
Citation: Li, Jackie, and Jia Liu. 2023.

Claims Modelling with Three-

Component Composite Models. Risks

11: 196. https://doi.org/10.3390/

risks11110196

Received: 28 September 2023

Revised: 29 October 2023

Accepted: 8 November 2023

Published: 13 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

risks

Article

Claims Modelling with Three-Component Composite Models
Jackie Li 1,* and Jia Liu 2

1 Department of Econometrics and Business Statistics, Monash University, Melbourne 3800, Australia
2 Research School of Finance, Actuarial Studies & Statistics, Australian National University,

Canberra 0200, Australia; jia.liu3@anu.edu.au
* Correspondence: jackie.li@monash.edu

Abstract: In this paper, we develop a number of new composite models for modelling individual
claims in general insurance. All our models contain a Weibull distribution for the smallest claims, a
lognormal distribution for the medium-sized claims, and a long-tailed distribution for the largest
claims. They provide a more detailed categorisation of claims sizes when compared to the existing
composite models which differentiate only between the small and large claims. For each proposed
model, we express four of the parameters as functions of the other parameters. We fit these models
to two real-world insurance data sets using both maximum likelihood and Bayesian estimation,
and test their goodness-of-fit based on several statistical criteria. They generally outperform the
existing composite models in the literature, which comprise only two components. We also perform
regression using the proposed models.

Keywords: composite models; loss data; fire insurance claims; vehicle insurance claims; tail quantiles

1. Introduction
1.1. Current Literature

Modelling individual claim amounts which have a long-tailed distribution is an
important task for general insurance actuaries. The usual candidates with a heavy tail
include the two-parameter Weibull, lognormal, Pareto, and three-parameter Burr models
(e.g., Dickson 2016). Venter (1983) introduced the four-parameter generalised beta type-II
(GB2) model, which nests more than 20 popular distributions (e.g., Dong and Chan 2013)
and can provide more flexibility in describing the skewness and kurtosis of the claims.
McNeil (1997) applied the generalised Pareto distribution (GPD) to the excesses above a
high threshold based on the extreme value theory. Many advanced models have been built
with these various distribution assumptions, as it is crucial for an insurer to provide an
adequate allowance for potential adverse financial outcome.

In order to deliver a reasonable parametric fit for both smaller claims and very large
claims, Cooray and Ananda (2005) constructed the two-parameter composite lognormal-
Pareto model. It is composed of a lognormal density up to an unknown threshold and a
Pareto density beyond that threshold. Using a fire insurance data set, they demonstrated
a better performance by the composite model when compared to traditional models like
the gamma, Weibull, lognormal, and Pareto. Scollnik (2007) improved the lognormal-
Pareto model by allowing the weights to vary and also introduced the lognormal-GPD
model, in which the tail is modelled by the GPD instead. By contrast, Nadarajah and
Bakar (2014) modelled the tail with the Burr density. Scollnik and Sun (2012) and Bakar
et al. (2015) further tested several composite models which use the Weibull distribution
below the threshold and a variety of heavy-tailed distributions above the threshold. In
all these extensions, an important feature is that the threshold selection is based on the
data. Moreover, all the authors hitherto imposed continuity and differentiability conditions
on the threshold point, and so the effective number of parameters is reduced by two.
While there are some other similar mixture models (e.g., Calderín-Ojeda and Kwok 2016;
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Reynkens et al. 2017) in the literature, we preserve the term “composite model” for only
those with these continuity-differentiability requirements in this paper. Some other recent
and related studies include those of Laudagé et al. (2019), Wang et al. (2020), and Poufinas
et al. (2023).

1.2. Proposed Composite Models

All the composite models mentioned above have only two components. For a very
large data set, the behaviour of claims of different sizes may differ vastly, which would
then call for a finer division between the claim amounts and thus more components to
be incorporated (e.g., Grün and Miljkovic 2019). In this paper, we develop new three-
component composite models with an attempt to provide a better description of the
characteristics of different data ranges. Each of our models contains a Weibull distribution
for the smallest claims, a lognormal distribution for the medium-sized claims, and a heavy-
tailed distribution for the largest claims. We choose the sequence of starting with the
Weibull and then lognormal for a few reasons. First, as shown in Figure 1, the Weibull
distribution tends to have a more flexible shape on the left side, which makes it potentially
more useful for the smallest claims. Second, the lognormal distribution usually has a heaver
tail, given the mean and variance, as the limiting density ratio of Weibull to lognormal
approaches zero when x goes to infinity (see Appendix A). This means that the lognormal
distribution would be more suitable for claims of larger sizes. Nevertheless, both the
Weibull and lognormal do not really possess a sufficiently heavy tail for modelling the
largest claims. Comparatively, a heavy-tailed distribution like Pareto, Burr, and GPD are
better options for this purpose. We apply the proposed three-component composite models
to two real-world insurance data sets and use both maximum likelihood and Bayesian
methods to estimate the model parameters for comparison. Based on several statistical
tests on the goodness-of-fit, we find that the new composite models outperform not just
the traditional models but also the earlier two-component composite models. In particular,
it would be informative to see how the fitted models indicate the splits or thresholds
to separate different claim sizes into three categories: small, medium, and large. We
experiment with applying regression under the proposed model structure and realise that
different claims sizes have different significant covariates. Moreover, we consider a 3D
map which can serve as a risk management tool and summarise the entire model space
and their resulting tail risk estimates. Note that we focus on the claim severity (but not the
claim frequency) in this study.
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Figure 1. Examples of density functions of Weibull and lognormal distributions.

