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Abstract: In the insurance industry, life insurers are required by regulators to meet capital require-
ments to avoid insolvency caused by, for example, sudden mortality changes due to the COVID-19
pandemic. To prevent any large movements in this required capital, insurance companies are
motivated to establish hedging strategies to mitigate the inherent risk exposures they face. Nonethe-
less, devising and implementing risk mitigation solutions to risk managing capital requirement is
frequently impeded by the computational complexities stemming from the extensive simulations
required. In this paper, we delve into a simulation quandary concerning the management of solvency
capital risk associated with mortality and longevity. More specifically, we introduce a thin-plate
regression spline method as a surrogate alternative to the standard nested simulation approach. Using
this efficient simulation method, we further investigate hedging strategies that utilize mortality-
linked securities coupled with stochastic mortality dynamics. Our simulation results provide a
numerical justification to the market-making of mortality-linked securities in the context of mortality
and longevity capital risk management.

Keywords: solvency capital requirement; risk-based capital; nested simulation method; surrogate
model; mortality-linked derivative

1. Introduction

Regulatory frameworks play a crucial role in maintaining the stability and reliability of
the insurance industry. In both the United States (US) and the European Union (EU), these
regulatory frameworks ensure that life insurance companies maintain sufficient reserves to
fulfill their obligations during exceptional events, such as the COVID-19 pandemic. Two
prominent examples of such regulatory structures are those established by the National
Association of Insurance Commissioners (NAIC) in the US and Solvency II in the EU.

In the EU, Solvency II utilizes a risk-based framework that emphasizes a proactive
and dynamic approach to prevent financial insolvency. At the core of this framework lies
the concept of the Solvency Capital Requirement (SCR), which mandates life insurance
companies to compute and maintain adequate capital reserves, enabling them to absorb
losses and avert insolvency. This regulation translates into the stipulation of maintain-
ing capital at a level that provides a 99.5% confidence level of solvency over a one-year
timeframe. In the US, the NAIC emphasizes the importance of capital adequacy for life
insurances companies, but with a slightly different approach than Solvency II. The NAIC
has established a factor-based framework that requires the calculation of various types of
risk to which insurance companies are exposed, including asset risk, insurance risk, interest
rate risk and business risk.

The capital requirements set by Solvency II is the 99.5% Value-at-Risk (VaR) of the
difference between asset and liability (i.e., capital) distribution in one year. In addition to
VaR, insurers also pay close attention to other risk measures, such as the Expected Shortfall
(ES) and Conditional Tail Expectation (CTE). An important component in the Solvency
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II calculation is the mortality/longevity SCR. The importance of longevity and mortality
risks cannot be overstated in the domain of life insurance. The uncertainty surrounding
these risk exposures underscores the critical need for maintaining capital adequacy for life
insurers. By accurately quantifying and securing sufficient capital to cover these two risks,
life insurers can secure their financial solvency, ensuring their ability to meet insurance
obligations even under adverse scenarios.

As insurance regulations grow increasingly complex, the industry is leaning towards
the so-called ‘internal model’ approach for calculating capital requirements, instead of
the traditional approach, which is mostly based on certain stressed scenarios. The key
feature of the internal model approach is it uses the Monte-Carlo simulation over a large
number of stochastic scenarios to calculate the quantity of interest. This method relies on
using random sampling to predict future outcomes in terms of the solvency situation for
an insurance policy. Comparing to the traditional shocked-based approach, the internal
model approach can better capture the risk profile underlying the insurance portfolio.
Cappiello (2020) provided a detailed discussion on the main characteristics of the internal
model approach and also compared it with traditional methods such as the standardized
formula approach.

In the context of the internal model approach within Solvency II, the time-0 mortality
and longevity SCR (denoted as SCR0) as:

SCR0 = VaR99.5%

[
(1 + r)−1BEL1 − BEL0

]
, (1)

where r is the risk-free interest rate from time 0 to 11, and BEL0 and BEL1 are the best esti-
mate liability at time 0 and 1, respectively. More information regarding the SCR calculation
of different types of risks can be found in, for example, Eling et al. (2007), Coppola and
D’Amato (2012) and Doff (2016). For the sake of simplicity in notation, let Lt be the liability
random variable of the underlying insurance product, such as a life insurance or annuity
policy, valued at time t. Then, Equation (1) can be re-written as

SCR0 = VaR99.5%

[
(1 + r)−1E[L1]− E[L0]

]
,

where E[L1] and E[L0] are the expectation of the liability random variable evaluated at
time t = 1 and t = 0, respectively.

