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Abstract: In this study, we proposed two types of hybrid models based on the heterogeneous
autoregressive (HAR) model and support vector regression (SVR) model to forecast realized volatility
(RV). The first model is a residual-type model, where the RV is first predicted using the HAR model,
and the residuals are used to train the SVR model. The residual component is then predicted using
the SVR model, and the results from both the HAR and SVR models are combined to obtain the final
prediction. The second model is a weight-based model, which is a combination of the HAR and SVR
models and uses the same independent variables and dependent variables as the HAR model; we
adjust the contribution of the two models to the predicted values by giving different weights to each
model. In particular, four volatility models are used in RV forecasting as basic models. For empirical
analysis, the RV of returns of the Tokyo stock price index and five individual stocks of TOPIX 30 is
used as the dataset. The empirical results reveal that according to the model confidence set test, the
weight-type model outperforms the HAR model and the residual-type HAR–SVR model.

Keywords: forecasting; realized volatility; heterogeneous autoregressive model; support vector
regression; TOPIX 30

1. Introduction

Volatility plays an important role in risk management. However, there is an inherent
problem with volatility: real volatility is latent and is not directly observable. Volatility can
be estimated using other approaches, such as the autoregressive conditional heteroskedas-
ticity (ARCH) and generalized autoregressive conditional heteroskedasticity (GARCH)
models proposed by Engle (1982) and Bollerslev (1986). Such models have been developed
and studied extensively; however, because GARCH models use open-to-close return data,
they are still subject to unobserved latent volatility. To overcome this problem and take
full advantage of information from high-frequency intraday data, Andersen et al. (2003)
proposed a framework to compute the summation of the squared high-frequency intraday
returns to construct realized volatility (RV) using high-frequency data for measuring, mod-
eling, and forecasting latent volatility. When the measurement error of the RV is ignored,
volatility essentially becomes “observable”.

For forecasting RV, Corsi (2009) introduced a simple and easy-to-implement model
called the heterogeneous autoregressive (HAR) model. This model utilizes the past daily,
weekly, and monthly RVs called 1, 5, and 22 lags, respectively, as variables to predict the fu-
ture daily RV. The HAR model captures the long-term memory and persistence of essential
features in financial data. The goal of (G)ARCH models is to estimate and forecast unob-
servable latent volatility, whereas RV is a nonparametric estimator of latent volatility, and
autoregressive moving average (ARMA)-type models, including the HAR model, are used
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to predict observable estimators, which are distinguished from each other by the difference
in the dependent variables Guidolin and Pedio (2018), McAleer and Medeiros (2008).

Since its introduction, the HAR model has been widely used and continuously refined.
Corsi and Renò (2012) further developed the HAR model into the HAR with compo-
nent jumps (HAR-CJ) model by decomposing RV into continuous and jump components.
Building on the realized semivariance, Patton and Sheppard (2015) proposed a HAR-
semivariance (HAR-SV) model and demonstrated that it is better than the HAR-CJ model.
Bollerslev et al. (2016) considered the distribution of measurement error and realized
quarticity (RQ) as an estimator of the variance in the measurement error to construct the
HARQ model, which outperformed the other HAR series models in an empirical analysis.
Wen et al. (2016) used alternative risk measures to construct a series of HAR-type models
for predicting volatility in crude oil futures. Audrino et al. (2018) proposed the flexible
HAR (1, 2, . . . , p) model, which goes beyond the traditional HAR (1, 5, 22) model. This
model treats all past p days of RV as estimators, using the least absolute shrinkage and
selection operator (LASSO) method with a regularization term to estimate the model, which
mitigates the problem of overfitting. Lyócsa and Stašek (2021) introduced a method to
improve the predictive accuracy of the HAR model by combining multiple results from
HAR models with different volatility estimators. This approach involves averaging the
predictions of all the models by using different volatility estimators to derive the final
prediction.

In recent years, several studies have used machine learning methods directly in financial
forecasting or implementing time series models to improve forecasting accuracy. Various
studies by Gupta et al. (2023), Ramos-Pérez et al. (2019), Demirer et al. (2020), Carr et al.
(2019), and others have discussed the prediction of RV in financial markets using indi-
vidual machine learning models such as artificial neural networks and support vector
machine (SVM).

In addition to this, studies have combined machine learning models with financial
time series models to better capture both linear and nonlinear patterns in time series.
Kim and Won (2018) combined long short-term memory (LSTM)-based methods with a
GARCH-type model to construct numerous hybrid models. The empirical results with
returns data of the KOSPI 200 index revealed that the LSTM-based hybrid models are better
than single GARCH-type models in prediction accuracy. Zhang and Qiao (2021) and Sun
and Yu (2020) proposed HAR- and GARCH-type support vector regression (SVR) models,
respectively. Their finding showed that SVR effectively improved the prediction accuracy
of HAR-type and GARCH-type models. Pai and Lin (2005), Li et al. (2010), and Zhu et al.
(2017) investigated a hybrid model based on the autoregressive integrated moving average
(ARIMA) and SVR or SVM for time series forecasting in different fields, revealing that a
hybrid model can improve on the ARIMA model in prediction accuracy.

