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Abstract: The objective is to study the use of non-translation invariant risk measures within the
equal risk pricing (ERP) methodology for the valuation of financial derivatives. The ability to move
beyond the class of convex risk measures considered in several prior studies provides more flexibility
within the pricing scheme. In particular, suitable choices for the risk measure embedded in the ERP
framework, such as the semi-mean-square-error (SMSE), are shown herein to alleviate the price
inflation phenomenon observed under the tail value at risk-based ERP as documented in previous
work. The numerical implementation of non-translation invariant ERP is performed through deep
reinforcement learning, where a slight modification is applied to the conventional deep hedging
training algorithm so as to enable obtaining a price through a single training run for the two neural
networks associated with the respective long and short hedging strategies. The accuracy of the neural
network training procedure is shown in simulation experiments not to be materially impacted by
such modification of the training algorithm.

Keywords: finance; option pricing; hedging; reinforcement learning; deep learning

1. Introduction

The equal risk pricing (ERP) methodology for derivatives valuation, which was ini-
tially proposed by Guo and Zhu (2017), entails setting the price of a contingent claim as
the initial hedging portfolio value that leads to equal residual hedging risk for both the
long and short positions under optimal hedges. This pricing procedure is associated with
numerous advantageous properties, such as the production of prices that are arbitrage-free
under some technical conditions (see Carbonneau and Godin 2021b; Guo and Zhu 2017;
Marzban et al. 2022), consistency with non-myopic global dynamic optimal hedging strate-
gies, invariance of the price with respect to the position considered (i.e., long versus short),
and the ability to consider general risk measures1 for the objective function of the hedging
optimization problem.

To further improve the ERP framework, several subsequent studies proposed some
modifications to the original scheme. For instance, Marzban et al. (2022) and Carbonneau
and Godin (2021b) use the physical probability measure rather than the risk-neutral one
to perform hedging optimization; this has the advantage of the improved interpretability
of the resulting prices on top of removing the subjectivity associated with the choice of
the risk-neutral measure in an incomplete market setting. Furthermore, to enhance the
computational tractability of the ERP approach, these two studies also consider the set of
convex risk measures to represent the risk exposure of hedged transaction for both long
and short parties.2 Indeed, when convex measures are used, the translation invariance
property leads to a useful characterization of equal risk prices, which removes the need to
perform a joint optimization over all possible hedging portfolio initial values.
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The most natural convex risk measure to consider within the ERP approach is arguably
the conditional value at risk (CVaR), which is equivalent to the expected shortfall (ES) or tail
value at risk, under the assumption that underlying loss variables are absolutely continuous.
See Rockafellar and Uryasev (2002) for a formal definition of the CVaR and a description
of its properties. The CVaRα can be interpreted as the operator computing a probability-
weighted average of the worst-case risks occurring within an event of probability below
or exactly at 1− α, which is very intuitive. Moreover, it is a coherent risk measure in the
sense of Artzner et al. (1999), which implies favorable properties from a risk measurement
standpoint.3 Furthermore, the CVaR measure is used extensively in practice by the financial
sector to quantify capital requirements; see, for instance BCBS (2016).

Due to its favorable properties, several studies use the CVaR within the ERP frame-
work: see Carbonneau and Godin (2021a, 2021b). It was observed in the former that
when only the underlying asset is used to hedge put options and conventional risk-neutral
measures are used to determine the initial capital for hedging, the tail risk is much more
pronounced for the short position than for the long one, especially for out-of-the-money
puts. This leads to equal risk prices that are substantially higher than their risk-neutral
counterparts when the confidence level α of the CVaRα is high, to an extent that can cast
doubt on the applicability of the method in practice. An avenue that was explored in the
aforementioned study to remedy this drawback is to reduce the confidence level as prices
were shown numerically to be positively related to the latter. Unfortunately, as shown in
this present paper, reducing the confidence level to obtain smaller option prices becomes
quickly impractical since the resulting hedging strategies exhibit poor risk mitigation per-
formance, with speculative behavior magnifying tail losses for very high quantiles above
the CVaR confidence level. This approach should, therefore, not be pursued in practice.
A second possible solution to the inflated ERP prices issue which is explored by Carbonneau
and Godin (2021a) consists in incorporating other hedging instruments (e.g., short-term
options) within dynamic hedging schemes. That approach is shown therein to produce
prices that are often still higher than the traditional risk-neutral ones but much closer to
them. This avenue was thus deemed successful when applicable. However, it requires a
more sophisticated model to represent the price dynamics of hedging instruments, which
complicates its implementation in practice. Furthermore, hedges relying on option trades
might not be feasible or desirable under some circumstances (e.g., lack of liquidity).

The aforementioned simulation-based results on ERP prices highlight the need to
identify an ERP approach which can strictly rely on the underlying asset for hedging
transactions and, at the same time, alleviate the price inflation obtained with CVaR-based
ERP. A straightforward route to explore so as to attempt obtaining a satisfactory ERP
method while respecting the above constraints is to modify the risk measure acting as
the objective function in the optimal hedging problems underlying the ERP framework.
For instance, risk measures putting less relative weight on tail risk and more on more
moderate risk scenarios should produce lower option prices. However, such risk measures
(e.g., the semi-variance and semi-root mean square error (SRMSE)) do not necessarily
satisfy the properties of convex risk measures, in particular, the translation invariance
property. Equal risk prices stemming from such risk measure choices therefore do not have
the convenient characterization associated with convex risk measures, which highlights the
need for tailor-made numerical procedures handling this additional complexity.

The main contribution of this manuscript is twofold. The first is to propose a modifica-
tion of the deep reinforcement learning approach illustrated by Carbonneau and Godin
(2021a, 2021b) to handle non-translation invariant risk measures within ERP naturally
and without excessive additional computational burden. This modification essentially
consists in feeding varying initial hedging portfolio values with simulated risky asset paths
to the deep hedging algorithm from Buehler et al. (2019), and then coupling the trained
neural network output with a bisection search to seek the initial hedging portfolio value
equating risks for both the long and short positions. The latter bisection method search
has previously been suggested in a similar context, for instance, by Marzban et al. (2022).
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The training algorithm modification is shown in the present work not to lead to a material
deterioration in the hedging performance of the neural network underlying the numerical
approach. The second contribution consists in exploring equal risk prices of options gener-
ated when using typical non-translation invariant risk measures. It is seen that the use of
the class of semi-Lp risk measures of the form L(x) = xp1{x>0} for p > 0 is able to reduce
ERP prices to more natural levels better in line with those of existing methodologies while
simultaneously resulting in effective trading policies. Indeed, numerical results indicate
that equal risk prices generated by the class of semi-Lp risk measures can span wider ranges
of prices than those obtained under the CVaRα risk measures with conventional confidence
level α values. The latter phenomenon is shown to hold across all moneyness levels for
puts and is robust for all risky asset dynamics considered. Furthermore, the benchmarking
of neural networks trading policies hedging performance demonstrates that optimized
policies under the semi-Lp objective functions are effective for mitigating hedging risk
across all values of p considered, where p is shown to control the relative weight associated
with extreme hedging losses. This is in contrast with the CVaRα objective function, where
hedging policies optimized with relatively small confidence level α exhibit poor risk miti-
gation for loss quantiles larger than α. Lastly, our results show that the use of the semi-L2

objective function to price long-term European puts with trades involving exclusively the
underlying stock is almost as successful in reducing equal risk price values as compared
to values obtained by trading shorter-term options with the CVaRα risk measure. All of
these results clearly demonstrate the benefit of using the class of semi-Lp risk measures
within the ERP framework by simultaneously alleviating the price inflation phenomenon
observed under the class of CVaR measures as well as resulting in effective trading policies
for risk management.

This paper is divided as follows. Section 2 provides a literature review about incom-
plete market derivatives pricing, hedging methods and reinforcement learning in finance.
The theoretical setting used for the ERP approach in the present work is presented in
Section 3. Section 4 explains the reinforcement learning methodology for neural networks
embedded in the ERP approach with the modified training algorithm proposed in this
paper. Section 5 displays the results of numerical experiments associated with semi-Lp risk
measures-based ERP. Section 6 concludes.

2. Literature Review

Financial derivatives pricing in incomplete markets has received an extensive amount
of attention in the literature. Numerous papers approach this problem through the selection
of a suitable risk-neutral measure based on various considerations, such as shifting of the
drift to achieve risk neutrality and model invariance, see Hardy (2001) and Christoffersen
et al. (2010); consistency with equilibrium models, see Gerber and Shiu (1994) and Duan
(1995); or minimum entropy distance between the physical and risk-neutral measures,
see Frittelli (2000). Another strand of the literature considers pricing methods consistent
with the optimal hedging strategies. At first, quadratic hedging methods were considered
in Föllmer and Schweizer (1988), Schweizer (1995), Elliott and Madan (1998) and Bertsimas
et al. (2001) due to their tractability. However, as a consequence of the limitations associated
with the quadratic penalty (e.g., penalizing equally gains and losses), other objective
functions were considered in alternative dynamic hedging schemes, such as quantile
hedging (Föllmer and Leukert 1999), expected penalty minimization (Föllmer and Leukert
2000), or VaR and CVaR optimization as shown by Melnikov and Smirnov (2012) and Godin
(2016). Some pricing schemes were also developed to enable consistency with non-quadratic
hedging methods, for instance, utility indifference (Hodges and Neuberger 1989) or risk
indifference (Xu 2006). An issue with the latter approaches is that different prices are
obtained depending on whether a long or short position in the derivative is considered.
The ERP approach developed by Guo and Zhu (2017) identifying the derivative price
equating the hedged risk exposure of both long and short positions remedies this drawback
by providing a unique price invariant to the direction (i.e., long versus short) of the position.
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Several additional papers used or expanded on the initial ERP methodology. One problem
often considered by that methodology is the tackling of market incompleteness arising
from short-selling bans on the underlying asset: Alfeus et al. (2022), Ma et al. (2022) and He
and Zhu (2020). Marzban et al. (2022) propose to substitute the risk-neutral measure for the
physical measure during the determination of the equal risk price and to replace expected
loss functions by convex risk measures within the objective function. Carbonneau and
Godin (2021b) provide a tractable methodology based on deep reinforcement learning to
implement the ERP framework with convex risk measures under very general conditions.
This setting is extended by Marzban et al. (2021) to rather consider dynamic risk measures
within the objective function and obtain a time-consistent problem.