Numerous research papers have delved into the realm of risk mitigation strategies
concerning SCR0 through mortality-dependent products. Notably, Plat (2011) explored
the one-year VaR for longevity and mortality risks, offering valuable sights for capital risk
management for life insurers. Zhou et al. (2014) studied the calculation of SCR under multi-
population mortality models, while Hainaut et al. (2018) further explored the calculation
of SCR for participating life insurances. Additionally, Börger et al. (2021a) presented an
integrated analysis of hedge effectiveness and capital efficiency in longevity hedging,
revealing the implications of capital risk management for longevity and mortality risks.
Other studies on this topic include Börger et al. (2014), Jarner and Møller (2015), Blackburn
et al. (2017), Rödel et al. (2021) and Clemente et al. (2022).

In addition, numerous studies have paid particular attention to the construction of an
optimal hedging strategy using mortality-linked derivatives. To illustrate, suppose that the
hedging objective is to minimize SCR0 by adding u units of a mortality-linked derivative
to the portfolio of liabilities. There is a wide range of possible mortality-linked derivatives
that can be utilized for this hedging objective. For instance, to manage extreme mortality
risk, the hedger can consider a catastrophe put option (see, e.g., Chang et al. 2011; Chen
et al. 2022; Wang 2016). Another possible choice is indexed-based mortality derivatives (see,
e.g., Chan et al. 2014, 2016; Li et al. 2021; Tan et al. 2014). Assume that the mortality-linked
derivative added has price C0 at time 0 and payoff random variableHt at time t. Following
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the general idea of Liu and Li (2021), the goal is to solve for an optimal hedging unit u∗

such that

u∗ = argminuVaR99.5%

[
(1 + r)−1E[L1 − u(H1 + C0)]− E[L0 − u(H0 + C0)]

]
.

Other related research work on this topic includes Li and Luo (2012), Meyricke and
Sherris (2014), Asimit et al. (2015), Cairns and El Boukfaoui (2021) and Börger et al. (2021a,
2021b).

The aforementioned research works have provided valuable insights into managing
the time-0 SCR value. However, in instances where actual mortality trends significantly
diverge from expectations, such as witnessed during the global COVID-19 pandemic,
the SCR value at future time points can experience abrupt fluctuations from one period
to another. This volatility in SCR values (e.g., from the time-0 SCR value to the time-1
SCR value) can lead to an unstable capital position and uncertain earnings for insurance
companies. We thus suspect that concentrating solely on managing the time-0 SCR value is
inadequate in addressing predictive risks, and we emphasize that the risk management of
SCR should not be limited to the immediate value but also the predicted values.

The prospective viewpoint on both the immediate and predicted SCR values is crucial
in maintaining the financial stability and the long-term viability of an insurer. Observed
in industry practices, insurance companies generally focus on their capital position and
distributable earnings over time, particularly when faced with an increasingly volatile and
unpredictable market. Thus, many insurance companies have shifted their focus toward
developing strategies that not only control the time-0 SCR value, but also manage its
variability over time. However, a practical challenge in this pursuit lies in calculating the
predicted SCR under the internal model approach, given its substantial computational cost.
This practical challenge has emerged as a significant barrier, deterring companies from
implementing such strategies.

The computational burden associated with calculating the predicted SCR originates
from the stochastic nature of mortality dynamics under the internal model approach.
The traditional nested simulation approach can quickly become unwieldy, particularly
when a substantial number of mortality scenarios is involved (see, e.g., Lin and Yang
2020a, 2020b). To overcome the computational challenge, we introduce the thin-plate
regression spline method as a highly efficient surrogate alternative to nested simulations.
Our numerical analysis suggests that the surrogate method is able to closely approximate
predicted SCR values, achieving an error margin of less than 5% for both life insurance and
annuity providers. This finding underscores the effectiveness of the proposed approach in
alleviating the computational burden associated with SCR calculations under stochastic
mortality scenarios.

Using the efficient surrogate simulation approach, this paper further undertakes an
investigation into a problem where the primary concern of a life insurer goes beyond
managing the SCR value at time 0 and also the distribution of the SCR values at time 1. In
particular, we consider the utilization of mortality-linked securities as a hedging instrument
for managing the time-0 and time-1 SCR values. The hedging strategy devised is based on
two different criteria for finding the optimal hedging unit u∗ and is evaluated by two types
of risk measure in our numerical illustration. Our numerical findings provide a justification
for the market-making of the mortality-linked securities in the context of mortality and
longevity capital risk management.

The rest of this paper is organized in terms of the following sections. Section 2 intro-
duces the predictive hedging framework in detail. As discussed in Section 2.1, calculating
the predicted SCR distribution is often extremely time consuming due to the need for a
triple-nested simulation algorithm. To address this run-time issue, in Section 2.2, we pro-
pose an efficient surrogate method based on the thin-plate spline regression to approximate
the predicted SCR distribution. The simulation study is then conducted in Section 3. The
stochastic mortality model used in this paper is described in Section 3.1, while the hedging
strategy along with the mortality-linked security considered is given in Section 3.2. Our
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numerical results are presented and analyzed in Section 3.3. Finally, Section 4 concludes
the paper with limitations and potential future work.