However, in these studies, the researches did not consider the optimal hyperparameter
setting of machine learning models when combining machine learning with financial
time series models. Therefore, in this study, following Huang (2012), we use the genetic
algorithm (GA) method to optimize the hyperparameters of the SVR model so that we can
choose more appropriate hyperparameters. Based on this automated machine learning
model, we propose two types of hybrid models that combine the HAR model with the SVR
to predict the RV of stock indices and individual stocks returns. The first type predicts the
residual of the HAR model predictions using the GA-optimized SVR model as a nonlinear
component. Then, we use the sum of the two predicted components as the predicted value
of volatility. The second is a weight-type model, where the predicted value ŷ is described as
αŷHAR +(1− α)ŷSVR, which captures the nonlinear component. We construct the two types
hybrid models based on four basic HAR-type models. Then, we compare the performance
of these models in out-of-sample forecasting. Additionally, we use other extensions of the
HAR model, such as HAR-semivariance (HAR-SV), HAR-signed jumps (HAR-SJ), and
HAR-RQ (HARQ), in this study and combine them with SVR. In the empirical analysis,
we collect high-frequency intraday price data (and, thus, computing the returns) from the
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Tokyo stock price index (TOPIX) and five individual stocks of TOPIX 30 in the Japanese
market from 2020 to 2022 as our dataset for an out-of-sample forecasting test to compare
the performance of the hybrid models and basic HAR-type model. Our main contributions
are as follows: (1) we propose that the problem of parameter tuning in RV prediction using
machine learning models can be made more efficient using automatic machine learning
models; (2) we apply the optimization algorithm not only for hyperparameter optimization
but also in the selection of weights when combining different predictive values; and (3) we
conduct an empirical study in the Japanese stock market and prove the effectiveness of
this method.

The rest of this paper is structured as follows. First, in Section 2 we introduce the
volatility estimators that will be used in this study. Second, in Section 3, we present all the
base models employed in this study and the methodology that will be used to combine the
models. Next, in Section 4, we conduct an empirical analysis of our dataset and report and
discuss the results. Finally, we present the conclusions in Section 5.

2. Volatility Estimators
2.1. Realized Volatility

We consider a log-price pt of a single asset, which follows a stochastic process as follows:

dpt = µtdt + σtdWt, (1)

where µt is the drift term, σt is the instantaneous volatility term, and Wt is a standard
Brownian motion.

In this price process, the latent volatility is the integrated variance (IV), and the one-day
IV is defined by the following equation:

IVt =
∫ t

t−1
σ2(ω)dω. (2)

In this equation, the σ2(ω) is the instantaneous volatility at time ω.
As mentioned above, daily IV is unobservable and daily RV computed from high-

frequency return data is used as an estimator of IV (Andersen et al. 2001a, 2001b; Barndorff-
Nielsen and Shephard 2002).

The definition of RV within a day is as follows:

RVd
t =

M

∑
i=1

r2
t,i, (3)

where rt,i = pt,i − pt,i−1 is the return of the ith subinterval, M is the number of subinterval
on the day t, and pt,i is the logarithm of the price at time point i in day t.

Therefore, the weekly and monthly average RVs are as follows

RVw
t =

1
5
(RVd

t + RVd
t−1 + · · ·+ RVd

t−4). (4)

RVm
t =

1
22

(RVd
t + RVd

t−1 + · · ·+ RVd
t−21). (5)

2.2. Realized Semivariance

According to Barndorff-Nielsen et al. (2008), the realized semi-volatility is primarily
used to measure the positive and negative variation in the returns. The daily positive
RV(RV+) is as follows:

RVd+
t =

M

∑
i=1

(max(rt,i, 0))2, (6)
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and the daily negative RV(RV−) is as follows:

RVd−
t =

M

∑
i=1

(min(rt,i, 0))2. (7)

Furthermore, by definition, RV can be decomposed into RV− and RV+, as follows:

RVd
t = RVd+

t + RVd−
t . (8)

This decomposition holds for any given point in time.

2.3. Signed Jump

SJ was introduced by Patton and Sheppard (2015), and the daily SJ is defined by the
following equation:

SJd
t = RVd+

t − RVd−
t . (9)

When the positive price fluctuation is greater than the negative price fluctuation, SJ is
positive, and when the negative fluctuation is greater than the positive fluctuation, SJ
is negative.

3. Basic Models
3.1. Heterogeneous Autoregressive Model

The HAR-RV model is widely used in finance to predict the RV of financial assets using
high-frequency data. It was proposed by Corsi (2009). It is a time-varying autoregressive
model that uses lagged RV at different time scales as predictors to forecast RV. The most
classical HAR-RV model is the HAR-RV (1, 5, 22) model, which uses three predictors—daily
RV, weekly average RV, and monthly average RV.

