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Abstract: Human mortality has been improving faster than expected over the past few decades. This
unprecedented improvement has caused significant financial stress to pension plan sponsors and
annuity providers. The widely recognized Lee–Carter model often assumes linearity in its period
effect as an integral part of the model. Nevertheless, deviation from linearity has been observed in
historical mortality data. In this paper, we investigate the applicability of four nonlinear time-series
models: threshold autoregressive model, Markov switching model, structural change model, and
generalized autoregressive conditional heteroskedasticity model for mortality data. By analyzing the
mortality data from England and Wales and Italy spanning the years 1900 to 2019, we compare the
goodness of fit and forecasting performance of the four nonlinear models. We then demonstrate the
implications of nonlinearity in mortality modeling on the pricing of longevity bonds as a practical
illustration of our findings.

Keywords: mortality modelling; longevity bond pricing; nonlinearity; threshold autoregressive
model; markov-switching; structural change; GARCH

1. Introduction

Throughout the past century, mortality rates have exhibited a consistent decline across
all age groups in developed countries, a trend spanning over a hundred years (Mitchell
et al. 2013). This decline, often exceeding expectations, can be attributed to remarkable
advancements in medical science, public health efforts, lifestyle transformations, techno-
logical innovations, increased healthcare access, and related factors. This phenomenon
is commonly referred to as systematic longevity risk, introducing significant financial
challenges for life insurers, pension plans, and social security systems.

In response to the increasing life expectancy and the financial risks associated with it,
innovative longevity risk management tools and strategies have emerged. These tools offer
individuals, institutions, and financial markets new ways to hedge against the challenges
posed by extended lifespans. Notable among these tools are mortality-linked securities,
longevity insurance, longevity bonds, and longevity swaps. Mortality models play a central
role in various aspects of longevity risk management and longevity derivative pricing.

The Lee–Carter model (Lee and Carter 1992) serves as a benchmark statistical method-
ology employed by the US Census Bureau to estimate the long-term forecast of US life
expectancy (Hollmann et al. 2000). Widely recognized for its structural simplicity and
robustness, this model has found extensive application in demography, actuarial science,
and public health. The Lee–Carter model is composed of two age-specific factors and a
time-varying factor, often referred to as the mortality index or period effect, which captures
the declining mortality trend.

Efforts to enhance the Lee–Carter model have resulted in various modified versions.
For instance, Renshaw and Haberman (2003) expanded the model by introducing a cohort
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effect. Mitchell et al. (2013) proposed a transformation of the Lee–Carter model, focusing
on modeling changes in mortality rates instead of mortality rates themselves to assess
mortality improvements at different ages. These models retain the linear model as a core
element, typically employing the random walk with drift (RWD) or an autoregressive
moving integrated average (ARIMA) model to represent the period effect. Although the
application of RWD and ARIMA models is widely accepted, the assumption of linearity
regardless of the actual pattern may lead to bias in the forecast, as claimed by Basellini et al.
(2023). They argue that systematic deviations from linearity may cause the drift term out
of line with recent trends in the mortality index, inducing structural changes in the initial
forecast year. More specifically, when these models are estimated over the entire dataset,
the derived parameters are influenced by all past data points, including those that may
no longer align with current mortality developments. Consequently, the resulting model
may not accurately mirror the patterns observed in the latest data. This discrepancy means
that the model, while fitting the historical data as a whole, may not be representative of the
recent shifts in mortality, thus potentially skewing forecasts and introducing a structural
change from the latest mortality experience to the forecasts.

To address these limitations, researchers have explored nonlinear models for the
mortality index. Milidonis et al. (2011) applied regime-switching geometric Brownian
motion to the US population mortality index. Regime-switching models allow mortality to
transition between different states, each with distinct mean and variance, thereby capturing
changes in both mean and volatility within the mortality index. Hainaut (2012) extended
the Renshaw and Haberman (2003) model by applying a regime-switching model and
demonstrated that it provides a significantly higher log-likelihood than the original model.

Li et al. (2011) utilized a broken-trend stationary model on the Lee–Carter model and
concluded that this approach, which incorporated a declining trend in the 1970s, explained
the mortality index better than a random walk model. Van Berkum et al. (2016) considered
random walk with a piece-wise constant drift on the Lee–Carter model with application to
mortality in The Netherlands and Belgium, allowing for multiple changes in the mortality
index. Their findings suggested that mortality projections based on structural change
models were less sensitive to the calibration period and aligned better with observed trends
compared to the ARIMA model.

Chen et al. (2015), Zhou (2019), and Zhou and Ji (2021) have retained the ARIMA
framework while incorporating the generalized autoregressive conditional heteroskedastic-
ity (GARCH) approach to address the nonlinearity present in the variance. The GARCH
model, introduced by Bollerslev (1986), was designed to describe volatility clustering com-
monly observed in financial time series, where periods of high or low volatility persist for
some time. It models the conditional variance with a function of the average long-term
volatility, previous forecast errors, and past volatility. By effectively capturing the volatility
clustering, the GARCH model helps to make more accurate predictions about future mar-
ket movements. The inclusion of GARCH effects in mortality studies has been shown to
improve the goodness-of-fit significantly for the majority of mortality datasets examined.
In addition, Pascariu et al. (2020) linked age-specific mortality rates to life expectancy, effec-
tively accounting for the nonlinearity in mortality data. While other approaches incorporate
more explicit and complex nonlinear structures, their study adopts a more parsimonious
approach by utilizing life expectancy as a single aggregate indicator.

In this paper, we pioneer the application of the threshold autoregressive (TAR) model
to mortality data as an experimental approach. The TAR model, originally introduced by
Tong (1983) and further developed by Hansen (1997), is a widely used extension of the
classic autoregressive model. Unlike the traditional AR model, which assumes linearity in
time series, the TAR model embraces the notion of nonlinearity by introducing multiple
regimes based on threshold variables. This allows the model to capture abrupt changes and
diverse time-series dynamics. The threshold variable serves as a delineator, dictating which
regime the series should belong to at any given point in time. This framework is particularly
suited for time series that exhibit sudden jumps or breaks, making it a suitable choice for
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modeling nonlinearity in mortality data. Although the threshold vector autoregressive
model has been explored for multi-population mortality modeling by Li et al. (2017), its
univariate counterpart has not been applied to single-population mortality data.

We conduct a thorough comparison of five widely used time-series models: the autore-
gressive (AR) model, the Markov switching (MS) model, the threshold autoregressive (TAR)
model, the structural change (SC) model, and the AR-GARCH model. We particularly focus
on their goodness of fit and forecasting performance. While much of the existing literature
tends to compare only a subset of these models, there is a noticeable gap in comprehensive
studies that evaluate their forecasting capabilities together. Our research aims to bridge this
gap by presenting these models collectively. Instead of advocating for a specific model, our
goal is to provide an objective assessment of the suitability of established nonlinear time-series
models for mortality modeling. To thoroughly evaluate these time-series models, we compare
them based on both Lee–Carter and age–period–cohort (APC) mortality structures, using
datasets from both England and Wales (EW) and Italy.