2. Managing SCR for Mortality and Longevity Risks
2.1. Calculation via Triple-Nested Simulation

Following the above notations, the mortality/longevity SCR at a future time point,
t = 1, can be calculated as:

SCR1 = VaR99.5%

[
(1 + r)−1BEL2 − BEL1

]
,

where for simplicity we assume the discount rate is a constant. It is worth noticing that by
switching the subscript of SCR from 0 to 1, the nature of this calculation is changed. Given
the information at time 0, the result of the above calculation is a predicted distribution of
the SCR value across different stochastic mortality scenarios from time 0 to 1. Therefore,
to calculate this distribution, the first step is to simulate N0 paths from time 0 to 1. The
second step is calculating the value of BEL1 for each member of the N0 paths. This would
require simulating another N1 number of stochastic mortality scenarios from time 1 to the
end of the projection date. The third step is calculating the value of BEL2, which is more
complicated than the calculation of BEL1. In order to calculate BEL2, one needs to simulate
N2 paths from time 2 to the end of the projection period for each member of the N1 paths.
This implies that the simulation now has a triple-nested structure, and the total simulation
time would be proportional to the product of N0 × N1 × N2.

2.2. A Thin-Plate Regression Spline-Based Approximation Algorithm

As mentioned before, the nested simulation can be extremely computationally inten-
sive when the number of scenarios and time steps become large. Several shortcut methods
to the nested simulation method have been studied by various papers. A review of the
current literature on this topic is provided below.

Gordy and Juneja (2010) delved into the ideal distribution of computational resources
between the inner and outer layers. Bauer et al. (2012) made strides in numerical advance-
ments for nested simulations for calculating the SCR under Solvency II. Li and Feng (2021)
introduced a partial differential equation (PDE) numerical approximation to replace the
inner layer of the nested simulations. Alfonsi et al. (2021) pioneered the use of Multilevel
MC methods to refine the computation of SCR, offering innovative strategies for stress
testing. Lastly, Feng and Li (2022) proposed a recycled sampling approach that involves
running the inner layer on a small set of outer simulations and recycling those known inner
simulations to estimate other scenarios.

Among the numerous enhancements to the nested simulation method, a common
strategy involves using surrogate models. A surrogate model (or meta-model) is a technique
to reduce the simulation time by approximating the functional relationship between the
simulation inputs and the outputs. It has been widely adopted in many areas such as
engineering, finance and insurance. One example of the surrogate modeling approach is
the least-squares Monte Carlo (LSMC) simulation method. This method employs least-
squares regression to optimize the information obtained from outer simulations and reduce
the total number of inner simulations needed.

Costabile and Viviano (2020) notably demonstrated a significant reduction in com-
putational cost in LSMC simulations compared to nested simulations in calculating SCR
for life insurance policies. The use of neural network methods has emerged as a potential
solution to the computational issue of nested methods in calculating the SCR. Hejazi and
Jackson (2017) have proposed a neural network approach to reduce the number of nested
simulations to streamline the complexity of SCR calculations.

Similarly, Nilsson and Sandberg (2018) demonstrated the efficiency of neural network
methods in estimating SCR for various insurance products. However, despite the clear
computational benefits, the neural network approach is not without their limitations. For
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instance, Krah et al. (2020) noted that the neural network approach does not significantly
outperform the LSMC method. Additionally, potential obstacles such as computational
complexity, difficulty in interpreting outcomes, and overfitting issues must also be ad-
dressed when considering neural network methods for SCR calculations.

Another efficient simulation method, known as Green simulation, has been developed
on the basis of likelihood ratio (Feng et al. 2022). This simulation method has demonstrated
its capability in the rapid valuation of variable annuities under different settings (e.g.,
Dang et al. 2020; Feng et al. 2020). Additionally, Dang et al. (2023) have leveraged Green
simulation to manage tail risks associated with variable annuities. On longevity risk
management, Feng et al. (2022) have extended the application of Green simulation for the
evaluation of life insurance products and mortality-linked securities.

Recently, Lin and Yang (2020b) applied the thin-plate regression spline model to speed
up the nested simulation for variable annuity portfolio hedging. Moreover, the authors
proposed a clustering-based method in selecting the training set to fit the surrogate model,
and proved that this selection method is asymptotically optimal in one dimension case. In
a parallel study, Lin and Yang (2020a) further explored the use of surrogate methods for
variable annuity portfolios with multiple underlying assets.

