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Abstract: Downside risk measures play a very interesting role in risk management problems. In
particular, the value at risk (VaR) and the conditional value at risk (CVaR) have become very important
instruments to address problems such as risk optimization, capital requirements, portfolio selection,
pricing and hedging issues, risk transference, risk sharing, etc. In contrast, expectile risk measures are
not as widely used, even though they are both coherent and elicitable. This paper addresses the bidual
representation of expectiles in order to prove further important properties of these risk measures.
Indeed, the bidual representation of expectiles enables us to estimate and optimize them by linear
programming methods, deal with optimization problems involving expectile-linked constraints,
relate expectiles with VaR and CVaR by means of both equalities and inequalities, give VaR and
CVaR hyperbolic upper bounds beyond the level of confidence, and analyze whether co-monotonic
additivity holds for expectiles. Illustrative applications are presented.

Keywords: VaR and CVaR; expectile; dual and bidual representations; risk optimization; risk bounds
and equalities
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1. Introduction

Downside risk measures have been used in actuarial science, mathematical finance,
and more general risk management problems. The value at risk (VaR) and the conditional
value at risk (CVaR) are probably the most famous downside risk measures, since they
are very intuitive and easy to interpret in practice. Expectile risk measures are much less
commonly used, perhaps because their practical interpretation is not so obvious. This lower
interest in expectiles is observed even in the Basel I I I (banking) and Solvency I I (insurance)
regulatory systems. Nevertheless, expectile risk measures reflect very interesting properties.
They are coherent, in the sense of Artzner et al. (1999), and elicitable (Bellini et al. 2014).
In particular, their elicitability has important implications in backtesting (Bellini and Di
Bernardino 2017) and other important applications (Embrechts et al. 2021). Both coherence
(which fails for VaR) and elicitability (which fails for CVaR) may justify the use of expectiles.
Moreover, Zou (2014), Bellini and Di Bernardino (2017), and Tadese and Drapeau (2020),
among others, have shown close relationships between expectiles and CVaR, making it
easier to interpret expectiles as downside risks.

Dual representation is another cornerstone in downside risk (Artzner et al. 1999;
Föllmer and Schied 2002, etc.). Indeed, dual representations have played a critical role in
estimating, managing, and optimizing downside risks in practice. Since dual representation
frequently implies that a downside risk measure is the optimal value of a linear optimization
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problem, it makes sense to study the dual optimization problem of the dual representation,
that is, the bidual representation of a downside risk measure. That is exactly the main
objective of this paper, with a special focus on expectiles. In other words, the leitmotif of
this paper is the use of bidual representation and several properties of the duality theory
of linear programming as a unified methodology to address important issues affecting
expectiles.

The paper outline is as follows. Section 2 begins by synthesizing the most important
ideas related to VaR, CVaR, and expectiles. Their usual definitions and properties are
presented despite the fact that they are not new; however, the main purpose is to facilitate
the reading of the paper. This approach allows us to introduce the new Theorem 5 and its
proof in a natural manner. Theorem 5 is one of the most important results of this paper,
since it provides us with the bidual representation of the expectile and a new way to
relate expectiles and linear programming methods. Theorem 5 leads to Theorems 6 and
7, which are the most important results of Section 3. Indeed, Theorem 6 shows that the
optimization of expectiles can be reduced to a linear (convex) problem if the constraints
are linear (convex). Analogously, Theorem 7 shows that optimization problems involving
expectile-linked constraints can be linearized as well. Needless to say, the linearization of
risk optimization problems has been a very important question in the risk analysis literature
(Rockafellar and Uryasev 2000; Konno et al. 2005; Balbás and Charron 2019, etc.).

Important relationships between CVaR and expectiles have been addressed in Delbaen
(2013), Bellini and Di Bernardino (2017), and Tadese and Drapeau (2020), to name a few.
Section 4 is devoted to showing that these relationships may be also addressed by means of
the bidual representation given in Theorem 5. In particular, by computing the expectation
and the expectile of an arbitrary random gain, you will have an upper bound of the CVaR
given by a simple hyperbolic function of the CVaR confidence level. Every confidence level
may be involved in this simple formula. The other important finding of this section is
Corollary 6, since it allows us to characterize whether co-monotonic additivity holds for
expectiles. In general, the co-monotonic additivity of a downside risk measure is required
in many practical applications (Dhaene et al. 2002; Bellini et al. 2021; Balbás et al. 2022, etc.),
but it may fail for expectiles (Delbaen 2013).

The relationships in Section 4 are inequalities, and an obvious question is whether they
can be improved. This problem is addressed in Section 5, where it is shown that they often
become equalities, i.e., they cannot be improved (Theorems 10 and 11 and Corollary 9).
Moreover, when they are equalities, they provide new ways to estimate different risk
measures in practical applications, with special focus on the value at risk. It is known
that topics related to the practical estimation of risks are very important in real-world
applications (Buch et al. 2023; Dacorogna 2023, etc.).

Section 6 is devoted to illustrating all the above findings in a very popular actuarial
example, namely, the (maybe optimal) combination of reinsurance contracts and financial
investments. To the best of our knowledge, this is the first paper that simultaneously
involves reinsurance contracts, financial markets, VaR, CVaR, and expectiles. A very general
approach would significantly increase the paper length and therefore is beyond the scope
of this work, so several simplifications are incorporated. In any case, the simplifications
are sufficient to illustrate the main results of the previous sections, which are the major
purpose. In fact, the bidual representation of expectiles enables us to estimate and optimize
them by means of linear programming methods, relate them with VaR and CVaR by means
of both equalities and inequalities, give VaR and CVaR upper bounds beyond the level of
confidence, and analyze whether co-monotonic additivity holds for expectiles. Section 7
presents both a general discussion about contributions/limitations and the main conclusion.

2. Dual and Bidual Representations

As indicated in the introduction, this section is devoted to synthesizing several im-
portant and well-known properties of VaR, CVaR, and expectiles. They are given without
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proofs, but their presence will facilitate the reading of the paper. Furthermore, a new repre-
sentation theorem for expectiles is given (Theorem 5), which will be vital in future sections.

2.1. VaR and CVaR

Consider the probability space (Ω,F ,P) composed of the set of states of nature Ω,
the σ-algebra F reflecting the information available at a future date T, and the probability
measure P. Denote by IE(y) the mathematical expectation of every R-valued random
variable y defined on Ω. Unless the opposite is indicated, IE(y) exists and is finite for
every random variable in this paper. In other words, every random variable belongs to the
classical space L1 (or L1(Ω,F ,P), if necessary).

Fix µ∗ ∈ (0, 1). If Fy(x) = IP(y ≤ x) is the cumulative distribution function of the
random variable y,1 then the value at risk of y with the level of confidence 1 − µ∗ ∈ (0, 1)
is given by

VaR1−µ∗(y) := −In f
{

x ∈ R; Fy(x) > µ∗} ∈ R,

and the conditional value at risk of y with the same confidence level is given by

CVaR1−µ∗(y) :=
1

µ∗

∫ µ∗

0
VaR1−β(y)dβ ∈ R.

Previous papers provided us with representation theorems for both VaR and CVaR.

Theorem 1 (VaR bidual representation, Balbás et al. 2017). VaR1−µ∗(y) is the optimal value
of the bounded and solvable problem

Min λ


y = λm − λM − λ
IE(z∗) = 1
z∗ ≤ 1/µ∗

λmz∗ = λM(1/µ∗ − z∗) = 0
z∗, λm, λM ≥ 0,

(1)

with (λ, z∗, λm, λM) ∈ R×
(

L1)3 being the decision variable.

Theorem 1 provides us with a bidual representation of VaR. There exists a dual
representation as well (Koenker 2005), but it is not needed in this paper. Theorem 1 was
first proved in Balbás et al. (2017), and later Balbás and Charron (2019) showed that similar
methods may allow us to prove extensions and/or slight modifications of Theorem 1. A
particular case is Corollary 2 below.

Corollary 1. If there exists ε > 0 such that Fy(x) < µ∗ for −VaR1−µ∗(y) − ε < x <
−VaR1−µ∗(y), then (λ, λm, λM) remains constant for every (1)-feasible (λ, z∗, λm, λM), and
λ = VaR1−µ∗(y) holds.