The computation of equal risk prices for derivatives is a highly non-trivial endeavor
requiring advanced numerical schemes in most cases. Marzban et al. (2022) propose to
use dynamic programming, which they apply on a robust optimization setting. Con-
versely, Carbonneau and Godin (2021a, 2021b) use the deep reinforcement learning ap-
proach of Buehler et al. (2019) coined as deep hedging. Other papers have relied on the
deep hedging methodology for the hedging of financial derivatives: Cao et al. (2020),
Carbonneau (2021), Horvath et al. (2021) and Lütkebohmert et al. (2022). Deep reinforce-
ment learning is a very convenient technique for multistage optimization and decision
making in financial contexts: it allows tackling high-dimensional settings with multiple
state variables, underlying asset dynamics and trading instruments. For this reason, it was
used in multiple other works on derivatives pricing and hedging. Various techniques were
considered, such as Q-learning by Halperin (2020) and Cao et al. (2021), proximal policy
optimization by Chong et al. (2021), least squares policy iteration and fitted Q-iteration
for American option pricing by Li et al. (2009), or batch policy gradient by Buehler et al.
(2019). Moreover, various other financial problems were tackled through reinforcement
learning procedures in the literature, for instance, portfolio management by Moody and
Wu (1997), Jiang et al. (2017), Pendharkar and Cusatis (2018), García-Galicia et al. (2019),
Wang and Zhou (2020), Ye et al. (2020) and Betancourt and Chen (2021); optimal liquidation
by Bao and Liu (2019); or trading optimization by Hendricks and Wilcox (2014), Lu (2017)
and Ning et al. (2021).

3. Mathematical Setup for the Financial Market

This section details the mathematical framework for the financial market considered
along with the theoretical setup for the ERP derivatives valuation approach.

A discrete set of equally spaced time points spanning a horizon of T years T ≡ {0 =
t0 < t1 < . . . < tN = T} with tn ≡ n∆, n = 0, . . . , N is considered. ∆ corresponds to
the length of a time period in years. Unless specified otherwise, the present study uses
either ∆ = 1/260 or ∆ = 1/12, corresponding to daily or monthly periods. Moreover,
consider the probability space (Ω,FN ,P) endowed with a filtration F ≡ {Fn}N

n=0 satisfying
the usual conditions, with Fn being the sigma-algebra characterizing the information
available to the investor at time tn. Multiple traded assets are introduced in the financial
market. First, a risk-free asset grows at a constant periodic risk-free rate r ∈ R: its
time-tn price is given by Bn ≡ ertn . The D + 1 other non-dividend paying risky asset
prices are characterized by the vectorial stochastic processes {S(b)

n }N
n=0 and {S(e)

n }N−1
n=0 ,

where S(b)
n ≡

[
S(0,b)

n , . . . , S(D,b)
n

]
and S(e)

n ≡
[
S(0,e)

n , . . . , S(D,e)
n

]
respectively represent the

beginning-of-period and end-of-period prices of risky assets 0, . . . , D available for trading
at time tn. This implies that S(b)

n is Fn-measurable (i.e., observable at time tn), whereas
S(e)

n is Fn+1 measurable. Due to traded instruments changing on every time period (for
example, some traded options reach maturity and need to be rolled over), it is possible
to have S(j,e)

n 6= S(j,b)
n+1, j = 1, . . . , D. However, the risky asset j = 0 is assumed to be an

underlying asset with no maturity, such as a stock, thus being available for trading on all
periods. Hence, S(0,e)

n = S(0,b)
n+1 . For simplicity, an absence of market frictions is assumed

throughout the paper. Correspondingly, it is assumed that all positions in a given portfolio
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are liquidated at the end of any period and are repurchased at the beginning of the next
period if needed.

A European-type derivative of time-tN payoff Φ
(

S(0,b)
N

)
is considered. A suitable

price for that contract and corresponding hedging strategies must be determined. Define a
trading strategy δ ≡ {δn}N

n=0 as an F-predictable process4, where δn ≡
[
δ
(0)
n , . . . , δ

(D)
n , δ

(B)
n

]
.

The latter comprises δ
(0:D)
n ≡

[
δ
(0)
n , . . . , δ

(D)
n

]
which contains the positions in all respective

risky assets 0, . . . , D within the portfolio between time tn−1 and time tn, and δ
(B)
n , which

contains the portfolio investment in the risk-free asset for the same period. For a trading
strategy δ, the corresponding time-tn portfolio value is defined as

Vδ
n ≡

{
δ
(0:D)
0

• S(b)
0 + δ

(B)
0 B0, n = 0,

δ
(0:D)
n • S(e)

n−1 + δ
(B)
n Bn, n = 1, . . . , N,

where • is the conventional dot product. A trading strategy δ is said to be self-financing if

δ
(0:D)
n+1

• S(b)
n + δ

(B)
n+1Bn = Vδ

n , n = 0, . . . , N − 1.

Denote by Π the set of all self-financing trading strategies that are sufficiently well-
behaved mathematically.5 It turns out that the portfolio value process of self-financing
trading strategies can be expressed conveniently in terms of so-called discounted gains. For a
trading strategy δ ∈ Π, the latter are defined as

Gδ
0 ≡ 0, Gδ

n ≡
n

∑
j=1

δ
(0:D)
j

•

(
B−1

j S(e)
j−1 − B−1

j−1S(b)
j−1

)
, n = 1, . . . , N.

Using standard arguments outlined, for instance, by Lamberton and Lapeyre (2007),
for any self-financing trading strategy δ ∈ Π,

Vδ
n = Bn

(
Vδ

0 + Gδ
n

)
.

Such representation is convenient, as it allows avoiding calculating δ
(B)
n for n =

0, . . . , N explicitly when calculating the portfolio value.
Aforementioned definitions allow posing the main optimization problems underlying

the ERP methodology, which consist in finding the best self-financing trading strategies,
leading to optimal hedges in terms of penalized hedging errors at the maturity of the
derivative. The solutions of such problems are referred to as global hedging procedures due
to their measurement of hedging efficiency in terms of risk at maturity rather than on a
period-by-period basis. Consider a given risk measure ρ characterizing the risk aversion
of the hedger.6 Specific examples of risk measures considered in this study are formally
defined subsequently. For a given value of V0 ∈ R, define mappings ε(L) : R → R and
ε(S) : R→ R representing optimal residual hedging risk, respectively, for a long or short
position in the derivative when the initial portfolio value is Vδ

0 = V0 as

ε(L)(V0) ≡ min
δ∈Π

ρ
(
−Φ(S(0,b)

N )−Vδ
N

)
, ε(S)(V0) ≡ min

δ∈Π
ρ
(

Φ(S(0,b)
N )−Vδ

N

)
. (1)

The optimal hedging strategies are the minimizing arguments of such optimization
problems:

δ(L)(V0) ≡ arg min
δ∈Π

ρ
(
−Φ(S(0,b)

N )−Vδ
N

)
, δ(S)(V0) ≡ arg min

δ∈Π
ρ
(

Φ(S(0,b)
N )−Vδ

N

)
.
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This leads to the definition of the equal risk price C∗0 of the derivative Φ as the initial
portfolio value V0 such that the optimal residual hedging risk is equal for both the long
and short positions, i.e.,

ε(L)(−C∗0 ) = ε(S)(C∗0 ). (2)

Conditions on ρ have to be imposed to guarantee the existence and uniqueness of
the equal risk price (e.g., monotonicity of ρ). Under the assumption that ρ is a convex risk
measure, Carbonneau and Godin (2021b) provide sufficient conditions to obtain existence
and uniqueness of the solution to (2), see Theorem 2.1 of the latter paper.

Remark 1. Under a convex measure ρ, Marzban et al. (2022) and Carbonneau and Godin (2021b)
also obtain the following characterization of the equal risk price

C∗0 = 0.5BN

(
ε(S)(0)− ε(L)(0)

)
. (3)

Representation (3) is very convenient, as it only requires to obtain the optimal residual risk
exposure when the initial portfolio is null instead of having to iteratively try multiple initial portfolio
values. However, when ρ is not translation invariant, such representation does not hold anymore,
and a tailor-made numerical scheme must thus be developed to solve for the root-finding problem (2).

The present work aims, among others, at examining a class of non-translation invariant
risk measures. The main class of risk measures under study will be referred to as the semi-Lp

risk measures, which are defined as

ρ(X) ≡ E
[

Xp1{X>0}

]1/p
, p > 0. (4)

The latter risk measure is clearly monotonous (i.e., X ≥ Y almost surely implies
ρ(X) ≥ ρ(Y)) but lacks the translation invariance property. One important advantageous
property of this class of risk measures is in penalizing exclusively hedging losses, not gains.
Furthermore, the parameter p acts as a risk aversion barometer, as higher values of p put
more relative weight on higher losses.

The CVaR measure is also considered in some experiments of the present paper for
benchmarking purposes, as it is used by Carbonneau and Godin (2021a, 2021b). Such a risk
measure can be formally defined as

VaRα(X) ≡ inf{x : P[X ≤ x] ≥ α}, CVaRα(X) ≡ 1
1− α

∫ 1

α
VaRγ(X)dγ

for a confidence level α in (0, 1). Whenever X is an absolutely continuous random variable,
the CVaR admits the intuitive representation CVaRα(X) = E[X|X ≥ VaRα(X)]. The CVaR
is a coherent risk measure as shown by Rockafellar and Uryasev (2002), which implies that
it satisfies the monotonicity and translation invariance properties.

4. Methodology

The present section details the reinforcement learning approach followed to solve the
optimization problems underlying the ERP methodology. The approach consists in apply-
ing the deep hedging algorithm of Buehler et al. (2019) by representing hedging policies
with neural networks. A slight modification to the latter paper’s training methodology is
required to solve the ERP global hedging problems when the risk measure is not translation
invariant. An accuracy assessment is performed for the modified training algorithm.

4.1. Neural Network Approximation of the Optimal Solution

The approach followed to obtain a numerical solution to the optimization problems (1)
is based on a parametric approximation of the trading policy with a neural network trained
using reinforcement learning. The general idea is as follows. In multiple setups, especially



Risks 2023, 11, 140 7 of 27

those involving Markovian dynamics, the optimal trading strategies δ(S)(V0) and δ(L)(V0)
often admit the following functional representation for some functions δ̃(L) and δ̃(S):

δ
(L)
n+1(V0) = δ̃(L)

(
T − tn, S(b)

n , Vn, In

)
, (5)

δ
(S)
n+1(V0) = δ̃(S)

(
T − tn, S(b)

n , Vn, In

)
, n = 0, . . . , N − 1, (6)

where δ
(L)
n+1(V0) and δ

(S)
n+1(V0) are to be understood as the optimal time-tn hedges for the

long and short positions when time-0 capital investment is V0, and In is a Fn-measurable
random vector containing a set of additional state variables summarizing all necessary
information to make the optimal portfolio rebalancing decision. For instance, In can contain
underlying asset volatilities if the latter asset has GARCH dynamics (see Augustyniak
et al. 2017), current probabilities of being in the various respective regimes when in a
regime-switching setup (see François et al. 2014), implied volatilities when options are used
as hedging instruments (see Carbonneau and Godin 2021a), current assets positions when
in the presence of transaction costs (see Breton and Godin 2017), and so on.

