
Citation: Hoencamp, Jori, Shashi

Jain, and Drona Kandhai. 2023. A

Semi-Static Replication Method for

Bermudan Swaptions under an

Affine Multi-Factor Model. Risks 11:

168. https://doi.org/10.3390/

risks11100168

Academic Editors: Dan Pirjol and

Lingjiong Zhu

Received: 25 August 2023

Revised: 13 September 2023

Accepted: 19 September 2023

Published: 26 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

risks

Article

A Semi-Static Replication Method for Bermudan Swaptions
under an Affine Multi-Factor Model
Jori Hoencamp 1,*, Shashi Jain 2 and Drona Kandhai 1

1 Informatics Institute, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands;
b.d.kandhai@uva.nl

2 Indian Institute of Science, Department of Management Studies, Bangalore 560012, India; shashijain@iisc.ac.in
* Correspondence: j.h.hoencamp@uva.nl

Abstract: We present a semi-static replication algorithm for Bermudan swaptions under an affine,
multi-factor term structure model. In contrast to dynamic replication, which needs to be continuously
updated as the market moves, a semi-static replication needs to be rebalanced on just a finite number
of instances. We show that the exotic derivative can be decomposed into a portfolio of vanilla discount
bond options, which mirrors its value as the market moves and can be priced in closed form. This
paves the way toward the efficient numerical simulation of xVA, market, and credit risk metrics
for which forward valuation is the key ingredient. The static portfolio composition is obtained by
regressing the target option’s value using an interpretable, artificial neural network. Leveraging
the universal approximation power of neural networks, we prove that the replication error can be
arbitrarily small for a sufficiently large portfolio. A direct, a lower bound, and an upper bound
estimator for the Bermudan swaption price are inferred from the replication algorithm. Additionally,
closed-form error margins to the price statistics are determined. We practically study the accuracy
and convergence of the method through several numerical experiments. The results indicate that the
semi-static replication approaches the LSM benchmark with basis point accuracy and provides tight,
efficient error bounds. For in-model simulations, the semi-static replication outperforms a traditional
dynamic hedge.

Keywords: semi-static replication; Bermudan swaptions; affine term structure models

1. Introduction

The financial crisis of 2007–2008 firmly emphasized the importance of quantifying
counterparty credit risk (CCR), which is the risk that the counterparty will default on
the obligation and fail to fulfill its contractual agreements. Important indicators used to
measure and price CCR include expected exposure (EE), potential future exposure (PFE),
and various valuation adjustments (xVAs), which reflect credit, funding, and capital costs
related to OTC derivative trading Gregory (2015). Most of these metrics depend on the
distribution of the potential future losses resulting from a credit event. Due to the complex
nature of these distributions, practitioners resort to numerical methods like Monte Carlo
(MC) simulation to approximate the quantities. Typically, this involves scenario generation
for the underlying risk factors and subsequent valuation of the contract for each time-step
on each path Zhu and Pykhtin (2007). The latter is generally considered the most involved
aspect because it needs to be carried out for full portfolios. This poses a major computational
challenge to financial institutions. Efficient numerical methods for derivative valuation,
both on spot and future simulation dates, are therefore highly relevant.

To address this problem, we extend the concept of (semi-)static replication, which has
been extensively studied for, for example, equity derivatives, to interest rate derivatives.
A traditional dynamic replication, such as a delta hedge, is achieved by constructing an
asset portfolio that is rebalanced continuously through time as the market moves. A
static replication on the other hand is an asset portfolio that mirrors the value of the

Risks 2023, 11, 168. https://doi.org/10.3390/risks11100168 https://www.mdpi.com/journal/risks

https://doi.org/10.3390/risks11100168
https://doi.org/10.3390/risks11100168
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/risks
https://www.mdpi.com
https://orcid.org/0000-0002-2467-9332
https://doi.org/10.3390/risks11100168
https://www.mdpi.com/journal/risks
https://www.mdpi.com/article/10.3390/risks11100168?type=check_update&version=1

Risks 2023, 11, 168 2 of 41

derivative without the need for rebalancing. The weights of the portfolio composition are
so to speak static. In this work, we consider a semi-static hedge, which is a replicating
portfolio that needs to be updated on only a finite number of instances. Considering a
replication of vanilla products instead of the exotic derivative itself can greatly simplify its
risk-assessment. Typically, ample machinery is available to analyze vanilla instruments,
including closed-form prices and sensitivities.

