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Abstract: In this study, we assess COVID-19-related mortality in Minnesota and Wisconsin with the
aim of demonstrating both the temporal dynamics and the magnitude of the pandemic’s influence
from an actuarial risk standpoint. In the initial segment of this paper, we discuss the methodology
successfully applied to describe associations in financial and engineering time series. By applying time
series analysis, specifically the autoregressive integrated with moving average methods (ARIMA),
to weekly mortality figures at the national or state level, we subsequently delve into a marginal
distribution examination of ARIMA residuals, addressing any deviation from the standard normality
assumption. Thereafter, copulas are utilized to architect joint distribution models across varied
geographical domains. The objective of this research is to offer a robust statistical model that utilizes
observed mortality datasets from neighboring states and nations to facilitate precise short-term
mortality projections. In the subsequent section, our focus shifts to a detailed scrutiny of the statistical
interdependencies manifesting between Minnesota and Wisconsin’s weekly COVID-19 mortality
figures, adjusted for the time series structure. Leveraging open-source data made available by
the CDC and pertinent U.S. state government entities, we apply the ARIMA methodology with
subsequent residual distribution modeling. To establish dependence patterns between the states,
pair copulas are employed to articulate the relationships between the ARIMA residuals, drawing
from fully parametric models. We explore several classes of copulas, comprising both elliptic and
Archimedean families. Emphasis is placed on copula model selection. Student t-copula with the
marginals modeled by non-standard t-distribution is suggested for ARIMA residuals of Minnesota
and Wisconsin COVID mortality as the model of choice based on information criteria and tail
cumulation. The copula approach is suggested for the construction of short-term prediction intervals
for COVID-19 mortality based on publicly available data.

Keywords: COVID-19; mortality; time series (ARIMA) models; copula models; elliptic copulas;
Archimedean family

1. Introduction

COVID-19 was first detected in late 2019, and by early 2020, infections were recorded
in most countries around the world, leading to one of the largest pandemics in a hundred
years. The pandemic initially manifested as excess mortality in many countries and regions,
and was not necessarily attributed to known diseases. When the cause and character
of the pandemic were revealed, it became easier to attribute known mortality cases as
COVID-19-caused or COVID-19-related. Both overall and excess mortality on one hand
and COVID-19-attributed mortality on the other hand should be analyzed in order to
observe the course of the pandemic and predict its future development (Du et al. 2020).

The primary objective of this study is to develop the framework which will make it
possible to establish possible association of pandemic mortality between geographically
close regions and use it for short-term mortality forecasts. Our approach is to analyze
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adjacent states of the U.S. using publicly open data provided by state-level government and
public health offices. We will illustrate the suggested framework with the joint COVID-19
mortality model for two upper-midwestern states: Minnesota and Wisconsin. The fully
parametric copula model can be used for short-term forecasting and simulation of the
mortality pattern development.

Mortality data can be obtained in two ways: the first way, which we use in this paper,
is to analyze COVID-19-attributed mortality using open-source data provided by state-level
health organizations. This leaves open the issue of proper attribution, and will probably
miss the point of indirect effects of the pandemic (deteriorating or overwhelmed health
services leading to increased mortality due to cancer and heart diseases, as well as mortality
caused by negative effects on the social environment, such as stress and suicides). That is
why an alternative approach would be to address the overall mortality for the pandemic
period or the excess mortality calculated as additional deaths over the baseline mortality
measured as the long-term average (Britt et al. 2023).

The reason we chose the first approach in this paper is that along with the easy
availability of weekly data, our chosen approach tackles the drawbacks of the excess
mortality approach, such as the ambiguity of average calculation and the inability to
sort out the causes of death. We are likely to see a higher number of suicides, and their
relationship to COVID-19 is not entirely clear. On the other hand, a lower number of
traffic accidents and deaths caused by competing viral infections (like the common flu)
can be associated with the COVID-19-induced preventive measures (social distancing,
masking, etc.).

Following the first approach of restricting ourselves to directly attributed COVID-
19-related mortality, we will study two distinct but synchronized datasets for Minnesota
(MN) and Wisconsin (WI) containing the weekly number of deaths reported by the states
as COVID-19-related. Our approach consists of a two-stage modeling process: first, we
apply time series analysis in the Box–Jenkins or ARIMA framework to take into account
the week-to-week autocorrelations in Minnesota and Wisconsin data. Then, we analyze the
residuals of the time series analysis (controlled for autocorrelations). What is commonly
encountered in financial time series, and may be typical for similar applications, is the
violation of residual normality assumption. In order to develop a fully parametric model
for the joint distribution of residuals, we use non-standard Student t and skewed t models
to estimate the marginals. After that, we look for an association between the neighboring
states, assuming possible non-linear tail dependence, and model it via copulas. We consider
both elliptic copulas (Gaussian and t-copulas) and copulas from the Archimedean family
(Clayton, Gumbel–Hougaard, etc.). The emphasis is placed on appropriate copula model
selection and the construction of predictive models. Comparing the data on COVID-19-
related deaths to excess mortality in future might help us to discover realistic sources of
mortality dependence for geographically close areas.