The remainder of the paper is as follows. Sections 2–4 introduce the composite Weibull-
lognormal-Pareto, Weibull-lognormal-GPD, and Weibull-lognormal-Burr models. Section 5
provides a numerical illustration using two insurance data sets of fire claims and vehicle
claims. Section 6 sets forth the concluding remarks. The Appendix A presents some
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JAGS (specific software for Bayesian modelling) outputs of Bayesian simulation for the
proposed models.

2. Weibull-Lognormal-Pareto Model

Suppose X is a random variable with probability density function (pdf)

f (x) =


w1

1

1−exp
(
−

θτ
1

φτ

) f1(x) for 0 < x ≤ θ1

w2
1

Φ
(

ln θ2−µ
σ

)
−Φ

(
ln θ1−µ

σ

) f2(x) for θ1 < x ≤ θ2

(1− w1 − w2) f3(x) for θ2 < x < ∞

, (1)

where

f1(x) =
τxτ−1

φτ
exp

(
− xτ

φτ

)
,

f2(x) =
1

xσ
√

2π
exp

(
− (ln x− µ)2

2σ2

)
,

f3(x) =
αθα

2
xα+1 .

In effect, f1(x) is the pdf of Weibull(φ, τ) for φ, τ > 0, f2(x) is the pdf of
Lognormal(µ, σ) for −∞ < µ < ∞ and σ > 0, and f3(x) is the pdf of Pareto(α, θ2) for
α, θ2 > 0, where φ, τ, µ, σ, and α are the model parameters. The weights w1 and w2 decide
the total probability of each segment. The thresholds θ1 and θ2 are the points at which
the Weibull and lognormal distributions are truncated, and they represent the splitting
points between the three data ranges. We refer to this model as the Weibull-lognormal-
Pareto model.

In line with previous authors including Cooray and Ananda (2005), two continuity
conditions f (θ1−) = f (θ1+) and f (θ2−) = f (θ2+), and also two differentiability condi-
tions f ′(θ1−) = f ′(θ1+) and f ′(θ2−) = f ′(θ2+) are imposed at the two thresholds. It can
be deduced that the former leads to the two equations below for the weights:

w1 = w2
φτ

θτ
1 τ σ
√

2π

(
1− exp

(
− θτ

1
φτ

))
exp

(
θτ

1
φτ − (ln θ1−µ)2

2σ2

)
Φ
(

ln θ2−µ
σ

)
−Φ

(
ln θ1−µ

σ

) ,

w1 = 1− w2

1 +
1

σ α
√

2π

exp
(
− (ln θ2−µ)2

2σ2

)
Φ
(

ln θ2−µ
σ

)
−Φ

(
ln θ1−µ

σ

)
,

and that the latter generates the following two constraints:

θτ
1

φτ
= 1 +

ln θ1 − µ

τ σ2 ,

ln θ2 − µ

σ2 = α.

Because of these four relationships, there are effectively five unknown parameters,
including τ, σ, α, θ1, and θ2, with the others φ, µ, w1, and w2 expressed as functions of
these parameters. As in all the previous works on composite models, the second derivative
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requirement is not imposed here because it often leads to inconsistent parameter constraints.
One can readily derive that the kth moment of X is given as follows (see Appendix A):

E
(

Xk
)

= w1

φk γ

(
k
τ +1,

θτ
1

φτ

)
1−exp

(
−

θτ
1

φτ

) + w2

exp(µk+ 1
2 σ2k2)

(
Φ
(

ln θ2−µ−σ2k
σ

)
−Φ

(
ln θ1−µ−σ2k

σ

))
Φ
(

ln θ2−µ
σ

)
−Φ

(
ln θ1−µ

σ

)
+(1− w1 − w2)

αθk
2

α−k ,

in which γ(s, z) =
∫ z

0 ts−1 exp(−t)dt is the lower incomplete gamma function and α > k.

3. Weibull-Lognormal-GPD Model

Similarly, we construct the Weibull-lognormal-GPD model as

f (x) =



w1
1

1−exp
(
−

θτ
1

φτ

) τxτ−1

φτ exp
(
− xτ

φτ

)
for 0 < x ≤ θ1

w2
1

Φ
(

ln θ2−µ
σ

)
−Φ

(
ln θ1−µ

σ

) 1
xσ
√

2π
exp

(
− (ln x−µ)2

2σ2

)
for θ1 < x ≤ θ2

(1− w1 − w2)
α(λ+θ2)

α

(λ+x)α+1 for θ2 < x < ∞

. (2)

Note that we use the GPD version as in Scollnik (2007), and that α, λ, θ2 > 0. Under
the continuity and differentiability conditions, the weights are determined as follows:

w1 = w2
φτ

θτ
1 τ σ
√

2π

(
1− exp

(
− θτ

1
φτ

))
exp

(
θτ

1
φτ − (ln θ1−µ)2

2σ2

)
Φ
(

ln θ2−µ
σ

)
−Φ

(
ln θ1−µ

σ

) ,

w1 = 1− w2
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√

2π

exp
(
− (ln θ2−µ)2

2σ2

)
Φ
(

ln θ2−µ
σ

)
−Φ

(
ln θ1−µ

σ

)
,

and there are also two other constraints:

θτ
1

φτ
= 1 +

ln θ1 − µ

τ σ2 ,

ln θ2 − µ

σ2 =
θ2α− λ

θ2 + λ
.