Remark 1. In particular, (λ, λm, λM) is unique if there exists ε > 0 such that Fy is strictly
increasing in the interval

(
−VaR1−µ∗(y)− ε,−VaR1−µ∗(y)

)
. The existence of such an ε obviously

holds if there exist −∞ ≤ u < v ≤ +∞ such that Fy : (u, v) → R is strictly increasing, Fy(x) = 0
for x < u, and Fy(x) = 1 for x > v.

Theorem 2 (CVaR dual representation, Rockafellar et al. 2006). CVaR1−µ∗(y) is the optimal
value of the bounded and solvable problem

Max − IE(yz∗)
{

IE(z∗) = 1
0 ≤ z∗ ≤ 1/µ∗,

(2)

where z∗ ∈ L1 is the decision variable.
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Theorem 3 (CVaR bidual representation, Balbás et al. 2021). CVaR1−µ∗(y) is the optimal
value of the bounded and solvable problem

Min λ + IE(λM)/µ∗
{

y = λm − λM − λ
λm, λM ≥ 0,

(3)

with (λ, λm, λM) ∈ R×
(

L1)2 being the decision variable. Moreover, if z∗ ∈ L1 is (2)-feasible
and if (λ, λm, λM) is (3)-feasible, then they solve the corresponding problem if and only if the
complementary slackness conditions

λmz∗ = λM

(
1

µ∗ − z∗
)
= 0 (4)

hold.

Corollary 2. Take (λ, z∗, λm, λM) ∈ R×
(

L1)3. Then, (λ, z∗, λm, λM) is (1)-feasible if and only
if z∗ solves (2) and (λ, λm, λM) solves (3), in which case the equalities

CVaR1−µ∗(y) = −IE(yz∗) = λ + IE(λM)/µ∗

hold.

Corollary 3.
(

VaR1−µ∗(y),
(
y + VaR1−µ∗(y)

)+,
(
y + VaR1−µ∗(y)

)−) is a solution to (3).2

Proof.
(

VaR1−µ∗(y),
(
y + VaR1−µ∗(y)

)+,
(
y + VaR1−µ∗(y)

)−) is obviously (3)-feasible. Take
(λ, z∗, λm, λM), solving (1). λ = VaR1−µ∗(y) is obvious, and the constraints of (1) lead to

y + VaR1−µ∗(y) = λm − λM. (5)

If λM >
(
y + VaR1−µ∗(y)

)−, then the objective of (3) at (λ, λm, λM) would be strictly higher
than it is at (

VaR1−µ∗(y),
(
y + VaR1−µ∗(y)

)+,
(
y + VaR1−µ∗(y)

)−), (6)

which cannot hold because (λ, λm, λM) solves (3). Thus,

λM =
(
y + VaR1−µ∗(y)

)−,

and therefore
λm =

(
y + VaR1−µ∗(y)

)+
due to (5). □

2.2. Expectiles

Fix µ ∈ (0, 1/2). There exits a unique solution to the equation

µIE
(
(y − x)+

)
= (1 − µ)IE

(
(x − y)+

)
, (7)

where x ∈ R is the unknown (Bellini and Di Bernardino 2017). This solution is denoted by
Eµ(y) and is said to be the expectile of y at level µ.3 The expectile risk measure at level µ is
defined by Eµ(y) := −Eµ(y). Bearing in mind the equality (y − x)+ + x = y + (x − y)+, it
is easy to see that x ∈ R solves (7) if and only if x solves

IE(y) = x +
1 − 2µ

1 − µ
IE
(
(y − x)+

)
, (8)
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so (8) also characterizes the expectile risk measure. Furthermore, several authors have
shown that Eµ is a continuous, coherent (in the sense of Artzner et al. (1999)), expectation-
bounded (in the sense of Rockafellar et al. (2006)), and law-invariant risk measure (Ziegel
2016). In other words, Eµ is continuous, sub-additive (Eµ(y1 + y2) ≤ Eµ(y1) + Eµ(y2)),
positively homogeneous (Eµ(λy) = λEµ(y) if λ ≥ 0), translation invariant (Eµ(y + λ) =
Eµ(y)− λ if λ ∈ R), decreasing (Eµ(y1) ≤ Eµ(y2) if y1 ≥ y2), mean dominating (Eµ(y) ≥
−IE(y)) and law invariant (Eµ(y1) = Eµ(y2) if Fy1 = Fy2). Notice that there are some
redundancies in the latter sentence. Firstly, positively homogeneous and decreasing imply
continuous. Secondly, coherent and law invariant imply expectation bounded (mean
dominating). Anyway, we have preferred to give an exhaustive list of properties. Recall that
CVaR1−µ∗ also satisties all the properties above, whereas VaR1−µ∗ is neither continuous,
nor sub-additive, nor mean dominating.

Theorem 4 (Dual representation of expectiles, Delbaen 2013). Eµ(y) is the optimal value of
the bounded and solvable problem

Max − IE(yz)


IE(z) = 1

ξ ≤ z ≤ ξ
1 − µ

µ
,

(9)

where (ξ, z) ∈ R×L1 is the decision variable.

Proposition 1. (a) If (ξ, z) is (9)-feasible, then µ/(1 − µ) ≤ ξ ≤ 1. (b) (ξ = 1, z) is (9)-feasible
if and only if z = 1. (c) (ξ = µ/(1 − µ), z) is (9)-feasible if and only if z = 1.

Proof. (a) Taking expectations in the constraints of (9), one has ξ ≤ IE(z) = 1 ≤ ξ
1 − µ

µ
.

(b) It is obvious that (ξ, z) = (1, 1) is (9)-feasible. Conversely, if (ξ = 1, z) is (9)-feasible,
then the constraints of this problem lead to z ≥ ξ = 1 and IE(z) = 1, so z = 1.

(c) It is obvious that (ξ, z) = (µ/(1 − µ), 1) is (9)-feasible. Conversely, if

(ξ = µ/(1 − µ), z)

is (9)-feasible, then the constraints of this problem lead to 1 = ξ
1 − µ

µ
≥ z and IE(z) = 1, so

z = 1. □

Theorem 5 (Bidual representation of expectiles). Eµ(y) is the optimal value of the bounded and
solvable problem

Min λ


y = λm − λM − λ

IE(λm) =
1 − µ

µ
IE(λM)

λm, λM ≥ 0,

(10)

with (λ, λm, λM) ∈ R×
(

L1)2 being the decision variable. Furthermore, if (ξ, z) is (10)-feasible
and (λ, λm, λM) is (2)-feasible, then they solve the related problem if and only if the complementary
slackness conditions

λm(z − ξ) = λM

(
ξ

1 − µ

µ
− z

)
= 0 (11)

hold.

Proof. Following Anderson and Nash (1987), (10) is the dual problem of the linear problem
(9) if one proves the constraint (λm, λM) ∈

(
L1)2. Nevertheless, this constraint may be

proved with the method used in Balbás et al. (2021) to relate (2) and (3). Since (9) and (10)
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may be infinite-dimensional problems, the so-called duality gap between them could arise,
but it may be proved that this duality gap vanishes by using a method similar to that in
Balbás et al. (2021) for (2) and (3). The absence of a duality gap guarantees that (11) are
necessary and sufficient optimality conditions (Anderson and Nash 1987). □

Corollary 4. The assertions below are equivalent: (a) y = IE(y). (b) There exists z ∈ L1 such
that (ξ = 1, z) solves (9). (c) There exists z ∈ L1 such that (ξ = µ/(1 − µ), z) solves (9).
Furthermore, under the affirmative case, (d), (e), and ( f ) below hold: (d) One can take z = 1
in (b) and (c). (e) (ξ, z = 1) solves (9) for every ξ ∈ [µ/(1 − µ), 1], and Eµ(y) = −IE(y). ( f )
Every (9)-feasible (ξ, z) solves (9).