There are multiple approaches to COVID-19 modeling. For a review of early COVID-
19 models, see (Adiga et al. 2020). Another review of epidemic forecasting was presented
by the Delphi group in (Rosenfeld and Tibshirani 2021). Various ensemble models were
suggested by the Center for disease control (CDC) during 2020–2023 (Johansson et al.
2020), see also (Imperial College COVID Response Team 2022). A Bayesian approach to
the reconstruction of the pandemic in the U.S. was suggested in (Chitwood et al. 2022).
Problems with traditional SIR models under uncertainty and model identifiability were
summarized in (Piazzola et al. 2021). Some of these problems, especially in the case of
complex multivariable models, include issues with data collection, overreporting, and
underreporting, and cause misrepresentation.

The autoregressive integrated with moving average methods (ARIMA) time series
approach to mortality modeling was introduced in (Lee and Carter 1992). A more ad-
vanced time series technique, threshold ARIMA or self-exciting threshold autoregressive
model (SETAR), was used in (Watier and Richardson 1995) to analyze epidemiological
time series. In the COVID-19 context, several recent publications suggested the use of
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time series analysis. See, for example, (Doornik et al. 2022), (Bhattacharyya et al. 2022)
and (Oliveira and Moral 2021); all of these studies applied daily time series to short-term
forecasting. (Sahai et al. 2020) provided daily forecasts to five large geographically sep-
arated countries. The problems associated with this approach are discussed in (Bilinski
and Salomon 2021). More sophisticated prediction techniques of mortality forecasts in-
clude autoregressive neural networks (Conde-Gutiérrez et al. 2021) and model-free Euler
methods (Antulov-Fantulin and Böttcher 2022). ARIMA, along with vector autoregression,
was applied to COVID-19-related excess mortality data in (Britt et al. 2023). Instead of
addressing covariates of COVID-19 mortality, we will concentrate on available mortality
data and restrict ourselves to basic ARIMA analysis for separate geographical regions
followed by copula analysis of interregional association.

Copula models have also been applied to analyze COVID-19 data, e.g., the dependence
of mortality on temperature (Alanazi 2021) or other external factors (Novianti et al. 2021).
A comprehensive analysis of COVID-19 data with vine copulas is offered by (Ansell and
Dalla Valle 2023). A study of interstate dependence in (Kim 2022) analyzes daily mortality
data collected from fifty states in the U.S.A and D.C. (Kim 2022) uses the Gaussian copula
marginal regression approach (GCMR), utilizing the principal component method and
ARMA structure of copula dynamic conditional correlation to model and compare local
COVID-19 mortality dynamics, concentrating on the states of California, Florida, New York,
and Texas.

We follow the line of research suggested by (Kim 2022) but take a different approach.
First, we use weekly data to minimize the effect of seasonality and reporting delay issues.
We use the deaths officially attributed to COVID-19 to avoid misinterpretation of the causes
of death. Second, we apply copula analysis to the residuals of time series models, which
allows us to separate cross-correlation between states from the autocorrelation effects. This
approach also makes it possible to directly address non-normality (skewness and fat tails)
of the residuals allowing for marginal model selection and to use essentially non-Gaussian
models such as Archimedean copulas. This approach has been suggested by (Ane et al.
2008) and applied to financial applications in (Shemyakin and Kniazev 2017).

Section 2 contains a basic description of Box–Jenkins methodology as applied in
the present study, concentrating on model identification and diagnostic tools. Section 3
addresses marginal distribution analysis of the residuals, Section 4 introduces copulas,
and Section 5 discusses the methods of copula model selection for the joint distribution
of residuals.

Section 6 contains the results of applying ARIMA with copula analysis of residuals
to COVID-19-related mortality in Minnesota and Wisconsin for 2020–2023. The principal
conclusions are summarized in Section 7.

2. Arima
ARIMA (Box–Jenkins Models)

ARIMA (autoregressive integrated moving averages) methodology, also known as
Box–Jenkins models (Box and Jenkins 1970), also (Box 2015) stands for autoregressive
models with lag (order) p = 1, 2, . . . for the single variable time series Yt, t = 1, . . . , T

Zt = a0 + a1Zt−1 + . . . apZt−p + εt, εt ∼ N(0, σ2), (1)

integrated with moving average models with lag q = 1, 2, . . .

Zt = εt + b1εt−1 + . . . bqεt−p, εt ∼ N(0, σ2), (2)

applied to differences Zt order d = 0, 1, 2, . . . in the initial time series Yt,

Zt = DdYt, DYt = Yt −Yt−1, DdYt = DDd−1Yt. (3)
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Differencing with d > 0 makes it possible to include non-stationary models in the
ARIMA (p, d, q) framework along with stationary ARIMA (p, 0, q), also known as ARMA
(p, q). The general ARIMA (p, d, q) model can be represented (Hamilton 1994) with the
help of backshift (lag) operator LYt = Yt−1, such that D = 1− L, as

(
1−

p

∑
i=1

aiLi)(1− L)dYt = δ +
(
1−

q

∑
i=1

biLi)εi. (4)

ARIMA model selection requires the determination of parameters p, d, q and subse-
quent estimation of p + q + 1 parameters (â0, . . . , âp, b̂1, . . . , b̂q). This estimation is usually
carried out via the method of maximum likelihood or Bayesian approach. It provides both
fitted values Ŷt for t = 1, . . . , T and forecasts Ŷt for t > T, calculated recursively using
residuals ε̂t = Ŷt −Yt.