There are six effective model parameters of τ, σ, α, λ, θ1, and θ2, with the others φ, µ,
w1, and w2 given as functions of these parameters. The kth moment of X is equal to

E
(

Xk
)
= w1

φk γ

(
k
τ +1,

θτ
1

φτ

)
1−exp

(
−

θτ
1

φτ

) + w2

exp(µk+ 1
2 σ2k2)

(
Φ
(

ln θ2−µ−σ2k
σ

)
−Φ

(
ln θ1−µ−σ2k

σ

))
Φ
(

ln θ2−µ
σ

)
−Φ

(
ln θ1−µ

σ

)
+(1− w1 − w2)M(k)(0),

where M(t) = α exp(t θ2)
∞
∑

i=0

ti(λ+θ2)
i

∏i
j=0 (α−j)

is the moment-generating function of the GPD, and

M(k)(0) is its kth derivative with respect to t at t = 0 for α > k.
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4. Weibull-Lognormal-Burr Model

Lastly, we define the Weibull-lognormal-Burr model as

f (x) =



w1
1

1−exp
(
−

θτ
1

φτ

) τxτ−1

φτ exp
(
− xτ

φτ

)
for 0 < x ≤ θ1

w2
1

Φ
(

ln θ2−µ
σ

)
−Φ

(
ln θ1−µ

σ

) 1
xσ
√

2π
exp

(
− (ln x−µ)2

2σ2

)
for θ1 < x ≤ θ2

(1− w1 − w2)
1(

βγ

βγ+θ
γ
2

)α

α γ xγ−1
βγ(

1+ xγ

βγ

)α+1 for θ2 < x < ∞

. (3)

For α, β, γ, θ2 > 0, the Burr distribution is truncated from below. Again, the continuity
and differentiability conditions lead to the following equations for the weights:

w1 = w2
φτ

θτ
1 τ σ
√

2π

(
1− exp

(
− θτ

1
φτ

))
exp

(
θτ
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2σ2

)
Φ
(

ln θ2−µ
σ

)
−Φ

(
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σ

) ,

w1 = 1− w2
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γ
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θ
γ
2 σ α γ

√
2π

exp
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− (ln θ2−µ)2

2σ2
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Φ
(
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σ

)
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(
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)
,

and also the constraints below:

θτ
1

φτ
= 1 +

ln θ1 − µ

τ σ2 ,

ln θ2 − µ

σ2 =
θ

γ
2 (α + 1)γ
θ

γ
2 + βγ

− γ.

There are effectively seven model parameters to be estimated, including τ, σ, α, β, γ,
θ1, and θ2. The others φ, µ, w1, and w2 are derived from these parameters. The kth moment
of X is computed as

E
(

Xk
)
= w1

φk γ

(
k
τ +1,

θτ
1

φτ

)
1−exp

(
−

θτ
1

φτ

) + w2

exp(µk+ 1
2 σ2k2)

(
Φ
(

ln θ2−µ−σ2k
σ

)
−Φ

(
ln θ1−µ−σ2k

σ

))
Φ
(

ln θ2−µ
σ

)
−Φ

(
ln θ1−µ

σ

)

+(1− w1 − w2)
α βk B

(
βγ

βγ+θ
γ
2

;α− k
γ ,1+ k

γ

)
(

βγ

βγ+θ
γ
2

)α ,

in which B(z; a, b) =
∫ z

0 ta−1(1− t)b−1dt is the incomplete beta function.
Figure 2 gives a graphical illustration of the three new composite models. All the

graphs are based on the values of w1 = 0.2 and w2 = 0.6, that is, the expected proportions
of small, medium, and large claims are 20%, 60%, and 20%, respectively. For illustration
purposes, the parameters are arbitrarily chosen such that each set gives rise to exactly the
same expected proportions of the three claim sizes. For the case in the top panel, which
has similar Weibull and lognormal parameters and the same weights amongst the three
models, the Pareto tail is heavier than the GPD tail, followed by the Burr one. In the bottom
panel, while all the three Weibull-lognormal-Pareto models have the same component
weights, the differences in the parameter values can generate very different shapes and
tails of the densities. The three-component composite models can provide much flexibility
for modelling individual claims of different lines of business.
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Figure 2 gives a graphical illustration of the three new composite models. All the 
graphs are based on the values of 1 0.2w =  and 2 0.6w = , that is, the expected propor-
tions of small, medium, and large claims are 20%, 60%, and 20%, respectively. For illus-
tration purposes, the parameters are arbitrarily chosen such that each set gives rise to ex-
actly the same expected proportions of the three claim sizes. For the case in the top panel, 
which has similar Weibull and lognormal parameters and the same weights amongst the 
three models, the Pareto tail is heavier than the GPD tail, followed by the Burr one. In the 
bottom panel, while all the three Weibull-lognormal-Pareto models have the same com-
ponent weights, the differences in the parameter values can generate very different shapes 
and tails of the densities. The three-component composite models can provide much flex-
ibility for modelling individual claims of different lines of business. 
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5. Application to Two Data Sets