RVd
t = β0 + βdRVd

t−1 + βwRVw
t−1 + βmRVm

t−1. (10)

3.2. HAR-RSV and HAR-SJ Model

Based on realized semivariance (RSV), Patton and Sheppard (2015) have proposed a
HAR-semivariance (HAR-SV) model. This model decomposes the daily RV into RV+ and
RV− by Equation (8), and then uses the RV+ and RV− to construct the HAR model. The
model is defined as follows:

RVt = β0 + βd+
1 RVd+

t−1 + βd−
1 RVd−

t−1 + β2RVw
t−1 + β3RVm

t−1 (11)

We include the HAR-RV-with-jumps (HAR-RV-J) model, which was proposed by
Andersen et al. (2007), in our study. Then, we replace the jump component with the
SJ component, because Patton and Sheppard (2015) found that a signed jumps model is
helpful for forecasting volatility, to create a model we call the HAR-SJ model. The model is
defined as follows:

RVt = β0 + β1RVd
t−1 + β2RVw

t−1 + β3RVm
t−1 + β4SJd

t−1 (12)

3.3. The HARQ Model

RV aims to estimate the IV of assets over a given period. However, the M of Equation (3)
has an upper bound, causing an estimation error. According to Barndorff-Nielsen and
Shephard (2002), RV can be expressed as follows:

RVt = IVt + ηt, ηt ∼ MN(0,
2IQt

M
), (13)

where MN denotes mixed normal, and IQt is the integrated quarticity (IQ), which is
defined as follows:
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IQt =
∫ t

t−∆t
σ4(ω)dω. (14)

Then, the IQ can be estimated by the RQ

RQt =
M

∑
i=1

r4
t,i. (15)

Following Bollerslev et al. (2016), we can construct the HARQ model as follows:

RVt = β0 + (β1 + β1QRQ1/2
t−1)RVt−1 + β2RVw

t−1 + β3RVm
t−1. (16)

We refer to HAR-RV, HAR-SV, HAR-SJ, and HARQ collectively as HAR-X models.

3.4. Genetic Algorithms and Support Vector Regression

SVR is an extension of the classification method SVM that was introduced in 1995
(Cortes and Vapnik 1995). SVR minimizes the error to obtain the regression equation by
setting two parallel lines and enclosing the region between these two lines as tightly as
possible around the output values. When data are difficult to fit in lower dimensions, one
of the advantages of SVR is that it can map data in lower dimensional spaces to higher
dimensional spaces by means of a kernel function, allowing the model to fit the data better.
In the SVR training procedure, given a T days dataset F = {(x1, y1), (x2, y2), . . . , (xT , yT)},
where xi is the training vector, xi ∈ Rn, and yi is the output value, yi ∈ R, the one-day
ahead forecasting of SVR in time t can be expressed as a linear equation as follows:

ŷt+1 =
n

∑
j=1

ωt,jxt,j + bt, (17)

where bt ∈ R, the predictor used in the HAR-X models will be used to obtain SVR models,
so n = 3 or 4, depending on the type of HAR-X model (only in the HAR-RV model is
n = 3), xt,j is the jth predictor in time t, and ωt,j is the coefficient of xt,j.

To obtain the ωt,j, SVR transforms the regression problem into a convex optimization
problem,

min
1
2
∥ωt∥2, (18)

subject to

ŷi − yi ≤ ϵ

yi − ŷi ≤ ϵ, i = 1, 2, 3, . . . , t
(19)

where ϵ represents how large errors can be tolerated in regression tasks; yi is the actual
value; and ŷi is the predicted value on the day i. Moreover, to allow some errors, Bennett
and Mangasarian (1992) introduced the soft margin method, which uses the slack variables
ξt and ξ∗t to relax the restriction in Equation (19), and Cortes and Vapnik (1995) used this in
SVM. Then, the optimization problem is as follows:

min
1
2
∥ωt∥2 + C(

T

∑
i=1

ξi + ξ∗i ), (20)

subject to

ŷi − yi ≤ ϵ + ξ∗i
yi − ŷi ≤ ϵ + ξi

ξi, ξ∗i ≥ 0, i = 1, 2, 3, . . . , t

(21)
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where the penalty coefficient C > 0 is a constant. Solving this optimization problem by
constructing a Lagrange function, we can obtain the time t coefficients ωt,i (for details see
Smola and Schölkopf 2004; Cortes and Vapnik 1995). Through the kernal function, SVR can
be used to construct nonlinear time series problems. Furthermore, by choosing different
kernel functions, SVR can construct different SVMs to obtain different regression equations.
Commonly used kernel functions include the linear kernel function, polynomial kernel
function, and radial basis function (RBF).

K(xi, xj) = exp(−γ∥xi − xj∥2), i, j = 1, 2, 3, . . . , t. (22)

Among them, the RBF kernel function (Equation (22)) is the most adaptable to various
problems. Parameter γ describes the variance of the kernel function, and together with the
penalty coefficient C and the sensitivity ϵ, it affects the model’s fitting ability to the data.
Thus, the aim of optimizing SVR is to find the optimal values of these three parameters
γ, C, and ϵ1.