Proof. (a) ⇒ (b) Suppose that (a) holds, and take (ξ, z) = (1, 1). It is evident that (ξ, z)
is (9)-feasible. Take (λ, λm, λM) = (−IE(y), 0, 0), and it is evident that (λ, λm, λM) is (10)-
feasible. Moreover, (11) trivially holds.

(a) ⇒ (c) Suppose that (a) holds, and take (ξ, z) = (µ/(1 − µ), 1). It is evident that
(ξ, z) is (9)-feasible. Take (λ, λm, λM) = (−IE(y), 0, 0), and it is evident that (λ, λm, λM) is
(10)-feasible. Moreover, (11) trivially holds.

(b) ⇒ (a) Suppose that (1, z̃) solves (9). Proposition 1 implies that z̃ = 1. Eµ(y) =
IE(yz̃) = IE(y) and (8) imply that

IE(y) = IE(y) +
1 − 2µ

1 − µ
IE
(
(y − IE(y))+

)
,

i.e., IE
(
(y − IE(y))+

)
= 0 and therefore y ≥ IE(y), which is equivalent to (a).

(c) ⇒ (a) Suppose that (µ/(1 − µ), z̃) solves (9). Proposition 1 implies that z̃ = 1. The
rest of the proof is similar to that of (b) ⇒ (a).

(d) Obvious consequence of Proposition 1.
(e) Eµ(y) = −IE(y) holds because Eµ is coherent, and every coherent risk measure

satisfies this equality Artzner et al. (1999). If ξ ∈ [µ/(1 − µ), 1], then it is evident that
(ξ, z = 1) is (9)-feasible. Moreover, the objective function of (9) at (ξ, z = 1) satisfies that
−IE(yz) = −IE(y) = Eµ(y).

( f ) As in (e), −IE(yz) = −IE(y)IE(z) = −IE(y) because IE(z) = 1. □

3. Optimization Problems Involving Expectiles

Since Rockafellar and Uryasev (2000) proved that the CVaR minimization may often
be addressed by means of linear programming methods, many authors have extended
the analysis and dealt with other risk measures (Konno et al. 2005; Balbás and Charron
2019, for instance). Let us show that the optimization of expectiles may be also linearized.
Accordingly, consider a functional α : L1 −→ R, an arbitrary set X, a function β : X −→ L1,
and the optimization problem

Min {α(β(x)); x ∈ X}. (12)

Taking into account Theorems 3 and 5, the proof of Theorem 6 below becomes simple and
therefore omitted.

Theorem 6. (a) Consider µ∗ ∈ (0, 1), α = CVaR1−µ∗ , and Problem

Min λ + IE(λM)/µ∗
{

β(x) = λm − λM − λ
x ∈ X, λm, λM ≥ 0,

(13)

with (λ, x, λm, λM) ∈ R × X ×
(

L1)2 being the decision variable. x solves (12) if and only

if there exists (λ, λm, λM) ∈ R×
(

L1)2 such that (λ, x, λm, λM) solves (13), in which case
CVaR1−µ∗(β(x)) = λ + IE(λM)/µ∗ holds. (b) Consider µ ∈ (0, 1/2), α = Eµ, and Prob-



Risks 2023, 11, 220 7 of 21

lem

Min λ


β(x) = λm − λM − λ

IE(λm) =
1 − µ

µ
IE(λM)

x ∈ X, λm, λM ≥ 0,

(14)

with (λ, x, λm, λM) ∈ R× X ×
(

L1)2 being the decision variable. x solves (12) if and only if there

exists (λ, λm, λM) ∈ R×
(

L1)2 such that (λ, x, λm, λM) solves (14), in which case Eµ(β(x)) = λ
holds.

Notice that both (13) and (14) may inherit several properties of the set X and the
function β. In particular, if X is given by linear (convex) constraints and β is linear, then (13)
and (14) become linear (convex) optimization problems. In other words, Theorem 6b may
play a critical role in linearizing the minimization of expectiles, and Theorem 6a presents a
way to linearize the CVaR minimization.

Expectile-linked constraints can be also linearized by the application of Theorem 5.
Indeed, consider a subset Y ⊂ L1, a real-valued function f : Y −→ R, a real number k ∈ R,
and the optimization problem

Opt f (y)
{

Eµ(y) ≤ k
Y ∈ Y,

(15)

where “Opt” applies for both “Max” or “Min”. Then, one has the following.

Theorem 7. Consider the optimization problem

Opt f (y)



y = λm − λM − λ

IE(λm) =
1 − µ

µ
IE(λM)

λ ≤ k
y ∈ Y, λm, λM ≥ 0,

(16)

with (λ, y, λm, λM) ∈ R× Y ×
(

L1)2 being the decision variable. y solves (15) if and only if there

exists (λ, λm, λM) ∈ R×
(

L1)2 such that (λ, y, λm, λM) solves (16).

Proof. Theorem 5 implies that Eµ(y) ≤ k holds if and only if there exists (λ, λm, λM) ∈
R×

(
L1)2 such that (λ, y, λm, λM) is (16)-feasible. □

Problem (16) again inherits the properties of Y and f . In particular, if Y is given by
linear (convex, concave) constraints and f is linear (convex, concave), then (16) is a linear
(convex, concave) problem.

4. Linking CVaR and Expectiles

Several authors have pointed out the existence of inequalities involving VaR, CVaR,
and expectiles (Delbaen 2013; Bellini and Di Bernardino 2017; Tadese and Drapeau 2020, to
name a few). Let us show that this type of relationship may also be addressed by means of
the bidual approach. Some of the inequalities below are quite similar to others proved in
Tadese and Drapeau (2020). Nevertheless, the use of the bidual representation in Theorem
5 may simplify the proofs. Needless to say, the simplification of proofs may deserve the
interest of many researchers (Herdegen and Munari 2023, for instance). Moreover, bidual
representation will allow us to study the potential co-monotonic additivity of expectiles, as
well as to verify in Section 5 whether the given inequalities may become exact equalities.
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First of all, the expectile risk measure Eµ will be the envelope of a family of contin-
uous, coherent, expectation-bounded, law-invariant and co-monotonically additive risk
measures.4 In order to show that, let us fix the subsets A and B of R2 given by{

A :=
{
(µ, ξ) ∈ R2; 0 < µ < 1/2, µ/(1 − µ) < ξ < 1

}
B :=

{
(µ∗, ξ) ∈ R2; 0 < µ∗ < 1, 0 < ξ < 1

}
= (0, 1)2,

(17)

and for (µ, ξ) ∈ A and µ∗ ∈ (0, 1), let us consider the sets
C(µ,ξ) :=

{
z ∈ L1; IE(z) = 1, ξ ≤ z ≤ ξ

1 − µ

µ

}
Dµ∗ :=

{
z∗ ∈ L1; IE(z∗) = 1, 0 ≤ z∗ ≤ 1

µ∗

}
.

(18)

Let us prove an instrumental lemma.

Lemma 1. (a) The function

A ∋ (µ, ξ) → I(µ, ξ) = (µ∗, ξ) ∈ B

given by

µ∗ :=
(1 − ξ)µ

ξ(1 − 2µ)
(19)

is well-defined and a one-to-one bijection whose inverse

B ∋ (µ∗, ξ) → I−1(µ∗, ξ) = (µ, ξ) ∈ A

is given by

µ =
ξµ∗

1 − ξ(1 − 2µ∗)
. (20)

(b) Fix µ ∈ (0, 1/2). If µ∗ is given by (19), then the function

(µ/(1 − µ), 1) ∋ ξ → µ∗ ∈ (0, 1)

is well-defined and a one-to-one bijection whose inverse is given by

ξ =
µ

µ∗ − 2µ∗µ + µ
. (21)

(c) Fix (µ, ξ) ∈ A and I(µ, ξ) = (µ∗, ξ) ∈ B. The function

C(µ,ξ) ∋ z → z∗ = I(µ,ξ)(z) :=
z − ξ

1 − ξ
∈ Dµ∗

is well-defined and a one-to-one bijection whose inverse is given by

Dµ∗ ∋ z∗ → z = I−1
(µ,ξ)(z

∗) = ξ + (1 − ξ)z∗ ∈ C(µ,ξ). (22)

(d) Fix (µ, ξ) ∈ A, I(µ, ξ) = (µ∗, ξ) ∈ B, z ∈ C(µ,ξ) and z∗ = I(µ,ξ)(z) ∈ Dµ∗ . Then, out of a
P-null set, {

ω ∈ Ω; ξ
1 − µ

µ
− z(ω) = 0

}
= {ω ∈ Ω; 1/µ∗ − z∗(ω) = 0}.
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Proof. In order to see that (19) is well-defined, one must show that 0 < µ∗ < 1. The first
inequality is evident, so let us see the second one. Since the one-to-one bijection

(0, 1) ∋ x → 1 − x
x

∈ (0,+∞)

is strictly decreasing, and µ/(1 − µ) < ξ, one has that

1 − ξ

ξ
<

1 − µ/(1 − µ)

µ/(1 − µ)
,

and (19) leads to

µ∗ <
1 − µ/(1 − µ)

µ/(1 − µ)

µ

1 − 2µ
= 1.