We first apply the three composite models to the well-known Danish data set of
2492 fire insurance losses (in millions of Danish Krone; a complete data set). The inflation-
adjusted losses in the data range from 0.313 to 263.250 and are collected from the “SMPrac-
ticals” package in R. This data set has been studied in earlier works on composite models,
including those of Cooray and Ananda (2005), Scollnik and Sun (2012), Nadarajah and
Bakar (2014), and Bakar et al. (2015). For comparison, we also apply the Weibull, lognormal,
Pareto, Burr, GB2, lognormal-Pareto, lognormal-GPD, lognormal-Burr, Weibull-Pareto,
Weibull-GPD, and Weibull-Burr models to the data. Based on the reported results from
the authors mentioned above, the Weibull-Burr model has been shown to produce the
highest log-likelihood value and the lowest Akaike Information Criterion (AIC) value for
this Danish data set.

The previous authors mainly used the maximum likelihood estimation (MLE) method
to fit their composite models. While we still use the MLE to estimate the parameters (with
nlminb in R), we also perform a Bayesian analysis via Markov chain Monte Carlo (MCMC)
simulation. More specifically, random samples are simulated from a Markov chain which
has its stationary distribution being equal to the joint posterior distribution. Under the
Bayesian framework, the posterior distribution is derived as f (θ|X) ∝ f (X|θ) f (θ) . We
perform MCMC simulations via the software JAGS (Just Another Gibbs Sampler) (Plummer
2017), which uses the Gibbs sampling method. We make use of non-informative uniform
priors for the unknown parameters. Note that the posterior modes under uniform priors
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generally correspond to the MLE estimates. For each MCMC chain, we omit the first
5000 iterations and collect 5000 samples afterwards. Since the estimated Monte Carlo
errors are all well within 5% of the sample posterior standard deviations, the level of
convergence to the stationary distribution is considered adequate in our analysis. Some
JAGS outputs of MCMC simulation are provided in the Appendix A. We employ the “ones
trick” (Spiegelhalter et al. 2003) to specify the new models in JAGS. The Bayesian estimates
provide a useful reference for checking the MLE estimates. Despite the major differences in
their underlying theories, their numerical results are expected to be reasonably close here,
as we use non-informative priors, leading to most of the weights being allocated to the
posterior mean rather than the prior mean. Since the posterior distribution of the unknown
parameters of the proposed models are analytically intractable, the MCMC simulation
procedure is a useful method for approximating the posterior distribution (Li 2014).

Table 1 reports the negative log-likelihood (NLL), AIC, Bayesian Information Criterion
(BIC), Kolmogorov-Smirnov (KS) test statistic, and Deviance Information Criterion (DIC)
values1 for the 14 models tested. The ranking of each model under each test is given in
brackets, in which the top three performers are highlighted for each test. Overall, the
Weibull-lognormal-Pareto model appears to provide the best fit, with the lowest AIC, BIC,
and DIC values and the second lowest NLL and KS values. The second position is taken
by the Weibull-lognormal-GPD model, which produces the lowest NLL and KS values
and the second (third) lowest AIC (DIC). The Weibull-lognormal-Burr and Weibull-Burr
models come next, each of which occupies at least two top-three positions. Apparently,
the new three-component composite models outperform the traditional models as well as
the earlier two-component composite models. The P–P (probability–probability) plots in
Figure 3 indicate clearly that the new models describe the data very well. Recently, Grün
and Miljkovic (2019) tested 16 × 16 = 256 two-component models on the same Danish
data set, using a numerical method (via numDeriv in R) to find the derivatives for the
differentiability condition rather than deriving the derivatives from first principles as in
the usual way. Based on their reported results, the Weibull-Inverse-Weibull model gives
the lowest BIC (7671.30), and the Paralogistic-Burr and Inverse-Burr-Burr models give the
lowest KS test values (0.015). Comparatively, as shown in Table 1, the Weibull-lognormal-
Pareto model produces a lower BIC (7670.88) and all the three new composite models give
lower KS values (around 0.011), which are smaller than the critical value at 5% significance
level, and imply that the null hypothesis is not rejected.

Table 1. Fitting performances of 14 models on Danish fire insurance claims data.