GA is a search algorithm based on the principles of natural selection in biological
evolution; Whitley (1994) provided a tutorial on the GA.

The basic principle of GA is to use a fitness function to evaluate individuals, eliminate
those with low fitness, and retain those with the highest fitness to generate the next
generation of individuals, thereby iteratively searching for the optimal solution. In our
approach, we use the GA method to iteratively search for the optimal values of the three
parameters (γ, C, ϵ) of the SVR to automatically optimize and find the best model.

3.5. Hybrid Model

In this study, we propose two types of hybrid HAR-X-SVR models, called HAR-X-
SVR-1 and HAR-X-SVR-2, respectively. Following Pai and Lin (2005), our HAR-X-SVR-1
model decomposes the RV of returns into linear and nonlinear parts, as presented in the
following equation:

RVd
t = R̂Vd

t,L + R̂Vd
t,N + ϵt, (23)

where R̂Vd
t,L is the linear part prediction; R̂Vd

t,N is the nonlinear part prediction; and ϵ is the
residual. Then, we use the HAR-X model to predict the linear part and assume that the HAR-
X model can capture all the linear information. Therefore, let fHAR,t and fSVR,t represent
the predictions of the HAR-X model and the SVR model for day t, respectively; then, the
remaining part is the nonlinear part and the residual, as presented in the following equation:

RVd
t,N = RVd

t − fHAR,t = fSVR,t + ϵt, (24)

R̂Vd
t,N = fSVR,t. (25)

In the HAR-X-SVR-2 model, we construct the HAR-X-SVR model by combining the
HAR and SVR with a GA-optimized weight α. The prediction of RV is calculated as below:

RVd
t = α fHAR,t + (1 − α) fSVR,t + ϵt. (26)

In addition to searching for the three parameters of SVR using GA, we search for the
weight α for the HAR-X-SVR-2 model (see Algorithm 1).
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Algorithm 1 HAR-X-SVR Model for T days forecasting

1: procedure ONE HAR-X-SVR MODEL
2: Estimate the HAR model
3: for t ≤ T do
4: for i ≤ n do
5: if the model is HAR-X-SVR-1 then
6: Calculate residuals of HAR
7: Use residuals to search optimal ϵ,γ,C of SVR
8: else if the model is HAR-X-SVR-2 then
9: Search optimal ϵ,γ,C,α for the HAR-X-SVR-2 model

10: end if
11: Forecast one-day ahead RV
12: i = i + 1
13: end for
14: Calculate the mean value of n times forecasting as the forecasted value of day t
15: t = t + 1
16: end for
17: Collect all T days forecasted values.
18: end procedure

4. Empirical Analysis
4.1. Data Description

In this study, our dataset was collected from the high-frequency intraday price data of
the TOPIX and five individual stocks on TOPIX 30 from 1 January 2020 to 30 December
2022. We calculated the daily RV and other volatility estimators using the five-minute
returns data. The computation method is presented in Equations (3), (6), (7), and (9). There
are total 731 observations in our dataset.

In Table 1, we provide a summary of the data, including the maximum, minimum,
and standard deviation of RV for TOPIX and individual stocks, as well as the 5%, 50%, and
95% quantiles of RV. Notably, the maximum and 95% quantile values of RV exhibit great
variation because of the inclusion of the stock market crash in early 2020 due to the impact
of the coronavirus pandemic.

Table 1. Data summary.

Company Mean std min 5% 50% 95% max

TOPIX 1.093 1.752 0.077 0.166 0.604 3.133 27.258
2914 0.644 0.909 0.070 0.162 0.405 1.798 13.090
8802 1.965 3.707 0.222 0.464 1.164 4.185 51.835
8411 1.107 1.731 0.129 0.233 0.699 3.050 23.436
8316 1.077 2.152 0.101 0.219 0.653 2.497 40.756
9432 1.904 4.043 0.134 0.353 0.955 5.696 56.830

Figures 1 and 2 depict the RV of our datasets, with the vertical coordinate being the
RV and the horizontal coordinate being the date, where the blue and red lines represent
the 95% quantile value and the average value, respectively. The graphs reveal that all
datasets reached a high level at the beginning of the coronavirus pandemic, with long
periods exceeding the 95% quantile value. Among them, 8802, 8316, and 8411 reached a
high level at the end of 2022 again but not as high as at the beginning of the coronavirus
pandemic, and the extreme RV value of 8316 occurred at the end of 2022. Furthermore,
8802, 8316, 8411, and TOPIX had a high level of RV at the end of the other periods, and they
all had relatively stable levels of RV during the other periods, whereas 2914 and 9432 had a
few higher peaks.
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Figure 1. Realized volatility for stocks 2914, 8802, and 8316.

Figure 2. Realized volatility for stocks 8411 and 9432 and TOPIX as a whole.

4.2. Out-of-Sample Forecasting

In this study, we used the first 400 days data to train the models and the remaining
331 days data for the out-of-sample forecasting test. A fixed-length rolling window (RW)
approach was used to update the different models each day, and we also used an increasing
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window (IW) approach to train the models. The training sizes of the IW are from 400 to
730 days. Such a design is intended to consider the possible effects of different windowing
approaches on the prediction results.