In this paper, we follow the method proposed by Lin and Yang (2020b) to approx-
imate the SCR values. In the following, we briefly introduce the thin-plate regression
spline model.

2.2.1. Thin-Plate Regression Spline

As an extension of the one-dimensional regression spline model, the thin-plate regres-
sion spline is commonly used to approximate unknown smooth functional relationships
in the multi-dimensional case. Following the notation used in Section 5.5 of Wood et al.
(2017), let (yi, xi) be the observed data where i = 1, . . . , n and each xi is a d-dimensional
vector (d ≤ n). We assume the predictor variable xi and the response variable yi satisfy the
following mathematical relation:

yi = g(xi) + εi,

where the error term εi, i = 1, . . . , n are assumed to be independently distributed with
zero mean. Denote the thin-plate spline estimator of g(·) by f̂ (·), and it is obtained by
minimizing the following objective function:

||y− f ||2 + λJmd( f ), (2)

where the penalty term λJmd( f ) controls the smoothness of the fitted function, and it is
given by the following expression:

Jmd( f ) =
∫

∑
ν1+...+νd=m

m!
ν1! . . . νd!

(
∂m f

∂xν1
1 . . . ∂xνd

d

)2

dx1 . . . dxd.

The thin-plate spline estimator admits a close form solution:

f̂ (x) =
n

∑
i=1

δiηmd(||x− xi||) +
M

∑
j=1

αjφj(x), (3)

where ηmd are defined as

ηmd(r) =


(−1)m+1+d/2

22m−1πd/2(m−1)!(m−d/2)!
r2m−d log(r), for even d,

Γ(d/2−m)
22mπd/2(m−1)!

r2m−d, for odd d,
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and φi, i = 1, . . . M, M = (m+d−1
d ) are linear independent polynomials of degree less than

m, which span the space of functions whose Jmd values equal zero. Lastly, the estimated
parameter δ = (δ1, . . . , δn)′ satisfies the constraint φ′δ = 0 with the (j, k)th entry of matrix
φ being φjk = φk(xj), j, k = 1, . . . , n.

Despite the flexibility of the thin-plate splines, the number of unknown parameters is
usually very large (the same order as the number of the data points). In addition, as pointed
out in Wood et al. (2017), the computing time for fitting the splines is of the cubical order
of the number of unknown parameters. Therefore, fitting a set of thin-plate splines can
be extremely time-consuming. This motivates the development of the so-called thin-plate
regression spline estimator, which is the surrogate model used in this project.

The first term in Formula (3) is usually referred to as the ‘wiggly component’, and
the second term is usually called the ‘zero wiggliness component’. The idea behind the
thin-plate regression spline estimator is to truncate the space of the ‘wiggly component’ such
that the number of unknown parameters to fit is significantly reduced. As a result, the
spline model can be fitted in a reasonable time frame without losing too much accuracy.
With some algebra, it can be shown that the objective function similar to (2) for fitting the
thin-plate regression spline can be expressed in matrix form. To avoid a lengthy review, we
refer the interested readers to Wood et al. (2017) for more references.

Although the mathematical framework of the thin-plate regression spline seems
complicated, the model can be easily fitted using the R package ‘mgcv’. Having introduced
the basics of the thin-plate regression spline, we now show how this model is used as the
surrogate model to estimate the predicted solvency capital requirement (SCR) at different
predicted stochastic mortality scenarios.

2.2.2. Approximating the Predicted SCR

We start with notations. We denote κt,s as the vector of predicted parameters associated
with the stochastic mortality model at a future time t and scenario s. For example, in
the Cairns–Blake–Dowd (CBD) model Cairns et al. (2006), and κt,s could be the vector
containing both risk factors (κ(1)t (s), κ

(2)
t (s)) at a predicted time point t and scenario s. Let

u be the hedging units invested in the mortality/longevity-linked derivative at time 0.2

Furthermore, we denote SCR(κt,s, u) the predicted mortality/longevity SCR at a future
time t, scenario s, and with u units invested in the hedging derivatives. The calculation
of this SCR is product-specific, and we will elaborate the detail of this calculation in the
context of simple life annuity and insurance products in Section 3.2.