The functional representation (5) and (6) enables approximating the optimal policies
with parameterized functions. The class of functions considered in this paper is the classical
feedforward neural network (FFNN) class, which is formally defined subsequently. Indeed,
two distinct FFNNs are used to approximate the optimal trading policy of the long and
short parties by mapping inputs {T − tn, S(b)

n , Vn, In} into the respective (long or short)
portfolio positions of risky assets δ

(0:D)
n+1 for any n = 0, . . . , N − 1.7 More precisely, denote

by F(L)
θ and F(S)

θ the neural network mappings for, respectively, the long and short trading
positions, where θ ∈ Rq is the q-dimensional set of parameters of the FFNNs.8 For a given
parameter set θ distinct for each neural network, the associated trading strategies are
given by

δ
(L,θ)
n+1 (V0) ≡ F(L)

θ

(
T − tn, S(b)

n , Vn, In

)
,

δ
(S ,θ)
n+1 (V0) ≡ F(S)

θ

(
T − tn, S(b)

n , Vn, In

)
, n = 0, . . . , N − 1.

The optimization of the trading strategy in problem (1) is thus replaced by the opti-
mization of neural network parameters θ according to

ε̃(L)(V0) ≡ min
θ∈Rq

ρ
(
−Φ(S(0,b)

N )−Vδ(L,θ)

N

)
, ε̃(S)(V0) ≡ min

θ∈Rq
ρ
(

Φ(S(0,b)
N )−Vδ(S ,θ)

N

)
. (7)

Note that the set of optimal parameters θ will be different for the long and the short
trading strategies. Furthermore, problems (7) only lead to an approximate solution to the
initial problems (1) since the FFNNs are approximations of the true functional representa-
tion δ̃(L) and δ̃(S). Nevertheless, by relying on the universal approximation property of
FFNNs (see for instance Hornik 1991), Buehler et al. (2019) show that there exist neural
networks such that the solution ε̃(L), ε̃(S) from (7) can be made arbitrarily close to the
solution ε(L), ε(S) from (1).

The mathematical definition of the FFNNs architecture is now provided. For L, d0, . . . ,
dL+1 ∈ N, let Fθ : Rd0 → RdL+1 be a FFNN:

Fθ ≡ o ◦ hL ◦ . . . ◦ h1,

hl(X) ≡ g(WlX + bl), l = 1, . . . , L,

o(X) ≡WL+1X + bL+1,

where ◦ denotes the function composition operator. Thus, Fθ is a composite function
of h1, . . . , hL commonly known as hidden layers, each of which successively applies an
affine and a nonlinear transformation to the input vectors, and also of the output function
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o applying an affine transformation to the last hidden layer. The set of parameters θ to
be optimized consists of all weight matrices Wl ∈ Rdl×dl−1 and bias vectors bl ∈ Rdl for
l = 1, . . . , L + 1.

4.2. Calibration of Neural Networks through Reinforcement Learning

As shown by Buehler et al. (2019), the training of neural networks in this paper relies
on a stochastic policy gradient algorithm, also known as actor-based reinforcement learning.
This class of procedures optimizes directly the policy (i.e., the actor) parameterized as a
neural network with minibatch stochastic gradient descent (SGD) so as to minimize a cost
function as in (7). Without loss of generality, the training algorithm is hereby only provided
for the neural network F(S)

θ associated with the short position, as steps for the long position
are entirely analogous.

4.2.1. Fixed and Given V0 Case

The training procedure to calibrate θ is first described for a fixed and given initial
capital investment V0 as originally considered by Buehler et al. (2019). A slight modification
to the algorithm will subsequently be presented in Section 4.2.2 to tackle the non-translation
invariant risk measure case studied in this paper. Let J : Rq ×R→ R be the cost function
for the short position hedge:

J(θ, V0) ≡ ρ
(

Φ(S(0,b)
N )−Vδ(S ,θ)

N

)
, θ ∈ Rq, V0 ∈ R. (8)

The parameter set θ is sequentially refined to produce a sequence of estimates {θj}j≥1
minimizing the cost function J over time. This iterative procedure is as follows. First,
parameters of the neural network are initialized with the Glorot uniform initialization
of Glorot and Bengio (2010), which gives the initial value of the sequence θ0. Then, to start
refining the parameters, a set of M = 400,000 paths containing traded asset values and
other exogenous variables associated with the assets dynamics is generated by Monte Carlo
simulation. The set of such paths is referred to as a training set. On each iteration of SGD,
i.e., on each update of θj to θj+1, a minibatch consisting in a subset of size Nbatch = 1000
of paths from the training set is used to estimate the cost function in (8). More precisely,
for θ = θj, F(S)

θ is used to compute the asset positions at each rebalancing date and for each

path within the minibatch. Let Bj ≡ {πi,j}
Nbatch
i=1 be the resulting set of hedging errors from

this minibatch, where πi,j is the ith hedging error when θ = θj. Then, for ρ̂ : RNbatch → R,
the empirical estimator of ρ(π) evaluated with Bj, the update rule for θj to θj+1 is

θj+1 = θj − ηj∇θ ρ̂(Bj),

where {ηj}j≥1 are small positive real values and ∇θ denotes the gradient operator with
respect to θ. For instance, under the semi-Lp class of risk measures, which is extensively
studied in the numerical section, the empirical estimator has the representation

ρ̂
(
Bj
)
≡
(

1
Nbatch

Nbatch

∑
i=1

π
p
i,j1{πi,j>0}

)1/p

.

Lastly, the computation of the gradient of the empirical cost function with respect to θ
can be performed explicitly with modern deep learning libraries, such as Tensorflow (Abadi
et al. 2016). Also, the Adam optimizer (Kingma and Ba 2014) can be used to dynamically
determine the ηj values. The following section presents the modification to the training
algorithm proposed in this paper to compute equal risk prices under non-translation
invariant risk measures.
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4.2.2. Non-Translation Invariant Risk Measures Case

The main objective of this paper is to study the valuation of financial derivatives with
the ERP framework under non-translation invariant risk measures. This requires solving the
root-finding problem of the initial portfolio value V0 that equates ε̃(L)(−V0) and ε̃(S)(V0);
this study considers a bisection scheme for such a purpose. However, one important
drawback of the bisection algorithm in the context of this paper is the requirement to obtain
multiple evaluations of ε̃(L)(−V0) and ε̃(S)(V0) for different values of V0, which can be very
costly from a computational standpoint. One naive approach to implement the bisection
algorithm is to proceed as follows:

(1) For a given value of V0, train the long and short neural networks F(S)
θ and F(L)

θ on the
training set.

(2) Evaluate the optimal residual hedging risk ε̃(S)(V0) and ε̃(L)(−V0) with F(S)
θ and F(L)

θ
on a test set of 100,000 additional independent simulated paths.

(3) If ∆(V0) ≡ ε̃(S)(V0) − ε̃(L)(−V0) ≈ 0 according to some closeness criterion, then
C?

0 = V0 is the equal risk price. Otherwise, update V0 with the bisection algorithm and
go back to step (1).

The important drawback of this naive approach lies in the necessity to retrain F(S)
θ

and F(L)
θ for each iteration of the bisection algorithm in step 1. To circumvent the latter

pitfall, this study proposes to slightly modify the training algorithm such that the neural
networks learn the optimal mappings not only for a unique fixed initial capital investment
but rather for an interval of values for V0. This provides the important benefit of only
having to train F(S)

θ and F(L)
θ once, which thus circumvents the previously described

computational burden.
The slight modification made to the training algorithm provided in Section 4.2.1 is

now described. At the beginning of each SGD step, on top of sampling a minibatch of
paths of risky assets, the value of V0 is also randomly sampled within the initial interval of
values used for the bisection algorithm. For instance, in numerical experiments conducted
in Section 5, the initial interval considered for the bisection algorithm is [0.75CQ

0 , 1.50CQ
0 ],

where CQ
0 is the risk-neutral price of Φ under a chosen conventional equivalent martingale

measure Q.9 This approach is simple to implement, as it naturally leverages the fact that
portfolio values are already used within input vectors of the neural networks. However,
it should be noted that learning the optimal hedge for various initial capital investments
is more complex and thus a more challenging task for neural networks as compared
to learning the optimal trading policy for a fixed V0. Nevertheless, the Monte Carlo
experiments provided in Appendix B show that incorporating this slight modification to the
training algorithm does not materially impact the optimized neural networks performance.

Pseudo-codes of the training and bisection procedures are presented, respectively,
in Algorithms A1 and A2 of Appendix A. An implementation in Python and Tensorflow
to replicate numerical experiments presented in Section 5 can also be found online at
github.com/alexandrecarbonneau (accessed on 1 July 2023).

Remark 2. In numerical experiments of Section 5, the benchmarking of equal risk prices generated
under the class of semi-Lp risk measures to these obtained with a class of convex risk measures,
namely the CVaR, is performed. The numerical scheme used to obtain equal risk prices under the
CVaRα risk measure follows the methodology of Carbonneau and Godin (2021b) by evaluating C?

0
with (3), where ε̃(L)(0) and ε̃(S)(0) are computed with the steps of Section 4.2.1 with V0 = 0 and
with the empirical estimator of ρ(π) as

ρ̂(Bj) = V̂aRα(Bj) +
1

(1− α)Nbatch

Nbatch

∑
i=1

max(πi,j − V̂aRα(Bj), 0),

https://github.com/alexandrecarbonneau
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where V̂aRα(Bj) is the usual empirical estimator of the value-at-risk statistic with the sample Bj at
level α.

Remark 3. For all numerical experiments under the semi-Lp risk measure conducted in this paper,
a preprocessing of the feature vectors is applied, using {T − tn, log(S(b)

n /K), Vn/Ṽ, In} instead of
{T − tn, S(b)

n , Vn, In}, where Ṽ is defined as the midpoint value of the initial search interval of the
bisection algorithm [VA, VB], i.e., Ṽ ≡ 0.5(VA + VB). Note that Carbonneau and Godin (2021a,
2021b) consider similar preprocessing for risky asset prices, while Carbonneau (2021) considers
a similar preprocessing for portfolio values. Furthermore, under the CVaRα objective function,
the same preprocessing for risky asset prices is used, but portfolio values are not preprocessed, as
the bisection algorithm is not required to be used in this case, i.e., Vn rather than Vn/Ṽ is used in
feature vectors.

