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Abstract: Possibility and probability are the two aspects of uncertainty, where uncertainty represents
the ignorance of a given individual. The notion of alternative (or event) belongs to the domain of
possibility. An event is intrinsically subdivisible and a quadratic metric, whose value is intrinsic or
invariant, is used to study it. By subdividing the notion of alternative, a joint (bivariate) distribution of
mass appears. The mathematical expectation of X is proved to be invariant using joint distributions of
mass. The same is true for X12 and X12...m. This paper describes the notion of α-product, which refers
to joint distributions of mass, as a way to connect the concept of probability with multilinear matters
that can be treated through statistical inference. This multilinear approach is a meaningful innovation
with regard to the current literature. Linear spaces over R with a different dimension can be used as
elements of probability spaces. In this study, a more general expression for a measure of variability
referred to a single random quantity is obtained. This multilinear measure is obtained using different
joint distributions of mass, which are all considered together.

Keywords: probability spaces; function of estimation; two-valued logic; α-product; many-valued
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1. Introduction

Possibility and probability are the two aspects of uncertainty, where uncertainty repre-
sents the ignorance of a given individual (Capotorti et al. 2014). Possibility means that one
is interested in establishing a given set of alternatives, where each alternative contained
in this set is an event (Egidi et al. 2022). An event is not a repeatable fact whose meaning
is collective. An event is not even a measurable set according to measure theory. In this
paper, an event is a single case, whose meaning is atomistic (de Finetti 1982b). Possibility
obeys the rules of ordinary logic or two-valued logic. Probability is distributed over a
given set of alternatives (Fortini et al. 2018). It obeys the rules of the logic of prevision
(Berti et al. 2020), which is many-valued logic. In this paper, ordinary logic is connected
with linear spaces over R. Moreover, the logic of prevision is shown to be connected with
linear spaces over R. The linear spaces over R treated in this paper are endowed with a
quadratic metric, which is used to obtain indices of a statistical nature related to random
quantities. Bounded and continuous random quantities, whose possible alternatives belong
to a closed interval, can be estimated via discrete random quantities identifying a finite par-
tition of elements. The same is true with respect to bounded random quantities containing a
countable infinity of possible alternatives. In this study, the author was therefore interested
in evaluating the probability over those incompatible and exhaustive elements that identify
the possible alternatives for a discrete random quantity (Gilio and Sanfilippo 2014). Finitely
additive probabilities are chosen with respect to all the different elements of the partition
into account. Everything is known about probability and its formal properties, but, several
times, researchers have not been at all concerned with defining it. In this paper, the notion
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of probability is shown to be an appropriate tool and valuable guide for estimating and
choosing under uncertainty and riskiness, so it cannot be a first principle, unlike point
and line in geometry. Probability is not something objective, substituting expectations
and sensations associated with a given individual. The unique probability existing in all
the cases depends on psychological expectations and sensations (Viscusi and Evans 2006).
A subjective opinion is a reasonable object of serious study. For this reason, the methodolog-
ical rigour associated with the theory of decision making based on subjective probabilities
cannot be denied (Angelini and Maturo 2022a). It is necessary to believe that what is
contained in the two paradigmatic collections “Studies in subjective probability”, edited
by Kyburg and Smokler, must still be taken into account (Cassese et al. 2020). To believe
that what has been said by these two collections and numerous papers in accordance with
them is negligible, as several scholars dealing with uncertainty and riskiness tend to think
nowadays, is not useful for current quantitative research in economics and finance.

Study Objectives

In Section 2, mathematical aspects related to the space of alternatives are treated.
The space of possible alternatives for a given individual is embedded in En, where En is
an n-dimensional Euclidean space. The latter is generated by n linearly independent basis
vectors. A possible event or alternative is a possible value for a random quantity. It is
preferable to speak about random quantity instead of random variable. This is because it
is necessary to think of the numerical interpretation of single events. This interpretation
is vectorial whenever one refers to a finite partition of alternatives. Section 3 focuses on
financial assets. They are random goods. Their conceptual and mathematical characteristics
are handled. Financial assets are studied under uncertainty and riskiness outside the
budget set of a given decision maker whenever the structure of the expected utility function
describing an individual’s specific attitude toward risk is taken into account. Section 4
shows why events are intrinsically subdivisible. Their subdivision is pursued as soon
as it is sufficient for obtaining a joint (bivariate) distribution of mass. A more general
expression for a measure of variability, referring to a single random quantity, is obtained
by subdividing the notion of event. In Section 5, the mathematical expectation of X is
proved to be invariant. Preliminary results to the proof of Proposition 1 are provided in
its subsections. By subdividing the notion of alternative, it is possible to prove that the
mathematical expectation of X12 and X12...m is invariant too. The mathematical expectation
of X, X12, and X12...m is always obtained inside linear spaces over R provided with a
quadratic metric. An appropriate dimension of each linear space over R is taken into
account. It is known that the notion of exchangeability referring to events is a way to
connect the concept of subjective probability with the classical course of action of statistical
inference. This paper shows that the notion of α-product, referring to bivariate distributions
of mass, is a way to connect the concept of subjective probability with multilinear matters
that can be treated using statistical inference. The α-product between two n-dimensional
vectors, where the latter represent the possible values for two marginal random quantities,
identifies the distance between two marginal distributions of mass. Finally, Section 6
provides conclusions and future perspectives.