Throughout the training process, for HAR-X-SVR-1, we estimate HAR-X, derive the
in-sample residuals, and use the in-sample residuals as the dependent variable to train the
SVR. For HAR-X-SVR-2, we use the predictor and dependent variables that are identical to
the corresponding HAR-X.

We employed four basic models: HAR-RV, HAR-SV, HAR-SJ, and HARQ. This resulted
in 3 models under each basic model and 12 models in total. Among these models, the
HAR-X model is estimated using OLS. After obtaining predictions from all the models, we
calculated the loss function of the models in 22-day intervals as a sample for comparing
the performance of each model with model confidence set (MCS). Patton (2011) finds
that the mean square error (MSE) and the quasi-likelihood (Q-LIKE) are robust when
comparing forecasting models. Following this paper, we utilized two loss functions—MSE
and Q-LIKE—which are defined as follows:

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2

Q − LIKE =
1
n

n

∑
i=1

(log(ŷi) +
yi
ŷi
)

(27)

Model Confidence Set

The MCS method, introduced by Hansen et al. (2011), is an approach used to select
the optimal predictive model. It addresses the challenge of comparing the performance of
different models within different intervals, where reliance on a single loss function value
alone may not be sufficient. The main procedure is to select a loss function for comparison
and calculate the loss for all models in each period. In the case of time series models, a
predetermined interval length is defined, and the loss is calculated for each interval within
an extended period.

The set of all models is defined as M0, and an additional set of models is denoted
as M(M ⊂ M0). Then, an equivalence test δ and an elimination rule eM are defined. The
δ is used to test whether the models in the set M exhibit "good" performance based on
the computed loss function. If any models in M demonstrate poor performance, the δ
hypothesis is rejected, and the elimination rule eM is applied to eliminate models. This
process continues until the delta hypothesis is accepted.

Throughout the process, each model is assigned a p-value, with a p-value of 1 indicat-
ing the best model, and models that are eliminated earlier have lower p-values. For details
on the specific steps, see the study by Hansen et al. (2011).

4.3. Results

Based on different loss functions and windowing approaches, we report the p-values
of our models for MCS on different datasets in Tables 2–5. The higher the p-value, the
higher the performance of a model under the loss function—the highest is 1, and the lowest
is 0. Moreover, we rank the models according to the p-values and sort the models according
to the magnitude of the p-values.

In Table 2, we report the MCS p-values for the models we used the HAR-RV model to
construct. The hybrid model significantly outperforms the HAR-RV model in datasets 2914,
8316, and 8411, and the HAR-RV model outperforms the hybrid model in dataset 2914 only
under Q-LIKE when using the IW approach.

Furthermore, the hybrid model HAR-RV-SVR-1 significantly outperforms HAR-RV-
SVR-2 only under MSE in dataset 8411 when using the RW approach. No hybrid model
outperformed the HAR-RV model in the 8802 and 9432 datasets. In the TOPIX dataset,
HAR-RV performs better under MSE, and HAR-RV-SVR-2 performs better under Q-LIKE.
Using all datasets, we calculated the average rank of HAR-RV, HAR-RV-SVR1, and HAR-
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RV-SVR-2; based on the average rank, HAR-RV-SVR-2 performs better than the other
two models.

Table 2. MCS results for HAR-RV-based models.

Company Loss
Function RW IW

HAR-RV HAR-RV-
SVR-1

HAR-RV-
SVR-2 HAR-RV HAR-RV-

SVR-1
HAR-RV-
SVR-2

2914 MSE 0.012 0.012 1.000 0.656 0.656 1.000
Q-LIKE 0.100 0.100 1.000 1.000 0.189 0.189
MSE rank 2 2 1 2 2 1
Q-LIKE
rank 2 2 1 1 2 2
Average
rank 2 2 1 1.5 2 1.5

8316 MSE 0.037 0.037 1.000 0.230 0.230 1.000
Q-LIKE 0.009 0.009 1.000 0.510 0.006 1.000
MSE rank 2 2 1 2 2 1
Q-LIKE
rank 2 2 1 2 3 1
Average
rank 2 2 1 2 2.5 1

8411 MSE 0.540 1.000 0.540 0.671 0.512 1.000
Q-LIKE 0.033 0.060 1.000 0.133 0.133 1.000
MSE rank 2 1 2 2 3 1
Q-LIKE
rank 3 2 1 2 2 1
Average
rank 2.5 1.5 1.5 2 2.5 1

8802 MSE 1.000 0.105 0.279 1.000 0.055 0.687
Q-LIKE 1.000 0.010 0.022 1.000 0.020 0.020
MSE rank 1 3 2 1 3 2
Q-LIKE
rank 1 3 2 1 2 2
Average
rank 1 3 2 1 2.5 2

9432 MSE 1.000 0.047 0.047 1.000 0.037 0.037
Q-LIKE 1.000 0.150 0.150 1.000 0.044 0.044
MSE rank 1 2 2 1 2 2
Q-LIKE
rank 1 2 2 1 2 2
Average
rank 1 2 2 1 2 2

TOPIX MSE 1.000 0.036 0.791 1.000 0.003 0.675
Q-LIKE 0.103 0.103 1.000 0.054 0.054 1.000
MSE rank 1 3 2 1 3 2
Q-LIKE
rank 2 2 1 2 2 1
Average
rank 1.5 2.5 1.5 1.5 2.5 1.5

Total
average
rank

1.667 2.167 1.5 1.5 2.333 1.5

Note: The bold number is the best result among the three models under different loss function and window
approach. The underlined number is the worst result among the three models.