In the equity world, the static replication problem has been addressed in the literature
by, for example, Breeden and Litzenberger (1978), Carr and Bowie (1994), Carr et al. (1999),
and Carr and Wu (2014). The main concept is to construct an infinite portfolio of short-dated
European options with a continuum of different strike prices. A different but comparable
approach is proposed in Derman et al. (1995). Here, a portfolio of European options
with a continuum of different maturities is constructed to replicate the boundary and
terminal conditions of exotic derivatives, such as knock-out options. The replication of an
American-style option is challenging as it involves a time-dependent exercise boundary,
giving rise to a free boundary problem. In Chung and Shih (2009), this is addressed by
composing a portfolio of European options with multiple strikes and maturities, and, in
Lokeshwar et al. (2022), a semi-static hedge is constructed using shallow neural network
approximations. However, in the field of interest rate (IR) modeling, this topic has received
little attention and the static replication of exotic IR derivatives remains largely an open
problem. Where equity options depend on the realization of a stock, IR derivatives depend
on the realization of a full term structure of interest rates, leveraging the complexity of the
hedge. The articles of Pelsser (2003) and Hagan (2005) are among the few contributions to
the literature, treating the static replication of guaranteed annuity options, and CMS swaps,
caps, and floors, respectively, with a portfolio of European swaptions.

In this work, we study the replication problem of Bermudan swaptions under an
affine term structure model, possibly multi-factor. Bermudan swaptions are a class of exotic
interest rate derivatives that are heavily traded in the OTC market. We show that such
a contract can be semi-statically replicated by a portfolio of short-maturity options, such
as discount bond options. We propose a regress-later approach, which is introduced in
Lokeshwar et al. (2022) for callable equity options. In Lokeshwar et al. (2022), the replication
method combines the approximation power of artificial neural networks (ANNs) with
the computational benefits of regress-later schemes. In traditional regress-now schemes,
such as that of Longstaff and Schwartz (2001), sampled realizations of the continuation
value are regressed against the realizations of the risk factors at the preceding monitor
date. Advanced variations in this algorithm, where the polynomial regression functions
are replaced by ANNs, include the work of Kohler et al. (2010), Lapeyre and Lelong (2019),
and Becker et al. (2020). In contrast, in regress-later schemes, the sampled realizations of
the continuation value are regressed against the realizations of the risk factors at the same
date. The continuation value at the preceding monitor date is then obtained by evaluating
the conditional expectation of this regression. An analysis and discussion of the benefits of
this approach can be found in Glasserman and Yu (2004) and an example of such a scheme
is presented in Jain and Oosterlee (2015).

Novel pricing algorithms that replace costly valuation functions with ANN-based
approximations have been the subject of many recent papers. An early attempt to ap-
proximate option prices in the Black–Scholes model can be attributed to Hutchinson et al.
(1994) and dates back to 1994. Since then, a great number of variations in this approach
have been investigated. A comprehensive overview of articles devoted to this topic can be
found in the literature review of Ruf and Wang (2020). An accessible introduction to neural
networks and an application to derivative valuation is, for example, given in the work of
Ferguson and Green (2018). A drawback of directly replacing value functions with ANNs
is that the method continues to rely on external pricing methodologies to provide input
to the training process. In that sense, it can accelerate, but not fully substitute, traditional
valuation routines.

Risks 2023, 11, 168 3 of 41

Other approaches in the literature consider an indirect use of ANNs and therefore do
not depend on classical benchmarks for training. A noteworthy example is the development
of deep backward SDE solvers, which, in a financial context, have been introduced by
Henry-Labordere (2017). Where the dynamics of financial risk factors are typically captured
by forward SDEs, option prices tend to be the solution to backward SDEs. An application
to Bermudan swaption valuation is treated in Wang et al. (2018) and a generalization to
a CCR management framework is proposed in Gnoatto et al. (2020). Another example is
the development of the deep optimal stopping (DOS) algorithm by Becker et al. (2019).
They propose an ANN-based method by directly learning the optimal stopping strategy
of callable options, without depending on the approximation of continuation values. In
the work of Andersson and Oosterlee (2021), the DOS algorithm is applied to compose
exposure profiles for Bermudan contracts.

Our contribution to the existing literature is threefold. First, we propose a semi-static
replication method for Bermudan swaptions under a multi-factor short-rate model. In
the one-factor case, we argue that replication can be achieved with an options portfolio
written on a single discount bond. In the multi-factor case, replication can be achieved
with an options portfolio written on a basket of discount bonds. As such, we generalize the
Black–Scholes-embedded method presented in Lokeshwar et al. (2022) to an interest rate
modeling framework. Additionally we propose an alternative ANN design, such that a
replication with vanilla options can also be achieved in the multi-factor case (as opposed to
basket options). This facilitates highly efficient pricing, which is essential for credit risk
applications, such as exposure, VaR, and xVAs, which rely on frequent re-evaluations of
the portfolio.