2. Single Events Studied in the Space of Alternatives
2.1. Preliminaries

Let x1, x2, . . . , xn be ordered real variables. All the n-tuples of real numbers being taken
by such variables identify a set. Each n-tuple is a point in the real n-space denoted by Rn.
The real numbers of each n-tuple are the coordinates of a point. Let

Pj = P(x1j, x2j, . . . , xnj) (1)

be a point of Rn, whereas the point denoted by

O = O(0, 0, . . . , 0) (2)
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is the origin of Rn. If the rank of the matrix given by

∥P1, P2, . . . , Pn∥ (3)

is equal to n, then the dimension of Rn is equal to n. A located vector of En at its origin
is defined as a pair of points written as

−→
OPj.

−→
OPj is also denoted by x(j) or xj, where the

n real numbers expressed by xi(j), i = 1, 2, . . . , n are the components of xj. The dimen-
sion of En is equal to n. En is a closed structure with respect to two binary operations
(see von Neumann 1936 for another closed structure related to En). Thus, it is endowed
with a component-wise addition denoted by

x + y = {x1 + y1, x2 + y2, . . . , xn + yn}. (4)

Moreover, it is endowed with a component-wise scalar multiplication denoted by

αx = {αx1, αx2, . . . , αxn}, (5)

where α is any real number. A point of Rn is a vector of En. The same ordered n-tuple
of real numbers identifies them. Suppose that the coordinates of (1) are pairwise orthog-
onal. Since the same hypothesis holds for any P ∈ Rn, the n real variables denoted by
x1, x2, . . . , xn identify a Cartesian coordinate system for Rn. The structure of En is of a
Euclidean nature, so it is possible to use the Pythagorean theorem in order to determine the
distance of P from O. One writes

2d (O, P) =

√
n

∑
i=1

x2
i . (6)

With respect to En, this distance identifies the length of x denoted by ∥x∥.
Let Pj and Ph be two points belonging to Rn, whose coordinates are pairwise orthogo-

nal. A located vector denoted by
−→
OPj corresponds to Pj. It is visualized as an arrow between

O and Pj. O is called its beginning point, and Pj is its endpoint. The located vector under

consideration is denoted as xj ∈ En. Similarly, the located vector denoted with
−−→
OPh corre-

sponds to Ph. It is visualized as an arrow between O and Ph. O is called its beginning point,
and Ph is its endpoint. The located vector is denoted by xh ∈ En. Pj and Ph also characterize
−−→
Pj Ph; hence, xh − xj. With respect to Rn, the square of the distance between Pj and Ph is
given by

2d2 (Pj, Ph) =
n

∑
i=1

(xi(j) − xi(h))
2 =

n

∑
i=1

x2
i(j) +

n

∑
i=1

x2
i(h) − 2

n

∑
i=1

xi(j) xi(h). (7)

With respect to En, the norm of xh − xj is given by

∥xh − xj∥2 = ∥xh∥2 + ∥xj∥2 − 2 ⟨xh, xj⟩, (8)

where ⟨xh, xj⟩ is called the scalar or inner product between xh and xj. If ⟨xh, xj⟩ = 0, then
the two vectors are orthogonal. Given α ∈ R, the function expressed by f (α) = ∥xh − α xj∥2

is such that it is f (α) ≥ 0. The inequalities denoted by

|⟨xh, xj⟩| ≤ ∥xh∥ ∥xj∥, (9)

and
∥xh + xj∥ ≤ ∥xh∥+ ∥xj∥ (10)
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can therefore be written. The former is called the Schwarz inequality, whereas the latter
is called the triangle inequality. The metric structure of En is now complete. From (9), it
follows that ∣∣∣∣∣ ⟨xh, xj⟩

∥xh∥ ∥xj∥

∣∣∣∣∣ ≤ 1, (11)

so there exists one and only one angle denoted by Θ, 0 ≤ Θ ≤ π, such that

cos Θ =
⟨xh, xj⟩
∥xh∥ ∥xj∥

. (12)

The angle between xh and xj is expressed by Θ.
Since the dimension of En is equal to n, there are at most n linearly independent

vectors. Given n vectors denoted by ei, i = 1, 2, . . . , n, if the following expression

λ1 e1 + λ2 e2 + . . . + λn en = λi ei = 0 (13)

implies that λi = 0 for every i, with i = 1, 2, . . . , n, then the n vectors denoted by
e1, e2, . . . , en are linearly independent. They form a basis of En denoted by

Bn =
{

ei | i ∈ In = {1, 2, . . . , n}
}

. (14)

The zero vector is expressed by 0 = x + (−x) for any x ∈ En. The n + 1 vectors denoted by
e1, e2, . . . , en, x are linearly dependent, so, in the following linear combination given by

xi ei + (−x) = 0, (15)

the coefficients expressed by xi are not all equal to 0. This means that, using the Einstein
summation notation, one has

x = xi ei, (16)

where xi are the contravariant components of x with respect to Bn. A fundamental result is
the following. With respect to Bn, suppose that x can be represented by

x = yi ei. (17)

The two sides of the following expression

0 = (xi − yi) ei (18)

are obtained from the left-hand side of (16) minus the left-hand side of (17) together with
the right-hand side of (16) minus the right-hand side of (17). Nevertheless, e1, . . . , en are
linearly independent, so xi = yi for every i, with i = 1, 2, . . . , n. The conclusion is therefore
as follows:

Remark 1. With respect to a basis of En denoted by Bn, every vector of En is uniquely expressed by
one and only one set of contravariant components.