Lastly, it is worth highlighting an additional advantage from a computational stand-
point of the class of semi-Lp objective functions described in this paper over the CVaRα

measures as considered, for instance, by Carbonneau and Godin (2021a, 2021b) when
relying on the neural network-based hedging scheme. Indeed, under the CVaRα objec-
tive function, the use of minibatch stochastic gradient descent procedures to train neural
networks restrains the use of extremely large quantiles for the CVaRα (for instance, larger
values than 0.99). The latter stems from the following observations. From a statistical
standpoint, the estimation variance of CVaRα increases with α. Furthermore, the empirical
estimator of CVaRα is biased in the finite sample size, whereas the empirical estimator of
the semi-Lp risk measure is unbiased for any sample size. While larger minibatches would
provide a more accurate estimate of the gradient, i.e., reduce the variance and the bias of
the CVaR estimator, this is not necessarily a favorable avenue for training neural networks.
Indeed, as noted by Goodfellow et al. (2016), the amount of memory required by hardware
setups can be a limiting factor to increasing the minibatch size. Furthermore, most SGD
algorithms converge faster in terms of total computation when allowed to approximate
gradients faster (i.e., with smaller samples and more SGD steps). The interested reader
is referred to Chapter 8.1.3 of Goodfellow et al. (2016) for additional information about
the implications of the minibatch size on SGD procedures. This computational pitfall of
pairing stochastic gradient descent with extreme values of α under the CVaRα measure is
not present under the semi-Lp, which further motivates its use in the context of equal risk
pricing and optimal hedging.

5. Numerical Experiments

This section presents several numerical experiments conducted to investigate prices
produced by the ERP methodology under different setups. The common theme of all
experiments is to examine option prices generated by the ERP framework under the class of
semi-Lp risk measures. The analysis starts in Section 5.2 with a sensitivity analysis of equal
risk prices with respect to the choice of objective function. This is carried out by comparing
C?

0 generated with the CVaRα and semi-Lp across different values of α and p controlling
the risk aversion of the hedger. The hedging performance of embedded neural networks
hedging policies obtained under these objective functions is also assessed. Moreover,
a sensitivity analysis with respect to the choice of underlying asset price dynamics is
carried out in Section 5.3 so as to test the impact of the inclusion of jump or volatility risk.
Lastly, Section 5.4 presents the benchmarking of equal risk prices for long maturity options
obtained under the semi-Lp risk measures with trades involving exclusively the underlying
stock against these generated with option hedges under the CVaRα objective function.

5.1. Experiments Setup

Unless specified otherwise, the option to price and hedge is a European put with
payoff Φ(S(0,b)

N ) ≡ max(K − S(0,b)
N , 0) of maturity T = 60/260 and strike price K. Daily

hedges with the underlying stock are used (i.e., N = 60). The use of option hedges and
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different maturities for Φ is considered exclusively in Section 5.4. Furthermore, the stock
has an initial price of S(0,b)

0 = 100 and the annualized continuous risk-free rate is set at
r = 0.02. Different moneyness levels are considered with K = 90, 100 and 110, respectively,
for out-of-the-money (OTM), at-the-money (ATM), and in-the-money (ITM) puts.

Moreover, as described in Section 4, two distinct feedforward neural networks are
considered for the functional representation of the long and short hedging policies. The ar-
chitecture of every neural networks is a FFNN of two hidden layers (L = 2) with 56 neurons
per layer (d1 = d2 = 56). The activation function considered is the well-known rectified
linear activation function (ReLU) with g(x) ≡ max(x, 0). For the training procedure, a train-
ing set of 400,000 paths is simulated with the P-dynamics of the underlying stock. A total of
100 epochs10 is used with a minibatch size of 1000 sampled exclusively from the training set.
The Adam optimizer with a learning rate hyperparameter of 0.0005 is used with Tensorflow
for the implementation of the stochastic gradient descent procedure. Also, all numerical
results presented in subsequent sections are obtained in an out-of-sample fashion by using
exclusively a test set of 100,000 additional simulated paths.

5.2. Sensitivity Analysis to Risk Measures

This section studies equal risk price values obtained under the semi-Lp and CVaRα

risk measures across different levels of risk aversion, i.e., different values for p and α.
The main motivation is the following. Carbonneau and Godin (2021b) observe that when
hedging exclusively with the underlying stock, ERP under the CVaRα measure produces
option prices which are systematically inflated in comparison to those obtained under
conventional risk-neutral measures, especially for OTM puts. This inflation phenomenon is
significantly magnified with fat tails dynamics, such as with a regime-switching (RS) model,
to an extent that can cast doubt on the applicability of ERP in practice. Furthermore, while
the latter paper observes a positive relation between the risk aversion level α and equal risk
prices C?

0 as shown in subsequent sections of this present paper, using smaller values for
α leads to trading policies exhibiting poor risk mitigation performance with speculative
behavior magnifying tail risk. Consequently, the main motivation of this present section
is to assess if the use of the semi-Lp class of risk measures helps in alleviating this price
inflation phenomenon while simultaneously resulting in optimized trading policies which
provide effective risk mitigation. Thus, a critical aspect of the sensitivity analysis performed
in this section is the benchmarking of not only equal risk prices generated under different
objective functions but also the assessment of the effectiveness of the resulting global
trading policies.

5.2.1. Regime-Switching Model

The conduction of a sensitivity analysis with respect to the objective function within
the ERP framework necessitates the selection of suitable dynamics for the underlying
stock. Indeed, the model should incorporate salient stylized facts of financial markets
with a specific focus on fat tails due to the assessment of the impact of objective functions
within the ERP framework allowing more or less weights on extreme scenarios through
their respective risk aversion parameter (i.e., α and p, respectively, for the CVaRα and
semi-Lp measures). Unless specified otherwise, this study considers a RS model for the
risky asset dynamics. This class of model introduced in finance by Hamilton (1989) exhibits,
among others, fat tails, the leverage effect (i.e., negative correlation between assets returns
and volatility) and heteroscedasticity. The examination of the impact of the presence of jump
and volatility risk on C?

0 values generated with the semi-Lp objective functions is performed
in subsequent sections. Furthermore, unless specified otherwise, model parameters for
the RS model (as well as for other dynamics considered subsequently) are estimated with
maximum likelihood procedures on the same time series of daily log-returns on the S&P
500 price index covering the period 31 December 1986 to 1 April 2010 (5863 observations).
Parameter estimates are presented in Appendix C.
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The description of the regime-switching model for the underlying stock is now for-
mally defined. For n = 1, . . . , N, let yn ≡ log(S(0,b)

n /S(0,b)
n−1 ) be the time-tn log-return and

{εn}N
n=1 be a sequence of independent and identically distributed (iid) standardized Gaus-

sian random variables. The RS model assumes that the dynamics of the underlying stock
changes between different regimes representing different economical states of the financial
market. These regime changes are abrupt, and they drastically impact the behavior of
the dynamics of financial markets for a significant period of time, i.e., these regimes are
persistent (Ang and Timmermann 2012). For instance, a two-regime RS model as consid-
ered in this study usually has a more bullish regime with positive expected returns and
relatively small volatility, and a more bearish regime with negative expected returns and
relatively large volatility. Prevalent examples of such regime changes are financial crises
and important economical reforms.

From a mathematical standpoint, the class of RS models characterizes regimes by an
unobservable discrete-time Markov chain with a finite number of states, and models the
conditional distribution of log-returns given the current regime as a Gaussian distribution
with known parameters. More formally, denote the regimes as {hn}N

n=0, where hn ∈
{1, . . . , H} is the regime in force during the time interval [tn, tn+1). The model specification
for the transition probabilities of the Markov Chain can be stated as

P(hn+1 = j|Fn, hn, . . . , h0) = γhn ,j, j = 1, . . . , H, (9)

where Γ ≡ {γi,j}H,H
i=1,j=1 is the transition matrix with γi,j being the time-independent proba-

bility of moving from regime i to regime j. Furthermore, the dynamics of log-returns have
the representation

yn+1 = µhn ∆ + σhn

√
∆εn+1, n = 0, . . . , N − 1,

where {µi, σi}H
i=1 are model parameters representing the means and volatilities on a yearly

basis in each regime. The use of a RS model entails that additional state variables related
to the regimes must be added to feature vectors of neural networks through the vectors
In. Indeed, while regimes are unobservable, useful information can be filtered from
the observed stock path prices. Let {ξn}N

n=0 be the predictive probability process, where
ξn ≡ [ξn,1, . . . , ξn,H ] and ξn,j ≡ P(hn = j|Fn). Under the RS model, In = ξn for n =
0, . . . , N − 1. Following the work of François et al. (2014), the predictive probabilities can
be computed recursively for n = 0, . . . , N − 1 as

ξn+1,j =
∑H

i=1 γi,jφi(yn+1)ξn,i

∑H
i=1 φi(yn+1)ξn,i

, j = 1, . . . , H,

where φi is the probability density function of the Gaussian distribution with mean µi
and volatility σi. For all numerical experiments, the time 0 regime h0 is sampled from the
stationary distribution of the Markov chain. Lastly, the benchmarking of equal risk prices
to option prices obtained under conventional risk-neutral measures is also presented. Risk-
neutral dynamics as well as the numerical scheme used to evaluate the risk-neutral price
(including for alternative dynamics introduced subsequently) are presented in Appendix D.

5.2.2. Numerical Results of the Sensitivity Analysis to the Objective Function

Table 1 presents equal risk prices obtained under the CVaRα with α = 0.90, 0.95, 0.99
as well as under the class of semi-Lp risk measures with p = 2, 4, 6, 8, 10. All equal risk
prices are expressed relative to risk-neutral prices CQ

0 . Hedging statistics obtained across
the different objective functions are analyzed subsequently in Section 5.2.3.
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Table 1. Sensitivity analysis of equal risk prices C?
0 for OTM (K = 90), ATM (K = 100) and ITM

(K = 110) put options of maturity T = 60/260 under the regime-switching model.

C?
0 under CVaRα C?