Additionally, trivial manipulations of (19) lead to (20), so let us see that, for (µ∗, ξ) ∈ B =

(0, 1)2, (20) implies that 0 < µ < 1/2. The first inequality is obvious, so let us prove the
second one. One has that

ξ

2
<

1
2
⇒ ξµ∗ < ξµ∗ +

1
2
− ξ

2
⇒ ξµ∗ <

1
2
(1 − ξ(1 − 2µ∗)),

and therefore µ < 1/2 (see (20)). Lastly, it only remains to see that µ/(1 − µ) < ξ holds.
Bearing in mind (20), it is equivalent to

ξ >

(
ξµ∗

1 − ξ(1 − 2µ∗)

)
⧸
(

1 − ξµ∗

1 − ξ(1 − 2µ∗)

)
,

that is,

1 >
µ∗

1 − ξ + ξµ∗ ,

or
1 − ξ + ξµ∗ > µ∗.

This is equivalent to
1 − ξ > µ∗(1 − ξ),

which is obvious because 1 − ξ > 0 and 0 < µ∗ < 1.
(b) (21) trivially follows from (19), so it is sufficient to see that µ∗− 2µ∗µ+ µ > 0. Since

0 < µ < 1/2 and 0 < µ∗ < 1, one has that µ∗ − 2µ∗µ + µ > µ∗ − 2µ∗µ = µ∗(1 − 2µ) > 0.
(c) IE(z∗) = 1 and 0 ≤ z∗ are evident, so let us see that z∗ ≤ 1/µ∗ and therefore

z∗ ∈ Dµ∗ . Indeed, (19) shows that one must prove that

z − ξ

1 − ξ
≤ ξ(1 − 2µ)

(1 − ξ)µ
,

i.e.,

z − ξ ≤ ξ(1 − 2µ)

µ
=

ξ

µ
− 2ξ,

which is equivalent to

z ≤ ξ

µ
− ξ = ξ

(
1
µ
− 1

)
= ξ

1 − µ

µ
,

which must hold because z ∈ C(µ,ξ). Additionally, the equivalence

z∗ =
z − ξ

1 − ξ
⇐⇒ z = ξ + (1 − ξ)z∗
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is obvious, so it only remains to prove that z = ξ + (1 − ξ)z∗ ∈ C(µ,ξ) if z∗ ∈ Dµ∗ . IE(z) = 1

and 0 ≤ z are evident, so let us see that z ≤ ξ
1 − µ

µ
. One has that

z ≤ ξ + (1 − ξ)
1

µ∗ ,

and (20) shows that

z ≤ ξ + (1 − ξ)
ξ(1 − 2µ)

(1 − ξ)µ
= ξ +

ξ(1 − 2µ)

µ
=

ξ

µ
− ξ = ξ

1 − µ

µ
.

(d) Notice that

1
µ∗ − z∗ =

ξ(1 − 2µ)

(1 − ξ)µ
− z − ξ

1 − ξ
=

ξ − ξµ − zµ

(1 − ξ)µ

and
ξ(1 − µ)

µ
− z =

ξ − ξµ − zµ

µ
,

so the given equivalence becomes evident. □

Theorem 8. Consider y ∈ L1, (µ, ξ) ∈ A, and the optimization problems

Max − IE(yz)


IE(z) = 1

ξ ≤ z ≤ ξ
1 − µ

µ
,

(23)

where z ∈ L1 is the decision variable, and

Min λ + ξ

(
1 − µ

µ
IE(λM)− IE(λm)

)
+

{
y = λm − λM − λ

λm, λM ≥ 0,
(24)

where (λ, λm, λM) ∈ R×
(

L1)2 is the decision variable. Equations (23) and (24) are bounded and
solvable, and the optimal value of both problems coincide. If z is (23)-feasible and (λ, λm, λM) is
(24)-feasible, then they solve the corresponding problem if and only if

λm(z − ξ) = λM

(
ξ

1 − µ

µ
− z

)
= 0 (25)

hold.5

Proof. The (23)-feasible set is included in the space L∞ of essentially bounded random
variables. Moreover, this feasible set is σ

(
L∞, L1)-compact owing to Alaoglu’s theorem

(Zeidler 1995). Since the objective function of (23) is σ
(

L∞, L1)-continuous (Zeidler 1995),
Weierstrass’ theorem implies that (23) is bounded and solvable. Following Anderson
and Nash (1987), (24) is the dual problem of (23), although one must show the constraint
(λm, λM) ∈

(
L1)2 because the dual space of L∞ is larger than L1. Nevertheless, this

constraint may be proved with the method used in Balbás et al. (2021) to relate (2) and (3).
Since (24) and (23) are infinite-dimensional problems, the so-called duality gap between
them could arise. However, it may be proved that this duality gap vanishes by using
a method similar to that in Balbás et al. (2021) for (2) and (3). The absence of a duality
gap guarantees that (3) is bounded and solvable, and (25) reflects necessary and sufficient
optimality conditions (Anderson and Nash 1987). □
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Definition 1. Consider y ∈ L1 and (µ, ξ) ∈ A. The sub-expectile E(µ,ξ)(y) of y will be given by
the optimal value of (23) or (24).

Remark 2. Notice that C(µ,ξ) and Dµ∗ are the (23)-feasible and the (2)-feasible sets, respectively
(see (17) and (18)). Notice also that the (3)-feasible and the (24)-feasible sets coincide.

Theorem 9. Consider y ∈ L1, (µ, ξ) ∈ A, z ∈ C(µ,ξ), z∗ = I(µ,ξ)(z) ∈ Dµ∗ , and a (3)-feasible
(λ, λm, λM). (a) z solves (23) if and only if z∗ solves (2). (b) (λ, λm, λM) solves (3) if and only if
(λ, λm, λM) solves (24). (c)

E(µ,ξ)(y) = −ξIE(y) + (1 − ξ)CVaR1−µ∗(y). (26)

(d) E(µ,ξ) is a continuous, coherent, expectation-bounded, law-invariant, and co-monotonically
additive risk measure.

Proof. (a) and (b) According to 8, z solves (23), and (λ, λm, λM) solves (24) if and only
if (25) holds. Lemmas 1c and 1d imply that the fulfillment of (25) is equivalent to the
fulfillment of (4), which holds (Theorem 5) if and only if z∗ solves (2) and (λ, λm, λM)
solves (3).

(c) Take a solution z for (23). (a) implies that z∗, given by (22), solves (2). Theorems
3 and 8 lead to CVaR1−µ∗(y) = −IE(yz∗) and E(µ,ξ)(y) = −I− 1.5ptE(yz), respectively.
Additionally, (22) and IE(z) = 1 (see (23)) lead to

IE(yz) = ξIE(y) + (1 − ξ)IE(yz∗).

(d) It trivially follows from (26) because CVaR1−µ∗ is continuous, coherent, expectation-
bounded, law-invariant, and co-monotonically additive. □

Corollary 5. Consider µ ∈ (0, 1/2).

Eµ(y) = Max
{
−ξIE(y) + (1 − ξ)CVaR1−µ∗(y); ξ ∈ (µ/(1 − µ), 1)

}
.