It is always possible to establish an orthonormal basis of En using the Gram-Schmidt
process. If B′

n is an orthonormal basis of En, then one writes

⟨ei, ej⟩ = δij, (19)

where δij is the Kronecker delta. The Kronecker delta is also called the metric tensor.
If x = xi ei, with ei ∈ B′

n, i = 1, 2, . . . , n, then its Euclidean norm is given by

∥x∥2 = ⟨x, x⟩ = ⟨xi ei, xjej⟩ = xi xj δij =
n

∑
i=1

(xi)2. (20)
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The contravariant components of a vector are geometrically its projections by paral-
lelism onto the basis vectors. Conversely, the covariant components of a vector are, geomet-
rically, its orthogonal projections onto the basis vectors. Let x be a vector. Let Bn = {ei} be
a basis of En. Without loss of generality, suppose that all vectors of Bn have a norm equal
to 1. Hence, the ith covariant component of x is given by

xi =
⟨x, ei⟩
∥ei∥2 = ⟨x, ei⟩ = ⟨xj ej, ei⟩ = xj ⟨ej, ei⟩ = xj gji, (21)

where gji is the metric tensor. It is not usually necessary to distinguish the metric tensor
from its symmetric components. The number of its distinct and symmetric components is

n(n + 1)
2

. (22)

This is because such a number coincides with a 2-combination with repetitions from a set
of size n. It is possible to note the following:

Remark 2. The components of the metric tensor coincide with the Kronecker delta whenever
an orthonormal basis of En is used. Whenever linear spaces over R are of a Euclidean nature,
the contravariant and covariant components of a same vector are given by the same numbers.

What was introduced by Ricci and Levi-Civita is used in this paper, so the contravariant
components of a vector are denoted by upper indices, whereas the covariant ones are
denoted by lower indices.

2.2. From Propositions (Logical Entities) to Real Numbers and Vice Versa

The space of alternatives contains what is objectively possible. In this paper, what is
objectively possible is studied together with what is subjectively probable. The structure is
mathematically the same. The space of alternatives is a linear space over R of a Euclidean
nature. Possibility never depends on a subjective opinion (Coletti et al. 2016). Conversely,
probability always depends on a subjective opinion. If X is a random quantity, then a
linear combination of n incompatible and exhaustive events denoted by E1, E2, . . . , En is
written as

X = x1 |E1|+ x2 |E2|+ . . . + xn |En|, (23)

where I(X) = {x1, x2, . . . , xn} is the set of possible values for X. |Ei|, i = 1, 2, . . . , n, is
the indicator of Ei. Its values are 1 or 0 when Ei is true or false, respectively. Ei is true or
false whenever uncertainty ceases. The elements of I(X) = {x1, x2, . . . , xn}, where one can
observe x1 < x2 < . . . < xn, are the contravariant components of a vector of En denoted by

x = (x1, x2, . . . , xn). (24)

If X is a vector of En, then it is possible to write

X = x1 |E1| e1 + x2 |E2| e2 + . . . + xn |En| en, (25)

where B′
n = {ei} is an orthonormal basis of En. With respect to B′

n, one writes

x = x1 e1 + x2 e2 + . . . + xn en = xi ei. (26)

The covariant components of a vector of En denoted by

p = (p1, p2, . . . , pn) (27)
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represent n masses associated with n possible values for X. In the first phase, each mass
can be found between 0 and 1, endpoints included. The mathematical expectation of X is
given by the following scalar or inner product

P(X) = x1 p1 + x2 p2 + . . . + xn pn = xi pi, (28)

where x1 ≤ P(X) ≤ xn (Berti et al. 2001). Even though contravariant and covariant
components are used, x and p belong to the same Euclidean space. This means that it is also
possible to use covariant components of x together with contravariant ones of p. Nothing
changes. The two vectors x and p express the two aspects of uncertainty, which are studied
inside En. An attribute can be transformed into a number. A number can be transformed
into a proposition containing an attribute. This proposition is either true or false whenever
uncertainty ceases. The possible values for X are real numbers. They can be related to a
random vector given by 

|E1|
|E2|

...
|En|

 (29)

identifying a finite partition of alternatives, where E1 is an unequivocally established
proposition containing x1 as an attribute, . . ., En is an unequivocally established proposition
containing xn as an attribute. One writes