Model NLL AIC BIC KS DIC

Weibull 5270.47 (14) 10,544.94 (14) 10,556.58 (14) 0.2555 (13) 33,495 (14)
Lognormal 4433.89 (12) 8871.78 (12) 8883.42 (12) 0.1271 (12) 31,822 (12)

Pareto 5051.91 (13) 10107.81 (13) 10119.45 (13) 0.2901 (14) 33,058 (13)
Burr 3835.12 (7) 7676.24 (6) 7693.70 (6) 0.0383 (9) 30,625 (6)
GB2 3834.77 (6) 7677.53 (7) 7700.82 (7) 0.0602 (11) 30,626 (7)

Lognormal-Pareto 3865.86 (11) 7737.73 (11) 7755.19 (11) 0.0323 (8) 30,687 (11)
Lognormal-GPD 3860.47 (10) 7728.94 (10) 7752.23 (9) 0.0196 (6) 30,677 (10)
Lognormal-Burr 3857.83 (9) 7725.65 (9) 7754.76 (10) 0.0193 (5) 30,673 (9)

Weibull-Pareto 3840.38 (8) 7686.75 (8) 7704.21 (8) 0.0516 (10) 30,636 (8)
Weibull-GPD 3823.70 (5) 7655.40 (5) 7678.68 (3) 0.0255 (7) 30,604 (5)
Weibull-Burr 3817.57 (4) 7645.14 (3) 7674.24 (2) 0.0147 (4) 30,593 (4)

Weibull-Lognormal-Pareto 3815.89 (2) 7641.77 (1) 7670.88 (1) 0.0114 (2) 30,589 (1)
Weibull-Lognormal-GPD 3815.88 (1) 7643.76 (2) 7678.69 (4) 0.0113 (1) 30,590 (3)
Weibull-Lognormal-Burr 3815.89 (3) 7645.77 (4) 7686.52 (5) 0.0114 (3) 30,590 (2)

Note: We have checked some of these results against those reported in studies by Cooray and Ananda (2005),
Scollnik and Sun (2012), Nadarajah and Bakar (2014), and Bakar et al. (2015), where available. We have also tested
a wide range of initial values to obtain the most optimal MLE solutions.

Table 2 compares the fitted model quantiles (from MLE) against the empirical quantiles.
It can be seen that the differences between them are generally small. This result conforms
with the P–P plots in Figure 3. Note that the estimated weights of the three-component
composite models are about w1 = 0.08 and w2 = 0.54. These estimates suggest that
the claim amounts can be split into three categories of small, medium, and large sizes,
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with expected proportions of 8%, 54%, and 38%. For pricing, reserving, and reinsurance
purposes, the three groups of claims may further be studied separately, possibly with
different sets of covariates where feasible, as they may have different underlying driving
factors (especially for long-tailed lines of business).

Table 2. Empirical and fitted composite model quantiles for Danish fire insurance claims data.

Quantile Empirical Weibull-
Lognormal-Pareto

Weibull-
Lognormal-GPD

Weibull-
Lognormal-Burr

1% 0.845 0.811 0.811 0.811
5% 0.905 0.905 0.905 0.905
10% 0.964 0.967 0.967 0.967
25% 1.157 1.164 1.164 1.164
50% 1.634 1.620 1.619 1.620
75% 2.645 2.654 2.651 2.654
90% 5.080 5.081 5.080 5.081
95% 8.406 8.303 8.317 8.303
99% 24.614 25.971 26.172 25.971

Note: The figures are produced from the authors’ calculations.

Table 3 lists the parameter estimates of the three-component composite models ob-
tained from the MLE method and also the Bayesian MCMC method. It is reassuring to see
that not only the MLE estimates and the Bayesian estimates but also their corresponding
standard errors and posterior standard deviations are fairly consistent with one another
in general. A few exceptions include λ and β, which may suggest that these parameter
estimates are not as robust and are less significant. This implication is in line with the fact
that the Weibull-lognormal-GPD and Weibull-lognormal-Burr models are only the second
and third best models for this Danish data set.

Table 3. Parameter estimates of fitting three-component composite models to Danish fire insurance
claims data.

Model
Maximum Likelihood Bayesian MCMC (Posterior Distribution)

Estimate Standard
Error Mean Median Standard

Deviation

Weibull-
Lognormal-

Pareto

τ = 16.253 1.290 16.127 16.073 1.351
σ = 0.649 0.089 0.716 0.705 0.110
α = 1.411 0.040 1.416 1.415 0.042
θ1 = 0.947 0.011 0.952 0.951 0.013
θ2 = 1.976 0.189 2.113 2.078 0.254

Weibull-
Lognormal-GPD

τ = 16.252 1.289 16.165 16.101 1.373
σ = 0.648 0.088 0.728 0.719 0.113
α = 1.402 0.097 1.440 1.432 0.096

λ = −0.018 0.174 0.041 0.034 0.178
θ1 = 0.947 0.011 0.952 0.951 0.013
θ2 = 1.988 0.218 2.106 2.070 0.291

Weibull-
Lognormal-Burr

τ = 16.253 1.290 16.14 16.106 1.376
σ = 0.649 0.089 0.725 0.718 0.113
α = 0.449 1.575 0.526 0.477 0.193
γ = 3.143 1.015 3.069 2.994 1.010
β = 0.001 0.039 0.391 0.358 0.260
θ1 = 0.947 0.011 0.952 0.951 0.013
θ2 = 1.976 0.189 2.045 2.015 0.273