We assume this SCR amount can be closely approximated by a smooth function
f (κt,s, u), which is the surrogate model or the simulation meta-model used to approximate the
relationship between the predicted stochastic mortality parameters and the SCR amount.
Next, we will fit this function using the thin-plate regression spline by assuming the
following model for the function f (·):

f (κt,s, u) = g(κt,s, u) + εt,s,u, (4)

where εt,s,u are assumed to be independently distributed with zero mean.
In order to fit this model, one should have a training set where the predictor variables

are a set of vectors (κt,s, u) with different values of κt,s and u, and a set of response variables
which are the predicted SCRs, obtained from the triple-nested simulation at each predicted
stochastic mortality scenario. However, due to the aforementioned computational challenge,
generating a large training set is in-feasible and also diminishes the purpose of establishing
the surrogate model. Here, we adopt the approach proposed by Lin and Yang (2020b)
where the model is trained only on a small set of training data whose locations are selected
via a clustering algorithm. To be more specific, in the context of this paper, the following
are the main steps for training this model:

• Generate N vectors of predicted parameters at a future time t: κt,s, where s = 1, . . . , N.
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• For each predicted vector, associate it with M hedging units u1, . . . , uM and cre-
ate a new data set where each data point is now (κt,s, uj) where s = 1, . . . , N and
j = 1, . . . , M.

• Partition the N data points into n clusters where n << N. This could be carried out
through a k-means clustering algorithm where k = n.

• For each resulting cluster, pick the point that is closest3 to the cluster center. The
resulting n points give a representative set of the predictors.

• Run the triple-nested simulation4 at the representative predictors to obtain a set of
representative SCRs.

• The resulting n pairs of the representative predictors and SCRs will give a set of
representative points to fit the thin-plate regression spline surrogate model.

Lin and Yang (2020b) showed that the above procedure is asymptotically optimal in the
one-dimensional case. This result is difficult to be generalized into higher dimensions due
to the difficulties in finding the asymptotic behavior of the thin-plate regression spline
estimator and its derivatives. Yet, it can produce a sufficiently accurate surrogate model for
estimating the SCR value, as will be demonstrated in later sections.

Let ĝ(·) be the fitted thin-plate regression spline. The approximated predicted SCR,
denoted by ˆSCR at an arbitrary predicted stochastic mortality scenario κ

predict
t,s and hedging

unit upredict is therefore

ˆSCR(κpredict
t,s , upredict) ≈ ĝ(κpredict

t,s , upredict). (5)

2.3. A Hedging Framework

After the predicted SCR can be efficiently and effectively approximated, one can see
how different hedging units impact the predicted SCR distribution across a large number
of scenarios. Furthermore, one can define the hedging criteria based on their specific
risk preference.

In this paper, we consider a case where the optimal hedging unit is calculated based
on two criteria:

• A time-0 criterion: this criterion defines a hedging objective in terms of the current
SCR value.

• A time-t criterion: this criterion defines a hedging objective function in terms of the
predicted SCR distribution.

The following is an example of the hedging objective for finding an optimal hedging
unit u∗:

1. The time-0 SCR value is reduced:

SCR0(u∗) ≤ SCR0(0).

2. The expected value of the predicted time-t SCR is minimized:

u∗ = argmin
u

E(SCR(κt,s, u)).

Note that since the predicted SCR distribution does not admit close-form expression.
Solving the optimal hedging units u∗ is usually through a numerical procedure. A common
approach is to first set up a range for possible hedging units, then calculate all the values
of SCR0 for each unit in this range. This possible hedging range is normally related to
insurer’s hedging budget or regulatory requirement.

From the first step, a range of feasible hedging units can be obtained in which the
first criterion listed above is satisfied. Next, the surrogate model can be fitted only for the
feasible units, and an optimal unit can be found according to the second hedging criterion.
We will give a more detailed walk-through of this process in the following simulation
study section.
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3. Simulation Studies

This section contains several parts. In the first part, we provide a brief review of the
Cairns–Blake–Dowd (CBD) model for stochastic mortality modeling (Cairns et al. 2006).
This is the model that all hedging calculations, including the hedging derivatives and the
predicted SCR distribution in this paper, are based on. Next, we introduce the hedging
derivative: the K-put option. This is a mortality-linked derivative that has been studied by
Li et al. (2021). Following the hedging derivative, we introduced the two simple illustrative
contracts used for simulation studies: an annuity contract and an insurance contract. The
purpose of choosing these two contracts is to demonstrate how hedging results are different
for different providers that are facing opposite risks. Lastly, we present the results from the
simulation studies.

3.1. The Mortality Model

In this part, we briefly introduced the CBD stochastic mortality model. Let qx,t be the
probability that an individual, who has survived to age x at the beginning of year t, dies in
year t (between time t− 1 and time t). The Cairns–Blake–Dowd (CBD) model is built on
qx,t as

logit qx,t = κ
(1)
t + (x− x̄)κ(2)t

• κ
(1)
t and κ

(2)
t respectively represent the period effect of the level and slope of the

mortality curve in year t, and
• x̄ is the mean age of the data.