X = x1


|E1|
|E2|

...
|En|

+ x2


|E1|
|E2|

...
|En|

+ . . . + xn


|E1|
|E2|

...
|En|

, (30)

so n random vectors expressed in the form given by (29) are considered in En. Within this
context, the term “random” means that a given element is not known by an individual
and consequently it is uncertain or possible for him or her, but well determined in itself
(de Finetti 1982a). If Y = |E1| + |E2| + . . . + |En| is the number of successes, then an
arithmetic operation expressed by the addition is used in connection with events. It is also
possible to apply logical or Boolean operations to real numbers. In the field of real numbers,
it is possible to define

x ∨ y = max (x, y), (31)

x ∧ y = min (x, y), (32)

and
x̃ = 1 − x, (33)

for any x and y that are real numbers. If one writes P(Ẽ) = P(1 − E) = 1 − P(E), where
Ẽ = 1 − E and E are events studied together with their probabilities denoted by P, then a
logical or Boolean operation given by the negation is treated together with an arithmetic
one expressed by the subtraction. After remarking on a unification between events and
numbers, a unification between logical or Boolean operations and arithmetic operations is
also used. Logical product, logical sum, and negation are not applicable to 0 and 1 only,
but they are applicable to all real numbers.

3. Marginal and Bivariate Random Quantities: Conceptual and Mathematical Aspects

In this paper, a random quantity X is a financial asset. It is firstly studied under
conditions of uncertainty. X is then a random good. Its expected return has to be estimated
by a given decision maker based on returns that have been observed by him or her in
the past. X is a mathematical function such that its image is the set of those real numbers
assigned by X to a sample space denoted by Ω. The latter is a finite set. Suppose that the
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possible values for X belonging to I(X) = Ω are all nonnegative, so one writes X ≥ 0. This
means that infI(X) ≥ 0. In this paper, X is a bounded random good, so supI(X) < +∞.
Since it is always possible to write

X = X1 − X2, (34)

where one has
X1 = 0 ∨ X, (35)

and
X2 = |0 ∧ X|, (36)

X is a random quantity that is certainly nonnegative. The set of the coherent previsions
of (34) is uncountable. This set is a closed line segment. If 1X and 2X are two financial
assets, then the possible values for 1X belonging to I(1X) and the possible ones for 2X
belonging to I(2X) are all nonnegative. Two perpendicular straight lines are considered.
1X and 2X are linearly independent. In this paper, 1X and 2X are two marginal random
goods giving rise to a bivariate random good denoted by 1X 2X. Its possible values are
expressed by I(1X)× I(2X). A subdivision of alternatives takes place in this way. The set
of the coherent previsions of 1X, 2X, and 1X 2X is a right triangle belonging to the first
quadrant of the Cartesian plane, where the vertex of its right angle is given by the point
(0, 0). Every point belonging to such a triangle is denoted by

P(1X 2X) ≡ (P(1X), P(2X)). (37)

This triangle contains all fair estimations being made by a given individual. Given P(1X)
and P(2X), it is possible to estimate the joint masses identifying P(1X 2X) in such a way
that one out of three values, −1, 0, and 1, associated with the correlation coefficient appears
(it is usually n ≥ 10). The correlation coefficient is equal to the covariance between 1X and
2X divided by the product of their standard deviations. With respect to the correlation
coefficient, the possible values for 1X and 2X are deviations. Nevertheless, all masses
underlying every point denoted by (37) do not change. If −1 is the value being taken by
the correlation coefficient, then a given individual making a specific estimation of joint
masses inside his or her budget set is a risk averter; if 0 is the value being taken, then an
individual is risk neutral. If the correlation coefficient is equal to 1, then a given decision
maker is a risk lover. The right triangle where all fair estimations appear is determined by
a straight line, whose slope is negative. This line is a hyperplane. Its horizontal and vertical
intercepts are established. From the ratio of these intercepts, it is possible to estimate the
ratio of the prices of the two marginal random goods. The space where all fair estimations
appear is endowed with boundary points. It is a subset of a linear space over R. It is
also possible to choose a specific point maximizing the subjective utility related to objects
of decision maker estimation. This choice always depends on empirical aspects. Thus,
it is essential to distinguish two phases: a formal and an empirical phase. The formal
phase firstly establishes all fair estimations, whereas the empirical one secondly identifies a
specific point belonging to the right triangle. The hyperplane never separates this specific
point from all points expressing possible alternatives. In other words, the hyperplane
under consideration leaves this specific point on the same side together with all points
expressing possible alternatives. Applying the Pythagorean theorem to the points of the
right triangle, it is possible to prove that the notion of ordinal utility is a distance. If 1X and
2X are the components of multiple goods of order 2 denoted by X12, then 22 = 4 bivariate
distributions of mass have to be considered. This is because it is possible to exchange 1X
for P(1X) and 2X for P(2X). This implies that it is necessary to exchange X12 for P(X12).
The expected return on X12, where X12 is a portfolio containing two financial assets, is
denoted by P(X12). The latter index contains 22 = 4 bivariate distributions of mass, which
are all summarized. This result is innovative. By considering more than two marginal
random goods, similar indices are obtained. What is observed inside the right triangle
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can be used to handle the notion of expected utility (cardinal utility) outside it. Hence,
choice problems related to financial assets that are studied under uncertainty and riskiness
outside the budget set of a given decision maker depend on the structure of the expected
utility function describing an individual’s specific attitude toward risk. This expected
utility function is treated inside a subset of a linear space over R. The notion of cardinal
utility is based on a distance too. It is of interest to take the following Figure 1 as a guide.

