1; 394) 9.475 *** (df = 7; 388)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

In model 8 (Equation (16)), with the introduction of the months as independent
variables (April to September), we observe that only May, July, and August are statistically
significant among the month variables. This is a notable difference compared to the case
of the number of claims, N, suggesting that not every month in the hailstorm season is
relevant to the loss costs being equal to one—only May, July, and August. Overall, the
R-squared value of the model increases to 0.146, indicating an improvement in its ability to
explain the mean of LC1. In summary, through model 8 (Equation (16)), we have found
that the SACI influences, to a certain extent, the mean of LC1. An increase of one unit in
the SACI would result in an extremely slight increase in this mean by a factor of 0.0003.
Additionally, during the hailstorm season, only May, July, and August are significant for
the mean LC1.

In Figure 9, we observe the increasing line given by model 7 (Equation (15) predicting
the mean LC1 based on the values of the SACI. Additionally, we find quantile regression
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lines corresponding to probability levels τ = 0.9, 0.95, 0.99. In all three cases, we have an
increasing line. The three lines correspond to the quantile regression defined by model 9:

Qτ(LC1) SACI, τ = 0.9, 0.95, 0.99. (17)

In Table 7, the coefficient for the variable SACI is statistically significant at the 1% level
for both the 90th and 95th percentiles. This signifies a discernible positive relationship
between the SACI and LC1 at these percentiles, underscoring its role in influencing LC1.
However, at the 99th percentile, there is no significance, and the confidence interval contains
zero. This model is relatively weak, as indicated by the very low values of the pseudo-R2.

Next, in model 10 we introduce the months in the quantile regression using

Qτ(LC1) ∼ SACI + APR + · · ·+ SEP, τ = 0.9, 0.95, 0.99. (18)

We have finally decomposed the index into its components, adding the months in the
quantile regression model 11 for the same three τ-values:

Qτ(LC1) ∼ T90std + T10std + Dstd + Pstd + Wstd + Sstd + APR + · · ·+ SEP, (19)

Table 7. Quantile regression results for model 9 (Equation (17).

Dependent Variable:

LC1

90th 95th 99th

SACI 0.001 *** 0.001 *** 0.001
(0.0004, 0.001) (0.001, 0.001) (−0.008, 0.010)

Constant 0.0003 *** 0.001 *** 0.003
(0.0001, 0.001) (0.0003, 0.001) (−0.003, 0.009)

Observations 396 396 396
Pseudo R2 0.0967 0.0742 0.0411

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

Figure 9. Scatter plot of LC1 versus the SACI. The lines represent linear regression and quantile
regressions for three different quantiles (0.9, 0.95, and 0.99) corresponding to models 6 and 8.

In Table 8, we summarize the results corresponding to models 10 (Equation (18))
and 11 (Equation (19)). In model 10 (Equation (18), the SACI variable has a significant
impact on the 95th and 99th quantile levels. All months are significant except April in
the 90th and 99th quantiles. In model 11 (19), precipitation, Pstd, and drought, Dstd, are
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not significant at any of the three quantile levels, suggesting a weak association between
extreme precipitation and drought with LC1 extremes. On the other hand, high and low
temperatures (T90std, T10std) are significant variables in all three quantiles, while wind,
Wstd, and sea level, Sstd, are only significant for quantiles τ = 0.9 and 0.95. Wind coefficients
are negative, as observed in previous models. All months from April to September are
significant across the three probability levels, and their inclusion has enhanced the models,
as indicated by the increase in pseudo-R2 from model 10 to model 11 in Tables 7 and 8.
In this last case, the pseudo-R2 coefficients are all above 0.35, and they increase across
higher quantiles, suggesting an improved ability of predictors to capture variability in the
number of LC1 at extreme percentiles.

Table 8. Quantile regression results for LC1.