The results for the HAR-SV-based models (Table 3) reveal that HAR-SV-SVR-2 signifi-
cantly outperforms HAR-SV and HAR-SV-SVR-1, and HAR-SV only outperforms HAR-SV-
SVR-2 under Q-LIKE in datasets 8802, 9432, and 2914 using the RW, IW, and IW approaches,
respectively. After combining all rankings, we find that HAR-SV-SVR-2 significantly out-
performs HAR-SV and HAR-SVR-1 in terms of average ranking.
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Table 3. MCS result for HAR-SV-based models.

Company Loss
Function RW IW

HAR-SV HAR-SV-
SVR-1

HAR-SV-
SVR-2 HAR-SV HAR-SV-

SVR-1
HAR-SV-
SVR-2

2914 MSE 0.008 0.008 1.000 0.085 0.069 1.000
Q-LIKE 0.010 0.010 1.000 1.000 0.496 0.496
MSE rank 2 2 1 2 3 1
Q-LIKE
rank 2 2 1 1 2 2
Average
rank 2 2 1 1.5 2.5 1.5

8316 MSE 0.057 0.055 1.000 0.083 0.039 1.000
Q-LIKE 0.245 0.245 1.000 0.085 0.085 1.000
MSE rank 2 3 1 2 3 1
Q-LIKE
rank 2 2 1 2 2 1
Average
rank 2 2.5 1 2 2.5 1

8411 MSE 0.061 0.061 1.000 0.045 0.061 1.000
Q-LIKE 0.000 0.014 1.000 0.104 0.104 1.000
MSE rank 2 2 1 3 2 1
Q-LIKE
rank 3 2 1 2 2 1
Average
rank 2.5 2 1 2.5 2 1

8802 MSE 0.316 0.186 1.000 0.579 0.019 1.000
Q-LIKE 1.000 0.417 0.417 0.295 0.089 1.000
MSE rank 2 3 1 2 3 1
Q-LIKE
rank 1 2 2 2 3 1
Average
rank 1.5 2.5 1.5 2 3 1

9432 MSE 0.205 0.122 1.000 0.043 0.035 1.000
Q-LIKE 0.396 0.103 1.000 1.000 0.798 0.798
MSE rank 2 3 1 2 3 1
Q-LIKE
rank 2 3 1 1 2 2
Average
rank 2 3 1 1.5 2.5 1.5

TOPIX MSE 0.088 0.011 1.000 0.060 0.007 1.000
Q-LIKE 0.725 0.725 1.000 0.217 0.217 1.000
MSE rank 2 3 1 2 3 1
Q-LIKE
rank 2 2 1 2 2 1
Average
rank 2 2.5 1 2 2.5 1

Total
average
rank

2 2.417 1.083 1.917 2.5 1.167

Note: The bold number is the best result among the three models under different loss function and window
approach. The underlined number is the worst result among the three models.

The results for the HAR-SJ-based models (Table 4) reveal that HAR-SJ-SVR-2 signifi-
cantly outperforms HAR-SJ and HAR-SJ-SVR-1 in datasets 2914, 8316, and 8411; in contrast,
in datasets 8802 and 9432, HAR-SJ slightly outperforms the other two hybrid models. In the
TOPIX dataset, HAR-SJ performs better under MSE, and HAR-SJ-SVR-2 performs better
under Q-LIKE. After combining all rankings, we find that HAR-SJ-SVR-2 outperforms the
other two models.
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Table 4. MCS result for HAR-SJ-based models.

Company Loss
Function RW IW

HAR-SJ HAR-SJ-
SVR-1

HAR-SJ-
SVR-2 HAR-SJ HAR-SJ-

SVR-1
HAR-SJ-
SVR-2

2914 MSE 0.003 0.003 1.000 0.274 0.274 1.000
Q-LIKE 0.021 0.000 1.000 1.000 0.266 0.266
MSE rank 2 2 1 2 2 1
Q-LIKE
rank 2 3 1 1 2 2
Average
rank 2 2.5 1 1.5 2 1.5

8316 MSE 0.056 0.049 1.000 0.171 0.075 1.000
Q-LIKE 0.328 0.137 1.000 0.645 0.000 1.000
MSE rank 2 3 1 2 3 1
Q-LIKE
rank 2 3 1 2 3 1
Average
rank 2 3 1 2 3 1