Furthermore, we illustrate the implications of nonlinearity in mortality modeling by
evaluating its influence on longevity bond pricing. To obtain the longevity bond price, we
employ the economic pricing framework put forth by Zhou et al. (2015). This framework
uniquely captures the perspectives of both longevity risk hedgers and capital market in-
vestors. Through this analysis, we shed light on the potential consequences of overlooking
nonlinearity, equipping market participants with insights for enhanced risk management.

The remainder of this paper is organized as follows: Section 2 introduces the Lee–
Carter mortality model and presents its parameter estimates based on data from England
and Wales. Section 3 describes the four nonlinear models and evaluates their performance
in modeling the period effect and forecasting mortality. Section 4 conducts further per-
formance comparison based on the age–period–cohort (APC) mortality model and the
Italian mortality data. Section 5 applies an economic pricing approach to longevity bonds,
demonstrating how the choice of different nonlinear models affects the pricing of these
instruments. Finally, Section 6 concludes the paper.

2. The Lee–Carter Model

In this paper, we use the Lee–Carter model to capture the dynamics of mortality rates.
Widely recognized as a benchmark model in the literature, its simplicity allows us to focus
on our main objectives. The Lee–Carter model has the following expression:

ln(mx,t) = ax + bxkt, (1)

where mx,t is the central death rate of an individual at age x in year t, ax is the average
age-specific pattern of mortality, bx is age-specific response to the change in kt, and kt is the
time-varying mortality index and often referred to as the period effect.

We use maximum-likelihood estimation to obtain parameter estimates for the Lee–
Carter model, assuming a Poisson distribution for the number of deaths, following Wilmoth
(1993). Let Dx,t denote the number of deaths at age x in year t, and Ex,t be the number of
exposures to risk. We have

Dx,t ∼ Poisson (mx,tEx,t).

The log-likelihood function can then be expressed as follows:

l = ∑
x

∑
t
[Dx,t ln(mx,tEx,t)−mx,tEx,t + ln(Dx,t!)].

We impose two parameter constraints for parameter uniqueness:

∑
x

bx = 1 and ∑
t

kt = 0.

The maximum-likelihood estimation of the Lee–Carter model is performed using the
StMoMo package (Villegas et al. 2018) in this paper.
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We obtained the historical mortality data from the Human Mortality Database (2023).
The mortality data consists of death counts and exposures to risk among the civilian
population of England and Wales (EW) in the sample age range of 20–95 and the sample
period of 1900–2019.

Figure 1 illustrates the average mortality rates across ages 20–95 for each year in the
sample period. The average mortality rates exhibit an overall downward trend over the
years. Before 1950, mortality rates were considerably volatile, while in recent years, they
have become less erratic. In addition, mortality rates have been decreasing in a concave
manner over the last few decades, suggesting an accelerating improvement in mortality.
However, mortality stopped improving or even deteriorated slightly between 2015 and
2019, likely due to escalating drug-related deaths.
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Figure 1. Average mortality rates across ages 20–95 for the EW population.

We fit the Lee–Carter model to the EW mortality data in the period of 1900–2011
and demonstrate the estimated parameters in Figure 2. ax represents the average age-
specific mortality, reflecting the overall age pattern of human mortality. The decreasing bx
suggests a milder response to the time-varying mortality index kt and thus diminishing
mortality improvement at higher ages. The decreasing trend in the mortality index kt
indicates mortality improvement over time. Additionally, kt appears to decrease faster
post-1950 compared to pre-1950. The first difference in the mortality index, represented by
∆kt = kt − kt−1, was very volatile before 1950 and became relatively stable after 1950.

In Lee and Carter (1992), the mortality index kt is further modeled as a random walk
with a drift. Antolin (2010) considered linear AR(1) for the first difference in the mortality
index, ∆kt. This is equivalent to modeling kt with ARIMA(1,1,0). However, the plots of kt
and ∆kt suggest nonlinearity in the mean and the variance in the time series. Therefore, an
ARIMA model may not be sufficient to capture the nonlinearity in the mortality index.
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Figure 2. Parameter estimates for the Lee–Carter model based on EW mortality in 1900-2011.

3. Linear and Nonlinear Time-Series Models for ∆kt

3.1. Autoregressive (AR) Model

Since AR models are widely used for ∆kt in the existing literature, we use AR models
as the baseline. We first select the number of AR lags based on the Bayesian information
criterion (BIC). By penalizing extra parameters, the BIC addresses the potential overfitting
problem in complex models. The formula for the BIC is

BIC = −2 ln L̂ + k ln(n),

where L̂ is the maximized value of the likelihood function, k is the number of parameters
to be estimated, and n is the number of observations.

Table 1 summarizes the BIC values for models with different AR lag orders. We note
that AR(0) is equivalent to modeling kt as a random walk with drift. It is evident that the
AR(1) model yields the lowest BIC. Therefore, we use AR(1) for ∆kt.

Table 1. BIC for AR models with different lag orders. The lowest BIC value is highlighted in bold.

AR Lag
Number 0 1 2 3

BIC 671.5251 666.9721 667.3039 670.8484

Employing the maximum-likelihood method, the estimated AR(1) model for ∆kt is
shown as follows:

∆kt = −1.3602− 0.2830∆kt−1 + εt, εt ∼ N(0, 20.86) (2)

The long-term mean of ∆kt is −1.0602, indicating that the mortality index kt decreases
at the rate of 1.0602 per year. The negative coefficient−0.2830 means that ∆kt has a negative
correlation with its immediate previous value ∆kt−1, suggesting that after an above-average
mortality improvement, the following year is likely to experience a below-average mortality
improvement or even a mortality deterioration, and vice versa.

In Figure 3, we depict the standardized residuals derived from the estimated linear
AR(1) model for ∆kt. While the estimated model suggests a constant variance of 20.86
for the error term, the residuals in Figure 3 reveal different volatility pre- and post-1950.
The residuals also appear to have a slightly lower mean, which indicates a faster mortality
improvement, in recent years. These observations suggest the presence of nonlinearity
and heteroskedasticity in the residuals. To capture these features of the data, we consider
four nonlinear time-series models: the TAR model, MS model, SC model, and AR-GARCH
model for ∆kt in the remainder of this section.



Risks 2023, 11, 207 6 of 25

1900 1920 1940 1960 1980 2000

−
4

−
2

0
2

4

Year

S
ta

nd
ar

di
se

d 
R

es
id

ua
ls

Figure 3. Residuals from the linear AR(1) model.

3.2. Threshold Autoregressive (TAR) Model

The threshold autoregressive (TAR) model was initially introduced by Tong (1978) to
describe nonlinear movements in stock prices within financial markets. Comprehensive
discussion and extensions of the TAR model were made by Tong and Lim (1980) and Tong
(1983). The TAR model employs piece-wise AR models to accommodate deviations from
linearity. In this approach, AR models are estimated separately within each time-series
segment or regime defined by threshold variables. A TAR model incorporating m threshold
variables for ∆kt can be expressed as follows:

∆kt =



α(1) + β(1)∆kt−1+ε
(1)
t , if ∆kt−1 ≤ r1

α(2) + β(2)∆kt−1+ε
(2)
t , if r1 < ∆kt−1 ≤ r2

...