It is common to apply unit root or more general stationarity tests to determine the
differencing order d; however, other considerations can be used to suggest stationarity
or non-stationarity, including the behavior of ACF (auto-regressive function) and PACF
(partial auto-regressive function). Then, one can use likelihood-based information criteria
such as Akaike Information Criterion (AIC) (Akaike 1974) and Bayesian or Schwarz Infor-
mation Criterion (BIC) (Schwarz 1978) to determine the optimal number of lags p and q.
Standard definitions of information criteria in terms of likelihood function of the data x and
parameter θ with likelihood L(x; θ) are: deviance D(θ) = −2lnL(x; θ), AIC = D(θ̂) + 2k;
BIC = D(θ̂) + k log n, where θ̂ is the value of MLE, k is the number of parameters and
n is the sample size. Thus, AIC and BIC favor smaller models with lower values of p
and q. Notice, however, that increasing d does not formally involve introducing addi-
tional parameters; therefore, information criteria should not be used to determine the
differencing order.

If the lags p and q are chosen to be too low, residual autocorrelation will manifest itself
in the results of Box–Pierce and Ljung–Box tests and graphical analysis of residual ACF
and PACF. If they are too high, overparameterization will typically reveal itself in the form
of large standard errors of parametric estimates.

3. Marginal Distribution Analysis of Residuals

Following the methodology discussed in detail in (Shemyakin and Kniazev 2017) and
already widely used in applications to finance (Ane et al. 2008), analysis of linear and
non-linear (copula) dependence of the variables of interest is applied to the residuals of
ARIMA models for their marginal distributions. The first step is to check the normality
of the individual residuals. Technically speaking, the absence of normality will reveal a
violation of basic ARIMA assumptions. However, we can treat it as an indication that, along
with serial correlation, there are other factors at play, including possible cross-correlation
between the variables to be further studied in Section 4.

Standard normality testing procedures include Anderson–Darling, Kolmogorov–
Smirnov and Shapiro–Wilk goodness-of-fit tests. If the hypothesis of normality is rejected,
other distribution models can be considered, with Student t-distribution being a logical
choice. Two main effects which could be discovered in histograms and q − q plots of
the residuals are the increased probability of large deviations (fat tails) and/or skewness
bringing about asymmetry in the left and right tails. Most popular models addressing both
effects include Student t-distribution model with symmetric or asymmetric tails (centered
t-distribution and skewed t-distribution, see (Fernandez and Steel 1998)).

One may suggest that if we fail to find a feasible parametric model for the marginal
distribution of residuals, the other possibility is to use a non-parametric model for marginals
bringing about a semi-parametric copula model. For our purpose of short-term prediction
and simulation of mortality development, the fully parametric approach is more attractive
due to its higher prediction power. However, misspecification of the marginals may present
an issue we should be ready to address.
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4. Joint Distribution Analysis via Copulas

A standard (but often insufficient) measure of association between two variables is
provided by Pearson’s sample correlation. In multiple applications to economics and
finance, we observe Pearson’s correlation as a measure of linear dependence missing some
non-linear or tail-related association. Copula models are known to provide a good tool for
addressing non-linear statistical dependence.

4.1. Overview of Copula Models

The copula approach has been very popular and successful recently. It makes it pos-
sible to estimate the joint distribution of two (or more) random variables by modeling
their marginal distributions first and then analyzing their dependence structure. In this
paper, we will restrict our attention to pair copulas representing the case of two vari-
ables. Possible extensions using vine copulas, hierarchical Archimedean or the hierarchical
Kendall’s approach are well known and their summary can be found, for instance, in
(Shemyakin and Kniazev 2017).

Let X and Y be two random variables with respective c.d.f.s u = F(x) and v = G(y).
Then, we represent their joint distribution P(X ≤ x, Y ≤ y) as C(F(x), G(y)|α) = C(u, v|α),
where u and v are marginal distributions, C is a copula function: a binary function with
special properties, and α is the association parameter measuring the strength of dependence.

The main advantage of using copulas to model joint distributions relates to the Sklar’s
theorem, which asserts that not only is any copula function of u and v a valid joint c.d.f. of
the vector (u, v), but conversely, any joint distribution function may be represented as a
copula function of the marginals. This yields an attractive practical feature, making it possi-
ble to separate marginal distributions modeling (using the parametric approach suggested
in Section 3 or non-parametric estimation) from parametric modeling of their association.
In the simplest cases we will consider, association parameter α has dimensionality of 1 or 2.

4.2. Archimedean Copulas

Archimedean pair copulas can be defined through its generator, a convex continuous
strictly decreasing non-negative function ϕ(t; α) defined for t ∈ [0, 1], such that ϕ(1) = 0.
The Archimedean copula is defined as C(u, v) = ϕ[−1](ϕ(u; α) + ϕ(v; α)), where [−1]
stands for pseudo-inverse. We will consider two popular one-parametric families of pair
copulas, which are often encountered in applications.