Dependent Variable:

Number of LC1 ( Normalized)

Mod 10 τ = 0.9 Mod 10 τ = 0.95 Mod 10 τ = 0.99 Mod 11 τ = 0.9 Mod 11 τ = 0.95 Mod 11 τ = 0.99

SACI 0.000 0.00000 *** 0.0003 ***
(−0.0003, 0.0003) (0.00000, 0.00001) (0.0002, 0.0003)

T90std 0.004 *** 0.010 *** 0.016 ***
(0.003, 0.004) (0.009, 0.011) (0.016, 0.017)

T10std 0.001 ** 0.004 *** 0.003 ***
(0.0001, 0.002) (0.002, 0.006) (0.001, 0.004)

Pstd 0.0001 0.0001 0.0001
(−0.001, 0.001) (−0.002, 0.002) (−0.001, 0.001)

Dstd −0.0004 0.0002 −0.001
(−0.002, 0.001) (−0.002, 0.002) (−0.002, 0.001)

Wstd −0.002 *** −0.003 *** −0.001
(−0.003, −0.001) (−0.004, −0.001) (−0.002, 0.0002)

Sstd 0.001 *** 0.002 *** −0.0001
(0.001, 0.001) (0.001, 0.003) (−0.001, 0.0003)

April 0.0002 0.0002 *** 0.0001 0.013 *** 0.008 *** 0.005 ***
(−0.0002, 0.001) (0.0002, 0.0002) (−0.0001, 0.0002) (0.011, 0.015) (0.005, 0.011) (0.003, 0.007)

May 0.003 *** 0.005 *** 0.017 *** 0.314 *** 0.493 *** 1.760 ***
(0.003, 0.004) (0.005, 0.005) (0.017, 0.018) (0.313, 0.316) (0.490, 0.497) (1.758, 1.762)

June 0.001 *** 0.001 *** 0.001 *** 0.096 *** 0.102 *** 0.106 ***
(0.001, 0.002) (0.001, 0.001) (0.001, 0.001) (0.094, 0.098) (0.098, 0.105) (0.104, 0.109)

July 0.002 *** 0.003 *** 0.004 *** 0.134 *** 0.248 *** 0.403 ***
(0.001, 0.002) (0.003, 0.003) (0.004, 0.004) (0.131, 0.136) (0.245, 0.251) (0.401, 0.405)

August 0.001 *** 0.002 *** 0.002 *** 0.095 *** 0.123 *** 0.168 ***
(0.001, 0.002) (0.002, 0.002) (0.002, 0.002) (0.092, 0.097) (0.119, 0.126) (0.166, 0.170)

September 0.001 *** 0.001 *** 0.002 *** 0.061 *** 0.122 *** 0.183 ***
(0.0002, 0.001) (0.001, 0.001) (0.002, 0.002) (0.059, 0.063) (0.119, 0.126) (0.181, 0.186)

Constant 0.000 0.00000 ** 0.0002 *** 0.002 *** 0.005 *** 0.012 ***
(−0.0002, 0.0002) (0.00000, 0.00000) (0.0001, 0.0002) (0.001, 0.003) (0.004, 0.007) (0.011, 0.013)

Observations 396 396 396 396 396 396
Pseudo R2 0.3559 0.4101 0.7156 0.3585 0.4150 0.7275

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

3.3. Monthly Homogenized Losses, L

In the first stage, we will investigate the climate-change effect on L through four linear
regression models, examining the impact of the SACI and its components on monthly total
hailstorm losses.

Model 12:
log(L) ∼ SACI, (20)

Model 13:
log(L) ∼ SACI + APR + · · ·+ SEP, (21)
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Model 14:

log(L) ∼ T90std + T10std + Dstd + Pstd + Wstd + Sstd, (22)

Model 15:

log(L) ∼ T90std + T10std + Dstd + Pstd + Wstd + Sstd + APR + · · ·+ SEP, (23)

The results are presented in Table 9. In models 12 (Equation (20)) and 13 (Equation (21)),
the SACI is significant at the 1% confidence level with a positive coefficient, indicating an
increase in the mean of L with an increase in the SACI. The R2 for model 12 is not negligible
(0.159). Notably, in model 13 we achieve a high R2 value of 0.809, likely attributed to the
inclusion of months in this model.

Table 9. Results of linear regression models for log(L).