0 under Semi-Lp

Moneyness CQ
0 CVaR0.90 CVaR0.95 CVaR0.99 L2 L4 L6 L8 L10

OTM 0.56 91% 119% 161% 50% 88% 111% 140% 175%
ATM 3.27 18% 24% 29% 10% 17% 22% 28% 35%
ITM 10.36 5% 7% 9% 2% 5% 7% 8% 9%

Notes: C?
0 results are computed based on 100,000 independent paths generated from the regime-switching model

under P (see Section 5.2.1 for model definition and Appendix C for model parameters). Risk-neutral prices CQ
0 are

computed under Q-dynamics described in Appendix D. The training of neural networks is performed as described
in Section 4.2 with hyperparameters presented in Section 5.1. C?

0 are expressed relative to CQ
0 (% increase).

Values from Table 1 indicate that equal risk prices generated by the class of semi-Lp

risk measures can span much more than the interval of prices obtained under the CVaRα

risk measures with the selected values for the confidence level α. The latter observation
holds across all moneyness levels for puts. For instance, the relative increases in the equal
risk price C?

0 as compared to the risk-neutral price CQ
0 for OTM puts are 91%, 119% and

161% under CVaR0.90, CVaR0.95 and CVaR0.99, and range between 50% and 175% using the
semi-Lp, with p going from 2 to 10. Similar observations can be made for ATM and ITM
moneyness levels. Furthermore, the use of the semi-L2 risk measure entails a significant
reduction in C?

0 as compared to the price obtained under the CVaR0.90. Indeed, the relative
increases in the equal risk price C?

0 with p = 2 as compared to the risk-neutral price CQ
0

for OTM, ATM and ITM moneyness levels are, respectively, 50%, 10% and 2%, which are
significantly smaller than the corresponding relative increases of 91%, 18% and 5% under
the CVaR0.90 measure. Moreover, as expected, equal risk prices C?

0 generated with the class
of semi-Lp risk measures show a positive relation with the risk aversion parameter p. This
observation can be explained by a rationale analogous to that mentioned by Carbonneau
and Godin (2021b) under the CVaRα risk measure case: since the put option payoff is
bounded below at zero, the short position hedging error has a thicker right tail than the
corresponding right tail of the long position hedging error. Consequently, an increase in the
risk aversion parameter p entails placing more weight on extreme hedging losses, which
results in a larger increase in the perceived residual risk exposure for the short position
than for the long position. The latter entails that C?

0 must be increased to equalize the
residual hedging risk of both parties. In conclusion, all these results clearly demonstrate
the benefit of using the class of semi-Lp risk measures from the standpoint of pricing
derivatives by not only spanning wider ranges of prices than those generated by the CVaR
with conventional confidence levels but by also significantly alleviating the inflated option
prices phenomenon observed under the CVaRα. However, the question about whether or
not the optimized global policies under the semi-Lp risk measures are effective from the
standpoint of risk mitigation remains. This is examined in the following section.

5.2.3. Hedging Performance Benchmarking

This section conducts the benchmarking of the neural network trading policies hedging
performance under the CVaRα and semi-Lp objective functions. For the sake of brevity,
hedging metrics values considered to compare the different policies are only presented for
the short position hedge of the ATM put with the usual market setup, i.e., time-to-maturity
of T = 60/260 under the regime switching model with daily stock hedges. Table 2 presents
hedging statistics of the global hedging policies obtained with the CVaRα and semi-Lp

risk measures with the same objective functions used to generate the C?
0 values in the

previous section (i.e., α = 0.90, 0.95, 0.99 and p = 2, 4, 6, 8, 10). To compare the trading
policies on common grounds, the initial portfolio value is set as the risk-neutral price with
V0 = 3.27 for all examples.11 Furthermore, the hedging metrics used for the benchmarking
consist of the VaRα and CVaRα statistics over various α, the mean hedging error, the SMSE
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(i.e., semi-L2 metric) and the mean squared error (MSE). Note that all hedging statistics
are estimated in an out-of-sample fashion on the test set of 100,000 additional independent
simulated paths.

Hedging metrics values show that while the trading policy optimized with the
CVaR0.90 objective function lead to the smallest values for the CVaR0.90, VaR0.90 and VaR0.95
statistics, it exhibits poor mitigation of tail risk as compared to the other policies. For in-
stance, the relative reduction in the CVaR0.99 statistic achieved with all other penalties
than the CVaR0.90 ranges between 31.4% and 44.5% as compared to the CVaR0.90 trading
policy. Similar observations can be made for the CVaR0.999 and VaR0.999 statistics capturing
extreme scenarios. The latter results cast doubt on the practical effectiveness of the CVaR0.90
hedging policy from a risk mitigation standpoint and thus also of trading policies optimized
with CVaRα with lower values for α, due to their poor mitigation of risk for quantiles above
the CVaR confidence level. This conclusion has important implications in the context of
the ERP framework. Indeed, as shown by Carbonneau and Godin (2021b), the equal risk
price C?

0 obtained with the CVaRα exhibits a positive relationship to α values. Consequently,
the inflated equal risk price phenomenon observed under the class of CVaRα measures
cannot be effectively alleviated through the reduction in α, as the resulting trading policies
quickly exhibit poor hedging performance. On the other hand, hedging statistics obtained
with the class of semi-Lp risk measures indicate that across all levels of risk aversion p
considered, optimized trading policies are effective for mitigating hedging risk. Recall that
p controls the weight associated with extreme hedging losses. From the combination of
these hedging statistics values as well as equal risk price values presented in Table 1, we
can conclude that the class of semi-Lp risk measures is a successful choice within the ERP
framework by simultaneously generating lower and more reasonable equal risk prices than
those obtained with the CVaRα and by resulting in effective trading policies.

Table 2. Hedging statistics for short position ATM put option of maturity T = 60/260 under the
regime switching model.

CVaRα Semi-Lp

Penalty CVaR0.90 CVaR0.95 CVaR0.99 L2 L4 L6 L8 L10

Statistics
Mean 0.11 0.13 0.14 −0.04 0.03 0.11 0.13 0.15
CVaR0.90 2.64 5.3% 22.6% 5.4% 5.6% 7.4% 11.6% 16.9%
CVaR0.95 3.41 −8.4% 1.6% −1.6% −5.1% −5.8% −3.6% 0.2%
CVaR0.99 6.86 −31.7% −44.5% −31.4% −39.1% −41.8% −43.1% −42.2%
CVaR0.999 19.99 −48.5% −76.1% −65.6% −72.4% −74.2% −75.8% −76.4%
VaR0.90 1.75 34.7% 59.9% 12.8% 21.3% 30.2% 36.7% 45.1%
VaR0.95 2.08 21.9% 54.6% 21.4% 25.9% 29.6% 37.6% 44.9%
VaR0.99 3.67 −9.6% −2.9% 5.1% −1.8% −4.1% −3.9% −0.6%
VaR0.999 11.00 −43.3% −62.5% −47.6% −55.4% −57.8% −60.3% −60.4%
SMSE 1.83 −7.0% 6.8% −33.5% −30.5% −22.2% −15.4% −5.7%
MSE 2.93 −1.8% 12.2% −26.4% −24.2% −15.6% −9.7% −0.2%

Notes: Hedging statistics are computed based on 100,000 independent paths generated from the regime switching
model under P (see Section 5.2.1 for model definition and Appendix C for model parameters). The training of
neural networks is performed as described in Section 4.2 with hyperparameters presented in Section 5.1. All
hedging statistics except the mean hedging error are expressed relative to values obtained under the CVaR0.90

penalty (% increase). Bold values are the lowest across all penalties.

5.3. Sensitivity Analysis to Dynamics of Risky Assets

This section performs a sensitivity analysis of equal risk prices across different dy-
namics for the financial market. The motivation is to assess if the conclusion that the class
of semi-Lp risk measures can dampen the inflated equal risk prices phenomenon as well
as span wider price intervals than those obtained under the CVaRα measures is robust to
the presence of different equity risk features. For such a purpose, this paper considers the
presence of jump risk with the Merton jump diffusion model (MJD, Merton (1976)) and of
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volatility risk with the GJR-GARCH model (Glosten et al. 1993). The Black and Scholes
(1973) and Merton (1973) (BSM) model is also considered due to its popularity and the
fact that, contrary to the other dynamics, the BSM model does not exhibit fat tails. The
assessment of the impact of the choice of risk measure controlling the weight associated
with extreme scenarios is thus also of interest under the BSM dynamics since the optimal
hedging strategies, and thus equal risk prices, should be less sensitive to the risk aversion
parameter under a dynamics without fat tails.

The dynamics of all three models is now formally presented. All model parameters
are estimated with the same time series of daily log-returns on the S&P 500 index covering
the period 31 December 1986 to 1 April 2010 (5863 log-returns). Parameter estimates are
presented in Appendix C.

5.3.1. Black–Scholes Model

The Black–Scholes model assumes that log-returns are iid Gaussian random variables
of yearly mean µ− σ2/2 and volatility σ:

yn =

(
µ− σ2

2

)
∆ + σ

√
∆εn, n = 1, . . . , N.

Stock prices have the Markov property under P with respect to the market filtration F.
The latter entails that no additional information should be added to the state variables of
the neural networks, i.e., In = 0 for all n.

5.3.2. GJR-GARCH Model

The GJR-GARCH model relaxes the constant volatility assumption of the BSM model
by assuming the presence of stochastic volatility, which incorporates the leverage effect.
Log-returns under this model have the representation

yn = µ + σnεn,

σ2
n+1 = ω + υσ2

n(|εn| − γεn)
2 + βσ2

n ,

where {σ2
n}N+1

n=1 are the daily variances of log-returns and {µ, ω, υ, γ, β} are the model
parameters, with {ω, υ, β} being positive real values and {µ, γ} real values. Note that
given σ2

1 , the sequence of variances σ2
2 , . . . , σ2

N+1 can be computed recursively with the
observed path of log-returns. In this paper, the initial value σ2

1 is set as the stationary
variance of the process: σ2

1 ≡ E[σ2
n ] =

ω
1−υ(1+γ2)−β

. Furthermore, it can be shown that

{S(0,b)
n , σn+1}N

n=0 is an (F,P)-Markov bivariate process. Consequently, the periodic volatility
is added to the states variables of the neural networks at each time step: In = σn+1 for
n = 0, . . . , N − 1.