C1. Clayton’s copula

P(X ≤ x, Y ≤ y) = C1(u, v|α) = max
{
(uα + vα − 1)1/α, 0

}
, α ∈ [−1, 0) ∪ (0, ∞);

C2. Gumbel–Hougaard’s copula

P(X ≤ x, Y ≤ y) = C2(u, v|α) = exp
{
−
[
(− ln u)α + (− ln v)α

]1/α}, 1 ≤ α < ∞;

For most Archimedean families, there exist simple relationships between the associ-
ation parameter α and Kendall’s concordance τ defined in (Kendall 1938). Kendall’s τ is
widely used as a non-parametric measure of association in statistical dependence studies, as
a distribution-free alternative to Pearson’s correlation. We can express association α for both
copula models above in terms of Kendall’s concordance as C(u, v|α) = C(u, v|α(τ)).The
relationship between α and τ for model C1 is τ = α/(α + 2) , and for model C2 it is
τ = 1− 1/α.

These two families are known to effectively model dependence in the tails of the
joint distribution (bivariate extremes). Clayton’s copula helps us to address the lower
tail dependence (positive or negative τ), and the Gumbel–Hougaard copula models the
upper tail dependence for positive τ. Along with these, we can consider dual (survival)
versions of these, as described in (Wifvat et al. 2020). For instance, we might consider a
dual (survival) version of Clayton’s copula constructed using marginal survival functions
rather than distribution functions.
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C3. Dual (survival) Clayton’s copula

P(X > x, Y > y) = C3(1− u, 1− v|α) = 1− u− v + C1(u, v|α).

Clayton’s survival copula C3, along with Gumbel–Hougaard C2 is convenient when
the attention is concentrated at the right (upper) tails, and therefore may be critical in
mortality studies addressing epidemic outbreaks.

Extension to the case of more than two variables for Archimedean families is non-
trivial when pairwise associations are different and requires the introduction of vine copulas
or hierarchical structures.

4.3. Elliptical Copulas

Elliptical copulas form another important class of copula functions. One of the main
advantages of elliptical copula construction in comparison to Archimedean families is
its easy extension to the case of d > 2 marginal distributions. However, due to their
definitions through the inverses of the distribution functions, one can expect a lot more
technical difficulties during the parameter estimation and simulation. The most widely
used elliptical copulas are Gaussian and Student t-copula families.

C4. Gaussian copula, combined with marginal distributions u = F(x) and v = G(x)
of paired data (x, y), defines the joint distribution H(x, y) of vector (x, y) as

P(X ≤ x, Y ≤ y) = CG(u, v|ρ) = Φ2,ρ(Φ−1(u), Φ−1(v)), (5)

where Φ is the standard normal distribution and Φ2,ρ is bivariate normal with zero mean,
unit variances and correlation ρ.

C5. Two-parametric Student’s t-copula family (Demarta and McNeil 2005) is another
popular choice

P(X ≤ x, Y ≤ y) = Ct(u, v|ρ, ν) = T2,ρ,ν(T−1
ν1

(u), T−1
ν2

(v), (6)

where Tν is a t-distribution with ν degrees of freedom, and T2,ρ,ν is bivariate t-distribution
with ν degrees of freedom and correlation ρ. In this case, the copula parameter is two-
dimensional: α = (ρ, ν).

The relationship between ρ and τ for all elliptical copulas is τ = 2
π arcsin ρ.

5. Copula Model Selection

Copula model selection requires both choosing a class of copulas (Clayton, Gumbel–
Hougaard, Gaussian, Student, etc.) and the estimation of copula parameters for these
classes. While estimation within a given class can be optimized by using maximum
likelihood (MLE) or Bayesian estimators, the non-nested models obtained for different
copula families can be compared via

• Likelihood-based information criteria (AIC and BIC).
• Concordance (Kendall’s τ).
• Goodness of fit.
• Tail dependence.

Comparison of AIC and BIC values for representatives of each copula family may
provide a good model selection tool based on the likelihood. It is worth noting that BIC
carries a higher penalty than AIC for the size of the model expressed as the number of
parameters, so it tends to favor smaller models. This is especially important for smaller
sample sizes.

As stated above, the copula parameters for both one-parameter Archimedean and
elliptical copulas can be explicitly expressed in terms of Kendall’s tau. Thus, each class
of copulas contains the best candidate C(u, v|α̂), where α̂ is the MLE, corresponding to
τ̂ = τ(α̂). Therefore, another standard approach will require comparing the values of τ̂
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across the copula classes with the empirical concordance τ∗ calculated directly from the
data. The smaller distance |τ̂ − τ∗| corresponds to the better model.

To measure the goodness of fit of the model, one can define the distance between the
empirical c.d.f. F∗n (x) and the model c.d.f. F(x). The Kolmogorov–Smirnov statistic is
defined as

dKS(F∗n (x), F(x)) = sup | F∗n (x)− F(x) | (7)

and can be used for goodness-of-fit testing. Another good choice is the Cramer–von Mises statistic

dCvM(F∗n (x), F(x)) =
∫ ∞

−∞
[F∗n (x)− F(x)]2dF(x) (8)

In multidimensional situations, finding critical values for these statistics might be
problematic. However, if the final goal is to compare the values of dKS and dCvM for the
best representatives (MLEs) of copula families, this relative analysis can provide a reliable
tool of model selection (Shemyakin and Kniazev 2017).

Approximate p-values for the default test statistic from the Cramer–von Mises func-
tional, as detailed in (Genest et al. 2009), can be derived either through a parametric
bootstrap or a more expedient multiplier method. Using the parametric bootstrap, one can
estimate dependence parameters for most copula families. With the multiplier method,
rank-based strategies apply in bivariate scenarios, while only maximum pseudo-likelihood
estimation is viable for multivariate cases. The computational advantage of the multiplier
method demands additional programming due to required partial derivative calculations
for each copula family.