α(m) + β(m)∆kt−1+ε
(m)
t , if rm−1 < ∆kt−1 ≤ rm

α(m+1) + β(m+1)∆kt−1+ε
(m+1)
t , if ∆kt−1 > rm

, (3)

where ri is the ith threshold value with r1 < r2 < · · · < rm, α(i) and β(i) are the intercept
and AR coefficient for the AR(1) model in regime i, and ε

(i)
t is the error term for regime i,

following a normal distribution with mean 0 and variance
(

σ
(i)
t

)2
. The threshold values

classify the observations into m + 1 regimes. ∆kt switches between regimes based on the
value of ∆kt−1. The TAR model allows the AR structure to change based on the threshold
variables, thereby capturing complex nonlinearity dynamics.

To fit the TAR model, we use a two-step procedure. In the first step, we use the
MLE method to estimate the TAR models with various numbers of threshold values. The
threshold values are estimated together with the AR parameters using MLE. A minimum
percentage of observations in each regime is set to 10%. In the second step, we com-
pute the BIC for each estimated model and select the number of threshold values and its
corresponding model to minimize the BIC.

Table 2 summarizes the BIC values for the AR(1) model and TAR models with two
and three regimes. It is evident that the TAR model with two regimes yields the lowest BIC,
indicating that the TAR model with one threshold value strikes a good balance between
goodness of fit and model parsimony.
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Table 2. BIC values for TAR models with various number of regimes. The lowest BIC value is
highlighted in bold.

Model AR TAR—2 Regimes TAR—3 Regimes

BIC 664.3891 651.2574 657.8741

To further verify our choice of the number of threshold values, we conduct the test
for threshold effects following Hansen (1999) using the bootstrap procedure. This test can
be conducted in R with the tsDyn package (Stigler 2019; Di Narzo et al. 2009). The test
statistics and p-values are presented in Table 3. We note that one regime represents the
original AR model with no threshold, hence linearity. The very low p-values of the tests for
one regime versus two regimes and one regime versus three regimes indicate that linearity
is rejected at the 5% significance level for both tests. The p-value of the test for two regimes
versus three regimes is 0.146, suggesting that we cannot reject two regimes in favor of three
regimes at the 5% significance level. Therefore, the three tests indicate that the model with
two regimes, corresponding to one threshold, is the most suitable. This aligns with our
model selection based on the BIC values.

Table 3. Tests of threshold effects.

Null Alternative Test Statistic p-Value

One regime Two regimes 29.4653 0.001
One regime Three regimes 44.4485 0.002
Two regimes Three regimes 11.8176 0.146

The estimated TAR model with one threshold is expressed as follows:

∆kt =

 5.6870 + 0.7478∆kt−1 + ε
(1)
t , ∆kt−1 ≤ −4.4393

−1.5078− 0.6543∆kt−1 + ε
(2)
t , ∆kt−1 > −4.4393

, (4)

where ε
(1)
t ∼ N(0, 17.6592) and ε

(2)
t ∼ N(0, 15.8532). The threshold −4.4393 divides ∆kt

into two regimes, with 18.92% of the observations in the first regime, and 81.08% in the
second regime.

Figure 4 displays the values of ∆kt, with the estimated TAR threshold represented
by the horizontal dashed line. We observe that ∆kt enters the first regime when ∆kt−1 is
very low, thus indicating a strong mortality improvement. Such substantial improvements
likely happen in the recovery periods following catastrophe events such as pandemics or
wars, which cause large mortality shocks. Therefore, the first regime occurs more often
pre-1950. In addition, due to the rareness of these shocks, the first regime contains many
fewer observations than the second regime.

The estimated TAR model with two regimes can be interpreted as follows. When
∆kt−1 ≤ −4.4393, a higher-than-normal mortality improvement occurred at time t − 1.
Such a large negative ∆kt−1 usually occurs when the population recovers from a mortality
shock in previous years. Based on the estimated TAR model, ∆kt is in the first regime. The
extent of mortality improvement or deterioration in year t depends on the value of ∆kt−1.
If ∆kt−1 ≤ −7.6088, we have E(∆kt | ∆kt−1) < 0, indicating further mortality improvement
in year t. This can occur when the recovery from a large mortality shock lasts multiple
years. If −7.6088 < ∆kt−1 ≤ −4.4393, we have 0 < E(∆kt | ∆kt−1) < 2.3702, indicating
a mild mortality deterioration in year t. For the second regime, the threshold constraint
∆kt−1 > −4.4393 indicates that a mild mortality improvement or a mortality deterioration
occurred in year t− 1. If−4.4393 < ∆kt−1 < −2.3045, we obtain E(∆kt | ∆kt−1) > 0, which
suggests a mortality deterioration in year t. If ∆kt−1 > −2.3045, a mortality improvement
is expected in year t.
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Figure 4. The estimated threshold value for the TAR model with two regimes.

3.3. Markov Switching (MS) Model

The Markov switching (MS) model, introduced by Hamilton (1989), is designed to
capture regime shifts in time-series data where different states or regimes have distinct
statistical properties. Switching between these regimes is governed by a state variable
that follows a first-order Markov chain. Milidonis et al. (2011) noted that the MS model is
capable of identifying the time when a shock arrives at the underlying mortality variable,
thereby reflecting different natures of mortality evolution and capturing both temporary
mortality shocks and permanent mortality improvements.

Similar to the TAR model, we assume that each regime is described with its own AR
model. An n-state MS model can be expressed as follows:

∆kt =



α(1) + β(1)∆kt−1+ ε
(1)
t , St = 1

α(2) + β(2)∆kt−1+ ε
(2)
t , St = 2

...

α(n) + β(n)∆kt−1+ ε
(n)
t , St = n

, (5)

where St is the state variable indicating the state level at time t. The error term ε
(i)
t follows

a normal distribution with mean 0 and variance
(

σ(i)
)2

. When St changes to a different
value, ∆kt switches from one AR model to another.

St is assumed to follow a time-homogeneous first-order Markov chain. Let pij =
Pr(St = j | St−1 = i) denote the transition probability from state i at time t− 1 to state j at
time t. The Markovian probability transition matrix P that describes the random switching
between different regimes can be written as

Π =


p11 p12 · · · p1n

p21 p22 · · · p2n

...
...

...
...

pn1 p2n · · · pnn

.

Let Θ represent the set of parameters in the MS model, and Ωt denote the vector of
(∆kt1 , ∆kt1−1, · · · , ∆kt0+1), where t0 and t1 are the first and last years in the sample period,
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respectively. The log-likelihood function of the MS model, based on observations of ∆kt,
can be expressed as follows:

ln[L(Θ | ∆kt1 , ∆kt1−1, · · · , ∆kt0+1)] = ln f (∆kt0+1 | Θ) +
t1

∑
t=t0+2

ln f (∆kt | Ωt−1, Θ),

where f is the probability density function. We maximize the log-likelihood to obtain pa-
rameter estimates. For the detailed estimation procedure, we refer the readers to Milidonis
et al. (2011).