Start

Read the alternatives

Summarize

Maximization of the utility

Large distance

Low distance

Statistical index: estimation of masses

Stop

yes

no

Figure 1. A flowchart representing an optimal decision making process.

4. A Marginal Random Quantity Studied as a Double Quantity: The Central Role of
Bivariate Distributions of Mass

Given two sets of alternatives, where each of them is denoted by {a, b, c}, it is possible
to study the Cartesian product given by {a, b, c} × {a, b, c}. If such a product is handled,
then 32 = 9 elements appear. A subdivision of alternatives appears in this way. Given
a marginal random quantity denoted by 1X, to study it as a double one denoted by X12
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means that four bivariate random quantities denoted by 1X 1X, 1X 2X, 2X 1X, and 2X 2X
are treated. One writes

X12 = {1X, 2X}. (38)

The components of X12 are 1X and 2X. A multilinear approach is used. This approach is a
meaningful innovation with respect to those in the current literature (Grechuk et al. 2012).
This approach is useful for obtaining multilinear measures. Such measures can be used
to study new types of relationships between variables. If a marginal random quantity has
n values, then a bivariate random quantity has n2 values (see Pompilj 1957 in connection
with the notion of independence). One has

dim(En) = n, (39)

so one observes
dim(En ⊗ En) = n2, (40)

where En ⊗ En is a linear space over R. From (25), it follows that

1X 2X = (1)x
1
(2)x

1|(1)E1||(2)E1| e1 ⊗ e1 + . . . + (1)x
n
(2)x

n|(1)En||(2)En| en ⊗ en. (41)

Two conditions hold if one wants to represent 1X as X12. The first condition is the following:

P(1X) =
n

∑
i1=1

(1)x
i1 pi1 . (42)

The following expression
p = pi1i2 (43)

is an affine tensor of order 2. Its covariant components express all joint masses. The
following relationship

n

∑
i1=1

(1)x
i1 pi1 =

n

∑
i1, i2=1

(1)x
i1 pi1i2 (44)

holds if (43) is used. The two sides of (44) are equal if and only if

n

∑
i1=1

pi1 =
n

∑
i1, i2=1

pi1i2 . (45)

One finally writes
n

∑
i1=1

pi1 =
n

∑
i1, i2=1

pi1i2 = 1, (46)

so 1X and 1X 2X are two finite partitions of incompatible and exhaustive alternatives. The
second condition is as follows: 1X and 1X 2X must have the same mean value (Nunke and
Savage 1952). One writes

n

∑
i1, i2=1

(1)x
i1
(2)x

i2 pi1i2 =
n

∑
i1, i2=1

(1)x
i1 pi1i2 , (47)

so the two sides of (47) are equal if and only if

(2)x
i2 = 1, ∀ i2 ∈ In. (48)

Hence, it is possible to note the following:
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Remark 3. Let Bn = {ei}, i = 1, . . . , n, be an orthonormal basis of En. The possible values for the
other random quantity, such that 1X is studied as X12, form the set denoted by

{1i}. (49)

The number of elements of (49) is equal to n. Such components depend on the basis of En being
arbitrarily chosen. From Bn to B′

n = {ei′}, i′ = 1, . . . , n, one has

1i′ = ai′
i 1i =

n

∑
i=1

ai′
i , (50)

where A = (ai′
i ) is an n × n matrix expressing a change of basis.

Remark 4. The vector of En with contravariant components forming the set expressed by

{ϕ1 = 1, ϕ2 = 1, . . . , ϕn = 1} (51)

is denoted by ϕ.

A Measure of Variability Obtained Using a Multilinear Approach: A Numerical Example

A marginal distribution of mass of 1X can coincide with a bivariate distribution of
1X and 2X = ϕ. Nonparametric distributions of mass are used. For instance, Table 1
gives P(1X) = P(1X 2X) = P(2X 1X) = 5.2. Since P(1X 1X) = 28 and P(2X 2X) = 1 are
observed, the variance of 1X is given by

σ2
1X =

∣∣∣∣P(1X 1X) = 28 P(1X 2X) = 5.2
P(2X 1X) = 5.2 P(2X 2X) = 1

∣∣∣∣ = 0.96. (52)

The variance of 1X is established as if 1X coincides with X12 = {1X, ϕ}. A measure of
variability, related to a single random quantity, is obtained using a multilinear approach.
The notion of alternative is subjected to a subdivision, so four bivariate distributions are
treated. A quadratic metric is used (Berkhouch et al. 2018; Gerstenberger and Vogel 2015).

Table 1. A univariate distribution transformed into a bivariate distribution.