Tail dependence is the characteristic that describes the behavior of bivariate extremes
occurring in the tails of the distributions corresponding to the lower-left and upper-right
corners of the square (u, v) ∈ [0, 1]× [0, 1]. The definitions of tail dependence coefficients
for copulas C(u, v) with marginals u = F(x) and v = G(y) are as follows:

Lower tail dependence coefficient

λl = lim
q→0+

P(F(X) ≤ q|G(Y) ≤ q) = lim
q→0+

C(q, q)
q

.

Upper tail dependence coefficient

λu = lim
q→1−

P(F(X) > q)|G(Y) > q) = lim
q→1−

1− 2q + C(q, q)
1− q

.

One-parametric Archimedean copulas exhibit only either lower (e.g., C1) or upper
(e.g., C2, C3) tail dependence, while the t-copula family is characterized by symmetric
lower and upper tails. Thus, when selecting an accurate copula model for specific data,
one should consider whether the data display upper and/or lower tail dependence, and
whether both tails are of equal importance for the objective of the study. In our case,
upper tails corresponding to pandemic outbreaks may play a more significant role. The
following closed-form expressions can be used to calculate the lower and/or upper tail
dependence coefficients of the selected five copula models through their implied τ values:
C1: λl = 2

τ−1
2τ , λu = 0, C2: λl = 0, λu = 2− 21−τ , C3: λl = 0, λu = 2

τ−1
2τ , C4: λl = λu = 0.

There is a special expression for tail dependence in case of t-copulas class C5 with
degrees of freedom ν and correlation ρ:

λl = λu = Tν+1

(
−
√

ν + 1

√
1− ρ

1 + ρ

)
.

In order to use model tail dependence as a criterion of model selection, we may want
to compare the closed form results for copula families to an empirical measure of tail
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dependence suggested in (Brechmann 2010): empirical tail cumulation , defined for both
tails for quantile q and bivariate sample (ui, vi) ∈ [0, 1]2, i = 1, . . . , n:

γ
(
l q) =

1
n

n

∑
i=1

Iui≤
√

q,vi≤
√

q − q, γu(q) =
1
n

n

∑
i=1

Iui>
√

q,vi>
√

q − q, (9)

which also makes it possible to match copula models with empirical pseudo-observations
(u, v). Upper tail cumulation can be defined similarly. Unfortunately, this approach, while
providing some graphical insights, does not allow us to clearly distinguish different tail
dependence patterns, so it has to be used cautiously.

6. COVID-19 in Minnesota and Wisconsin

We will use an example of two U.S. upper midwestern states: Minnesota (MN) and
Wisconsin (WI). They share a common border and certain demographic characteristics, with
substantial rural populations along with some highly populated metro areas (Minneapo-
lis/St. Paul in Minnesota and Milwaukee in Wisconsin). It is not uncommon for residents
of one state to commute to the other for work and entertainment. Traffic across the state
border is substantial, utilizing seven bridges and three major highway crossings between
the states. According to (O’Neill 2016), based on the U.S. census data, over 242,000 workers
commuted into the Twin Cities metro area in Minnesota, with one-third of them estimated
to be coming from Wisconsin. In addition, over 97,000 commuters travel to outflow jobs
(including Wisconsin) from the Twin Cities metro area.

The geographical and cultural proximity of the two observed states suggests a certain
communality in the pandemic development and a possible similarity in their mortality
patterns. These could be due to the global and nationwide development of the disease,
but also to the direct spread of the disease across the border, since no specific restrictions
were applied to interstate travel. Also, Minnesota and Wisconsin share similar climate
conditions, out-of-state travel patterns, and school and college calendars which may affect
the pandemic spread.

However, there were also differences between how the two states and their healthcare
systems addressed COVID-19. Minnesota introduced a comprehensive program of social
distancing measures as early as the summer of 2020. In the meantime, Wisconsin imposed
much weaker restrictions, with fitness clubs and bars remaining open for most of the
summer. For winter sports, most indoor gyms and ski areas in Wisconsin were open in
2020–2021, while Minnesota had imposed substantial restrictions. Statewide and local
school and college social distancing measures were also different.

We do not aim to provide a comparative analysis of the two states’ COVID-19 mortality
patterns or of the effect of health policy decisions. The focus of our study is on finding
dependence patterns in two states’ COVID-19 mortality numbers. For that purpose, we first
apply one-dimensional time series analysis to each state’s mortality data separately. That
makes it possible to filter out the major trends in disease development and autocorrelation
within the time series. On the second stage, we apply copula analysis to the time series
residuals. It will facilitate capturing the finer effect of the association between two time
series. The purpose of this analysis is to establish statistical patterns which would allow one
to use one state’s data for another state’s mortality forecast or build joint forecast models
for two states.

The choice of these two upper Midwestern states is also explained by the easy avail-
ability of COVID-19 data in a similar synchronized weekly format. In both Minnesota
and Wisconsin, the first COVID-19-related deaths were recorded 19 March 2020. It would
be interesting to consider mortality for different age groups, but full age data were not
easily available in open-source format. Further analysis is intended to be expanded to other
adjacent states and different countries in the world, but in that case, the difference in public
data formats may be substantial.