To determine the number of regimes, we estimate the MS model with both two and
three regimes and select the model with a lower BIC. Table 4 presents the BIC values for
the AR(1) model and two MS models. The MS model with two regimes exhibits the lowest
BIC and as a result we select it for our data. The estimated model is expressed as follows:

∆kt =

 6.1780 + 0.9444∆kt−1 + ε
(1)
t , St = 1

−2.2877− 0.5942∆kt−1 + ε
(2)
t , St = 2

, (6)

where ε
(1)
t ∼ N(0, 46.8930) and ε

(2)
t ∼ N(0, 7.2374). The estimated transition matrix is

Π =

[
0.1733 0.8267
0.0918 0.9082

]
.

Table 4. BIC values for the MS models with various numbers of regimes. The lowest BIC value is
highlighted in bold.

Model AR MS—2 Regimes MS—3 Regimes

BIC 664.3891 630.4966 647.5568

The two regimes have notably different parameter estimates. The variance for the AR
model in the first regime is significantly higher than that in the second regime. Therefore,
the first regime represents the more volatile period for mortality improvement, while the
second regime represents the more stable period.

The transition probability of p12 = 0.8267 suggests that there is a very high probability
of the state transiting from the volatile regime to the stable regime. However, when the
state is in the stable regime, the transition probability of p21 = 0.0918 suggests that it is
unlikely to transit to the volatile regime. Therefore, we expect that the state variable is
equal to 2 most of the time.

The AR model for the first regime has an intercept of 6.1780 and an AR coefficient
of 0.9444. When a mortality deterioration occurs at time t− 1, a significant deterioration
is also expected at time t if the state at time t is 1. However, the probability of remaining
in the first regime or switching to the first regime is low, 0.1733 and 0.0918, respectively.
Therefore, following a mortality deterioration at time t− 1, it is more likely that the state at
time t is 2. Due to the negative intercept and coefficient in the second regime, a mortality
improvement is expected at time t given state 2 at time t.

The long-term mean of ∆kt in the second regime can be calculated as −2.2877/(1 +
0.5942) = −1.434949. Since the state variable stays in regime 2 most of the time, we expect
∆kt to fluctuate around −1.434949 over the long run and, thus, kt to continue to decrease in
the future.

In Figure 5, we provide a plot of the smoothed probability (top panel) of ∆kt being in
the first regime given Ωt alongside the values of ∆kt, with the periods of the first regime
shaded in gray (bottom panel). We deem the state to be equal to 1 when the smoothed
probability of being in the first regime is greater than that in the second regime. The two
panels demonstrate that, given its observed value, ∆kt exhibits a higher probability of being
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in regime one when ∆kt is extremely high or low. Regime one predominantly occurs in the
periods 1915–1920 and 1940–1950. These two decades coincide with periods of wars and
severe flu outbreaks, characterized by high mortality variations.
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Figure 5. Top panel: Smoothed probabilities of ∆kt being in regime 1. Bottom panel: Values of ∆kt,
with the periods of the first regime shaded in gray.

3.4. Structural Change (SC) Model

The structural change (SC) model, initially introduced by Lewis (1955), originally
aimed to illustrate the structural transformation from rural agriculture to urban industry
due to economic growth. Recently, researchers such as Sweeting (2011) and Van Berkum
et al. (2016) have explored its application in mortality modeling. Unlike the TAR and
MS models, structural change is permanent. In other words, mortality improvement, ∆kt,
follows a new model after each change point and never reverts to the previous model.

In an SC model, changes may manifest in various aspects, including the mean and
variance. In this paper, we examine the changes in both mean and variance and assume
that ∆kt follows a piece-wise AR(1) model. Such an SC model with n change points can be
written as follows:

∆kt =



α(1) + β(1)∆kt−1+ ε
(1)
t , t ≤ sc1

α(2) + β(2)∆kt−1+ ε
(2)
t , sc1 < t ≤ sc2

...

α(n) + β(n)∆kt−1+ ε
(n)
t , scn−1 < t ≤ scn

α(n+1) + β(n+1)∆kt−1+ ε
(n+1)
t , t > scn

, (7)
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where scj is the time or location of the jth detected change point and the error term ε
(i)
t

follows a normal distribution with mean 0 and variance (σ(i))2. This framework allows us
to capture the varying patterns of the time series due to structural changes.

The n change points divide the time series into n + 1 regimes. Given the number and
location of the change points, we can estimate the AR model for each regime using the
observations in the regime with MLE. Assuming that there is only one change point, we
take the following procedures to determine the location of the change point:

1. For each value of sc1 in 1912, 1913, . . . , 2000, estimate the SC model and compute the
corresponding BIC value.

2. Select the value for sc1 that minimizes the BIC.

We consider the range of [1912, 2000] for sc1 to ensure a minimum of 10% observations
in each regime. For two change points, the ranges for sc1 and sc2 are [1902, 2000] and
[sc1 + 11, 2000 − 11], respectively. For each combination of t1 and t2, we estimate the
corresponding SC model and compute its BIC. We select the combination of t1 and t2 that
minimizes the BIC.

Similar procedures are taken for three or more change points. The optimal number
of change points is selected to minimize the BIC of the resulting SC model. In Table 5, we
provide the BIC values for the SC models with various numbers of change points. The
model with one change point yields the lowest BIC. The optimal change point location for
this model is 1952.

Table 5. BIC values for the SC models with various numbers of change points. The lowest BIC value
is highlighted in bold.

AR(1) One
Change Point

Two
Change Points

Three
Change Points

BIC 664.3891 633.6326 633.8307 643.0997

The selected SC model is expressed as follows:

∆kt =

−1.1528− 0.2869∆kt−1 + ε
(1)
t , t ≤ 1952

−1.5149− 0.3053∆kt−1 + ε
(2)
t , t > 1952

, (8)

where ε
(1)
t ∼ N(0, 37.7) and ε

(2)
t ∼ N(0, 5.153).

In the fitted structural change model, the observations of ∆kt are divided into two
segments. The first regime comprises 46.85% of the observations, while the second regime
accounts for 53.15% of the observations. It is interesting to note that the estimates of the
intercept and AR coefficient for the two regimes are not as drastically different as we have
seen in the TAR and MS models. However, the estimates of the variance are significantly
different in the two regimes. Prior to 1952, ∆kt was in the first regime, marked by significant
volatility due to major mortality jumps in 1920 and 1940. From 1952 onward, ∆kt is in the
second regime with relative stability, as the Second World War had ended and no events
that had a significant impact on mortality occurred in this period.

The long-term means for the two regimes are −0.8958 and −1.1606, respectively, in-
dicating that mortality improvement occurs in both segments, with higher improvement
in regime two. Mortality improvement accelerates in the second regime due to medi-
cal advances and the strengthened health system. This aligns with our observations of
accelerating mortality improvement in recent decades in Figure 1.

3.5. AR-GARCH Model

To determine if an AR-GARCH model is an appropriate choice for our dataset, we first
examine the squared residuals from the fitted AR(1) model, as illustrated in Figure 6. We



Risks 2023, 11, 207 12 of 25

observe periods of spikes in volatility around the years 1918, 1929, 1940, and 1950, which
suggest the potential existence of volatility clustering.
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Figure 6. Squared residuals from the fitted AR(1) model for ∆kt.