8411 MSE 0.048 0.333 1.000 0.363 0.363 1.000
Q-LIKE 0.013 0.034 1.000 0.144 0.144 1.000
MSE rank 3 2 1 2 2 2
Q-LIKE
rank 3 2 1 2 2 1
Average
rank 3 2 1 2 2 1

8802 MSE 1.000 0.067 0.067 0.686 0.129 1.000
Q-LIKE 1.000 0.087 0.087 1.000 0.414 0.414
MSE rank 1 2 2 2 3 1
Q-LIKE
rank 1 2 2 1 2 2
Average
rank 1 2 2 1.5 2.5 1.5

9432 MSE 0.033 0.011 1.000 1.000 0.001 0.145
Q-LIKE 0.508 0.508 1.000 1.000 0.099 0.907
MSE rank 2 3 1 1 3 2
Q-LIKE
rank 2 2 1 1 3 2
Average
rank 2 2.5 1 1 3 2

TOPIX MSE 1.000 0.001 0.476 1.000 0.007 0.337
Q-LIKE 0.331 0.151 1.000 0.472 0.066 1.000
MSE rank 1 3 2 1 3 2
Q-LIKE
rank 2 3 1 2 3 1
Average
rank 1.5 3 1.5 1.5 3 1.5

Total
average
rank

1.917 2.5 1.25 1.583 2.583 1.417

Note: The bold number is the best result among the three models under different loss function and window
approach. The underlined number is the worst result among the three models.

Similar to the results for the HAR-SV-based models, the results for the HARQ-based
models (Table 5) reveal that HARQ-SVR-2 outperforms the other two models, and the
HARQ model outperforms the other two models in datasets 9432 and 2914 under Q-LIKE.
However, in terms of average ranking, HARQ-SVR-2 significantly outperforms the other
two models. After combining all four HAR-X-based models, we find that the average
rankings of HAR-X, HAR-X-SVR-1, and HAR-X-SVR-2 are 1.896, 2.333, and 1.229 under the
RW approach and 1.771, 2.375, and 1.375 under the IW approach, respectively. In both the
RW and IW approaches, the HAR-X-SVR-2 significantly outperforms the other two types
of models.
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Table 5. MCS result for HARQ-based models.

Company Loss
Function RW IW

HARQ HARQ-
SVR-1

HARQ-
SVR-2 HARQ HARQ-

SVR-1
HARQ-
SVR-2

2914 MSE 0.031 0.031 1.000 0.560 1.000 0.977
Q-LIKE 0.042 0.042 1.000 1.000 0.601 0.202
MSE rank 2 2 1 3 1 2
Q-LIKE
rank 2 2 1 1 2 3
Average
rank 2 2 1 2 1.5 2.5

8316 MSE 0.064 0.064 1.000 0.065 0.065 1.000
Q-LIKE 0.114 0.070 1.000 0.515 0.034 1.000
MSE rank 2 2 1 2 2 1
Q-LIKE
rank 2 3 1 2 3 1
Average
rank 2 2.5 1 2 2.5 1

8411 MSE 0.039 0.039 1.000 0.051 0.054 1.000
Q-LIKE 0.000 0.000 1.000 0.019 0.019 1.000
MSE rank 2 2 1 3 2 1
Q-LIKE
rank 2 2 1 2 2 1
Average
rank 2 2 1 2.5 2 1

8802 MSE 0.048 0.048 1.000 0.050 0.050 1.000
Q-LIKE 0.143 0.140 1.000 0.100 0.100 1.000
MSE rank 2 2 1 2 2 1
Q-LIKE
rank 2 3 1 2 2 1
Average
rank 2 2.5 1 2 2 1

9432 MSE 0.225 0.130 1.000 0.569 0.512 1.000
Q-LIKE 1.000 0.276 0.276 1.000 0.622 0.273
MSE rank 2 3 1 2 3 1
Q-LIKE
rank 1 2 2 1 2 3
Average
rank 1.5 2.5 1.5 1.5 2.5 2

TOPIX MSE 0.232 0.361 1.000 0.157 0.300 1.000
Q-LIKE 0.153 0.153 1.000 0.062 0.062 1.000
MSE rank 3 2 1 3 2 1
Q-LIKE
rank 2 2 1 2 2 1
Average
rank 2.5 2 1 2.5 2 1

Total
average
rank

2 2.25 1.083 2.083 2.083 1.417

Note: The bold number is the best result among the three models under different loss function and window
approach. The underlined number is the worst result among the three models.