We retrieved raw COVID-19 mortality data from the Department of Health of MN
(Minnesota Department of Health 2023) and WI (WI Dept of Health Services 2023). To
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perform ARIMA analysis of mortality, we needed to determine the total number of deaths
per week reported by the states as COVID-19-related. Deaths with laboratory testing
are attributed to COVID-19 if: (a) A positive PCR test (confirmed case) or antigen test
(probable case) for SARS-CoV-2 and COVID-19 was listed on the death certificate or (b)
clinical history/autopsy findings provided evidence that the death was related to COVID-
19 without an alternative cause (i.e., drowning, homicide, trauma, etc.). The observation
window covers 172 consecutive weeks ranging from March 2020 to June 2023. Figure 1
shows the weekly mortality rates per 100,000 in MN and WI. Two lines on the graph
are similar, but it remains to be seen if this similarity can be explained by the parallel
autocorrelation patterns or there is also a distinct association between two time series going
beyond that.

Figure 1. Weekly mortality rates for MN and WI.

We applied the Zivot–Andrews structural break test (Zivot and Andrews 1992) to
consider a possible change of pattern in the time series. The potential break point for
MN was detected at position 43; the potential break point for WI was at position 42.
Both correspond to obvious return-to-school jumps in the mortality-rate curves in fall 2020.
However, we chose to use entire time series for further analysis, assuming the account for
minor structural breaks was not instrumental for overall modeling, but sample size was an
issue. Analysis of daily instead of weekly data would increase the sample size, but would
also raise issues with seasonality and misspecification of reporting dates.

We may argue that ARIMA provides an adequate tool for modeling pandemic mortal-
ity since the period of study includes both the onset and the later stages of the disease. Even
with three discernable peaks during the observation period, the autocorrelation pattern
seems to be at least equally important, especially for the purpose of short-term forecast.
Therefore, ARIMA, or even ARMA, if the data pass the test of stationarity, presents a viable
modeling choice.

6.1. ARIMA Modeling

The next step is to check the principle assumptions of ARIMA methodology for weekly
mortality in Minnesota and Wisconsin. As demonstrated by the ADF (advanced Dickey–Fuller)
unit root test rejected with p < 0.01 and the KPSS (Kwiatkowski–Phillips–Schmidt–Shin)
stationarity test not rejected with p > 0.1, the entire time series may be considered stationary,
which is not surprising, since the observation window includes both the onset and outset of
the active pandemic. Thus, the difference order in ARIMA (p, d, q) is suggested as d = 0.

We have tried all combinations of AR and MA components from 0 to 4 and, based on
the information criteria and significance analysis of the model coefficients, we can suggest
ARIMA (3,0,0) (suggested by BIC) or ARIMA (4,0,2) to describe the behavior of the time
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series for MN, and ARIMA (3,0,0) for WI. The final summary for MN and WI is given
in Table 1. The BIC values were the smallest of all the tested lags. After estimation in
ARIMA models of choice, we performed basic residual analysis tests. The Box–Pierce and
Box–Ljung tests, as well as the analysis of residual ACFs and PACFs, confirmed the absence
of serial correlation in the residuals. Both tests for the selected models would not reject the
null hypothesis (for p-values, see the last column of Table 1).

Table 1. Model comparison for COVID-19 mortality in Minnesota (MN) and Wisconsin (WI).

State Parameters α1 α2 α3 BIC Box–Ljung p-Value

MN Coef 0.8936 0.2415 −0.2320
ARIMA(3,0,0) SE 0.0736 0.0987 0.0738 362 0.55

Z-value 12.14 2.45 −3.14

WI Coef 0.8718 0.2481 −0.2001
ARIMA(3,0,0) SE 0.0742 0.0978 0.0743 404 0.98

Z-value 11.76 2.54 −2.69

6.2. Marginal Distribution Analysis of Residuals

Along the lines of Section 3, we began with the normality test for the residuals of
MN and WI series denoted by xt and yt. Violation of normality would substantially
affect the further results. We can graphically observe fat tails (and possibly, skewness)
in the q − q plots. With no residual autocorrelation in xt and yt, they can be treated as
independent samples.

Then, we performed a standard normality check, and the results of the Anderson–
Darling and the Shapiro–Wilk tests indicate that the residuals are not normally distributed.
Both tests yield extremely small p-values (less than 2.2× 10−16), indicating strong evidence
against the null hypothesis of normality and confirming what we see in Figure 2. The next
model to be logically considered is the non-central Student t-distribution with p.d.f.

t(x; ν, µ, σ) =
Γ((ν + 1)/2)
σ
√

νπΓ(ν/2)

(
1 +

1
ν

(
x− µ

σ

)2
)− ν+1

2

(10)

The numerical results of fitting the non-central Student t distribution to the ARIMA
residuals, along with goodness of fit, are summarized in Table 2.

Figure 2. Normal q-q Plots of ARIMA residuals for Minnesota (MN) and Wisconsin (WI).
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Table 2. Estimated parameters for Student t-distribution of residuals, Minnesota (MN) and Wiscon-
sin (WI).