Second, we propose a direct estimator and a lower and an upper bound estimator
to the contract’s value, which is implied by the semi-static replication. The lower bound
results from applying a non-optimal exercise strategy on an independent set of Monte
Carlo paths. The upper bound is based on the dual formulation of Haugh and Kogan (2004)
and Rogers (2002), which, in contrast to other work, can be obtained without resorting
to expensive nested simulations. We complement the study of Lokeshwar et al. (2022) by
deriving analytical error margins to the lower and upper bound estimators. This provides
a direct insight toward the approximation quality of the proposed estimators and proves
their convergence as the regression errors of the ANNs diminish.

Thirdly, we prove that any desired level of accuracy can be achieved in the replication
due to the universal approximating power of ANNs. We support this theoretical result with
a range of representative numerical experiments. We demonstrate the pricing accuracy
of the proposed algorithm by benchmarking to the established least-square method of
Longstaff and Schwartz (2001). The regression error and convergence of the method is
presented for different contract specifications. Lastly, we study the replication performance
for different ANN designs.

The paper is organized as follows: Section 2 introduces the mathematical setting,
describes the modeling framework, and provides the problem formulation. Section 3
provides a thorough introduction to the algorithm, motivates the use and interpretation of
neural networks, and treats the fitting procedure. Section 4 introduces the lower bound and
upper bound estimates to the true option price. In Section 5, we introduce the error bounds
on the direct, lower bound, and upper bound estimates brought forth by the algorithm.
We finalize the paper by illustrating the method through several numerical examples in
Section 6 and providing a conclusion in Section 7.

2. Mathematical Background

In this section, we describe the general framework for our computations and give a
detailed introduction to the Bermudan swaption pricing problem.

Risks 2023, 11, 168 4 of 41

2.1. Model Formulation

We consider a continuous-time financial market, defined on finite time horizon [0, T̄].
We additionally consider a probability space (Ω,F ,P), which represents all possible states
of the economy, and let the filtration F = (Ft)t∈[0,T̄] represent all information generated
by the economy up to time-t. The market is assumed to be frictionless and we ignore any
transaction costs.

We let B(t) denote the time−t value of the bank account. Investments in the money
market are assumed to compound a continuous, risk-free interest rt, which we refer to as
the short rate. B(t) corresponds to the time-t value of a unit of currency invested in the
money market at time-zero and we assume it is given by the following expression (see
Andersen and Piterbarg 2010a or Brigo and Mercurio 2006):

B(t) := e
∫ t

0 r(u)du, t ∈ [0, T̄]

We denote by Q the risk-neutral measure equivalent to P, which is associated to B(t) as the
numéraire. Attainable claims denominated by the numéraire are assumed to be martingales
under Q, which guarantees the absence of arbitrage Harrison and Pliska (1981).

We assume that the dynamics of the short-rate r are captured by an affine term
structure model, in accordance with the set-up introduced in Duffie and Kan (1996) and Dai
and Singleton (2000). The short rate itself is therefore considered to be an affine function of
a—possibly multi-dimensional—latent factor xt, i.e.,

r(t) = ω1 + ω2
>xt (1)

with ω1, ω2 denoting a scalar and a vector of time-dependent coefficients, respectively. We
furthermore assume that the stochastic process {xt}t∈[0,T] is a bounded Markov process
that takes values in Rd, which represents all market influences affecting the state of the
short rate. Let the dynamics of xt be governed by an SDE of the form

dxt = µ(t, xt)dt + σ(t, xt)dWt (2)

where Wt denotes an Rd− valued Brownian motion under Q adapted to the filtration F.
The measurable functions µ : [0, T]×Rd → Rd and σ : [0, T]×Rd → Rd×d are taken to
satisfy the standard regularity conditions by which the SDE in Equation (2) admits a strong
solution.