Dependent Variable:

log(L)
Model 12 Model 13 Model 14 Model 15

SACI 5.350 *** 0.878 ***
(0.620) (0.327)

T90std 0.737 ** 0.226
(0.331) (0.180)

T10std 1.204 * 0.621∗

(0.640) (0.328)
Pstd −2.350 *** 0.023

(0.532) (0.289)
Dstd −0.312 0.414

(0.692) (0.352)
Wstd 0.723 −0.388 *

(0.442) (0.229)
Sstd 1.759 *** 0.344 ***

(0.195) (0.112)
April 9.371 *** 9.214 ***

(0.541) (0.542)
May 11.861 *** 11.863 ***

(0.533) (0.533)
June 11.066 *** 10.852 ***

(0.553) (0.595)
July 11.547 *** 11.360 ***

(0.547) (0.580)
August 11.482 *** 11.385 ***

(0.549) (0.562)
September 11.028 *** 10.853 ***

(0.538) (0.575)
Constant 5.083 *** 1.922 *** 4.444 *** 1.925 ***

(0.441) (0.230) (0.454) (0.243)

Observations 396 396 396 396
R2 0.159 0.809 0.266 0.814
Adjusted R2 0.157 0.805 0.255 0.808
Residual Std. Error 5.859 (df = 394) 2.815 (df = 388) 5.509 (df = 389) 2.794 (df = 383)

F Statistic 74.511 *** (df = 1;
394)

234.536 *** (df = 7;
388)

23.497 *** (df = 6;
389)

139.809 *** (df = 12;
383)

In models 14 (Equation (22)) and 15 (Equation (23)), we explore the significance of SACI
components, revealing different levels of significance. In model 14 (without months), hot
and cool temperatures, precipitation, and sea level (T90std, T10std, Pstd, Sstd) are significant,
while drought and wind (Dstd and Wstd) are not. It is worth noting that the significance
of Pstd indicates a negative correlation with L. In model 15 (including the months), cool
temperatures, wind, and sea level (T10std, Wstd, Sstd) are significant, while the rest are not.
Again, when wind is significant, it is negatively correlated with L. Regarding the R2

scores, it is not negligible for model 14, and in model 15 it achieves a remarkably high
value of 0.814. Given the complexity of the models, model 13 provides a more concise
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explanation of the mean monthly total hailstorm loss than model 15. This is because
model 13 consolidates all climate-change effects into one measure, the SACI, simplifying
interpretation and understanding.

In the context of model 13, interpreting the SACI coefficient (β̂ = 0.878) suggests that
an increase of c units in the SACI leads to an increase in the mean of L by ec×β̂. For example,
assuming a monthly the SACI increase of 0.1, we would observe an approximate increase in
the mean total loss by e0.1×0.878, equivalent to approximately 9.1%. This interpretation helps
estimate the potential cost of future climate change as measured by the SACI. In model 13
(Equation (21)), we calculated the predicted E(L) for different SACI values. Choosing the
months with the maximum and minimum SACI values among April to September 2022,
specifically July 2022 (SACI = 1.764) and May 2022 (SACI = 1.050), the model predicted
values were approximately EUR 3,327,700 for July and EUR 2,433,643 for May. These cases
can be used to establish upper and lower bounds for the increase in E(L) corresponding to
a hypothetical future increase in the SACI by 0.1 units. The increase can be estimated by
multiplying these values by 0.091:

3, 327, 700 × 0.091 = EUR 302, 820.7,

2, 433, 643 × 0.091 = EUR 221, 461.513.
(24)

Change in losses from May to July is not solely attributable to the change in SACI values, as
suggested by e0.878×(maxSACI−minSACI). Instead, it resulted from a combination of the SACI’s
effect and the specific monthly effect encoded by each month’s coefficient, highlighting the
model’s complexity. The percentage change in losses due to the month shift, calculated as

[e(1.764−1.05)×0.878+(11.547−11.861) − 1]× 100%,

which is approximately 36.74%, is approximately 36.74%, demonstrating the significant
influence of monthly coefficients on E(L) predictions.

Therefore, this interpretation is a key factor for sustainability management because it
provides a concrete way to quantify the impact of an increment in the SACI on E(L). In
summary, this direct percentage relationship makes the SACI an effective tool for assessing
future increases in the mean monthly total loss due to a growing climate-change scenario.

Finally, we note that models 13 and 15 (Equations (21) and (23)), which include the
months, demonstrate stronger explanatory power compared to the other two models, as
seen from their R-squared values of approximately 0.81.