Following the work of Cairns et al. (2006), κt := (κ
(1)
t , κ

(2)
t )′ is modeled by a bi-variate

random walk with drift:
κt = θ+ κt−1 + ωt,

where θ = (θ(1), θ(2))′ is the constant drift term, and ωt = (ω
(1)
t , ω

(2)
t )′ follows a bi-variate

normal distribution with mean zero and a variance–covariance matrix.

3.2. Sample Contracts and the Calculation of SCR

To illustrate the risk management for both longevity and mortality risks, we consider
two insurance contracts: a life annuity contract and a life insurance contract. The followings
are the detailed contract parameters:

• Annuity: The age of the policyholder is 60, the deferral period of the annuity is 5 years,
the term of the annuity is 20 years, and the annual payment is $100.

• Insurance: The age of the policyholder is 60, the deferral period of the life insurance is
5 years, the term of the life insurance is 20 years, and the annual payment is $1000.

In the following subsections, we elaborate on how the SCR is obtained for these two
contracts with and without an implemented hedging strategy.

3.2.1. The Hedging Instrument

Consider a K-put option on the i-th CBD period effect κ
(i)
t . Suppose that this K-put is

issued at time t0, matures at time T, and has a strike value of K. The discounted payoff of
this K-put at maturity is

Ht = (1 + r)−(T−t) max(K− κ
(i)
T , 0)

per $1 notional. For 0 ≤ t < T, the price of this K-put at time t is
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Ht = (1 + r)−(T−t)

√Var[κ(i)T |Ft]φ

K− E[κ(i)T |Ft]√
Var[κ(i)T |Ft]


+ (K− E[κ(i)T |Ft])Φ

K− E[κ(i)T |Ft]√
Var[κ(i)T |Ft]

, (6)

where Ft the filtration that contains the evolution of κ
(i)
t up time and including time t. The

full derivation of the K-put pricing formula is available in Li et al. (2021). The price of a
K-put at time t obtained from Equation (6) can be influenced by a number of risk factors,
including basis risk, calibration risk, credit risk and model risk. Numerous studies in the
actuarial literature have been conducted on the pricing of mortality-linked securities (see,
e.g., Freimann 2021; Lin et al. 2013; Yang and Wang 2013).

3.2.2. The SCR Calculation

Consider a single premium τ-year deferred life annuity, sold to an individual who
has survived to age x at time 0. After the deferral period, an annuity payment of $1 is
payable to the annuitant at the end of each year until death. The time-t value of the annuity
liabilities during the deferral period is

Lt =
∞

∑
T=1

e−r(τ+T−t)
τ+T−t px+t,t,

where T px,t is the probability that an individual who has survived to age x at time t would
have survived to time t + T, and r is the constant interest rate. We can further express
T px,t as

T px,t =
T

∏
u=1

(1− qx−u−1,t−u),

where qx,t is directly given by the CBD model. Note that the survival probability T px,t
depends on the value of the period effects κt at time t = t + 1, . . . , τ + T. The expression
Lt for a τ-year deferred life annuity can be easily modified for expressing a τ-year deferred
life insurance product.

Assume that a K-put option written on κ
(1)
t with a discounted payoff ofHt is added to

the annuity liability. The number of units purchased for L is denoted by u, and the cost of
each unit is C0 at time 0. To obtain the SCR at time t, we calculate

VaR99.5%

[
(1 + r)−1E(Lt+1 − u(Ht+1 + C0))− E(Lt − u(Ht + C0))

]
(7)

Equation (7) can be evaluated by a triple nested simulation method or the surrogate
approximation method, which are both discussed in Section 2.

3.3. Results

This subsection presents the numerical results of the approximation algorithm and the
hedging framework introduced in Sections 2.2 and 2.3.

For illustration purposes, we use mortality data from the England & Wales female
population, obtained from the Human Mortality Database.5 The age range is from age 40
to age 90, while the sample period is from year 1967 to year 2016. We fit the CBD mortality
model to this data set using the method of maximum likelihood estimation.

3.3.1. The Thin-Plate Regression Spline Approximation

In order to illustrate the efficiency of this surrogate model approximation, we compare
the approximated SCR to the ‘true’ SCR, which is calculated from the brute force simulation.
To conduct this numerical study, we simulate from the CBD model 1000 stochastic mortality
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scenarios in one year. Hence, we have 1000 vectors of (κ(1)1,s , κ
(2)
2,s ) where s = 1, . . . , 1000.

For the hedging units, we initially chose a range from −8.0 to 8.0 with 0.5 units increment.
Hence, we have 33 initial hedging units to start with. We remark that the range considered
in this paper is arbitrary, and as mentioned before, this range is usually a subjective choice
of the modeler.

As a result, we have 1000 × 33 = 33,000 vectors of predicted variables in one year
(t = 1). One could imagine the extremely long computing time if the predicted SCR is to be
calculated for all those predicted vectors with the full triple-nested simulation. When the
portfolio size becomes large and as the product becomes more complicated, it may be even
impossible to calculate the predicted SCR in legacy systems where the computing power is
not strong enough.