Model Mean (µ) Standard Deviation (σ) Degrees of Freedom (d f ) KS p-Values

MN −0.06 (0.02) 0.20 (0.02) 1.53 (0.25) 0.40
WI −0.08 (0.02) 0.18 (0.02) 1.32 (0.20) 0.42

Graphical support for this hypothesis is provided by the q − q plots in Figure 3,
providing much better fit in the tails with the exception of a few outliers.

Figure 3. Student-t q-q Plots for ARIMA residuals for Minnesota (MN) and Wisconsin (WI).

Skewness does not seem to present a significant issue, so the generalization to the
class of skewed t-distribution, which we also considered

f (x; ν, µ, σ, α) =

2t(x; ν, µ, σ)T
(

ν
2 , ν

2 , α
x−µ

σ

)
, if x < µ

2t(x; ν, µ, σ)
[
1− T

(
ν
2 , ν

2 , α
x−µ

σ

)]
, if x ≥ µ

(11)

(compare (Fernandez and Steel 1998)), does not seem to be necessary. The choice of non-
skewed non-standard t-distribution is confirmed as viable by the values of information
criteria in Table 3 and histograms in Figure 4. This seems to present a difference from many
financial time series in which substantial skewness of residuals calls for the use of a skewed
t model (compare (Shemyakin and Kniazev 2017)).

Table 3. Comparison of Student t and skewed t distribution models.

Distribution AIC BIC

t MN 186.86 196.30
skewed-t MN 185.94 198.53

t-WI 185.94 196.49
skewed-t WI 189.24 201.83

In view of the test results, information criteria and graphical evidence, we will consider
marginal models for the ARIMA residuals for MN xt and WI yt, as suggested by two
respective lines of Table 2 as non-central t-distributions with c.d.f.s F(x) and G(y).
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Figure 4. Histograms of residuals and fitted distributions for Minnesota (MN) and Wisconsin (WI).

6.3. Joint Distribution of Residuals

Before performing the joint distribution analysis, we can visualize the relationship
between the two sets of residuals to get an idea of their dependency structure. The graphs in
Figure 5 represent standardized residuals of the ARIMA model (xt, yt) in the left panel and
transformed values (ut = F(xt), vt = G(yt)) using parametric estimates from Table 2 in the
right panel. The left panel shows some outliers caused by both the bivariate dependence
and the behavior of the marginal distributions, while the right panel illustrates lower and
upper tail dependence free of the marginal effect. Both suggest the use of a copula model.
Clustering of points both in the lower left and in the upper right corners may serve as a
clear indicator of tail dependence.

Figure 5. Scatterplots of residuals and transformed residuals.

Since both lower and upper tails seem to be present in Figure 5, we performed copula
analysis for all five families described in Section 4, using the tailless Gaussian C4 as a
benchmark. The best candidates in each family were selected via MLE. Some technical
difficulties were encountered in the case of Student t-copula, and numerical optimization
was performed using Nelder–Mead and Broyden–Fletcher–Goldfarb–Shanno methods.
The data for five families are summarized in Table 4, providing information criteria values,
model induced Kendall’s τ, calculated according to Section 4, Cramer–von Mises test p-
values and tail dependence coefficients (lower in case of C1, upper in case of C2 and C3,
symmetric lower and upper for C4 and C5). We can observe that the empirical Kendall’s
concordance value is τ̂ = 0.315. The best fit is indicated by the bold font.
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Table 4. Copula model Comparison Table.

Copula AIC BIC τ CvM λ

C1 Clayton −51.00 −47.85 0.348 0.004 0.471
C2 Gumbel–Hougaard −66.92 −63.78 0.345 0.070 0.392
C3 Clayton dual −59.01 −55.86 0.315 0.073 0.682
C4 Gaussian −54.31 −51.16 0.355 0.042 0
C5 Student-t −90.71 −84.42 0.301 0.772 0.773

To illustrate the results of copula modeling graphically, Figure 6 depicts transformed
residual data from the right panel of Figure 5 overlaid with the contour plots of fitted
copula models (C1 upper left, C2 lower left, C3 upper right and C5 lower right). It appears
that the clusters of points in both left lower and right upper corners of each panel (as well
as some outliers in both the upper-left and lower-right corners) are better explained by the
tail structure of the t-copula.

Figure 6. Scatterplots of residuals with contour plots of copula models.

It appears that the Student t-copula is the clear overall winner. The MLE esti-
mates of parameters for the selected model (with standard error in parentheses) are
ρ = 0.455(0.11), η = 1.365. As an alternative, we can consider the method of moment
estimates based on empirical value of τ: ρ = 0.475(0.08), η = 1.365. The main limi-
tation of t-copulas is the symmetry of lower and upper tails. If we extend the model
to skew t-copulas, which would make it possible to address two asymmetric tails, the
computational and numerical challenges of t-copula modeling discussed in (Hintz et al.
2022) become even more serious. Gumbel–Hougaard and dual (survival) Clayton models
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also deserve attention, since they adequately address the upper tail dependence being of
primary concern.

In order to provide some intuition for the tail dependence figures, Figure 7 con-
tains graphs of empirical tail cumulation compared with the tail behavior expected of
selected models. We generated 10,000 samples from each candidate copula model using
a bootstrap sampling method and chose quartile intervals for the lower and upper tails
([0.00, 0.25]&[0.75, 1.00]).