Next, we move on to the quantile regression models with log(L) as the dependent
variable. It is relevant to outline here the well-known quantile property (see Koenker 2005,
p. 48):

Qh(Y)(τ|X = x) = h(QY(τ|X = x) (25)

for any monotone transformation, h()̇. In our case, h = log.
Model 16 only includes the SACI as an independent variable:

Qτ(log(L)) ∼ SACI, τ = 0.9, 0.95, 0.99. (26)

Figure 10 illustrates the relationship between monthly log(L) and the SACI. It contains
four fitted lines. The upward red line, representing the linear regression, indicates that
as the SACI increases, log(L) tends to rise also, supporting the conclusion that there is
a positive correlation between the SACI and hailstorm losses. In addition, three colored
lines correspond to quantile regressions for the 90th, 95th, and 99th percentiles. These
lines demonstrate the variation in higher losses associated with SACI values, illustrating
the behavior of the tail of the monthly total loss distribution concerning SACI variations.
Table 10 presents the results of quantile regression for model 16 (Equation (26), with the
dependent variable being log(L) and the independent one being the monthly SACI. For the
90th and 95th quantiles, the SACI coefficients are significant at the 1% level. On practical
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grounds, this implies that a one percentage point of 0.01 increase in the SACI is associated
with a 1.141% increase in hail L at the 90th quantile. A similar calculation could be carried
out in the 95th quantile. Unfortunately, this is not extensible to the 99th quantile because
the coefficient is no longer credible (see its confidence interval and p-value). The pseudo-R-
squared values are quite low, implying that the model explains only a small proportion of
the variability in hailstorm losses. These values suggest that the SACI independent variable
contributes modestly to explaining the variability in hailstorm losses at these quantiles.

In model 17, we include the months of April to September as independent binary
variables:

Qτ(log(L)) ∼ SACI + APR + · · ·+ SEP, τ = 0.9, 0.95, 0.99. (27)

In model 18, we decompose the monthly SACI into its components while still including
the months:

Qτ(log(L)) ∼ T90std + T10std + Dstd + Pstd + Wstd + Sstd + APR + · · ·+ SEP,

τ = 0.9, 0.95, 0.99.
(28)

Table 11 presents the results of an analysis using quantile regression to investigate
the relationship between hailstorm total losses and the SACI or its components. The
analysis is conducted separately for the 90th, 95th, and 99th percentiles, taking into account
monthly variables from April to September. Concerning model 17 (Equation (27)), the
SACI exhibits statistical significance at the three percentiles, even though the confidence
interval in the first case contains negative and positive values, a fact that devaluates the
quality of this estimate. This indicates (with due caution for the 90th case) a significant
positive correlation between the SACI and hailstorm losses across these percentiles. The
SACI’s influence becomes more pronounced with increasing percentiles, highlighting its
heightened importance in extreme loss events. The observed trend in SACI coefficient
values, rising from 0.541 to 0.619, emphasizes its non-uniform impact across quantiles of
the monthly total loss distribution. This underscores the SACI’s important role in assessing
the severity and potential risk of the most damaging hailstorm events represented in the
upper quantiles of the distribution. Note that all the months are significant.

Figure 10. Scatter plot of monthly log(L) versus the SACI. Note: The straight lines are linear
regression (see Table 9) and quantile regression (τ = 0.9, 0.9, 0.99) (see Table 10).
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Table 10. Results of quantile regression for model 16 (Equation (26).

Dependent Variable:

log(L)
90th 95th 99th

SACI 1.141 *** 0.963 *** 0.591
(0.480, 1.802) (0.467, 1.458) (−0.274, 1.455)

Constant 14.031 *** 14.536 *** 15.256 ***
(13.561, 14.501) (14.183, 14.888) (14.641, 15.871)

Observations 396 396 396
Pseudo R2 0.0319 0.0304 0.0292

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

In model 18 (Equation (28)), T90std (days of extremely hot temperature) is statistically
significant at the 95th and 99th percentiles, indicating a positive correlation with losses
at higher levels. T10std (days of extremely cold temperature) is only significant at the
95th percentile. Pstd (days of heavy rainfall) is significant at the 95th and 99th percentiles.
Conversely, Wstd (wind speed) has a negative and statistically significant coefficient across
all three percentiles, suggesting that higher wind speeds are associated with loss decrease.
Remember that a similar behavior was observed for models related to the variables N
and LC1.