Further analysis is presented in the autocorrelation function (ACF) and partial au-
tocorrelation function (PACF) plots for the squared residuals, as shown in Figure 7. The
significant values at the first and second lags in both ACF and PACF imply that there
is a correlation in volatility over different lags. This supports the presence of volatility
clustering and, thus, the use of a GARCH model for our data.
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Figure 7. ACF and PACF plots of the squared residuals from the fitted AR(1) model for ∆kt.

A GARCH(q, p) model for the conditional variance is expressed as follows:

εt = ztσt,

σ2
t = ω +

q

∑
i=1

αiε
2
t−i +

p

∑
j=1

β jσ
2
t−j,

where εt is the error term from the AR model, σt is the time-varying volatility, zt follows a
standard normal distribution, p is the order of the GARCH terms, and q is the order of the
ARCH terms. To ensure that the model is statistically valid and that the volatility predictions
are non-negative and stationary, the following parameter constraints are imposed: ω > 0,
αi > 0 for i = 1, . . . , q, βi > 0 for j = 1, . . . , p, and ∑

q
i=1 αi + ∑

p
j=1 β j < 1. We estimate the

AR-GARCH model in one step by maximizing its log-likelihood using the rugarch package
(Galanos 2023).

To determine the orders for the GARCH model, we use the BIC as the selection
metric. Observations from the ACF and PACF plots of the squared residuals, which exhibit
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significant values at lags 1 and 2, suggest that the values of p and q do not exceed 2. The
BIC values for various GARCH model specifications, with p ≤ 2 and q ≤ 2, are presented
in Table 6. Note that the GARCH(0,0) variance is equivalent to an AR(1) model. The
GARCH(2,1) model emerges as the best choice, indicated by the lowest BIC value among
the considered models.

Table 6. BIC values for the AR-GARCH model with various values for the ARCH order q and GARCH
order p. The lowest BIC value is highlighted in bold.

(q, p) (0,0) (1,0) (1,1) (1,2) (2,1) (2,2)

BIC 664.3891 654.1983 639.1149 641.6136 636.7701 641.4797

The selected AR-GARCH model is written as follows:

∆kt = −1.4521− 0.4960∆kt−1 + εt,

σ2
t = 3.0991 + 0.12929ε2

t−1 + 0.5540ε2
t−2 + 0.3157σ2

t−1.

The positive ARCH and GARCH coefficients imply that a large shock in the previous
two periods or high conditional variance in the previous period has a positive impact on
the conditional variance in the current period.

3.6. Model Comparison

Table 7 compiles the BIC values obtained by fitting different time-series models to the
EW mortality data. We observe that all four nonlinear models exhibit lower BIC values
compared to the linear AR(1) model. This observation suggests that nonlinear models
provide a significantly better fit than the AR(1) model and highlights the importance of
properly modeling the nonlinear trend in mortality improvement.

Table 7. BIC values for various linear and nonlinear models. The lowest BIC value is highlighted
in bold.

One Regime Two Regimes Three Regimes

AR 664.3891
TAR 651.2574 657.8741
MS 630.4966 647.5568
SC 633.6326 633.8307

AR-GARCH 636.7701

Among all the models we fitted, the MS model with two regimes stands out as the
best fit. MS models offer a transparent representation of structural changes in mortality.
As pointed out by Milidonis et al. (2011), these models provide flexibility in choosing the
switching time, duration, and parameter estimates through maximum-likelihood estima-
tion. These properties collectively contribute to the excellent fit of the MS model to the
mortality data.

In Figure 8, we present QQ plots of residuals to assess the normality assumptions
for both linear and nonlinear models. The QQ plot for the AR(1) model deviates from the
expected normality line, exhibiting heavier tails on both the left and right. In contrast, the
QQ plots for the nonlinear models generally follow a more linear pattern, suggesting that
their residuals are closer to normality than the residuals from the AR(1) model. While both
TAR and AR-GARCH alleviate the heavy left tail, especially for extremely low values of
∆kt, they still display a pronounced heavy right tail. Both the MS and SC models, however,
seem to effectively mitigate the heavy tails on both ends.

We further assess the performance of the five different models for an 8-year out-of-
sample mortality forecast. We first simulate 5000 paths for the mortality index kt, for
t = 2012, . . . , 2019. The simulation procedures for kt are presented in Appendix A. Figure 9
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presents the mean forecasts of kt from different models. The forecasts from the AR, TAR,
and SC closely align, while the mean forecasts from the MS model are significantly higher.
This discrepancy may be attributed to the inclusion of a small probability of transitioning
into the first regime which has a large intercept and high volatility in the MS model. In
addition, the AR-GARCH model yields the lowest mean forecasts.
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Figure 8. QQ plots of residuals from various estimated models.

Figure 10 presents the 95% prediction interval of kt using the four models. It is very
interesting to see that the MS model results in the widest prediction interval, while the
SC model yields the narrowest interval. This discrepancy can be explained by the SC
model’s assumption that the process remains in the second regime post-1952 and follows
the fitted AR(1) model from the second regime for future mortality predictions. Since the
second regime primarily consists of periods with relatively low volatility, the simulated kt
experiences reduced volatility.

The simulated paths for future mortality rates are determined using the simulated
paths for kt and the estimated values for ax and bx. Figure 11 illustrates the mortality
forecasts at four ages—20, 40, 60, and 80—and compares them with the observed rates. The
MS model performs relatively better for ages 20 and 40, but worse for ages 60 and 80. The
predicted mortality rates from the AR, TAR, and SC models are close to each other, while
the predicted rates from the AR-GARCH model are consistently the lowest.
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Figure 9. Mean forecasts of kt using five different models.
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Figure 10. The 95% confidence intervals of kt using five different models.
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Furthermore, we quantify the mean squared error for a forecast period of i across ages
20–95 as follows:

MSEi =
95

∑
x=20

1
76

(m̂x,2011+i −mx,2011+i)
2,

where m̂x,2011+i is the predicted mortality rate for an individual aged x in year 2011 + i.
Figure 12 plots the mean squared errors for i = 1, . . . , 8. The MS model outperforms the
other three models for most of the forecast periods.
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Figure 12. Mean squared errors for various forecast periods using the five models.

Finally, we average the mean squared errors across all forecast periods (1–8 years)
as follows:

MSE =
∑8

i=1 MSEi

8
.

The MSEs using different models are presented in Table 8. The MS model again yields
the lowest overall mean squared error. Surprisingly, the AR(1) model, which does not
consider any nonlinearity, performs the second best. The AR-GARCH model performs the
worst among all five models and the SC model is the second worst. The existing literature
often uses the SC approach implicitly by choosing a more recent starting year for the dataset
and avoiding the periods with jumps and outliers. However, our out-of-sample results
suggest that removing the observations in the early years may not necessarily lead to a
good prediction for future mortality rates.

Table 8. Overall mean squared errors for mortality predictions using the five models. The lowest
MSE value is highlighted in bold.