Proof. It trivially follows from Theorems 4 and 5, Proposition 1, Corollary 4, and (26). □

Remark 3. Consider µ ∈ (0, 1/2). Theorem 9 and Corollary 5 imply that Eµ is the maximum
of a family of continuous, coherent, expectation-bounded, law-invariant, and co-monotonically
additive risk measures. Nevertheless, something may be missed when taking the maximum. Indeed,
Eµ is not co-monotonically additive (Delbaen 2013). Theorem 9 also allows us to give necessary
and sufficient conditions guaranteeing that the expectile “respects the co-monotonic additivity”.
This is important in many actuarial and/or financial applications, since co-monotonic additivity
significantly simplifies many technical problems (Bellini et al. 2021; Balbás et al. 2022, among
many others).

Corollary 6. Consider µ ∈ (0, 1/2) and suppose that the random variables y1 and y2 are co-
monotonic. Consider (9) for y = yj, j = 1, 2, and their solutions (ξ1, z1) and (ξ2, z2), respectively.

Consider also (10) for y = yj, j = 1, 2, and their solutions
(

λ(1, λ
(1
m , λ

(1
M

)
and

(
λ(2, λ

(2
m , λ

(3
M

)
,

respectively. (a) If ξ1 = ξ2, then Eµ(y1 + y2) = Eµ(y1) + Eµ(y2). (b) If z1 = z2, then
Eµ(y1 + y2) = Eµ(y1) + Eµ(y2). (c) Eµ(y1 + y2) = Eµ(y1) + Eµ(y2) if and only if there exists
(ξ, z), solving (9) for both y = y1 and y = y2. (d) Eµ(y1 + y2) = Eµ(y1) + Eµ(y2) if and only if(

λ(1, λ
(1
m , λ

(1
M

)
+

(
λ(2, λ

(2
m , λ

(3
M

)
solves (10) for y = y1 + y2.6
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Proof. (a) Take ξ = ξ1 = ξ2. Equations (23) and (24) lead to Eµ(y1) + Eµ(y2) = E(µ,ξ)(y1) +
E(µ,ξ)(y2) = E(µ,ξ)(y1 + y2) ≤ Eµ(y1 + y2), and the opposite inequality holds because Eµ is
subadditive.

(b) Take z = z1 = z2. The (9)-feasible set does not depend on y, and the objective of (9)
does not depend on ξ, so (ξ1, z) is feasible for y = y2, and the objective remains the same
as it is for (ξ2, z). In other words, (ξ1, z) solves (9) for both y = y1 and y = y2, and the
equality Eµ(y1 + y2) = Eµ(y1) + Eµ(y2) follows from (a).

(c) The existence of (ξ, z) and (a) (or (b)) trivially implies the equality Eµ(y1 + y2) =
Eµ(y1) + Eµ(y2). Conversely, if Eµ(y1 + y2) = Eµ(y1) + Eµ(y2) holds, then take (ξ, z),
solving (9) for y = y1 + y2. One has that

−IE
(
yjz

)
≤ Eµ(y1), j = 1, 2. (27)

Additionally, {
Eµ(y1) + Eµ(y2) = Eµ(y1 + y2) =
−IE((y1 + y2)z) = −IE(y1z) +−IE(y2z).

(28)

Equations (27) and (28) trivially imply that −IE
(
yjz

)
= Eµ

(
yj
)
, j = 1, 2.

(d)
(

λ(1, λ
(1
m , λ

(1
M

)
+

(
λ(2, λ

(2
m , λ

(3
M

)
is obviously (10)-feasible for y = y1 + y2. If this is

a solution to the problem, then Eµ

(
yj
)
= λ(j for j = 1, 2 leads to Eµ(y1 + y2) = λ(1 + λ(2 =

Eµ(y1) + Eµ(y2). Conversely, Eµ(y1 + y2) = Eµ(y1) + Eµ(y2) = λ(1 + λ(2 implies that the

minimum Eµ(y1 + y2) of (10) for y = y1 + y2 is attained at
(

λ(1, λ
(1
m , λ

(1
M

)
+

(
λ(2, λ

(2
m , λ

(3
M

)
.

□

Corollary 7. Consider (µ∗, ξ) ∈ B = (0, 1)2 and take (µ, ξ) = I−1(µ∗, ξ) ∈ A. Then,

CVaR1−µ∗(y) ≤
Eµ(y) + ξIE(y)

1 − ξ
, (29)

and the equality holds if and only if there exists z ∈ L1 such that (ξ, z) solves (9).

Proof. Equation (29) trivially follows from Lemma 1 and Corollary 5. Additionally, the
existence of z implies that Eµ(y) = E(µ,ξ)(y) (recall Definition 1), and (26) leads to the
equality in (29). Conversely, if (29) becomes an equality, then (26) leads to Eµ(y) = E(µ,ξ)(y),
so every solution z for (23), whose existence is guaranteed by Theorem 8, satisfies that (ξ, z)
solves (9). □

Corollary 8.
CVaR1−µ∗(y) ≤ Eµ(y) +

µ

µ∗(1 − 2µ)

(
Eµ(y) + IE(y)

)
(30)

holds for every y ∈ L1, every µ∗ ∈ (0, 1), and every µ ∈ (0, 1/2).

Proof. Fix µ∗ ∈ (0, 1) and µ ∈ (0, 1/2). Lemma 1b implies that ξ, given by (21), satisfies
that I(µ, ξ) = (µ∗, ξ). Thus,

CVaR1−µ∗(y) ≤
(µ∗ − 2µ∗µ + µ)Eµ(y) + µIE(y)

µ∗ − 2µ∗µ
(31)

trivially follows from (21) and (29), and (30) trivially follows from (31). □

Remark 4. Given an arbitrary µ ∈ (0, 1/2), (30) indicates that CVaR1−µ∗(y) is bounded from
above by a simple hyperbolic function of µ∗, namely,

CVaR1−µ∗(y) ≤ η1 +
η2

µ∗ (32)
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holds for every µ∗ ∈ (0, 1) if
η1 = Eµ(y)

η2 =
µ
(
Eµ(y) + IE(y)

)
(1 − 2µ)

= ν
(
Eµ(y) + IE(y)

) (33)

where ν = µ/(1 − 2µ). Table 1 below provides us with the value of ν for several values of µ. ν has
been rounded to the second decimal place.

Table 1. Coefficients of the CVaR hyperbolic upper bound.

µ 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
ν 0.01 0.06 0.13 0.21 0.33 0.50 0.75 1.17 2.00 4.50

Obviously, the coefficients η1 and η2 of (32) depend on y (see (33)), but the value of ν and y are
independent. Although ν grows, µ does as well, and (32) may become better because Eµ(y) becomes
lower. Actually, (32) will yield a finite collection of hyperbolic upper bounds of CVaR1−µ∗(y) if a
finite collection of values for µ are considered.

5. Linking VaR and Expectiles

Expressions such as (29) and (30) establish several relationships between the condi-
tional value at risk and the expectile. Obviously, since VaR1−µ∗(y) ≤ CVaR1−µ∗(y), one
has that

VaR1−µ∗(y) ≤
Eµ(y) + ξIE(y)

1 − ξ
(34)

for y ∈ L1 and (µ, ξ) = I−1(µ∗, ξ), and

VaR1−µ∗(y) ≤ Eµ(y) +
µ

µ∗(1 − 2µ)

(
Eµ(y) + IE(y)

)
(35)

for y ∈ L1, µ∗ ∈ (0, 1), and µ ∈ (0, 1/2). Let us deal with the value at risk in order to
show that some of the given inequalities may become equalities. In particular, the equality
Eµ(y) = VaR1−µ∗(y) may frequently hold.7

Theorem 10. Consider y ∈ L1 and µ∗ ∈ (0, 1). Suppose that there exists (µ, ξ, z) ∈ A × L1

such that (µ∗, ξ) = I(µ, ξ), and (ξ, z) solves (9). Consider a solution (λ, λm, λM) to (10). Then,
z∗ = I(µ,ξ)(z) solves (2), (λ, λm, λM) solves (3),

VaR1−µ∗(y) ≤ Eµ(y) ≤ CVaR1−µ∗(y), (36)

and (29) and (30) are fulfilled as equalities. Furthermore,
P(y = IE(y)) = 1 =⇒

{
VaR1−µ∗(y) = Eµ(y) =

= CVaR1−µ∗(y) = −IE(y)

P(y = IE(y)) < 1 =⇒ Eµ(y) < CVaR1−µ∗(y).