The variable representing sea level, Sstd, is significant at the 90th and 95th quantiles,
but not at the 99th one. On the other hand, drought days, Dstd, are only significant at the
99th quantile. Note that all the months are significant at all the percentiles.

Table 11. Results of quantile regression for log(L).

Dependent Variable:

log(L)
Model 17_τ = 0.9 Model 17_τ = 0.95 Model 17_τ = 0.99 Model 18_τ = 0.9 Model 18_τ = 0.95 Model 18_τ = 0.99

SACI 0.541 * 0.578 ** 0.619 ***
(−0.059, 1.141) (0.002, 1.153) (0.257, 0.981)

T90std 0.085 0.218 ** 0.332 ***
(−0.128, 0.299) (0.032, 0.404) (0.183, 0.481)

T10std 0.121 0.422 ** 0.143
(−0.268, 0.510) (0.083, 0.760) (−0.128, 0.415)

Pstd 0.277 0.528 *** 1.101 ***
(−0.065, 0.619) (0.231, 0.826) (0.863, 1.340)

Dstd 0.169 0.066 0.876 ***
(−0.248, 0.587) (−0.297, 0.429) (0.585, 1.167)

Wstd −0.338 ** −0.268 ** −0.484 ***
(−0.609, −0.067) (−0.504, −0.032) (−0.673, −0.295)

Sstd 0.168 ** 0.148 ** 0.020
(0.036, 0.300) (0.033, 0.264) (−0.073, 0.112)

April 5.331 *** 4.495 *** 3.203 *** 5.165 *** 4.703 *** 3.826 ***
(4.338, 6.324) (3.543, 5.447) (2.604, 3.802) (4.522, 5.808) (4.144, 5.263) (3.378, 4.275)

May 6.994 *** 5.857 *** 4.934 *** 7.084 *** 6.077 *** 5.233 ***
(6.015, 7.974) (4.917, 6.796) (4.343, 5.525) (6.453, 7.716) (5.528, 6.627) (4.792, 5.673)

June 6.717 *** 5.249 *** 3.911 *** 6.594 *** 5.672 *** 4.694 ***
(5.702, 7.732) (4.275, 6.222) (3.299, 4.523) (5.889, 7.299) (5.059, 6.285) (4.202, 5.185)

July 7.003 *** 5.715 *** 3.955 *** 6.657 *** 5.707 *** 4.560 ***
(5.998, 8.008) (4.750, 6.679) (3.348, 4.561) (5.970, 7.344) (5.109, 6.305) (4.081, 5.039)

August 6.767 *** 5.388 *** 3.625 *** 6.387 *** 5.317 *** 3.719 ***
(5.759, 7.776) (4.420, 6.355) (3.017, 4.234) (5.720, 7.054) (4.737, 5.897) (3.253, 4.184)

September 6.687 *** 5.420 *** 3.639 *** 6.622 *** 5.624 *** 4.528 ***
(5.700, 7.675) (4.473, 6.367) (3.043, 4.235) (5.940, 7.303) (5.032, 6.217) (4.052, 5.003)

Constant 7.992 *** 9.540 *** 11.305 *** 8.142 *** 9.439 *** 11.018 ***
(7.570, 8.414) (9.135, 9.945) (11.050, 11.560) (7.854, 8.430) (9.189, 9.690) (10.817, 11.219)

Observations 396 396 396 396 396 396
Pseudo R2 0.3711 0.3192 0.2531 0.38 0.3354 0.2857

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

Let us consider model 17 in the case of τ = 0.99 (Equation (27). Let us also consider
again the maximum and minimum SACI monthly values for 2022, which are 1.764 (July)
and 1.050 (May). We aim to build two bounds (relatives to the year 2022) for the L-99th
quantile variation corresponding to an SACI variation of 0.1, as was done for its mean
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in (24). Model 17 predictions for the L-99th quantiles corresponding to those SACI values
are, respectively:

e11.305+0.619×1.764+3.955 = EUR 12, 634, 175,

e11.305+0.619×1.050+4.934 = EUR 21, 616, 122.
(29)