Model AR TAR MS SC AR-GARCH

MSE (×10−5) 1.7149 1.7407 1.4176 1.8030 1.9757

4. Analysis with Different Base Mortality Structures and Population Data
4.1. Age–Period–Cohort Model

The choice of a base mortality structure is important, as it can significantly influence
the mortality forecasts and, consequently, impact the outcomes of model comparisons. In
addition to the Lee–Carter model, our study also incorporates the age–period–cohort (APC)
model to provide a broader perspective. The APC model (Holford 1983) is formulated as

ln(mx,t) = ax + kt + gt−x,
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where ax denotes the age effect, kt represents the period effect, paralleling their interpreta-
tions within the Lee–Carter framework, and gt−x is the cohort effect specific to each birth
year. To ensure the identifiability of the APC model parameters, the following constraints
are imposed:

∑
t

kt = 0, ∑
c

gc = 0, ∑
c

cgc = 0.

The APC model is estimated with the maximum-likelihood method using the StMoMo
package (Villegas et al. 2018) in this paper.

In Table 9, we present the BIC values for five different models of kt and the corre-
sponding MSEs based on the APC structure. The calculation of the MSE here is restricted to
mortality rates for individuals aged 28 to 95 in 2012–2019, to avoid the prediction of cohort
effects. Interestingly, the SC model, when applied within the APC framework, exhibits the
lowest BIC and MSE. Conversely, the TAR model shows the second-highest BIC and the
highest MSE.

Table 9. BIC values for five different models of kt and the corresponding MSEs of predicted mortality
rates, using the APC structure and EW mortality data. The lowest BIC and MSE values are highlighted
in bold.

BIC MSE (×10−5)

AR −337.9807 6.9663
TAR −353.9411 7.3526
MS −367.0603 6.4387
SC −385.1734 4.6970

AR-GARCH −376.2497 7.0572

4.2. Italian Mortality Data

To evaluate the robustness of the findings derived from the EW data, we extend our
analysis to the Italian mortality data. Using the same sample period and age range as used
for the EW data, we obtain the BIC values for the kt models, as well as the MSEs for the
Italian mortality forecasts. Both the Lee–Carter and the APC structures are considered to
provide a comprehensive comparison. We present the results in Table 10.

Table 10. BIC values for five different models of kt and the corresponding MSEs for predicted
mortality rates, using the Italian mortality data. The lowest BIC and MSE values are highlighted
in bold.

Lee–Carter APC

BIC MSE (×10−6) BIC MSE (×10−5)
(Ages 20–95) (Ages 28–95)

AR 751.0609 5.9628 −214.6237 4.6322
TAR—two regimes 746.9563 5.5745 −246.1965 5.0188
MS—two regimes 685.5103 5.7972 −278.2540 5.5853
SC—two regimes 700.4562 5.4884 −289.2773 2.8150

AR-GARCH 716.4090 6.0126 −305.0569 4.2920

Irrespective of the chosen base mortality structure, the AR model consistently yields
the highest BIC value, suggesting that it has the worst goodness of fit among the models
considered. However, the AR model does not necessarily result in the highest MSE for the
forecast future mortality rates.

Using the Lee–Carter structure, the MS model again achieves the lowest BIC, indicating
a superior goodness of fit, whereas the SC model attains the lowest MSE representing the
most accurate mortality rate forecasts. Despite the substantial difference in BIC values
across the different models for kt, the MSE values exhibit small fluctuation. When applying
the APC structure, the AR-GARCH model emerges with the lowest BIC. The SC model



Risks 2023, 11, 207 18 of 25

yields the lowest MSE of 2.8150, a significant improvement from the highest MSE of 5.5853
presented by the MS model. The comparison of the Italian results with those from the EW
data reveals that there is no single model with consistently superior performance for both
goodness of fit and forecasting accuracy.

5. Longevity Bond Pricing
5.1. A Longevity Bond Trade

In this section, we study how the model choice for ∆kt may affect the price of a
longevity bond. Suppose we have two counterparties involved in longevity bond trading:
counterparty A, with life contingent liabilities, and counterparty B, an investor interested
in the longevity bond for risk premiums. For simplicity, we assume that counterparty A
sponsors a pension plan that covers one pensioner aged 65 and one pensioner aged 66 at
the beginning of the year 2012. This plan pays out $1 at the end of the year if a pensioner is
still alive, and the payments cease when the pensioner dies or reaches age 90. The pension
payment made by counterparty A at time t is denoted by ft and expressed as follows:

ft =
t−1

∏
i=0

(1− q65+i,2012+i) +
t−1

∏
i=0

(1− q66+i,2012+i)

Counterparty B sells a T-year longevity bond to counterparty A to earn risk premiums.
The bond payment at time t, which includes coupons and principal repayment, is st for
t = 1, . . . , T.

Let us assume that Q represents the quantity of longevity bonds agreed upon by
both counterparties A and B at the price of P. In Figure 13, we depict the cash flow of
this transaction. At the beginning of 2012, counterparty A purchases Q units of longevity
bond and pays the price of P for each unit. At time t, counterparty A pays out ft to
pensioners and receives the bond payment st from counterparty B. When the mortality of
the EW population improves, pensioners live longer. Consequently, counterparty A has an
extended obligation to pay pension benefits. The bond payment also increases, effectively
offsetting the rise in pension liability payments for counterparty A.

We can also allow counterparty A to issue a longevity bond. In such scenarios, the
quantity Q will be negative. Such a bond should be designed to make decreasing payments
with higher mortality improvement. In this section, we consider two bond payment
structures to illustrate how the choice of nonlinear model may affect bond prices.

Counterparty A
Pension Sponsor

Counterparty B
InvestorPensioners ←−−−−−−−−−

−−−−−−−−−−→

←−−−−−−−−−−

ft

at time t

$P/unit

at bond issue

st

at time t

Figure 13. Cash flow of a longevity bond transaction.

5.2. Economic Pricing

The economic pricing approach was first applied to mortality-linked securities by Zhou
et al. (2015), who considered the pricing problem from fundamental economic concepts of
supply and demand. It assumes that buyers and suppliers aim to maximize their expected
terminal utility, and market equilibrium is reached when supply equals demand.

Let WA
0 and WB

0 be the initial wealth of counterparties A and B, and WA
T and WB

T be the
wealth at the expiration of the bond. Zhou et al. (2015) assumed that the only alternative
investment is to deposit in a bank that earns a continuously compounded annual risk-
free interest rate of r. Given the longevity bond price P, QA and QB are quantities that



Risks 2023, 11, 207 19 of 25

counterparty A is willing to purchase and counterparty B has agreed to sell at the outset of
the transaction. We have the following equations for the terminal wealth:

WA
T (P, QA) = WA

0 erT + QAerT(
T

∑
t=1

ste−rt − P)−
T

∑
t=1

fter(T−t),

WB
T (P, QB) = WB

0 erT + QBerT(P−
T

∑
t=1

ste−rt).