The left panel illustrates the lower tail cumulation and the right panel shows the
upper tails. Due to a relatively small sample size, the empirical tail cumulation curve is
rather glitchy and reveals the effect of outliers. The copula model curves are shown with a
95% confidence interval for the values of model (theoretical) tail cumulation. Clayton and
t-copula provide the best model for the lower tail, while dual Clayton, Gumbel–Hougaard
and t-copula provide a better fit for the upper tail.

Figure 7. Tail cumulation for copula models and empirical curve.

6.4. Construction of Prediction Intervals

If we consider the problem of short-term forecasting of COVID-19 mortality (with
standards being one week or four weeks ahead), the point forecasts for both Minnesota
(MN) and Wisconsin (WI) can be obtained by ARIMA for time horizon {T + 1, . . . , T + 4}
using coefficients α from Table 1 and available mortality data z1, . . . , zT recursively as

zMN,T+1 = αMN,1zMN,T + αMN,2zMN,T−1 + αMN,3zMN,T−2

zWI,T+1 = αWI,1zWI,T + αWI,2zWI,T−1 + αWI,3zWI,T−2

. . .

zMN,T+4 = αMN,1zMN,T+3 + αMN,2zMN,T+2 + αMN,3zMN,T+1

zWI,T+4 = αWI,1zWI,T+3 + αWI,2zWI,T+2 + αWI,3zWI,T+1.

However, in order to build prediction intervals (say, with (1− q)% prediction proba-
bility), one needs to simulate a large number N of independent identically distributed pairs
(xi

T+j, yi
T+j), i = 1, . . . , N, j = 1, . . . , 4, where the joint distribution of each pair is modeled

by t-copula C5 with parameters ρ = 0.455, η = 1.365 and marginals from Table 2. Then, we
generate N scenarios, i = 1, . . . , N,

zi
MN,T+1 = αMN,1zMN,T + αMN,2zMN,T−1 + αMN,3zMN,T−2 + xi

T+1

zi
WI,T+1 = αWI,1zWI,T + αWI,2zWI,T−1 + αWI,3zWI,T−2 + yi

T+1

. . .
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zi
MN,T+4 = αMN,1zi

MN,T+3 + αMN,2zi
MN,T+2 + αMN,3zi

MN,T+1 + xi
T+4

zi
WI,T+4 = αWI,1zi

WI,T+3 + αWI,2zi
WI,T+2 + αWI,3zi

WI,T+1 + yi
T+4.

Now, the intervals

(Zlower
MN,T+j, Zupper

MN,T+j), (Zlower
WI,T+j, Zupper

WI,T+j), j = 1, . . . , 4,

with their bounds corresponding to q/2% (lower) and (1− q)/2% (upper) sample per-
centiles of Zi

MN and Zi
WI , i = 1, . . . , N fulfil the purpose of approximate (1− q)% prediction.

7. Conclusions

We suggest ARIMA modeling as a simple tool for addressing mortality forecast for a
given geographical or administrative region at all pandemic stages using only open access
mortality data. The study of COVID-19-related mortality for Minnesota and Wisconsin
reveals somewhat similar autocorrelation patterns, reflecting significant temporal depen-
dence of weekly mortality on three previous weeks’ data. That should open up a possibility
for a short-term point forecast of pandemic mortality based on available past data.

However, in order to evaluate errors of such point forecasting and provide at least some
prediction intervals, one needs to perform a further residual analysis. This is especially
important when we consider that residual distributions fail tests for normality and exhibit
heavier tails. This would bring about underestimation of errors if we use techniques based
on the standard normality assumption.

One more level of complexity is added by analyzing data from adjacent regions. The
dependence pattern of residuals obtained for Minnesota and Wisconsin leads us to believe
that additional information on weekly mortality can be provided by studying the joint
distribution of residuals for several distinct areas. Copula models provide a powerful tool
for studying both linear and non-linear dependence of mortality in geographically close
regions. Therefore, the quality of forecast can be substantially improved by analyzing the
data obtained by the neighbors. The copula model selection plays an important role. Based
on our example, we can recommend the Student t-copula addressing both tails of the joint
distribution and Gumbel–Hougaard and dual Clayton copulas stressing the role of the
upper tail (high mortality outbreaks).

Copula models provide an opportunity to simulate joint distribution of mortality
across wider geographical areas using the public data obtained for every region separately.
Such simulation can generate multiple future scenarios, making it possible to estimate the
probabilities of catastrophic development of a pandemic. The paper contains a description
of the general methodology, as well as a specific example of COVID-19 development for
two U.S. states of Minnesota and Wisconsin.
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Abbreviations
The following abbreviations are used in this manuscript:

ACF Autocorrelation function.
ADF Augmented Dickey–Fuller test.
AIC Akaike information criterion.
ARIMA Autoregressive integrated with moving average models.
BIC Bayesian (Schwarz) information criterion.
CDC Center for disease control and prevention.
COVID-19 Coronavirus disease 2019.
CvM Cramer–von Mises goodness-of-fit test.
KPSS Kwiatkowski–Phillips–Schmidt–Shin test.
KS Kolmogorov–Smirnov goodness-of-fit test.
MLE Maximum likelihood estimation.
MN Minnesota.
PACF Partial autocorrelation function.
SETAR Self-exciting threshold autoregressive model.
SIR Susceptible/infected/recovered model.
WI Wisconsin.
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