4.4. Discussion
4.4.1. Summary

Regarding return volatility forecasting, in addition to the classic (G)ARCH and ARMA
models, there has been an influx of research on forecasting using various types of ma-
chine learning models with the development of machine learning technology. Sezer et al.
(2020) provided an exhaustive introduction to the application of deep learning models in
financial time series forecasting. In recent years, some studies have attempted to combine
statistical and machine learning models to improve forecasting accuracy (e.g., Zhang and
Qiao 2021; Kim and Won 2018). However, they still take a human-set approach to select-
ing hyperparameters for machine learning models, which is time-consuming and labor-
intensive and requires much experience in adjusting the parameters to the optimal level.
Waring et al. (2020) provided an exhaustive overview of the application of machine learning
and automated machine learning to time series forecasting. They also compared different
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frameworks and techniques, although they did not conduct an empirical analysis. There-
fore, in this study, we propose the use of automatic machine learning methods to solve
the problem of setting hyperparameters when using machine learning, thus simplifying
the parameter tuning of machine learning. Our model is not limited to hyperparameter
optimization but also includes the selection of weights when combining the forecasts from
the HAR and SVR models with an automatic optimization algorithm. The weights of the
model are dynamic and are updated daily according to the training set.

4.4.2. Empirical Results

We compare the two hybrid models with the regular HAR-X model in the Japanese
stock market; Kim and Won (2018) and Zhang and Qiao (2021) analyzed the performance
of the hybrid model in the Korean and Chinese stock markets, respectively. Their studies
revealed that the hybrid model is helpful for improving RV forecasting accuracy. In our
empirical study, we use six datasets, including an index dataset (TOPIX) and five individual
stock datasets (stock symbol: 2914, 8316, 8411, 8802, 9432). Among these six datasets, we
find that our HAR-X-SVR-2 model is consistently the best-performing model when using
the index dataset (TOPIX) and outperforms the other two models in 12 out of 16 cases.
In the individual stock dataset, it outperforms the other models in 66 out of 80 cases
and 78 out of a total of 96 cases , which is 81.25% of the total2. Using different window
approaches, no significant effect is observed on the ranking of the models, with HAR-
X-SVR-2 outperforming the other two models in 37 out of 48 cases for RW and 41 out
of 48 cases for IW. Among the three results where the base model is used with more
information (HAR-SV, HARQ, and HAR-SJ), the average ranking of the HAR-X-SVR-2
model is higher than the average ranking when simply using the HAR-RV model as the base
model, i.e., when the model has more information, the HAR-X-SVR2 model tends to better
utilize the information contained in the predictor than the other two models. Although the
other hybrid model has been used by Pai and Lin (2005), which had good performance in
stock price prediction, it did not outperform the HAR model in RV prediction. Therefore,
at least in the Japanese stock market, the second type of hybrid model performs more
reliably than the others. Future research can study a greater number of models to expand
the predicted values to more combinations of models while considering more automatic
machine learning frameworks.

4.4.3. Limitations and Future Research

The limitations of this study are as follows. This study did not empirically analyze the
model’s reliability in other countries, such as the UK and US, and other financial markets,
such as FX markets. Additionally, the correlation between assets was not considered in this
study. Moreover, this study does not explore certain other machine learning or automated
machine learning models.

To address the limitations, we make several suggestions for future research. First,
more empirical studies should be conducted in different countries and markets for different
financial products to confirm whether the hybrid model proposed in this study is gener-
alizable to more markets. Second, multivariate models should be employed to consider
correlations across markets for different assets. Finally, more machine learning models and
automated machine learning frameworks should be applied. This will enable researchers
to provide a more detailed analysis of the effectiveness of hybrid models in the future.

5. Conclusions

This study proposed the use of HAR-X-SVR models, which are used for RV prediction,
and tested their out-of-sample forecasting performance under TOPIX and five individual
stocks datasets. It constructed two types of hybrid models by combining four basic HAR-X
models with SVR using two different combining methods, and these two types of hybrid
models were compared with basic HAR-X models. In the Japanese stock market, the
empirical results revealed that although the first hybrid model is effective in improving
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model accuracy in the stock price prediction study by Pai and Lin (2005), the first hybrid
model is not significantly effective in improving model accuracy in forecasting RV. However,
our second hybrid model performs very well in all six datasets, especially when based on
the HAR-SV and HARQ models. Based on the empirical results, we suggest that combining
different machine learning models with time series models can be useful for improving
prediction accuracy in the Japanese stock market. Nevertheless, confirming the feasibility
and viability of such an approach in different markets requires a more comprehensive and
meticulous investigation.

We have proposed the following recommendations for future research in order to more
comprehensively examine the hybrid model’s credibility. In this study, we only considered
hybrid models to enhance the forecasting ability of HAR models. Other volatility models,
such as MEM models (Engle and Gallo 2006), can be considered in subsequent work.
Furthermore, automatic machine learning methods have developed rapidly in recent years,
so the application of machine learning frameworks such as AutoGluon (Erickson et al. 2020)
can be considered in subsequent studies. Our approach can be generalized to multivariate
analysis using multivariate models such as the multivariate-HARQ (M-HARQ) model
(Bollerslev et al. 2018) for multivariate forecasting while considering correlations between
different markets.
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Notes
1 For more introduction to property of RBF, see Micchelli (1986) and Boser et al. (1992)
2 The results obtained from different datasets with different loss functions, basic model and windowing approach are considered

as a case, e.g., in the case of the results with HAR-RV as the basic model, the results of MSE obtained with the TOPIX dataset and
under the RW approach are a case.
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