5.3.3. Merton Jump Diffusion Model

Contrary to the GJR-GARCH model, the MJD dynamics assumes constant volatility
but deviates from the BSM assumptions by incorporating random Gaussian jumps to stock
returns. Let {Nn}N

n=0 be realizations of a Poisson process of parameter λ > 0, where
Nn represents the cumulative number of jumps of the stock price from time 0 to time tn.
The Merton (1976) model assumes that jumps, denoted by {ζ j}∞

j=1, are iid Gaussian random

variables of mean µJ and variance σ2
J under the physical measure12

yn =

(
ν− λ(eµJ+σ2

J /2 − 1)− σ2

2

)
∆ + σ

√
∆εn +

Nn

∑
j=Nn−1+1

ζ j,

where {εn}N
n=1, {Nn}N

n=0 and {ζ j}∞
j=1 are independent. Model parameters consist of

{ν, λ, σ, µJ , σJ}, where ν ∈ R is the drift parameter and σ > 0 is the constant volatil-
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ity term. Since stock returns are iid, the dynamics does not necessitate the addition of other
state variables to the feature vectors, i.e., In = 0 for all n.

5.3.4. Numerical Results of the Sensitivity Analysis to Underlying Asset Dynamics

Table 3 presents the sensitivity analysis of equal risk prices with the same setup as
in previous sections, i.e., for put options of maturity T = 60/260 with daily stock hedges,
for the BSM, MJD and GJR-GARCH models. To save space, results are only presented for
the OTM moneyness, as the main conclusions are shared for both ATM and ITM moneyness
levels. Furthermore, both the CVaRα and semi-Lp classes of risk measures are considered
with α = 0.90, 0.95, 0.99 and p = 2, 4, 6, 8, 10.

Table 3. Sensitivity analysis of equal risk prices for OTM put options of maturity T = 60/260 under
the BSM, MJD and GJR-GARCH models.

C?
0 under CVaRα C?

0 under Semi-Lp

Dynamics CQ
0 CVaR0.90 CVaR0.95 CVaR0.99 L2 L4 L6 L8 L10

BSM 0.53 5% 10% 17% 3% 10% 22% 31% 43%
MJD 0.46 23% 34% 129% 15% 41% 71% 102% 125%

GJR-GARCH 0.57 52% 71% 139% 29% 96% 156% 219% 265%

Notes: Equal risk prices C?
0 results are computed based on 100,000 independent paths generated from the BSM,

MJD and GJR-GARCH model under P (see Section 5.3 for models definitions under P and Appendix C for model
parameters). Risk-neutral prices CQ

0 are computed under Q-dynamics described in Appendix D. The training
of feedforward neural networks is performed as described in Section 4.2 with hyperparameters presented in
Section 5.1. C?

0 are expressed relative to CQ
0 (% increase).

These results clearly demonstrate that the conclusion that equal risk prices generated
by the class of semi-Lp risk measures can alleviate the price inflation phenomenon observed
under the CVaRα measures is robust to different dynamics. Indeed, by using the semi-L2

risk measure, OTM equal risk prices C?
0 exhibit relative increases over risk-neutral prices CQ

0
of, respectively, 3%, 15% and 29% under the BSM, MJD and GARCH models as compared
to 5%, 23% and 52% under the CVaR0.90 objective function. Furthermore, values presented
in Table 3 demonstrate that the observation made in the previous section under the RS
model with respect to the fact that equal risk prices generated by the class of semi-Lp risk
measures can span a large interval of prices, which encompasses values obtained with
the CVaRα measures, is robust to different dynamics of the financial markets. Lastly, it is
interesting to observe that the length of the price intervals generated by both classes of risk
measures varies significantly with the dynamics of the financial market. Indeed, under the
BSM model, the relative increase in C?

0 as compared to CQ
0 ranges between 5% and 17%

under the CVaRα and between 3% and 43% under the semi-Lp. On the other hand, with the
GJR-GARCH dynamics, the relative increase in C?

0 under the CVaRα ranges between 52%
and 139%, while under the semi-Lp, it ranges between 29% and 265%. Similar observations
can be made under the MJD dynamics. This can be explained by the fact that contrary to the
other models, the BSM dynamics does not exhibits fat tails, as the market incompleteness
solely stems from discrete-time trading. Consequently, the trading policies are much less
sensitive to the choice of risk aversion parameter p or α under the BSM model, which
results in equal risk price values that are less sensitive to risk aversion parameters. From
these results, we can conclude that the choice of both the risky asset dynamics and of the
risk measure among the classes of CVaRα and semi-Lp measures has a material impact on
equal risk prices, and this impact becomes more important as the dynamics exhibits fatter
tails for risky asset returns.

5.4. Long-Term Maturity ERP with Option Hedges

This section examines the use of semi-Lp risk measures within the ERP framework
for pricing long-term options with trades involving exclusively the underlying stock as
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compared to equal risk prices generated under the CVaRα with trades involving shorter-
term options. The motivation for this experiment is the following. The main finding
of Carbonneau and Godin (2021a) is that under the CVaRα measure, hedging long-term
puts with shorter-term options in the presence of jump or volatility risks significantly
reduces equal risk prices as compared to trading exclusively the underlying stock. However,
the expected trading cost of setting up a dynamic trading strategy based solely on option
hedges can be impractical in some cases in the face of highly illiquid options. In such a
context, the hedger could potentially be restricted to a trading strategy relying exclusively
on the underlying stock, which as shown in previous sections can inflate equal risk prices
under the CVaRα measure. The objective of this last section is thus to assess if the use
of the semi-Lp risk measure can achieve similar equal risk price reduction when trading
exclusively the underlying stock to that obtained when trading options with the CVaRα

objective function. The setup to perform this experiment is the same as the one considered
by Carbonneau and Godin (2021a), and numerical values for equal risk prices generated
with trades involving exclusively options under the CVaRα are taken directly from the
latter work. This setup is now recalled.

The derivative to price and hedge is a 1-year put with 252 days per year of moneyness
levels OTM, ATM and ITM with strike prices of 90, 100 and 110, respectively. The annual-
ized continuous risk-free rate is r = 0.03. Also, as noted by Carbonneau and Godin (2021a),
option trading strategies optimized with the confidence level α smaller than 0.95 when
using the CVaR as the objective function often lead to hedging strategies exhibiting poor
tail risk mitigation. Thus, the convex risk measure considered the benchmark in the present
study is the CVaR0.95 measure with trades involving either exclusively the underlying
stock on a daily or monthly basis (i.e., N = 252 or N = 12, respectively), or by trading
solely with ATM 1-month and 3-month calls and puts (i.e., N = 12 or N = 4, respectively).
Following the work of Carbonneau and Godin (2021a), the pricing of options used as
hedging instruments is performed through the modeling of the daily variations of the ATM
logarithm implied volatility dynamics under P as an autoregressive (AR) model of order
1, named log-AR(1) hereafter. Furthermore, the model assumes for convenience that the
ATM 1-month and 3-month implied volatilities are the same.13 It is worth highlighting
that the implied volatility model is used exclusively for pricing options used as hedging
instruments, not for the 1-year put Φ to be priced. Also, note that while the rebalancing
frequency is either daily, monthly or quarterly, IV variations are always generated on a
daily basis.

The log-AR(1) model is now formally defined. Denote by {IVn}252
n=0 the daily implied

volatilities for the ATM calls and puts of 1-month and 3-month maturities, which are used
as hedging instruments. Also, let {Zn}252

n=1 be an additional sequence of iid standardized
Gaussian random variables representing the random innovations of the log-IV dynamics.
To capture the well-known leverage effect between asset returns and implied volatility
variations (see for instance Cont and Da Fonseca (2002)), a correlation factor $ ≡ corr(εn, Zn)
set at −0.6 is considered, where {εn}252

n=1 are the daily random innovations associated with
stock returns. The log-AR(1) model has the representation

log IVn+1 = log IVn + κ(ϑ− log IVn) + σIV Zn+1, n = 0, . . . , 251, (10)

where {κ, ϑ, σIV} are the model parameters with κ and ϑ as real values and σIV > 0.
The initial value of the process is set as the long-term parameter with log IV0 ≡ ϑ. Moreover,
the pricing of the calls and puts used as hedging instruments is performed with the well-
known Black–Scholes formula with the annualized volatility set at the current implied
volatility value. More precisely, denote by C(IV, ∆T, S, K) and P(IV, ∆T, S, K) the price of a
call and put option, respectively, if the current implied volatility is IV, the time-to-maturity
is ∆T, the underlying stock price is S and the strike price is K:
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C(IV, ∆T, S, K) ≡ SN (d1)− e−r∆TKN (d2), (11)

P(IV, ∆T, S, K) ≡ e−r∆TKN (−d2)− SN (−d1), (12)

where N (·) denotes the cumulative distribution function of a standardized Gaussian
random variable with

d1 ≡
log( S

K ) + (r + IV2

2 )∆T

IV
√

∆T
, d2 ≡ d1 − IV

√
∆T.

Also, note that when option hedges are considered, the current implied volatility is
added to the feature vector of the neural networks. For instance, with 1-month calls and
puts hedges, the n-th trade at time tn = n/12 uses as input vectors for the neural networks
Xn = [S(0,b)

21×n, IV21×n, T − tn, I21×n] for n = 0, 1, . . . , 11, where 21 represents the number of
days in a given month.14

Moreover, the dynamics of the underlying asset returns considered for this last section
is once again the MJD dynamics but with different parameters than in previous sections
since the ones considered by Carbonneau and Godin (2021a) are used for comparability
purposes. The MJD as well as the log-AR(1) model parameters values are presented in
Tables 4 and 5. These parameters were chosen in an ad hoc fashion so as to produce
reasonable values for the dynamics of the financial market.

Table 4. Parameters of the 1-year Merton jump diffusion model.

ν σ λ µJ σJ

0.1111 0.1323 0.25 −0.10 0.10
Notes: ν, σ and λ are on an annual basis.

Table 5. Parameters of the log-AR(1) model for the evolution of implied volatilities.

κ ϑ σIV $

0.15 log(0.15) 0.06 −0.6

Numerical Results with Option Hedges

Table 6 presents equal risk prices C?
0 under the CVaR0.95 measure with daily or monthly

stock trades as well as with 1-month or 3-month ATM calls and puts trades. Note that
the latter values are from Table 3 of Carbonneau and Godin (2021a).15 Furthermore, C?

0
values under the semi-L2 objective function with daily and monthly stock hedges are
also presented.

Numerical results indicate that the use of the semi-L2 objective function is successful
at significantly reducing equal risk prices when relying on trades involving exclusively
the underlying stock. Indeed, the relative reductions in C?