The two 2022-bounds for the L-99th quantile variation corresponding to a 0.1 increase in
the SACI are:

12, 634, 175 × 0.0639 = EUR 807, 323.8,

21, 616, 122 × 0.0639 = EUR 1, 381, 270.
(30)

Observe that, when increasing the SACI by 0.1, the adjustment in the 99th quantile of L can
be computed by simply multiplying the loss by exp(0.1 × 0.619), which is approximately
1.0639. Again, as in (24), this interpretation is a key factor for sustainability management
because it potentially provides a concrete way to quantify the impact of an increment in the
SACI into any τ-quantile of the monthly total loss, L. This direct percentage relationship
makes the SACI an effective tool for assessing future increases in any quantile of L caused
by an increasing climate-change scenario.

4. Discussion

In this paper, we explore the relationship between the Spanish Actuarial Climate
Index (SACI) and its components and hailstorm insurance claims in Spanish agricultural
insurance, in the line of business of wine grapes. Insurance claims are represented by the
monthly number of claims, monthly number of loss costs equal to one, and monthly total
losses observed from 1990 to 2022, and the methodologies we use are linear and quantile
regression models.

Until now, the influence of climate change on hailstorm risk has been scarcely studied,
lacking the systematic approach achieved through our quantification of climate change
using the SACI. As mentioned in the introduction, Raupach et al. (2021) suggests a potential
increase in hailstorms in Europe, albeit without a specific connection to insurance. In a
study by Botzen et al. (2010), Tobit regressions were employed to investigate the relationship
between climate change and hailstorm insurance damages for greenhouse horticulture and
outdoor farming. The primary finding was that a combination of maximum temperatures
and precipitation best predicts hailstorm damage, projecting a considerable increase in
future hailstorm damage.

Our study enhances precision and conciseness by representing climate change through
our climate index, providing a more compact and summarized representation while retain-
ing the ability to analyze the influence of any variable comprising the index (see models
2, 3, 6, 11, 14, 15, 18). Through these models, we conclude that there is no simple rule or
organized pattern describing these individual influences. Their significance can vary or
even disappear from expectations to high quantiles or even between quantiles close to one
another. We observe that, in general, the regression coefficients are positive, except for the
wind component, which exhibits a negative slope whenever it is significant.

We believe we are the first to apply both linear and quantile regression to investigate
the influence of the climate index and its components on hailstorm risk insurance. These
methodologies allow us to address the crucial open question of estimating the future cost
of climate change.

Our results indicate a significant positive correlation between the SACI and the three
dependent variables. Its explanatory power is relatively high for some models relative
to the monthly total losses, L (models 13 to 18, Tables 9–11), the monthly number of loss
costs equal to one LC1 (models 10 and 11, Table 8), and the monthly normalized number of
claims (models (13) and (14), Table 5).

Importantly, we show that these two methodologies can be key factors in the assess-
ment and management of hailstorm risk because they provide estimations of the growth
of expectations and quantiles of the claims and loss variables corresponding to future
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shifts in climate change as measured by the Spanish Actuarial Climate Index (SACI) (see
Equations (24), (29), and (30)).

5. Conclusions

We have assessed the impact of climate change on hailstorm risk in Spanish wine
grape crop insurance through the application of a range of extreme weather variables
forming a climate index (SACI), employing linear and quantile regression methodologies.
Importantly, we have monetarily quantified this impact, corresponding to a future increase
of one basis point (0.1) in the SACI. This calculation involves estimating the increases in
both expected and quantile total monthly losses.

Many of the results of our calculations may be directly translated to premium and
solvency capital calculations, providing an efficient tool for guaranteeing the sustainability
of the insurance business against climate change.

Future research endeavors will seek to expand this strategy to other insurance markets
and explore risk measures beyond the expectation and Value at Risk (VaR). In the context
of wine grape crop insurance, there is potential to broaden this study by tailoring its
conclusions to each province, geographically specifying the regions most threatened by
this risk, and quantifying the local costs associated with a future rise in the climate index.
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