Denote UA and UB as the utility functions of counterparties A and B, respectively.
Assuming an exponential utility function, the terminal utility can be expressed as

UA(WA
T ) = 1− e−cAWA

T ,

UB(WB
T ) = 1− e−cBWB

T ,

where cA and cB are the absolute risk aversion parameters for A and B, respectively. Coun-
terparty A purchases longevity bonds as a means to hedge its longevity risk, while coun-
terparty B accepts the longevity risk in pursuit of earning premiums. Consequently, it is
reasonable to assume that counterparty A is more risk-averse. We assume that cA and cB

are 3 and 1, respectively.
Let FT represent the accumulated pension benefit payment at time T, and ST represent

the accumulated bond coupon payments at time T. We then have

FT =
T

∑
t=1

fter(T−t) and ST =
T

∑
t=1

ster(T−t).

Given a price P, counterparties A and B maximize their expected terminal utility. The
maximization problem can be written as follows:

QA = argmaxQA E[UA(WA
T (P, QA))],

QB = argmaxQB E[UB(WB
T (P, QB))].

First, we maximize the expected terminal utility for A. Recall that WA
T = WA

0 erT +
QAerT(ST − P)− FT . The conditions for maximizing the expected utility function of A are

∂

∂QA E(UA(WA
T (P, QA)) = 0 and

∂2

∂2QA E(UA(WA
T (P, QA)) < 0.

The first condition can be rewritten as

E[cA(ST − erT P)e−cAQA(ST−erT P)+cA FT ] = 0,

which implies

P =
E[e−cAQAST+cA FT ST ]

erTE[e−cAQAST+cA FT ]
.

Next, we maximize the expected utility for counterparty B. Recall that the terminal
wealth of counterparty B is WB

T = WB
0 erT + QBerT(P− ST). The conditions for maximizing

the expected utility of B are

∂

∂QB E(UB(WB
T (P, QB)) = 0 and

∂2

∂2QB E(UB(WB
T (P, QB)) < 0.

The first condition can be rewritten as

E[cB(ST − erT P)ecBQB(ST−erT P)] = 0,
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which implies

P =
E[ecBQBST ST ]

erTE[ecBQBST ]
.

The market equilibrium is achieved when QA = QB. Therefore, P and Q, the equilib-
rium trading price and quantity, should satisfy the following equality:

P =
E[e−cAQST+cA FT ST ]

er f TE[e−cAQST+cA FT ]
=

E[ecBQST ST ]

erTE[ecBQST ]
. (9)

To calculate the expectations in Equation (9), we first simulate 5000 mortality paths
and determine the simulated values of the variables inside the expectation. The expectation
is then obtained by taking the average of these simulated values.

5.3. Longevity Bond on Survival Probabilities

We first consider a longevity bond with payment associated with survival probabilities.
The annual coupon payable at time t is the approximate survival rate of a 65-year-old cohort.
There is no principal repayment. The bond payment at time t is expressed as follows:

st =
t−1

∏
i=0

(1−m65+i,2012+i), t = 1, . . . , 8.

Assume that the risk-free rate r is 4.5%. Taking the MS model with two regimes as
an example, we plot the supply and demand curves for this bond in Figure 14 where
the intersection of the supply and demand curves represents the market equilibrium.
Counterparty A, being more risk-averse, demands fewer longevity bonds as the price
increases. Conversely, counterparty B, who is willing to take on more risk, is inclined to
sell more bonds when the price rises.
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Figure 14. Supply and demand curves based on the MS model.

Table 11 summarizes the trading price and quantity at market equilibrium and the
expected present value (EPV) of future bond payments, which is expressed as EPV =
E[STe−rT ], based on the mortality forecasts using the five models.
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Table 11. Pricing results for the longevity bond on survival probabilities based on mortality forecasts
from various models.

AR TAR MS SC AR-GARCH

P 6.2283 6.2275 6.2227 6.2293 6.2312
Q 1.4039 1.4121 1.4010 1.4026 1.4043

EPV 6.2277 6.2271 6.2214 6.2292 6.2309

The trading prices obtained from the AR, TAR, and SC models are remarkably close to
each other and are higher than the prices derived from the MS model. This consistency in
pricing can be attributed to the very close mean forecasts of the mortality index produced
by these three models, as seen in Figure 9. As we observed earlier, the mean mortality
forecasts generated by the AR, TAR, and SC models are all significantly lower than those of
the MS model. Consequently, this leads to a higher survival rate, increased longevity bond
payments, and ultimately higher bond prices, compared to the MS model.

The price of the longevity bond obtained through the AR-GARCH model is the
highest among the prices obtained from all models. The AR-GARCH model predicts a
cohort survival rate that is substantially higher, leading to increased bond payments. The
pension plan sponsor, facing a prolonged period of pension benefit payouts, is willing to
pay a higher price to hedge against the heightened longevity risk.

Furthermore, when we examine the EPV of bond payments across different models,
we observe that the MS model generates the lowest EPV, while the AR-GARCH model
yields the highest EPV. This consistency in results reinforces the findings obtained through
the economic pricing.

The variation in bond prices across different models is relatively minor, despite notice-
able disparities in mortality rates across age groups. This observation can be attributed to
the bond’s payment structure, which is based on the summation of approximate survival
rates. For instance, a 5% uptick in a mortality rate mx,t of 0.02 translates to just around a 0.1%
reduction in the corresponding approximate survival rate (1−mx,t). Hence, employing a
different bond payment structure might lead to more pronounced price differences.

5.4. Longevity Bond on Mortality Improvement Rates

We further consider a longevity bond with payments associated with mortality im-
provement rates. This bond is initially offered at a nominal issue price of unity, thus P = 1.
It makes an annual coupon payment of 100(e0.045 − 1)% + λ, where λ represents the yield
spread, serving as compensation for the associated risk. The principal repayment of this
bond is linked to a predefined mortality improvement index. This index, calculated as the
average mortality improvement rate over the period 2012–2019 and the age range 65–89, is
expressed as follows:

Index =
1

25

89

∑
x=65

[
1−

(
mx,2019

mx,2011

) 1
8
]

.

The principal repayment at expiration is defined as follows:

PR = 1−max
(

min
(

Index− 2%
3%− 2%

, 1
)

, 0
)

.

A full principal repayment of 1 is made when the average mortality improvement
remains below 2%, termed the “attachment point”. Should the index exceeds 2%, the
principal repayment is reduced proportionately with the increase in the index. The principal
repayment drops to zero when the index exceeds the “detachment point” of 3%. To quantify
the risk of principal reduction, we define the probability of first loss as follows:

PFL = Pr(PR < 1).
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The bond payment at time t can be expressed as follows:

st =

{
100(e0.045 − 1)% + λ t = 1, . . . , 7

100(e0.045 − 1)% + λ + RP t = 8.

Since the issue price of the bond is already given, the pricing of this bond is equivalent
to finding the spread λ.

Table 12 summarizes the pricing results for this bond. The negative values of Q imply
that counterparty A is in the position of selling the bond. As the probability of the first loss,
indicated by PFL, increases, the required spread λ also increases. This is because a higher
PFL suggests a lower expected principal repayment, prompting investors to demand a
higher risk premium to compensate for the anticipated decrease in principal.

Table 12. Pricing results for the longevity bond on mortality improvement rates based on mortality
forecasts from various models.