1X
2X = ϕ 1 1 1 Sum

0 0 0 0 0

4 0 0.4 0 0.4

6 0 0 0.6 0.6

Sum 0 0.4 0.6 1

5. Invariance of the Notion of Mathematical Expectation of a Random Quantity
5.1. Change of Basis

Let Bn = {ei}, i = 1, . . . , n, be an orthonormal basis of En. Let B′
n = {ej′},

j′ = 1, . . . , n, be another orthonormal basis of En. Each vector of B′
n can be expressed

as a linear combination of the vectors of Bn, so one writes

ej′ = Ai
j′ ei. (53)

If i varies, then the set given by {Ai
j′} identifies the n contravariant components of ej′

with respect to the vectors of Bn. If j′ varies together with i, then the set given by {Ai
j′}

identifies n × n real numbers leading to the notion of square matrix of order n. If a basis of
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En changes, then x ∈ En does not change. Conversely, its contravariant components change,
so the following equalities appear

x = xi ei = xj′ ej′ = xj′ Ai
j′ ei. (54)

From
xi ei = xj′ Ai

j′ ei, (55)

where ei is found in both sides of what one has just written, it follows that it is possible to
obtain

xi = Ai
j′ xj′ . (56)

(56) gives how the contravariant components of x ∈ En change whenever one passes from
B′

n to Bn. From
xj′ ej′ = xj′ Ai

j′ ei, (57)

where xj′ is found in both sides of what one has just written, it follows that it is possible to
obtain the expression given by (53). A = {Ai

j′} is an orthogonal matrix. The inverse of A is
therefore equal to its transpose.

5.2. Invariant or Intrinsic Metric

If the expression given by (56) is considered, then the Euclidean norm of x ∈ En

identified with (20) is invariant. This is because one writes

n

∑
i=1

(xi)2 =
n

∑
i=1

Ai
j′ Ai

h′ xj′ xh′ . (58)

This happens because both Bn and B′
n are considered. The set given by the following numbers

gj′ h′ =
n

∑
i=1

Ai
j′ Ai

h′ = ⟨ej′ , eh′⟩ (59)

identifies the components of the metric tensor, whose nature is symmetric. Accordingly,
one writes

gj′ h′ = gh′ j′ . (60)

5.3. Change-of-Basis Matrices

Let B′
n = {ej′} and B′′

n = {eh′′} be two orthonormal bases of En. Since one writes

ej′ = Bh′′
j′ eh′′ , (61)

and
eh′′ = Ci′

h′′ ei′ , (62)

the second expressions can be put into the first ones. This means that one has

ej′ = Bh′′
j′ Ci′

h′′ ei′ . (63)

(63) can also be written in the following form

ei′ δi′
j′ = Bh′′

j′ Ci′
h′′ ei′ , (64)

so one has
δi′

j′ = Bh′′
j′ Ci′

h′′ . (65)
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It follows that B = {Bh′′
j′ } is the inverse of C = {Ci′

h′′} and vice versa, where B and C are two
square matrices of order n. Let x ∈ En be a vector. Its contravariant components identify a
family of n incompatible and exhaustive alternatives. Such a vector can be expressed by

x = xi′ ei′ (66)

with respect to the vectors of B′
n. The same vector x ∈ En can be expressed by

x = xh′′ eh′′ (67)

with respect to the vectors of B′′
n . If one passes from B′′

n to B′
n, then one has

xh′′ = Ch′′
i′ xi′ . (68)

The vector x ∈ En is always the same. Only its contravariant components change whenever
one passes from a basis of En to the other one. One observes

x = xi′ ei′ = (Ch′′
i′ xi′) (Cj′

h′′ ej′) = (Ch′′
i′ Cj′

h′′) (xi′ ej′) (69)

because (68) and (62) are put into (67). Since

Ch′′
i′ Cj′

h′′ = δ
j′

i′ , (70)

the square matrix, whose generic element is given by Ch′′
i′ , is the inverse of the square

matrix, whose generic element is expressed by Cj′

h′′ .

5.4. Invariant Scalar Product

With respect to B′
n, the scalar or inner product between x, y ∈ En is denoted by ⟨x, y⟩′.

With respect to B′′
n , the scalar or inner product between the same vectors of En is conversely

denoted by ⟨x, y⟩′′. Thus, it is possible to prove the following:

Proposition 1. The scalar or inner product between x, y ∈ En is invariant, so ⟨x, y⟩′ = ⟨x, y⟩′′.

Proof. With respect to B′
n, one has

⟨x, y⟩′ = ⟨xi′ ei′ , yj′ ej′⟩ = xi′ yj′ ⟨ei′ , ej′⟩ = xi′ yj′ gi′ j′ . (71)

Similarly, with respect to B′′
n , one writes

⟨x, y⟩′′ = xi′′ yj′′ gi′′ j′′ . (72)

If one passes from B′′
n to B′

n, then the components of the metric tensor become

gi′′ j′′ = ⟨ei′′ , ej′′⟩ = ⟨Ch′
i′′ eh′ , Ck′

j′′ ek′⟩ = Ch′
i′′ Ck′

j′′ gh′ k′ . (73)

Since

⟨x, y⟩′′ = (Ci′′
r′ xr′) (Cj′′

s′ ys′)Ch′
i′′ Ck′

j′′ gh′ k′

= (Ci′′
r′ Ch′

i′′ ) (C
j′′

s′ Ck′
j′′) xr′ ys′ gh′ k′

= δh′
r′ δk′

s′ xr′ ys′ gh′ k′

= xh′ yk′ gh′ k′

= ⟨x, y⟩′,
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the equality given by
⟨x, y⟩′′ = ⟨x, y⟩′ (74)

proves that the scalar or inner product between x, y ∈ En is invariant.