Note: The figures are produced from the authors’ calculations.
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We then apply the 14 models to a vehicle insurance claims data set, which was col-
lected from http://www.businessandeconomics.mq.edu.au/our_departments/Applied_
Finance_and_Actuarial_Studies/research/books/GLMsforInsuranceData (accessed on 2
August 2020). There are 3911 claims in 2004 and 2005 ranging from $201.09 to $55,922.13.
For computation convenience, we model the claims in thousand dollars. Table 4 shows
that the Weibull-lognormal-GPD and Weibull-lognormal-Burr models are the two best
models in terms of all the test statistics covered. They are followed by the Weibull-Burr and
lognormal-Burr models, which produce the next lowest NLL, AIC, BIC, and DIC values.
As shown in Table 5, the fitted model quantiles and the empirical quantiles are reasonably
close under the two best models. It is noteworthy that the Weibull-lognormal-Pareto model
ranks only about fifth amongst the 14 models. For this model, the computed second thresh-
old (θ2 = 1312) turns out to be larger than the maximum claim amount observed in the
data. This implies that the Pareto tail part is not needed or preferred at all for the data
under this model, and the fitted model effectively becomes a Weibull-lognormal model. By
contrast, for the Weibull-lognormal-GPD and Weibull-lognormal-Burr models, the GPD
and Burr tail parts are important components that need to be incorporated (θ2 = 4.6 and
3.5). Similar observations can be made among the two-component models, in which the
GPD and Burr tails are selected over the Pareto tail. The estimated weights of the best
composite models are around w1 = 0.1 and w2 = 0.7. Table 6 gives the parameter estimates
of the three-component composite models, and again the MLE estimates and the Bayesian
estimates are roughly in line.

http://www.businessandeconomics.mq.edu.au/our_departments/Applied_Finance_and_Actuarial_Studies/research/books/GLMsforInsuranceData
http://www.businessandeconomics.mq.edu.au/our_departments/Applied_Finance_and_Actuarial_Studies/research/books/GLMsforInsuranceData
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Table 4. Fitting performances of 14 models on vehicle insurance claims data.

Model NLL AIC BIC KS DIC

Weibull 7132.74 (14) 14,269.47 (14) 14,282.02 (14) 0.1414 (13) 50,289 (14)
Lognormal 6567.94 (12) 13,139.87 (12) 13,152.42 (12) 0.0816 (5) 49,160 (12)

Pareto 6906.02 (13) 13,816.03 (13) 13,828.57 (13) 0.1471 (14) 49,836 (13)
Burr 6292.07 (10) 12,590.15 (10) 12,608.96 (10) 0.0911 (10) 48,609 (10)
GB2 6300.41 (11) 12,608.82 (11) 12,633.90 (11) 0.0783 (4) 48,627 (11)

Lognormal-Pareto 6281.18 (9) 12,568.36 (9) 12,587.17 (9) 0.0934 (12) 48,587 (9)
Lognormal-GPD 6153.72 (7) 12,315.43 (7) 12,340.52 (7) 0.0853 (8) 48,333 (7)
Lognormal-Burr 6076.13 (4) 12,162.27 (4) 12,193.62 (4) 0.0766 (3) 48,178 (4)
Weibull-Pareto 6249.84 (8) 12,505.67 (8) 12,524.49 (8) 0.0933 (11) 48,524 (8)
Weibull-GPD 6144.36 (6) 12,296.72 (6) 12,321.81 (6) 0.0891 (9) 48,314 (6)
Weibull-Burr 6062.21 (3) 12,134.43 (3) 12,165.78 (3) 0.0827 (7) 48,150 (3)

Weibull-Lognormal-Pareto 6088.95 (5) 12,187.91 (5) 12,219.27 (5) 0.0822 (6) 48,204 (5)
Weibull-Lognormal-GPD 5971.78 (1) 11,955.56 (1) 11,993.19 (1) 0.0764 (2) 48,090 (2)
Weibull-Lognormal-Burr 6025.74 (2) 12,065.48 (2) 12,109.38 (2) 0.0743 (1) 46,355 (1)

Table 5. Empirical and fitted composite model quantiles for vehicle insurance claims data.

Quantile Empirical Weibull-
Lognormal-Pareto

Weibull-
Lognormal-GPD

Weibull-
Lognormal-Burr

1% 0.234 0.250 0.250 0.252
5% 0.338 0.318 0.314 0.317
10% 0.354 0.361 0.353 0.358
25% 0.440 0.510 0.493 0.496
50% 1.045 0.964 0.961 0.968
75% 2.560 2.257 2.346 2.473
90% 5.813 5.464 5.762 5.711
95% 8.993 9.600 8.852 8.887
99% 18.845 28.889 18.167 18.842

Note: The figures are produced from the authors’ calculations.

Table 6. Parameter estimates of fitting three-component composite models to vehicle insurance
claims data.

Model
Maximum Likelihood Bayesian MCMC (Posterior Distribution)

Estimate Standard
Error Mean Median Standard

Deviation

Weibull-
Lognormal-

Pareto

τ = 7.373 0.331 7.383 7.376 0.326
σ = 1.789 0.047 1.797 1.795 0.063
α = 2.632 0.267 2.492 2.521 0.254
θ1 = 0.365 0.004 0.365 0.365 0.004
θ2 = 1312 1077 1054 1057 544

Weibull-
Lognormal-GPD

τ = 7.707 0.304 7.856 7.851 0.244
σ = 16.917 0.053 17.454 17.451 0.386
α = 4.483 0.016 4.428 4.428 0.039