AR TAR MS SC AR-GARCH

λ (basis
points) 64.21 61.47 32.40 12.21 73.51

Q −0.0828 −0.0725 −0.1174 −0.1143 −0.0574
Probability of

first loss 10.82% 10.46% 5.62% 0.92% 11.38%

The spread λ shows significant variation when priced under different nonlinear mod-
els. The variation in the spread is influenced by both the average predicted mortality
improvements and their volatility. The AR-GARCH model generates the highest spread,
aligning with the observations from Figures 9 and 10 that the AR-GARCH model leads
to the fastest average mortality improvement, with moderate volatility. The considerable
increase in average mortality improvement leads to a greater chance of crossing the attach-
ment point. On the other hand, the SC model predicts the lowest spread. Even though
the SC model forecasts a mean mortality improvement similar to the TAR and AR models,
as shown in Figure 9, it has a very low variation in its predictions, as seen in Figure 10.
Consequently, the simulations mostly yield improvement rates tightly grouped around a
narrow range of values, with only 0.92% of the simulated improvement rates exceeding the
attachment point of 2.5%. The MS model, which predicts the slowest mortality improve-
ment, leads to the second-lowest spread due to its slower improvement rate outweighing
the effect of its higher variance.

6. Conclusions

In this paper, we conduct a thorough analysis of various nonlinear time-series models
for the mortality index in the Lee–Carter and APC structures. We assess the goodness of
fit of these models and examine how the choice of the nonlinear model affects mortality
forecasts and subsequently longevity bond pricing. We focus on four specific nonlinear
models: TAR, MS, SC, and GARCH, using mortality data from EW and Italy from 1900
to 2019.

All four nonlinear models demonstrated lower BIC values and more normally dis-
tributed residuals than the AR model. This signifies that nonlinear models offer significant
improvements in fitting mortality data. Applying the Lee–Carter structure, the MS model
with two regimes emerged as the best fit for both the EW and Italian mortality data. Under
the APC structure, the SC model and the AR-GARCH model achieve the lowest BIC for
EW and Italian mortality, respectively.

For an eight-year out-of-sample period, we obtain the mean squared errors and prediction
intervals of mortality forecasts. Applying the Lee–Carter structure, the MS and SC models
lead to the lowest MSE for EW and Italian mortality, respectively. The SC model yields the
lowest out-of-sample MSEs for both datasets based on the APC structure. The prediction
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intervals under the Lee–Carter structure varied significantly among models, with the MS
model producing the widest interval and the SC model yielding the narrowest. This is due to
the SC model’s assumption of remaining in the second regime for future mortality predictions.

We further examine how the use of nonlinear time-series models may influence the
prices of longevity bonds. Economic methods, based on fundamental concepts of supply
and demand, were employed to price two types of longevity bonds, one written on the
approximate survival rates and the other on the mortality improvement rates. Although
the use of different nonlinear models leads to noticeable differences in mortality forecasts,
it has a much lower impact on the survival rates and thus the price of the bond written on
survival rates. In contrast, the price of the bond written on the improvement rates exhibits
large variation with the choice of the model. The payment of this bond is reduced when
the mortality improvement rate exceeds a certain threshold. Therefore, the bond price is
affected not only by the mean but also by the tail distribution of the improvement rates. The
large variation in longevity bond pricing underscored the significant impact of mortality
modeling with nonlinearity on pricing outcomes.

In summary, our analysis reveals that no single model consistently outperforms others
concerning both goodness-of-fit and forecasting accuracy. Our study highlights the critical
role of nonlinear mortality models could play in mortality forecasting and longevity bond
pricing. Practitioners are encouraged to consider the model that best aligns with their
specific applications and expert judgment.

Several promising avenues for future research emerge from our study. Firstly, the
robustness of the five models could be scrutinized using a rolling window analysis. The
years 2015–2019 stand out, marked by a substantial rise in drug-related deaths and a
consequent deceleration in mortality improvement. Therefore, it is necessary to examine
how these models perform when using different periods of data.

Secondly, there is potential to examine the various extensions of the TAR model.
While the TAR model is commonly known as the self-exciting TAR—where regime shifts
are determined intrinsically by the time series—alternative models have been proposed
by researchers like Teräsvirta (1994), Tsay (1989), and Lundbergh and Teräsvirta (2002).
The smooth transition autoregressive (STAR) models enable gradual transitions between
regimes, in contrast to the abrupt shifts typical of conventional TAR models. On the other
hand, threshold autoregressive models with external variables (TARX) initiate regime
transitions based on an external factor, rather than being solely influenced by the time
series. Investigating the efficacy of these modified TAR models in predicting mortality data
offers an intriguing prospect.

Finally, it is also important to explore the inclusion of mortality shocks, such as those
caused by the recent COVID-19 pandemic or historical events like the 1981 influenza
pandemic, into nonlinear models. Our analysis using QQ plots indicates that while the
residuals mostly align with the expected 45-degree line, there are notable deviations at the
tails. Introducing jump terms to these models, as inspired by the work of researchers like
Chen and Cox (2009) who have modeled jumps in linear contexts, could potentially address
these discrepancies. Adapting the mortality jumps to nonlinear models could enhance our
understanding of mortality dynamics, especially in extreme conditions, and contribute
valuable new insights to the existing literature.
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Appendix A. Simulation of Future Mortality Paths

To simulate future mortality rates, let us first look at how we can predict the possible
future values of kt. For the AR and AR-GARCH models, this process is well documented
in the existing literature, so we do not go into those details here. The steps for simulating
future mortality rates from the TAR, SC, and MS models are outlined below:

1. Begin the timeline at t = 2012.
2. Determine which regime the model is in at time t.
3. Generate a random number from a normal distribution, with mean and standard

deviation parameters specific to the regime determined in step 2.
4. Apply the AR(1) model formula for the chosen regime to calculate ∆kt, using the

random number and the value of ∆kt−1.
5. Update the value of kt by adding ∆kt to the value for the previous time period, kt−1.
6. Repeat steps 2–5 for each year from t = 2013 onwards, until the desired number of

periods is reached.
7. Repeat steps 2–6 a total of 5000 times to obtain 5000 simulated paths.

For the TAR model, the decision about which regime to use at time t depends on the
threshold condition applied to ∆kt−1. If ∆kt−1 ≤ −4.4393, we use the first regime for time
t; otherwise, we use the second regime.

For the MS model, identifying the regime at time t is more complex. It starts by
drawing a random number from the uniform (0, 1) distribution and then comparing this
number to P(St−1, St−1), which is the probability of remaining in regime St−1 based on the
estimated transition matrix P. If the uniform random number is less than P(St−1, St−1), we
set St = St−1; otherwise, we set St = 3− St−1. We assume that the model is in regime two
for the year 2011.

For the SC model, the simulation uses the AR model corresponding to the second
regime for all years from 2012 forward.

Once we have the simulated paths for kt, t = t0, . . . , t1, we then calculate the estimated
mortality rate mx,t for age x within the range [x0, x1] and for each year within [t0, t1]
using either the Lee–Carter or APC model, along with their specific estimated parameters,
including ax, bx, and gc.
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