5.5. The Notion of α-Product

A marginal random quantity denoted by X can always be expressed using a bivariate
distribution of mass. The mathematical expectation of X denoted by P(X) is obtained by
summarizing a bivariate distribution of mass through the notion of α-product. The α-
product is a scalar or inner product. Its four formal properties are as follows: it is a commu-
tative, associative, distributive, and orthogonal scalar or inner product. The mathematical
expectation of X12 = {1X, 2X} is denoted by P(X12). One has

P(X12) =

∣∣∣∣P(1X 1X) P(1X 2X)
P(2X 1X) P(2X 2X)

∣∣∣∣, (75)

where X12 is a double random quantity. Four α-products are P(1X 1X), P(1X 2X), P(2X 1X),
and P(2X 2X). Each of them is intrinsically of a two-dimensional nature. Each of them
is then expressed using an ordered pair of real numbers. This is because each of them is
a measure of a bilinear nature that is decomposed into two linear measures. P(X12) is,
conversely, a real number. It is the determinant of a square matrix of order 2. In general,
the mathematical expectation of a multiple random quantity of order m denoted by

X12...m = {1X, 2X, . . . , mX} (76)

is expressed as P(X12...m). One has

P(X12...m) =

∣∣∣∣∣∣∣∣∣
P(1X 1X) P(1X 2X) . . . P(1X mX)
P(2X 1X) P(2X 2X) . . . P(2X mX)

...
...

. . .
...

P(mX 1X) P(mX 2X) . . . P(mX mX)

∣∣∣∣∣∣∣∣∣, (77)

where m2 α-products are used. (75) is the α-norm of a particular tensor of order 2, whereas
(77) is the α-norm of a particular tensor of order m. In either case, bivariate distributions
of mass are always used. How the notion of α-product between (1)x and (2)x, with (1)x,

(2)x ∈ En, works is explained as follows:

Example 1. Table 2 gives P(1X 2X) = 55.2. The contravariant components of (2)x identify the
following column vector 0

6
7

,

whereas its covariant components are given by

0 · 0 + 6 · 0 + 7 · 0 = 0,

0 · 0 + 6 · 0.2 + 7 · 0.3 = 3.3,

and
0 · 0 + 6 · 0.3 + 7 · 0.2 = 3.2.

It is then possible to observe〈0
8
9

,

 0
3.3
3.2

〉
= ⟨(1)x, (2)x⟩α = P(1X 2X) = 55.2.
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After calculating the covariant components of (1)x in a similar way, one writes

〈 0
4.3
4.2

,

0
6
7

〉
= ⟨(1)x, (2)x⟩α = P(1X 2X) = 55.2.

The notion of α-norm is as follows: Table 3 gives ∥(1)x∥
2
α = P(1X 1X) = 72.5, whereas Table 4

gives ∥(2)x∥
2
α = P(2X 2X) = 42.5. It follows that

P(X12) =

∣∣∣∣P(1X 1X) = 72.5 P(1X 2X) = 55.2
P(2X 1X) = 55.2 P(2X 2X) = 42.5

∣∣∣∣ = 34.21. (78)

Given two orthonormal bases of En that are arbitrarily chosen, if one passes from an
orthonormal basis of En to the other one, then the contravariant and covariant components
of a same vector of En change. Proposition 1 shows that it is possible to verify that P(X),
P(X12), and P(X12...m) do not change. The notion of mathematical expectation of a random
quantity is therefore invariant. The joint masses of a bivariate distribution of mass never
change after having been chosen by a given individual. The covariant components of a
vector of En change because its contravariant components firstly change whenever one
passes from an orthonormal basis of En to the other one. The joint masses of a bivariate
distribution of mass are used in order to obtain the covariant components of a vector of
En (Table 2). The conclusion is that the essential nature of finite partitions of alternatives
is represented by the degrees of belief attributed by a given individual (de Finetti 1981).
Such a nature does not change whenever one passes from an orthonormal basis of En to
the other one. In this paper, statistical indices that were put forward by Gini are developed
(La Haye and Zizler 2019). They are extended to probabilistic matters connected with
uncertainty and riskiness. It is not admissible to make the conditions of coherence more
restrictive (Berti and Rigo 2002; de Finetti 1989). The marginal masses do not change after
having been established by a given individual, whereas the joint ones can change. The
possible alternatives for the two marginal random quantities do not change. It is convenient
to compare this with what happens when one passes from a given basis of En to another one.
If one passes from an orthonormal basis of En to another one, then the possible alternatives
for the two marginal random quantities change. The marginal and joint masses do not
change. A multilinear approach is useful. This is because several topics can be studied in a
broader way using it (see Chambers et al. 2017; Echenique 2020; Maturo and Angelini 2023;
Nishimura et al. 2017 with respect to revealed preference theory). The two-variable linear
model can be studied geometrically (Nelder and Wedderburn 1972). It is possible to extend
the least-squares model by studying multilinear relationships between variables based on
the notion of α-product. However, mean quadratic differences (Angelini and Maturo 2023),
the correlation coefficient (Hotelling 1936), Jensen’s inequality, ordinal and cardinal utilities
(Angelini 2023), and principal component analysis (Angelini and Maturo 2022b; Jolliffe
and Cadima 2016; Pasini 2017; Rao 1964) can be based on conditions of uncertainty and
riskiness studied through the notion of α-product. Linear spaces over R with a different
dimension are used as elements of probability spaces. A probability space associated with
a multiple random quantity of order 2 denoted by X12 is formally given by