(37)

Lastly, if there exists ε > 0 such that Fy(x) < µ∗ for −VaR1−µ∗(y)− ε < x < −VaR1−µ∗(y),
then Eµ(y) = VaR1−µ∗(y) and

CVaR1−µ∗(y) = VaR1−µ∗(y) +
µ

µ∗(1 − 2µ)

(
VaR1−µ∗(y) + IE(y)

)
. (38)

Proof. z obviously solves (23), and therefore Theorem 9 implies that z∗ solves (2). Equations
(9) and (11) in Theorem 5 imply that (λ, λm, λM) is (24)-feasible and that (25) holds for (ξ, z)
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and (λ, λm, λM); therefore, Theorem 8 implies that (λ, λm, λM) solves (24), and Theorem 9
implies that (λ, λm, λM) solves (3).

Since (λ, λm, λM) solves both (3) and (10), one has that CVaR1−µ∗(y) = λ+ IE(λM)/µ∗

≥ λ = Eµ(y) (Theorems 3 and 5). Additionally, Theorem 3 implies the fulfillment of (4),
so (λ, z∗, λm, λM) is (1)-feasible, and Theorem 1 leads to λ ≥ VaR1−µ∗(y), i.e., Eµ(y) ≥
VaR1−µ∗(y). In other words, (36) holds.

In order to see that (29) becomes an equality, notice that it is sufficient to see that
Eµ(y) = E(µ,ξ)(y) because (26) applies. Since (λ, λm, λM) solves (24) and (10), it is (10)-
feasible, that is, IE(λm) = [(1 − µ)/µ]IE(λM) holds, and one has that

E(µ,ξ)(y) = λ − ξ

(
IE(λm)−

1 − µ

µ
IE(λM)

)
= λ = Eµ(y).

In order to see that (30) becomes an equality, notice that (µ∗, ξ) = I(µ, ξ) trivially
implies the fulfillment of (21), and therefore it is enough to proceed as in the proof of
Corollary 8.

Suppose that P(y = IE(y)) < 1. If Eµ(y) = CVaR1−µ∗(y), then (Theorems 2 and 4)
IE(yz) = IE(yz∗) = ξIE(y) + (1 − ξ)I− 1.5ptE(yz), that is, I− 1.5ptE(y) = IE(yz) = IE(yz∗)
and therefore CVaR1−µ∗(y) = −IE(y). Consequently, P(y = IE(y)) = 1 (Rockafellar et al.
2006), which is a contradiction.

Lastly, if ε > 0 exists, then λ = VaR1−µ∗(y) (Corollary 1), and the equality λ = Eµ(y)
was already proved. Furthermore, (38) becomes trivial because (30) becomes an equality. □

Example 1. (Counter-example) According to Theorem 10, given y ∈ L1 and µ∗ ∈ (0, 1), the
existence of (µ, ξ, z) fulfilling the required conditions generates the spread (36) containing Eµ(y);
implies that (29) and (30) cannot be improved because they become equalities; and also implies
that, under weak conditions, CVaR1−µ∗(y) can be computed from VaR1−µ∗(y), IE(y), and (38).
Hence, it is a natural problem to analyze the existence of such a (µ, ξ, z). In general, this existence
does not hold. Indeed, suppose that P(y ≥ 0) = 1 and 1 > P(y > 0) > 0. Take µ∗ = P(y = 0),
z∗ = χy=0/P(y = 0) where χy=0 represents the usual indicator of the set y = 0, λm = y, λM = 0,
and λ = 0. It is clear that z∗ is (2)-feasible, (λ, λm, λM) is (3)-feasible, and (λ, z∗, λm, λM) is
(1)-feasible. Consequently, (λ, λm, λM) solves (3), and CVaR1−µ∗(y) = 0 (Corollary 6). Suppose
now that y is selected in such a manner that P(y < 1/µ∗) = 1. If there were a second (1)-feasible
element

(
λ′, z′, λ′

m, λ′
M
)

with λ′ < 0, then λ′
M = 0 should hold ((4) and Corollary 2), and therefore

CVaR1−µ∗(y) = λ′ < 0, which is a contradiction. Such a
(
λ′, z′, λ′

m, λ′
M
)

cannot exist, and
therefore VaR1−µ∗(y) = 0 (Theorem 1). The fulfillment of (36) would lead to Eµ(y) = 0, and (8)
would lead to

IE(y) =
1 − 2µ

1 − µ
IE(y),

which cannot hold because IE(y) > 0 and µ > 0.

Remark 5. If P(y = IE(y)) = 1, then

VaR1−µ∗(y) = Eµ(y) = CVaR1−µ∗(y) = −IE(y),

so the fulfillment of (29) and (30) as equalities and the fulfillment of (36) are evident. Hence, the
open problem presented in Example 1 may be addressed for P(y = IE(y)) < 1.

Theorem 11. Consider y ∈ L1 with P(y = IE(y)) < 1 and µ∗ ∈ (0, 1). There exists (µ, ξ, z) ∈
A × L1 such that (µ∗, ξ) = I(µ, ξ), and (ξ, z) solves (9) if and only if there exists a solution
(λ, λm, λM) to (3) such that

IE(λm) > IE(λM) > 0. (39)
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Furthermore, if (39) holds, then one can take

µ =
IE(λM)

IE(λm) + IE(λM)
, (40)

and ξ given by (21).

Proof. Suppose that (µ, ξ, z) ∈ A× L1 exists. Theorem 10 shows that the solution (λ, λm, λM)
to (10) also solves (3). Moreover, the second constraint of (10) leads to either I− 1.5ptE(λm) =
I− 1.5ptE(λM) = 0 or IE(λm)/IE(λM) > 1. Nevertheless, IE(λm) = IE(λM) = 0, and the
third constraint of (10) would imply that λm = λM = 0; therefore, the first constraint would
imply y = IE(y), against the assumptions.

Conversely, suppose that (39) holds for some solution (λ, λm, λM) to (3). Take µ as
in (40). Equation (39) implies that 0 < µ < 1/2. IE(λm) = ((1 − µ)/µ)IE(λM) trivially
follows from (40), so the constraints of (3) show that (λ, λm, λM) is (10)-feasible. Moreover,
Lemma 1b) implies that (µ∗, ξ) = I(µ, ξ) if ξ is given by (21). Take a solution z∗ to (2), and
consider z = I−1

(µ,ξ)(z
∗). Theorem 9 implies that z solves (23) and (λ, λm, λM) solves (24),

and Theorem 8 implies that (25) holds; that is, (11) holds and therefore (ξ, z) solves (9)
because it is (9)-feasible and (λ, λm, λM) is (10)-feasible (Theorems 4 and 5). □

Remark 6. If (39) holds, then (40) shows that µ decreases as IE(λm)/IE(λM) increases. Actually,
µ tends to 0 as IE(λm)/IE(λM) tends to infinity, and µ tends to 1/2 as IE(λm)/IE(λM) tends to
1. Since the lower the parameter µ, the higher the risk Eµ(y) (Bellini and Di Bernardino 2017), a
large (low) ratio IE(λm)/IE(λM) implies a “low (large) risk aversion” when comparing Eµ(y) with
VaR1−µ∗(y) and CVaR1−µ∗(y).