λ = 12.717 0.054 12.444 12.443 0.122
θ1 = 0.366 0.003 0.357 0.357 0.003
θ2 = 4.626 0.033 4.699 4.699 0.093

Weibull-
Lognormal-Burr

τ = 7.647 0.341 7.784 7.943 0.258
σ = 12.401 0.210 12.392 12.288 0.231
α = 9.034 0.110 9.164 9.232 0.218
γ = 0.724 0.020 0.667 0.607 0.067
β = 35.198 0.371 35.297 35.595 0.514
θ1 = 0.367 0.004 0.366 0.366 0.003
θ2 = 3.538 0.092 3.683 3.848 0.255

Note: The figures are produced from the authors’ calculations.
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Blostein and Miljkovic (2019) proposed a grid map as a risk management tool for risk
managers to consider the trade-off between the best model based on the AIC or BIC and
the risk measure. It covers the entire space of models under consideration, and allows
one to have a comprehensive view of the different outcomes under different models. In
Figure 4, we extend this grid map idea into a 3D map, considering more than just one
model selection criterion. It can serve as a summary of the tail risk measures given by the
14 models being tested, comparing the tail estimates between the best models and the other
models under two chosen statistical criteria. For both data sets, it is informative to see that
the 99% value-at-risk (VaR) estimates are robust amongst the few best model candidates,
while there is a range of outcomes for the other less than optimal models (the 99% VaR is
calculated as the 99th percentile based on the fitted model). It appears that the risk measure
estimates become more and more stable and consistent as we move to progressively better
performing models. This 3D map can be seen as a new risk management tool and it would
be useful for risk managers to have an overview of the whole model space and examine
how the selection criteria would affect the resulting assessment of the risk. In particular, in
many other modelling cases, there could be several equally well-performing models which
produce significantly different risk measures, and this tool can provide a clear illustration
for more informed model selection. Note that other risk measures and selection criteria
than those in Figure 4 can be adopted in a similar way.
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three-component composite models (solid circles).

To our knowledge, regression has not been tested on any of the composite models
so far in the actuarial literature. We now explore applying regression under the proposed
model structure via the MLE method. Besides the claim amounts, the vehicle insurance
claims data set also contains some covariates including the exposure, vehicle age, driver
age, and gender (see Table 7). We select the best performing Weibull-lognormal-GPD model
(see Table 4) and assume that φ, µ, and β = (λ + θ2)/α are functions of the explanatory
variables, based on the first moment derived in Section 3. We use a log link function for φ

and β to ensure that they are non-negative, and an identity link function for µ2. It is very
interesting to observe from the results in Table 7 that different model components (and
so different claim sizes) point to different selections of covariates. For the largest claims,
all the tested covariates are statistically significant, in which the claim amounts tend to
increase as the exposure, vehicle age, and driver age decrease, and the claims are larger
for male drivers on average. By sharp contrast, most of these covariates are not significant
for the medium-sized claims and also the smallest claims. The only exception is the driver
age for the smallest claims, but its effect is opposite to that for the largest claims. These
differences are insightful in the sense that the underlying risk drivers can differ between
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the various sources or reasons behind the claims, and it is very important to take into
account these subtle discrepancies in order to obtain a more accurate price on the risk. A
final note is that while θ2 = 4.637 remains about the same level after embedding regression,
θ1 has increased to 0.734 (when compared to Table 6). The inclusion of the explanatory
variables has led to a larger allocation to the Weibull component but a smaller allocation to
the lognormal component.

Table 7. Parameter estimates and standard errors of fitting Weibull-lognormal-GPD regression model
to vehicle insurance claims data with covariates.

Model Component Covariate Estimate Standard
Error t-Ratio p-Value

Weibull Component
(small claims)

Intercept 0.850 0.644 1.32 0.19
Exposure −0.085 0.055 −1.54 0.12

Vehicle Age 0.233 0.253 0.92 0.36
Driver Age 1.921 0.013 143.55 0.00

Gender −0.012 0.009 −1.29 0.20

Lognormal
Component

(medium claims)

Intercept −57.411 26.128 −2.20 0.03
Exposure 8.179 26.821 0.30 0.76

Vehicle Age 7.670 5.425 1.41 0.16
Driver Age −5.023 4.670 −1.08 0.28

Gender −1.221 11.118 −0.11 0.91

GPD Component
(large claims)

Intercept 2.269 0.192 11.80 0.00
Exposure −1.028 0.186 −5.52 0.00

Vehicle Age −0.116 0.043 −2.71 0.01
Driver Age −0.049 0.023 −2.08 0.04

Gender 0.275 0.074 3.72 0.00
Note: The figures are produced from the authors’ calculations.