(Ω,F, P), (79)

where Ω = I(iX)× I(jX), with i, j = 1, 2, and F = {∅, Ω}. One has

X12 ∈ (2)S
(2). (80)

The basic case is expressed by X12. Since

(2)S
(2) ⊂ En ⊗ En, (81)
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an ordered triple denoted by (
(1)x, (2)x, p

)
(82)

is technically established. From (82), it follows that (2)S(2) is decomposed. (1)x, (2)x ∈ En

are two vectors representing the possible values for two marginal random quantities. They
belong to the set denoted by (2)S(1). One has

(2)S
(1) ⊂ En, (83)

so Ω = I(1X) =

(1)x
1

...

(1)x
n

 ⊂ En, as well as Ω = I(2X) =

(2)x
1

...

(2)x
n

 ⊂ En. The set given

by (2)S(1) contains the marginal random quantities denoted by 1X and 2X, which are the
components of X12. p is an affine tensor of order 2. In particular, if a vector of the ordered
triple given by (82) has all its contravariant components equal to 1, then the mathematical
expectation of X denoted by P(X), where X ∈ (1)S, is obtained using a bivariate distribution
of mass only. One has

(1)S ⊂ En. (84)

Whenever the mathematical expectation of a multiple random quantity of order m is
obtained using m2 bivariate distributions of mass, each of them is identified with an
ordered triple. Its first two elements are vectors of En, whereas the third one is an affine
tensor of order 2. Each marginal random quantity denoted by 1X, . . . , mX can be assumed
to have n possible values.

Table 2. Random quantity 1 combined with random quantity 2.

Random Quantity 1
Random Quantity 2

0 6 7 Sum

0 0 0 0 0

8 0 0.2 0.3 0.5

9 0 0.3 0.2 0.5

Sum 0 0.5 0.5 1

Table 3. Random quantity 1 combined with itself.

Random Quantity 1
Random Quantity 2

0 8 9 Sum

0 0 0 0 0

8 0 0.5 0 0.5

9 0 0 0.5 0.5

Sum 0 0.5 0.5 1

Table 4. Random quantity 2 combined with itself.

Random Quantity 1
Random Quantity 2

0 6 7 Sum

0 0 0 0 0
6 0 0.5 0 0.5

7 0 0 0.5 0.5

Sum 0 0.5 0.5 1
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6. Conclusions and Future Perspectives

In this paper, P(X) is defined using the notion of α-product. Given the masses as-
sociated with all possible values for X, P(X) is expressed as their function. Two phases
arise, characterizing Bayes’ theorem. The formal phase establishes all fair estimations of X
denoted by P(X), whereas the empirical phase identifies a specific point of a convex set.
With respect to each mass, the formal phase is characterized by infinite values between
0 and 1, endpoints included. Even though a specific point of a convex set is chosen in
the empirical phase because a process of convergence occurs, an essentially and exclu-
sively psychological value is attributed to each mass by a given individual. In this paper,
summarized distributions of mass were handled. They are of a bivariate nature. They are
two-dimensional distributions. Two phases still occur. A coherent extension of the domain
of definition of a function of estimation denoted by P is treated. The statistical indices used
in this paper are therefore based on a subdivision of alternatives. P(X12) and P(X12...m)
are defined as well, where both P(X12) and P(X12...m) are two barycenters of masses ob-
tained by considering the α-norm of two particular tensors. P(X12) is also the area of a
two-parallelepiped, whose edges are given by (1)x and (2)x. Similarly, P(X12...m) is also the
m volume of an m-parallelepiped, whose edges are given by (1)x, (2)x, . . . , (m)x. Since the
used metric is proved to be intrinsic or invariant, only the affine properties make sense.
The statistical indices obtained inside linear spaces over R are therefore not dependent on
the arbitrary choice of the coordinate system. Simple probabilistic rules are used. They are
basically common sense rules. All the theorems of probability calculus are based on them.
Another remarkable consequence of what is stated in this paper is the following: fair
estimations can also be used in an axiomatic or qualitative way that is independent of any
coordinate system.

This paper focuses on a methodological approach that was put forward by Gini.
My current work involves extending this approach to issues connected with the theory of
decision making, the correlation coefficient, the Sharpe ratio, Jensen’s inequality, measures
of variability, regression models, principal component analysis, the mean-variance model,
and so on. In the econometric investigation of the relationships between variables, statistical
indices connected with the notion of α-product play an essential role. A stochastic model
of choice based on positive and negative errors related to a specific function of estimation
denoted by P is a further continuation of what is stated in this paper. Such errors are
normally distributed. Their mean value is equal to zero. Every fair estimation being made
by a given individual and based on real data is a zero-sum game taking place under
imperfect information. This is found in another paper of mine that was recently made
ready. Real data can be treated as sample data.
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