Corollary 9. Consider y ∈ L1 with P(y = IE(y)) < 1 and µ∗ ∈ (0, 1). If

IE
((

y + VaR1−µ∗(y)
)+)

> IE
((

y + VaR1−µ∗(y)
)−)

> 0, (41)

then there exists (µ, ξ, z) ∈ A × L1 such that (µ∗, ξ) = I(µ, ξ), and (ξ, z) solves (9). Furthermore,
one can take

µ =
IE
((

y + VaR1−µ∗(y)
)−)

IE
((

y + VaR1−µ∗(y)
)+)

+ IE
((

y + VaR1−µ∗(y)
)−) , (42)

and ξ given by (21). Moreover, if there exists ε > 0 such that Fy(x) < µ∗ for −VaR1−µ∗(y)− ε <
x < −VaR1−µ∗(y), then (µ, ξ, z) exists if and only if (41) holds, in which case VaR1−µ∗(y) =
Eµ(y) < CVaR1−µ∗(y).8

Proof. If (41) holds, then the given implications are evident consequences of Corollary 3
and Theorem 11. Moreover, the existence of ε, Remark 1, and Corollary 3 show that (6) is
the unique solution to (3), and therefore VaR1−µ∗(y) = Eµ(y). Additionally, (41) is implied
by (40), and Eµ(y) < CVaR1−µ∗(y) coincides with expression (37). □

Corollary 10. Consider y ∈ L1 with P(y = IE(y)) < 1 and µ∗ ∈ (0, 1), and suppose that there
exists (µ, ξ, z) ∈ A × L1 such that (µ∗, ξ) = I(µ, ξ), and (ξ, z) solves (9). Suppose that there
exist −∞ ≤ u < v ≤ +∞ such that Fy : (u, v) → R is strictly increasing, Fy(x) = 0 for
x < u, and Fy(x) = 1 for x > v. Then, given µ̃∗ ∈ (0, 1) such that µ̃∗ < µ∗ and VaR1−µ̃∗(y) <
CVaR1−µ̃∗(y), there exists

(
µ̃, ξ̃, z̃

)
∈ A × L1 such that

(
µ̃∗, ξ̃

)
= I

(
µ̃, ξ̃

)
, and

(
ξ̃, z̃

)
solves (9).
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Proof. The existence of (u, v) implies the existence of ε > 0 satisfying the assumptions of the
latter corollary (Remark 1). Therefore, (41) holds. Additionally, VaR1−µ̃∗(y) ≥ VaR1−µ∗(y)
implies that 

IE
((

y + VaR1−µ∗(y)
)+) ≤ IE

((
y + VaR1−µ̃∗(y)

)+)
IE
((

y + VaR1−µ∗(y)
)−) ≥ IE

((
y + VaR1−µ̃∗(y)

)−),

and therefore
E
((

y + VaR1−µ̃∗(y)
)+)

> IE
((

y + VaR1−µ̃∗(y)
)−).

If IE
((

y+VaR1−µ̃∗(y)
)−)

= 0, then
(
y+VaR1−µ̃∗(y)

)−
= 0 (notice that

(
y+VaR1−µ̃∗(y)

)−
≥ 0), which leads to

y + VaR1−µ̃∗(y) ≥ 0. (43)

Replace µ∗ with µ̃∗ in (3). Equation (43) implies that
(
VaR1−µ̃∗(y), y + VaR1−µ̃∗(y), 0

)
sat-

isfies the restrictions. Hence, bearing in mind the objective function of (3), CVaR1−µ̃∗(y) ≤
VaR1−µ̃∗(y), in contradiction with the assumptions. □

Remark 7. Suppose that there exist −∞ ≤ u < v ≤ +∞ such that Fy : (u, v) → R is strictly
increasing, Fy(x) = 0 for x < u, and Fy(x) = 1 for x > v. According to the latter corollary, if, for
a given µ∗ ∈ (0, 1), there exists µ ∈ (0, 1/2) such that (30) cannot be improved, then for every
µ̃∗ < µ∗ with CVaR1−µ̃∗(y) > VaR1−µ̃∗(y), there exists µ̃ ∈ (0, 1/2) such that (30) cannot be
improved.

6. Illustrative Example
6.1. Combining Actuarial and Financial Risks

Let us illustrate the ideas of Sections 2–5 by dealing with an important actuarial
problem, that is, the optimal combination of reinsurance contracts and financial instruments.
The particular problems are the selection of the optimal reinsurance, which arises if one
imposes that the selected financial strategy must equal zero, and the portfolio choice
problem, which arises when there is no actuarial risk involved. Both the optimal reinsurance
problem and the portfolio selection one have been addressed by dealing with downside
risk measures,9 and a recent line of research integrates both problems into a single one,
which is our first focus in this section, namely, the optimal combination. Though there are
several interesting perspectives, we will focus on that of Balbás et al. (2023), since it is very
general and properly fits the illustrative objective of this section.10

Suppose that Y ≥ 0 reflects the global indemnification to be paid by a direct insurer
within the time interval [0, T]. There is a reinsurance market, and Y can be divided accord-
ing to Y = Yc + Yr, where Yc represents the ceded risk, and Yr represents the retained
one. In order to guarantee that Y , Yc, and Yr are co-monotonic, a typical requirement to
prevent the moral hazard, let us deal with the marginal retained indemnification rather
than the retained indemnification itself. Accordingly, consider the interval (0,+∞), its
Borel σ-algebra B, and the Lebesgue measure L. For every R-valued, essentially bounded
measurable function x ∈ L∞((0, ∞),B,L) such that

0 ≤ x ≤ 1, (44)

the retained indemnification will be given by

Yr(ω) = JY (x)(ω) =

Y(ω)∫
0

x(s)ds (45)

for ω ∈ Ω. If Y has a finite expectation, then, according to Balbás et al. (2023), (44) and (45)
lead to a random variable Yr with a finite expectation such that Y , Yr, and Yc = Y − Yr
are co-monotonic. There is also a financial market, and the insurer may focus on an
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international stock index whose stochastic behavior is conducted by a geometric Brownian
motion (GBM). Hence, the evolution {St; 0 ≤ t ≤ T} of the index quotation is given by
dSt = St((r∗ − γ)dt + σdBt), where r∗ is the index drift, γ is the index dividend yield, and
σ is the index volatility. There are future contracts whose underlying asset is the index
above. If r0 denotes the riskless rate, it is known that the future quotation {Ft; 0 ≤ t ≤ T}
is another GBM and evolves according to dFt = Ft(rdt + σdBt), where r = r∗ − r0 is the
index excess return. Since the Black–Scholes–Merton (BSM) model is complete, given
δ ∈ L∞((0, ∞),B,L), the European-style derivative security

JFT (δ)(ω) =

FT(ω)∫
0

δ(s)ds (46)

for ω ∈ Ω may be replicated by means of a self-financing stochastic strategy combining
the future contract and the riskless security. It has been shown by Balbás et al. (2023) that
δ is the usual delta-Greek (sensitivity, or first-order mathematical derivative) at T of the
derivative JFT (δ) with respect to FT . If the insurer selects the marginal retained indemnity
x and the financial Greek δ, then its random wealth at T will become

y = P − JY (x) + JFT (δ)− Π(JY (x)), (47)

where P is the global premium paid by insureds, the random variable Yr = JY (x) is given
by (45), Π(JY (x)) is the reinsurance price, and the random pay-off JFT (δ) is given by (46).
The insurer problem may be the risk minimization under a minimum expected value R of
y and a maximum Greek ∆ ∈ L∞((0, ∞),B,L),11 where the risk is going to be measured by
means of Eµ for some µ ∈ (0, 1/2). Thus, bearing in mind that Eµ is translation-invariant,
the insurer problem becomes

Min

{
Eµ

(
JFT (δ)− JY (x)

)
+Π(JY (x))− P

IE
(

JFT (δ)− JY (x)
)
− Π(JY (x)) ≥ R0

0 ≤ x ≤ 1, δ ≤ ∆

(48)

where (x, δ) ∈ L∞((0, ∞),B,L)2 is the decision variable and R0 = R − P. Theorem 6
enables us to transform (48) into the equivalent problem

Min λ{
P − JY (x) + JFT (δ)− Π(JY (x))

= λm − λM − λ

IE
(

JFT (δ)− JY (x)
)
− Π(JY (x)) ≥ R0

IE(λm) =
1 − µ

µ
IE(λM)

0 ≤ x ≤ 1, δ ≤ ∆, λ ∈ R, λm, λM ≥ 0,

(49)

with (x, δ, λ, λm, λM) ∈ L∞((0, ∞),B,L)2 ×R×
(

L1(Ω,F ,P)
)2 being the decision variable

(see (14)). The premium principle Π is frequently convex (Pichler 2014), and therefore (49)
is a convex problem. Furthermore, (49) is linear if the reinsurer premium principle Π is
linear too, and in particular, under the expected value premium principle

Π(JY (x)) = (1 + K)IE(Y − JY (x)),

K ≥ 0 being the reinsurer loading rate.
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Equations (48) and (49) present an illustrative example showing that Theorems 5 and 6
may be useful in practice in order to address the minimization of the expectile risk measure
by linear programming methods. As already mentioned, this is just an illustrative section,
and a complete solution to (49) is beyond the scope and would significantly increase the
paper length. Moreover, Balbás et al. (2023) have presented an exhaustive methodology to
solve (49), which does not need to be repeated here. Nevertheless, if (x, δ, λ, λm, λM) solves
(49) and y is given by (47), then (30) and (32) yield upper bounds for the insurer CVaR,
applying to every confidence level.