Followed the steps introduced in Section 2.2.2, we run a k-means clustering algorithm
with the 33,000 vectors where k = 500. We created a set of 500 representative predictor
vectors and simulated the SCR values at those vectors for both the annuity contract and the
insurance contract. Then, we fit two thin-plate regression models using the 500 training
points for the annuity and the insurance contract, respectively. Loosely speaking, this
approximation can reduce the total run time by approximately 60 times (33,000/500).

To evaluate the performance of the fitted regression models, we also run the full
triple-nested simulation to obtain the predicted SCR values, and we treat these SCR values
as the benchmark when assessing the approximation method. The numerical results are
shown in Figure 1 via QQ-plots, comparing the SCR values obtained from the triple-nested
simulation method and the proposed approximation method.

Figure 1. Cont.
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Figure 1. The predicted SCR at time 1 for the annuity provider (top panel) and insurance provider
(bottom panel).

From the QQ-plots, the trained thin-plate spline models are able to closely approximate
the predicted SCR for both insurance and annuity providers with less than 5% error.6 It is
expected that the approximation error will become smaller if more input points are selected.
In practice, the number of training points is mainly determined by two factors: estimation
accuracy and run time. A bonus feature of using the surrogate model is that not only can
it be used to approximate the values at the non-selected predictor vectors, but it can also
predict the SCR values at any arbitrary ‘out-of-sample’ predictor vector7.

3.3.2. Optimal SCR Hedging Strategy for the Insurance and the Annuity Providers

There are two steps in finding the optimal units. The first one is filtering out the
unfeasible strategy from the initial strategies, based on the hedging objective(s) at time 0.
The second step is to identify an optimal strategy among the feasible strategies, obtained
from the first step. In the following, we present the numerical results of two sets of SCR
hedging strategies. As defined in Section 2.3, the feasible strategies in this paper are
determined based on whether the current SCR0 is reduced.

For illustration purposes, we consider hedging units u ranging from −8.0 to 8.0 with
increments of 0.1. A total of 161 values of SCR0 is calculated from the simulation results.
We can observe from Figure 2 that the pattern of SCR0 for the insurance provider is almost
a mirror image of that for the annuity provider. This is expected as the two parties are
facing opposite risks. Implied by these findings, we conclude that the feasible strategies for
the two parties are:

• Insurance provider: hedging units between −8.0 to 0, with optimal unit around −5.0.
• Annuity provider: hedging units between 0 to 8.0, with optimal unit around 4.8.

Note that the unhedged position, where the hedging unit u is 0, is included in the
above ranges of u.

We now shift our focus to the predicted SCR1. For illustration purposes, we consider
two time-1 hedging objectives:

• Minimizing the mean of the predicted SCR1 distribution.
• Minimizing the Value-at-Risk at 95% confidence (VaR95) of the predicted SCR1 distribution.
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The first objective concerns the average value or average movement in the SCR at time
1. The second one concerns more of the tail risk of the predicted SCR1 distribution. This is
an example where the insurer wants to control the capital and earning volatility.

Figure 2. The obtained SCR at time 0 under different hedging units for the annuity provider (top
panel) and insurance provider (bottom panel).

The results are shown in Figure 3 for the insurance provider and in Figure 4 for the
annuity provider. The optimal units are summarized in Table 1. From the above numerical
results, we can see that under all the hedging objectives considered here, the optimal
hedging units for annuity and insurance providers are of opposite signs. On one hand, this
finding is intuitive as the two providers are on the opposite side of mortality/longevity
risks. On the other hand, from a economics prospective, the fact that the signs for the
hedging units are different creates a market for the longevity derivative.
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Table 1. Optimal hedging units for different objective functions.

Objective Function Optimal Units (Annuity) Optimal Units (Insurance)

Mean of SCR1 −4.7 3.4
VaR95 of SCR1 −5.5 1.6

Figure 3. The mean (top panel) and VaR95 (bottom panel) of the SCR at time 1 under different
hedging units for the insurance provider.
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Figure 4. The mean (top panel) and VaR95 (bottom panel) of the SCR at time 1 under different
hedging units for the annuity provider.

4. Conclusions

In this paper, we studied the problem of capital risk management for mortality and
longevity risks. The Solvency Capital Requirement (SCR), required by Solvency II, serves
as a regulatory backbone, ensuring that insurers maintain the necessary capital reserves
to avoid insolvency. Our research goal targets an important aspect of this regulatory
framework, and emphasizes that the risk management of SCR should not be limited to the
immediate SCR at time 0. Instead, an insurer should additionally anticipate and prepare
for the predicted SCR in future periods, such as the end of the next year. We remark that
the prospective viewpoint on both the immediate and predicted SCR values is crucial in
maintaining the financial stability and the long-term viability of an insurance company.