0 obtained by using the semi-L2

risk measure as compared to the CVaR0.95 for OTM, ATM and ITM moneyness levels
are, respectively, 15%, 11% and 11% with daily stock and 14%, 10% and 8% with monthly
stock rebalancing.16 Furthermore, equal risk prices values under the semi-L2 risk measure
with daily or monthly stock hedges are relatively close to those obtained with 1-month
or 3-month option hedges under the CVaR0.95. These results have important implications
for ERP procedures. Indeed, this demonstrates that in the face of highly illiquid options,
the use of the semi-Lp class of risk measures with stock hedges can effectively reduce equal
risk prices to levels similar to those obtained with option hedges under the CVaRα measures.
This avenue is thus successful in alleviating the price inflation phenomenon when using
ERP procedures for the pricing of long-term options. It is worth highlighting that in the
presence of jump risk, the use of options as hedging instruments is much more effective
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for risk mitigation as compared to hedging strategies involving exclusively the underlying
stock (see for instance Coleman et al. (2007) and Carbonneau (2021)). Nevertheless, C?

0
values presented in Table 6 indicate that when setting up trading strategies with options
is impractical due to high expected trading costs, the use of stock hedges coupled with
semi-Lp risk measures can effectively reduce option prices.

Table 6. Sensitivity analysis of equal risk prices to jump risk for OTM (K = 90), ATM (K = 100) and
ITM (K = 110) put options of maturity T = 1.

C?
0 under CVaR0.95 C?

0 under Semi-L2

Moneyness Daily Stock Monthly Stock 1-Month Opts 3-Months Opts Daily Stock Monthly Stock

OTM 2.58 2.60 2.24 2.08 2.18 2.23
ATM 6.01 5.77 5.36 5.12 5.38 5.22
ITM 11.68 11.44 10.86 10.51 10.42 10.54

Notes: These results are computed based on 100,000 independent paths generated from the MJD model under P
(see Section 5.3.3 for model definition and Table 4 for model parameters). Options used as hedging instruments
are priced with implied volatility modeled with log-AR(1) dynamics (see Section 5.4 for model description and
Table 5 for parameters values). Values for C?

0 under CVaR0.95 are from Table 3 of Carbonneau and Godin (2021a).
Values for C?

0 under semi-L2 are obtained with the training algorithm described in Section 4.2.2.

6. Conclusions

This paper studies the class of semi-Lp risk measures in the context of equal risk
pricing (ERP) for the valuation of European financial derivatives. The ERP framework
prices contingent claims as the initial hedging portfolio value which equates the residual
hedging risk of the long and short positions under optimal hedging strategies. Despite
lacking the translation invariance property, which complexifies the numerical evaluation of
equal risk prices, the use of semi-Lp risk measures as the objective functions measuring
residual hedging risk is shown to have several preferable properties over the use of CVaRα,
the latter being explored, for instance, by Carbonneau and Godin (2021a, 2021b) in the
context of ERP. The optimal hedging problems underlying the ERP framework are solved
with deep reinforcement learning procedures by representing trading policies with neural
networks as proposed in the work of Buehler et al. (2019). A modification to the training
algorithm for neural networks is presented in this current paper to tackle the additional
complexity of using semi-Lp risk measures within the ERP framework. This modification
consists in training the neural networks to learn the optimal mappings for an interval of
initial capital investments instead of a unique fixed value. The latter is shown not to lead to
material deterioration in the hedging accuracy of the neural networks trading policies.

Several numerical experiments are performed to examine option prices generated by
the ERP framework under the class of semi-Lp risk measures. First, a sensitivity analysis
of equal risk price values with respect to the choice of objective function is conducted by
comparing prices obtained with the CVaRα and semi-Lp objectives across different values
of α and p controlling the risk aversion of the hedger. Numerical results demonstrate
that equal risk prices under the semi-Lp risk measures span a larger interval of values
than the one obtained with the CVaRα, thereby allowing to alleviate the price inflation
phenomenon observed under the CVaRα documented in previous studies. Furthermore,
the trading policies parameterized as neural networks are shown to be highly effective
for risk mitigation under the semi-Lp objective functions across all values of p considered,
with the risk aversion parameter controlling the relative weight associated with extreme
scenarios. Moreover, additional numerical experiments show that the use of the semi-L2

objective function for the pricing of long-term puts with hedges exclusively relying on the
underlying asset is successful at reducing equal risk prices roughly to the level of prices
produced with option hedges under the CVaRα objective function. The latter conclusion is
highly important in the context of ERP, as it demonstrates that in the case where options
are not or cannot be used within the hedging strategy, the ERP methodology used in
conjunction with the semi-Lp class of risk measures can produce reasonable option prices.
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A potential avenue for further research would consist in considering objective func-
tions reflecting a risk–reward trade-off rather than simply considering hedging risk mini-
mization. This could, for instance, be achieved by using rank-dependent expected utility
functions as suggested by Wu and Jaimungal (2023).
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Appendix A. Pseudo-Code
This section presents the pseudo-codes for the training of neural networks and the

bisection method. Algorithm A1 describes the pseudo-code to carry out a single SGD step,
i.e., given θj and the initial portfolio value V0, the steps to perform an update of the set of
parameters to θj+1. Without loss of generality, the training pseudo-code is presented only

for the short neural network F(S)
θ and for trades involving only the underlying stock. The

update rule for portfolio values in step (6) of Algorithm A1 can be obtained directly from
the self-financing representation of Vδ

n as shown below:

Vδ
n = Bn(Vδ

0 + Gδ
n)

= Bn

(
Vδ

0 + Gδ
n−1 + δ

(0:D)
n • (B−1

n S(e)
n−1 − B−1

n−1S(b)
n−1)

)
=

Bn

Bn−1
Vδ

n−1 + δ
(0:D)
n • (S(e)

n−1 −
Bn

Bn−1
S(b)

n−1)

= er∆Vδ
n−1 + δ

(0:D)
n • (S(e)

n−1 − er∆S(b)
n−1). (A1)

Algorithm A1 Pseudo-code training neural networks F(S)
θ with underlying stock hedges.

Input: θj, Vδ
0

Output: θj+1

1: for i = 1, . . . , Nbatch do . Loop over each path of minibatch
2: X0,i = [T, log(S(0,b)

0,i /K), Vδ
0,i/Ṽ, I0,i] . Time-0 feature vector of F(S)

θ
3: for n = 0, . . . , N − 1 do
4: δ

(0)
n+1,i ← time-tn output of FFNN F(S)

θ with θ = θj

5: S(0,b)
n+1,i = S(0,b)

n,i eyn+1,i . Sample next stock price

6: Vδ
n+1,i = er∆Vδ

n,i + δ
(0)
n+1,i(S

(0,b)
n+1,i − er∆S(0,b)

n,i ) . See (A1) for details
7: In+1,i ← update additional state variables

8: Xn+1,i = [T − tn, log(S(0,b)
n+1,i/K), Vδ

n+1,i/Ṽ, In+1,i] . Time tn+1 feature vector of

F(S)
θ

9: end for
10: Φ(S(0,b)

N,i ) = max(K− S(0,b)
N,i , 0)

11: πi,j = Φ(S(0,b)
N,i )−Vδ

N,i
12: end for
13: Ĵ =

(
1

Nbatch
∑Nbatch

i=1 π
p
i,j1{πi,j>0}

)1/p

14: ηj ← Adam algorithm
15: θj+1 = θj − ηj∇θ Ĵ . ∇θ Ĵ computed with Tensorflow
Notes: Subscript i represents the i-th simulated path among the minibatch of size Nbatch.
Also, the time-0 feature vector is fixed for all paths, i.e., S(0,b)

0,i = S(0,b)
0 , Vδ

0,i = Vδ
0 and

I0,i = I0.
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Algorithm A2 presents the pseudo-code for the bisection algorithm, taking as inputs
the two trained neural networks F(L)

θ and F(S)
θ as well as the initial search range [VA, VB]

so as to output the equal risk price.

Algorithm A2 Pseudo-code bisection algorithm.

Input: F(L)
θ and F(S)

θ trained neural networks, initial search range [VA, VB] and test set paths
Output: C?

0
1: nbs_iter = 0, ∆(V) = ∞
2: while |∆(V)| > ζ and nbs_iter < max_iter do
3: V = 0.5(VA + VB)

4: Compute ε̃(L)(−V) and ε̃(S)(V) on the test set with F(L)
θ and F(S)

θ

5: ∆(V) = ε̃(S)(V)− ε̃(L)(−V)
6: if ∆(V) > 0 then
7: VA ← V
8: else
9: VB ← V

10: end if
11: nbs_iter← nbs_iter + 1
12: end while
13: C?

0 = V.
Notes: ζ and max_iter represent, respectively, the admissible level of pricing error and the
maximum number of iterations for the bisection algorithm. For all numerical experiments
conducted in Section 5, ζ is set to 0.01 and max_iter to 100.

Appendix B. Validation of Modified Training Algorithm

The goal of this section is to demonstrate that the proposed modification to the training
algorithm described in Section 4.2.2 to tackle the non-translation invariant risk measures
case of the ERP framework does not materially impact the optimized neural networks’
hedging performance. Denote by Fθ the neural network trained with the additional step of
sampling V0 ∈ [VA, VB] on top of the minibatch of paths at the beginning of each stochastic
gradient descent step. One conclusive test to validate that the proposed modification does
not deteriorate the neural networks accuracy is to compare the hedging performance of Fθ

assuming V0 = V? to another neural network denoted as Ffixed
θ trained exclusively with a

fixed initial capital investment set at V?. If Fθ exhibits similar hedging performance to Ffixed
θ

over multiple iterations of V?, this demonstrates that Fθ accurately learned the optimal
trading policy over a range of possible initial capital investments.

The experiment conducted to perform the latter test is now formally presented.
The setup considered is similar to the one presented in Section 5.1 with the hedging of an
ATM put option of maturity T = 60/260 with daily stock hedges under the regime switch-
ing model. The steps are the following for all semi-Lp objective functions, p ∈ {2, 4, 6, 8, 10}:
(1) Train Fθ with the procedure described Section 4.2.2, where V0 is sampled in the interval

[0.75CQ
0 , 1.50CQ

0 ] at the beginning of each SGD step, with CQ
0 being the risk-neutral

price. A total of 100 epochs is used on the train set.
(2) For a fixed randomly sampled value V∗ ∈ [0.75CQ

0 , 1.50CQ
0 ], set V0 = V∗ and train

Ffixed
θ with the methodology described in Section 4.2.1. A total of three iterations of

this step is performed (i.e., three different values of V? are considered).
(3) For the three sampled values of V?, compute the semi-Lp statistics on the test set with

Fθ and Ffixed
θ .

Table A1 presents the semi-Lp statistics for the three values of V0 = V? with p = 2, 4,
6, 8, 10. These results clearly demonstrate that the modified training algorithm does not
materially impact the accuracy of the neural network, as the difference in semi-Lp statistics
between the FFNNs Fθ and Ffixed

θ is most often marginal.
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Table A1. Semi-Lp statistics of the modified training algorithm for ATM (K = 100) put options of
maturity T = 60/260 under the regime-switching model.