6.2. Numerical Experiment

In order to illustrate how the results of Sections 4 and 5 may apply, let us select a
couple (not necessarily (49)-feasible and/or (49)-optimal) (x, δ). For instance,

x(s) =
{

1, s < 10
0, otherwise

and δ = 5 for every s > 0. Evidently, JY (x) = Min{Y , 1}; that is, the selected (x, δ)
implies the purchase of 5 futures plus a stop-loss reinsurance whose deductible equals 10.
Suppose that Y and FT are independent log-normal distributions,12 consider the notation
of Section 6.1, and take(

F0, r, σ, P, K, IE(Y), Variance(Y)
1, 10%, 15%, 11.5, 5%, 10, 15

)
.

Also consider the insurer’s final wealth

y = P + JFT (δ)− JY (x)− (1 + K)IE(Y − JY (x)).

Then, (41) and (42) enable us to verify that (30) and (32) cannot be improved, in the sense
that, for every µ∗ < 0.48, there exists µ ∈ (0, 1/2) such that they are satisfied as equalities.
Table 2 below shows a selected sample for µ∗. In all cases, µ and Eµ(y) have been rounded,13

and the equality VaR1−µ∗(y) = Eµ(y) is implied by Theorem 6 or Corollary 9.
Since IE(y) = 0.07, the obtained upper bounds become

CVaR1−µ∗(y) ≤ 6.40 +
3.30 × 10−5

µ∗

CVaR1−µ∗(y) ≤ 5.49 +
0.002

µ∗

CVaR1−µ∗(y) ≤ 4.5 +
0.05
µ∗

CVaR1−µ∗(y) ≤ 3.89 +
0.13
µ∗

CVaR1−µ∗(y) ≤ 0.43 +
1.31
µ∗

for every µ∗ ∈ (0, 1), with equality in those cases presented in Table 2.

Table 2. Main Hyperbolic upper bounds become equalities.

1 − µ∗ 99.98% 99% 90% 80% 55%
µ 5.1 × 10−6 4.2 × 10−4 0.01 0.03 0.42

Eµ(y) = VaR1−µ∗ (y) 6.40 5.49 4.50 3.89 0.43
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To sum up, Sections 6.1 and 6.2 have illustrated that the minimization of actuar-
ial/financial risks given by expectiles may be frequently linearized, that this minimization
may permit us to control other downside risks beyond any parameter/confidence level,
and that the inequalities connecting VaR and expectiles or CVaR and expectiles may often
become equalities. Moreover, to the best of our knowledge, this is the first study combining
reinsurance contracts, financial markets, and expectiles.

7. Discussion and Conclusions
7.1. Discussion

As already indicated, expectiles are much less used in practice than VaR or CVaR, and
this lower use is also reflected in the regulatory and supervisory systems. However, expec-
tiles have very important analytical properties, and for this reason they have deserved the
attention of many researchers. In particular, their coherence, elicitability, and relationships
with CVaR have been extensively studied. This paper has presented a theoretical study
based on the relationships between the dual representation and the bidual representation
of expectiles. In this sense, the approach seems to be new, since the main instrument of
analysis is the duality theory of linear programming. This methodology enables us to
integrate under the same prism different problems affecting expectiles. Indeed, the method-
ology has allowed us to recover important inequalities relating CVaR and expectiles, but
further issues have been addressed, including relationships between VaR and expectiles,
potential improvements to the CVaR-linked inequalities, the potential co-monotonic ad-
ditivity of expectiles, and the linearization of (actuarial, financial, or risk management)
optimization problems involving risks in both the objective function and the constraints.
This suggests that bidual representation and the duality theory of linear programming
could also be a powerful tool for dealing with potential problems that may arise in the
future. Additionally, since both the dual and the bidual representation of expectiles may
lead to infinite-dimensional linear optimization problems, perhaps the most important
practical limitation of this linear programming-linked approach is the lack of universal
algorithms valid for every infinite-dimensional optimization problem.

7.2. Conclusions

The bidual representation of expectiles may be a powerful instrument to address
important properties of these coherent and elicitable downside risk measures. In partic-
ular, this representation leads to new estimation and optimization methods by means of
linear programming, new ways to analyze whether the co-monotonic additivity holds for
expectiles, further relationships involving VaR, CVaR, and expectiles, and hyperbolic upper
bounds of VaR and CVaR applying to every confidence level. Some theoretical findings
have been illustrated in classical actuarial problems.
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Notes
1 Similar notation will apply in similar situations.
2 Recall the usual notations x+ := Max{x, 0} and x− := Max{−x, 0} for every x ∈ R.
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3 The initial definition of expectile was introduced in Newey and Powell (1987), where it was defined for a random variable y

with finite expectation and variance as the unique minimizer x of µIE

((
(y − x)+

)2
)
+ (1 − µ)IE

((
(x − y)+

)2
)

. If y has finite

expectation and variance, both definitions are equivalent.
4 Recall that the random variables U1, U2, .., Un are said to be co-monotonic if their joint distribution is given by the Fréchet–

Hoeffding copula
c(u1, u2, .., un) = Min{u1, u2, .., un}

for 0 ≤ ui ≤ 1, i = 1, 2, .., n (Dhaene et al. 2002). Recall also that a risk measure α is said to be co-monotonically additive
if α(y1 + y2) = α(y1) + α(y2) holds when y1 and y2 are co-monotonic. In particular, both VaR1−µ∗ and CVaR1−µ∗ are co-
monotonically additive, but, according to Delbaen (2013), Eµ is not.

5 Notice the analogy between (11) and (25).
6 With a similar proof this corollary is easily extended if there are more than two involved co-monotonic risks.
7 CVaR is coherent, and therefore its analytical properties are better than they are for VaR. Nevertheless, for some specific

applications of risk measurement, some authors have pointed out that VaR may present some advantages with respect to CVaR
(Koch-Medina et al. 2017, among others).

8 Obviously, if u ∈ L1 one has that

u = u+ − u− =⇒ u+ = u− + u =⇒ IE
(
u+) = IE

(
u−)+ IE(u).

Thus, taking u = y + VaR1−µ∗ (y), (42) is equivalent to

µ =
IE
((

y + VaR1−µ∗ (y)
)−)

IE(y) + VaR1−µ∗ (y) + 2IE
((

y + VaR1−µ∗ (y)
)−) .

9 Cheung et al. (2019), Xie et al. (2023), and Avanzi et al. (2023), among others, are recent papers involving downside risk measures
in the optimal reinsurance problem. Furthermore, Xie et al. (2023) also deal with expectiles. Similarly, Stoyanov et al. (2007),
Lejeune and Shen (2016), and Strub et al. (2019) are papers dealing with downside risk measures and optimal financial strategies.

10 The optimal reinsurance–portfolio combination is not a unique optimization problem involving both actuarial and financial ideas.
Many other interesting problems might be presented (Goovaerts and Laeven 2008).

11 If the existence of ∆ is not imposed, then (48) becomes unbounded (Balbás et al. 2023).
12 Recall that FT must be log-normal because we are dealing with the BSM pricing model.
13 They have been rounded to the second decimal place when the obtained rounded value is strictly higher than zero.
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