Addressing the practical concerns faced by life insurers, we explored the use of
mortality-linked securities as a capital risk management tool. To avoid sudden changes
in SCR, caused possibly by extreme mortality chocks, life insurers are incentivized to
employ mortality-linked securities to mitigate their underlying risk exposures. Through
our hedging analysis with different objectives, we examined the optimal unit of a put
option written on a mortality index that both life insurance and annuity providers should
procure. Moreover, we illustrated that these optimal units are opposed in sign for insurance



Risks 2023, 11, 206 15 of 18

and annuity providers, underscoring the potential for a robust market of mortality-linked
securities for mortality and longevity capital risk management.

Under a stochastic mortality setting, the computational requirement of calculating SCR
at future time points cannot be understated. The traditional nested simulation method can
become unwieldy when confronted with a large number of mortality scenarios that each
requires separate SCR calculations for all future time points. To overcome the computational
burden, we introduced the thin-plate regression spline method as an efficient surrogate
alternative to nested simulation. Our numerical results validate the surrogate method’s
ability to closely approximate the predicted SCR, achieving an error margin that is below
5% for both insurance and annuity providers.

We remark that the risk management of SCR resulting from extreme mortality shocks,
such as the COVID-19 pandemic, can be strengthened by leveraging existing risk mitigation
tools originally developed for natural catastrophes. The observed resemblance between
pandemic mortality risk and natural catastrophe risk suggests a parallel in their nature,
indicating that risk management tools designed for catastrophe risk, such as catastrophe
equity put options, can be suitably borrowed and adapted for mitigating extreme mortality
risk in the insurance context. We refer the interested reader to Zhao et al. (2021) for a
detailed review of catastrophe risk management.

Our study has certain limitations that will require further investigations in future
research. First, although we have emphasized that the risk management of SCR should be
targeted towards future time points, our numerical analysis mainly focused on a single-
period approach from time 0 to time 1. While we acknowledge the critical importance of
adopting a multi-period approach from time 0 to time T, it is noteworthy that the existing
body of literature is relatively sparse in terms of studies focusing on multiple periods. The
few that have considered more than one period include Rödel (2017), Zhou and Li (2019)
and Börger et al. (2021a). Utilizing these past studies, an extension of this paper can span
multiple periods with a dynamic recalibration of the optimal hedging strategy.

Second, our selection of the CBD model for simulating stochastic mortality is merely
illustrative. It is essential to note that the mortality modeling literature encompasses a
diverse range of stochastic models, presenting ample opportunities for integration with our
paper. Further exploration of these models could significantly contribute to the examination
of capital risk management concerning mortality and longevity risks. Moreover, beyond
the K-put option considered in this paper, other state-of-the-art mortality-linked securities
can be further investigated to compare their degree of hedge effectiveness in the risk
management of capital requirements.

Lastly, although the thin-plate regression spline employed in this paper stands as a
valuable surrogate method, it is important to recognize that the field offers a multitude of
alternative methods. Our study has demonstrated the efficacy of using surrogate meth-
ods in managing capital requirements for mortality and longevity risks. However, we
acknowledge the limitation of not explicitly comparing the thin-plate regression spline
with other existing methods. Subsequent studies could delve into these alternatives to
refine simulation accuracy and enhance efficiency.
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Notes
1 It is assumed, without loss of generality, that a constant interest rate is used in this paper.
2 In this paper, we consider only a single hedging instrument. However, our approximation method could be easily modified to a

vector when multiple hedging instruments are considered.
3 Usually, this step is performed after the data points are standardized so that all dimensions have roughly the same weights. The

closeness is commonly measured by some distance metric such as L2 Euclidean distance.
4 Since a fitting procedure will be performed afterwards, the numbers of outer/middle/inner-loop of this triple-nested simulation

do not have to be too large.
5 Human Mortality Database. Max Planck Institute for Demographic Research (Germany), University of California, Berkeley (USA),

and French Institute for Demographic Studies (France). Available at www.mortality.org (data downloaded on 29 May 2020).
6 The error between the triple-nested simulation method and the approximation method is measured by

1
N

N

∑
i=1

∣∣∣SCRi − ˆSCRi
SCRi

∣∣∣,
where ˆSCRi is the approximated SCR value, and SCRi is the simulated ‘true’ SCR value for the i-th scenario. Note that N = 1000
in our numerical illustration.

7 We remark that to ensure the predicted SCR is of high confidence, the ‘out-of-sample’ predictor vector should fall in the range of
the training set.
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