As a whole, it is interesting to see the gradual development over time in the area
of modelling individual claim amounts. As illustrated in Tables 1 and 4, the simple
models (Weibull, lognormal, Pareto) fail to capture the important features of the complete
data set when its size is large. More general models with additional parameters and so
more flexibility (Burr, GB2) are then explored as an alternative, which does bring some
improvement over the simple models. The two-component composite lognormal-kind
models represent a significant innovation in combining two distinct densities, though
these models do not always lead to obvious improvement over traditional three- and
four-parameter distributions. Later, some studies showed that two-component composite
Weibull-, Paralogistic-, and Inverse-Burr-kind models can produce better fitting results. In
the present work, we take a step ahead and demonstrate that a three-component composite
model, with the Weibull for small claims, lognormal for moderate claims, and a heavy
tail for large claims, can further improve the fitting performance. Moreover, based on the
estimated parameters, there is a rather objective guide for splitting the claims into different
groups, which can then be analysed separately for their own underlying features (e.g.,
Cebrián et al. 2003). This kind of separate analysis is particularly important for some long-
tailed lines of business, such as public and product liability, for which certain large claims
can delay significantly due to specific legal reasons. Note that the previous two-component
composite models, when fitted to the two insurance data sets, suggest a split at around
the 10% quantile, which is in line with the estimated values of w1 reported earlier. The
proposed three-component composite models can make a further differentiation between
moderate and large claim sizes.
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6. Concluding Remarks

We have constructed three new composite models for modelling individual claims in
general insurance. All our models are composed of a Weibull distribution for the smallest
claims, a lognormal distribution for the moderate claims, and a long-tailed distribution for
the largest claims. Under each proposed model, we treat four of the parameters as functions
of the other parameters. We have applied these models to two real-world insurance data
sets of fire claims and vehicle claims, via both maximum likelihood and Bayesian estimation
methods. Based on standard statistical criteria, the proposed three-component composite
models are shown to outperform the earlier two-component composite models. We have
also devised a 3D map for analysing the impact of selection criteria on the resulting risk
measures, and experimented with applying regression under a three-component composite
model, from which the effects of different covariates on different claim sizes are illustrated
and compared. Note that inflation has been very high in recent years, and can have a
serious impact on the claim sizes. Accordingly, it is advisable to adjust recent claim sizes
with suitable inflation indices before the claims modelling, similar to the Danish data set.

There are a few areas that would require more investigation. For the two data sets
considered, each of which has a few thousand observations, it appears that three distinct
components are adequate to describe the major data patterns. For other much larger data
sets, however, we conjecture that an incorporation of more than three components can
become an optimal choice. Additionally, if the data set is sufficiently large, clustering
techniques can be applied, and the corresponding results can be compared to those of the
proposed approach. When clustering methods are used, the next step is to fit a distribution
or multiple distributions to different claim sizes, while our proposed approach has the
convenience of performing both in one single step. Moreover, we select the Weibull and
then lognormal distributions because of their suitability for the smallest and medium-sized
claims, as shown and discussed earlier, and the fact that they have been the common choices
in the existing two-component composite models. While we use these two distributions
as the base for the first two components, it may be worthwhile to test other distributions
instead and see whether they can significantly improve the fitting performance. Finally, as in
Pigeon and Denuit (2011), heterogeneity of the two threshold parameters can be introduced
by setting appropriate mixing distributions. In this way, the threshold parameters are
allowed to differ between observations. There are also other interesting and related studies
such as those of Frees et al. (2016), Millennium and Kusumawati (2022), and Poufinas et al.
(2023).
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Appendix A

As shown in the example below, given the mean and variance, the limiting density
ratio of Weibull to lognormal tends to zero when x approaches infinity. This indicates that
the lognormal distribution has a heaver tail than the Weibull distribution.
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Figure A1. Density ratios of Weibull (3.8511, 0.7717) to Lognormal (1, 1) (left graph) and Weibull
(0.7071, 2) to Lognormal (−0.5881, 0.4915) (right graph).

For the Weibull-lognormal-Pareto model, one can derive the kth moment of X as below.
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The following plots show the JAGS outputs of MCMC simulation when fitting the
Weibull-lognormal-Pareto model to the Danish data, using uninformative uniform priors.
All the parameters τ, σ, α, θ1, and θ2 are included. For each parameter, the four graphs
include the history plot, posterior distribution function, posterior density function (in
histogram), and autocorrelation plot (between iterations). The history and autocorrelation
plots strongly suggest that the level of convergence to the underlying stationary distribution
is highly satisfactory (Spiegelhalter et al. 2003).
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Figure A2. History plot, posterior distribution function, posterior density function, and autocorrela-
tion plot of Weibull-lognormal-Pareto model parameters for Danish fire insurance claims data. (The
blue and purple lines represent two separate chains of simulations.)

Notes
1 The AIC is defined as −2l + 2np, and the BIC as −2l + np ln nd, where l is the computed maximum log-likelihood value, np

is the effective number of parameters estimated, and nd is the number of observations. The KS test statistic is calculated as
max|Fn(x)− F(x)|, that is, the maximum distance between the empirical and fitted distribution functions. The DIC is computed
as the posterior mean of the deviance plus the effective number of parameters under the Bayesian framework (Spiegelhalter et al.
2003).
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2 The link functions are ln∅ = ρ1,0 + ρ1,1x1 + ρ1,2x2 + ρ1,3x3 + ρ1,4x4, µ = ρ2,0 + ρ2,1x1 + ρ2,2x2 + ρ2,3x3 + ρ2,4x4, and lnβ =
ρ3,0 + ρ3,1x1 + ρ3,2x2 + ρ3,3x3 + ρ3,4x4, where ρ’s are the regression coefficients and x1, x2, x3, x4 are the four covariates. We have
checked the covariates in the data, and there is no multicollinearity issue.
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