L2 L4 L6 L8 L10

V0 Fθ Ffixed
θ Fθ Ffixed

θ Fθ Ffixed
θ Fθ Ffixed

θ Fθ Ffixed
θ

4.343 0.6236 0.6209 1.1523 1.1483 1.5291 1.5466 1.8981 1.8628 2.2747 2.2069
2.503 1.5457 1.5355 2.2485 2.2466 2.6865 2.6843 3.0126 3.0277 3.3121 3.3311
4.005 0.7596 0.7578 1.3288 1.3317 1.716 1.7292 2.0703 2.0542 2.4308 2.3866

Notes: Semi-Lp statistics results are computed based on 100,000 independent paths generated with the regime-
switching model under P (see Section 5.2.1 for model definition and Appendix C for model parameters). Fθ is
the neural network trained with the modified algorithm described in Section 4.2.2. Ffixed

θ is the neural network
trained with fixed initial capital investment of V0 as described in Section 4.2.1.

Appendix C. Maximum Likelihood Estimates Results

This section presents the maximum likelihood model parameter estimates for the
different risky asset dynamics considered in the numerical experiments of Sections 5.2 and
5.3. All parameters are estimated with the same time series of daily log-returns on the S&P
500 index for the period 31 December 1986 to 1 April 2010 (5863 log-returns). Except for
the regime-switching model, all parameters are identical to these from Carbonneau and
Godin (2021b), see their Tables A1, A2 and A4. The estimated parameters are presented in
Tables A2–A5.

Table A2. Maximum likelihood parameter estimates of the Black–Scholes model.

µ σ

0.0892 0.1952
Notes: Both µ and σ are on an annual basis.

Table A3. Maximum likelihood parameter estimates of the GJR-GARCH model.

µ ω υ γ β

2.871× 10−4 1.795× 10−6 0.0540 0.6028 0.9105

Table A4. Maximum likelihood parameter estimates of the regime switching model.

Regime

Parameter 1 2
µ 0.1804 −0.2682
σ 0.1193 0.3328
ν 0.7543 0.2457

Γ 0.9886 0.0114
0.0355 0.9645

Notes: Parameters were estimated with the EM algorithm of Dempster et al. (1977). ν represent probabilities
associated with the stationary distribution of the Markov chain. µ and σ are on an annual basis.

Table A5. Maximum likelihood parameter estimates of the Merton jump diffusion model.

ν σ λ µJ σJ

0.0875 0.1036 92.3862 −0.0015 0.0160
Notes: ν, σ and λ are on an annual basis.

Appendix D. Risk-Neutral Dynamics

This section presents the risk-neutral dynamics for the RS, BSM, GARCH and MJD
models. The absence of arbitrage opportunities implied by each model entails by the
first fundamental theorem of asset pricing that there exists a probability measure Q such
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that {S(0,b)
n e−rtn}N

n=0 is an (F,Q)-martingale (Delbaen and Schachermayer 1994). Denote
by {εQn }N

n=1 a sequence of iid standardized Gaussian random variables under Q. The
Q-dynamics for the four models are described in Sections 5.2.1 and 5.3 as well as the
corresponding methods to compute the risk-neutral price CQ

0 of European puts.

Appendix D.1. Regime-Switching

The change of measure used in this study is the popular choice of shifting the drift to
obtain risk neutrality and model invariance as considered, for instance, by Hardy (2001).
Under this change of measure Q, the drift µi∆ in each regime is shifted to (r − σ2

i /2)∆,
and the transition probabilities are left unchanged. The risk-neutral dynamics has the
representation

yn+1 =

(
r−

σ2
hn

2

)
∆ + σhn

√
∆εQn+1, n = 0, . . . , N − 1.

To compute the risk-neutral price of Φ, the approach used follows the work of Godin
et al. (2019) (see Section 5.3 of the latter paper). Let H ≡ {Hn}N

n=0 be the filtration generated
by the regimes and G be the filtration containing all latent factors and all market information
available to financial participants, i.e., G ≡ F∨G. Using the law of iterative expectations,
the risk-neutral price of Φ has the representation

CQ
0 ≡ e−rTEQ[Φ(S(0,b)

N )|F0]

= e−rTEQ
[
EQ[Φ(S(0,b)

N )|G0]|F0

]
= e−rT

H

∑
i=1

ξQ0,iE
Q[Φ(S(0,b)

N )|h0 = i, S(0,b)
0 ], (A2)

where ξQ0,i is assumed to be equal to ξP0,i for all regimes i, i.e., to the stationary distribution
of the Markov chain under P. The computation of the conditional expectations in (A2) can
be performed, for instance, with Monte Carlo simulations or with the closed-form solution
of Hardy (2001) when H = 2.

Appendix D.2. BSM

The change of measure from P to Q under the BSM dynamics is the one obtained
with the discrete-time version of the Girsanov theorem: there exists a market price of risk
process denoted as ψ ≡ {ψn}N

n=1 such that εQn = εn + ψn. By setting ψn ≡
√

∆( µ−r
σ ), it

is easy to show that {S(0,b)
n e−rtn}N

n=0 is an (F,Q)-martingale and that the Q-dynamics of
log-returns is

yn =

(
r− σ2

2

)
∆ + σ

√
∆εQn .

Risk-neutral put option prices presented in this paper are computed with the well-
known Black–Scholes closed-form solution.

Appendix D.3. GARCH

The change of measure from the P to Q considered is the one from Duan (1995), where
the one-period conditional expected log-return is shifted, but the one-period conditional
variance is unchanged when going from the physical to the risk-neutral measure. More
precisely, let εQn = εn +ψn, where ψ ≡ {ψn}N

n=1 is predictable with respect to the filtration F.
The one-period expected conditional gross return under Q must be equal to the one-period
risk-free rate accrual factor for n = 1, . . . , N:

EQ[eyn |Fn−1] = EQ[eµ−ψnσn+σnεQn |Fn−1] = eµ−ψnσn+σ2
n/2 = er∆.
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Thus, ψn has the representation

ψn ≡
µ− r∆ + σ2

n/2
σn

, n = 1, . . . , N. (A3)

With (A3), the GARCH risky asset dynamics under Q is

yn = r∆− σ2
n/2 + σnεQn ,

σ2
n+1 = ω + υσ2

n(|εQn − ψn| − γ(εQn − ψn))
2 + βσ2

n .

The computation of the risk-neutral price CQ
0 can be performed with Monte Carlo sim-

ulations.

Appendix D.4. Merton Jump-Diffusion

For this model, the change of measure used is the one originally proposed by Merton
(1976), which assumes no risk premia for the jump risk: parameters {µJ , σJ , λ, σ} are left un-
changed, and the drift parameter υ is shifted to the annualized continuously compounded
risk-free rate r. The Q-dynamics is

yn =

(
r− λ(eµJ+σ2

J /2 − 1)− σ2

2

)
∆ + σ

√
∆εQn +

Nn

∑
j=Nn−1+1

ζ j,

where {Nn}N
n=0 and {ζ j}j≥1 have the same distribution than under the physical measure.

The risk-neutral price of put options CQ
0 can be computed with the well-known closed-

form solution.

Notes
1 For instance, the ability to depart from the quadratic penalty considered in the celebrated variance-optimal approach of Schweizer

(1995) enables avoiding adverse behavior associated with the penalization of hedging gains.
2 The original work from Guo and Zhu (2017) considers expected penalties as risk measures, which do not possess all properties

of convex risk measures (e.g., most lack the translation invariance property). For instance, the tail value at risk (TVaR) is not a
particular case of an expected penalty.

3 The class of coherent risk measures is a subset of the class of convex risk measure, which assumes, for instance, the subadditivity
and positive homogeneity properties; the latter are more stringent than the convexity property satisfied by all convex risk
measures.

4 This means δ0 is F0-measurable and δn is Fn−1-measurable for n = 1, . . . , N.
5 Details characterizing well-behavedness in the context of the present study are omitted to avoid lengthy discussions straying us

away from the main research objectives of this work.
6 A risk measure is a mapping taking a random variable representing a random loss as input, and returning a real number

representing its perceived risk as an output.
7 Recall that since the trading strategy is self-financing, δ

(B)
n+1 is characterized by δ

(0:D)
n+1 and Vn.

8 While the neural network architecture of F(L)
θ and F(S)

θ considered in this paper is the same for both neural networks in terms of
the number of hidden layers and neurons per hidden layer, and thus the total number q of parameters to fit is the same for both

neural networks, one could also consider two different architectures for F(L)
θ and F(S)

θ , with no additional difficulty.
9 If the equal risk price is outside the initial search interval [0.75CQ

0 , 1.50CQ
0 ], the bisection algorithm must be applied once again

with a new initial search interval, and the neural networks F(S)
θ and F(L)

θ must be trained once again on this new interval.
10 An epoch is defined as a complete iteration of the training set with stochastic gradient descent. For example, for a training set of

400,000 paths and a minibatch size of 1000, one epoch consists of 400 updates of the set of trainable parameters θ.
11 Recall that optimal policies under the CVaRα risk measures are independent of V0 due to the translation invariance property.

Furthermore, the optimal policies obtained under the semi-Lp risk measures can be used not only with a specific value for
V0 but with an interval of initial capital investments that include the risk-neutral price due to the proposed modified training
algorithm in this paper.

12 The convention that ∑Nn
j=Nn−1+1 ζ j = 0 if Nn−1 = Nn is adopted.
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13 Note that traded options with different maturities are never used simultaneously in the same hedging simulation.
14 Note that with option hedges, the implied volatility of the options used as hedging instruments is added to feature vectors, not

the price of each asset. This has the benefit of necessitating one less state variable with the implied volatility instead of adding
two state variables with the price of the call and put used for hedging. Furthermore, this is a reasonable choice from a theoretical
standpoint, as implied volatilities are simply a nonlinear transformation of options prices due to the bijection relation between
the two values.

15 The type of neural networks considered by Carbonneau and Godin (2021a) is the long short-term memory (LSTM). The current
paper found that FFNN trading policies performed significantly better for the numerical experiments conducted under the
semi-Lp risk measure, which motivated their use over LSTMs. The reader is referred to Section 3 of Carbonneau and Godin
(2021a) for the formal description of the LSTM architecture.

16 For instance, if C?
0 (CVaR0.95) and C?

0 (L2) are respectively equal risk prices under the CVaR0.95 and semi-L2 objective functions,

the relative reduction is computed as 1− C0(L2)
C?

0 (CVaR0.95)
.
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