We let P(t, T) denote the time−t value of a zero-coupon bond contract that matures
at T. A zero-coupon bond guarantees the holder one unit of currency at maturity, i.e.,
P(T, T): = 1. Within the class of affine term structure models, zero-coupon bond prices are
exponential affine in xt Andersen and Piterbarg (2010b); Duffie and Kan (1996). Therefore,
the value of P(t, T) can be expressed as

P(t, T) := EQ
[
e−
∫ T

t rudu
∣∣∣Ft

]
= exp

{
A(t, T)− B(t, T)>xt

}
where the deterministic coefficients A(t, T) ∈ R and B(T1, T2) ∈ Rd can be found by solving
a system of ODEs, which are of the form of the well-known Riccati equations; see Duffie
and Kan (1996) or Filipovic (2009) for details. We consider this framework as it is still
intensively used for risk management purposes. High-dimensional models, such as Libor
market models, can be intractable for quantifying credit risk for large portfolios, particularly
in a multi-currency setting. Multi-factor short-rate models are therefore popular amongst
practitioners, providing a solid compromise between modeling flexibility and analytical
tractability.

For simplicity, we will assume that the collateral rate used for discounting and the
instantaneous rate used to derive term rates are both implied by the same short rate rt.

Risks 2023, 11, 168 5 of 41

Thus, we consider a classic single-curve model environment. As term rates, we consider
simply compounded rates, which we refer to as LIBOR Brigo and Mercurio (2006)

L(t, T) :=
1− P(t, T)

τP(t, T)

where τ denotes the year fraction between date t and T.

2.2. The Bermudan Swaption Pricing Problem

We consider the pricing problem of a Bermudan swaption. A Bermudan swaption is a
contract that gives the holder the right to enter a swap with fixed maturity at a number of
predefined monitor dates. Should the holder at any of the monitor dates decide to exercise
the option, the holder immediately enters the underlying swap. The lifetime of this swap is
assumed to be equal to the time between the exercise date and a fixed maturity date TM.

As an underlying, we take a standard interest rate swap that exchanges fixed versus
floating cashflows. For simplicity, we will assume that the contract is priced in a single-
curve framework and that cashflow schemes of both legs coincide, yielding fixing dates
T f = {T0, . . . , TM−1} and payment dates Tp = {T1, . . . , TM}. However, we stress that the
algorithm is applicable to any industry standard contract specifications and is not limited to
the simplifying assumptions that are made here. The time fraction between two consecutive
dates is denoted as ∆Tm = Tm − Tm−1. Let N be the notional and K the fixed rate of the
swap. Assuming that the holder of the option exercises at Tm, the payments of the swap
will occur at Tm+1, . . . , TM.

We consider the class of pricing problems, where the value of the contract is completely
determined by the Markov process {xt}t∈[0,T] in Rd as defined in Section 2. Let hm : Rd → R
be the FTm -measurable function denoting the immediate pay-off of the option if exercised
at time Tm. Although the methodology holds for any generalization of the functions hm, we
will consider those in accordance with the contract specifications described above. This
means that the functions hm are assumed to be given by

hm(xTm) := δ · N · Am,M(Tm)(Sm,M(Tm)− K)

where the indicator δ = 1 infers a payer and δ = −1 infers a receiver swaption. The swap
rate Sm,M and the annuity Am,M are defined in the same fashion as Brigo and Mercurio
(2006), given by the expressions

Sm,M(t) =
∑M

j=m+1 ∆TjP(t, Tj)F(t, Tj−1, Tj)

∑M
j=m+1 ∆TjP(t, Tj)

, Am,M(t) =
M

∑
j=m+1

∆TjP(t, Tj)

where the function F denotes the simply compounded forward rate given by the expression

F
(
t, Tj−1, Tj

)
=

1
∆Tj

(
P
(
t, Tj−1

)
P
(
t, Tj

) − 1

)

for any j ∈ {1, . . . , M}. For details, we refer to Brigo and Mercurio (2006).
Now, let T denote the set of all discrete stopping times with respect to the filtration F,

taking values on the grid T f ∪ {∞}. Define the function hτ as

hτ(xτ) := hτ(ω)(xτ(ω)) =

{
hm(xTm) if τ(ω) = Tm

0 if τ(ω) = ∞
, ω ∈ Ω (3)

Risks 2023, 11, 168 6 of 41

In this notation, τ(ω) = ∞ indicates that the option is not exercised at all. We aim to
approximate the time-zero value of the Bermudan swaption, which satisfies the following
equation:

V(0) = sup
τ∈T

EQ
[

hτ(xτ)

B(τ)

∣∣∣∣F0

]
(4)

Finding the optimal exercise strategy τ is typically a non-trivial exercise. Numerical
approximations for V(0) can, however, be computed by considering a dynamical program-
ming formulation as given below, which is shown to be equivalent to (4) in, for example,
Glasserman (2013). Let t ∈ (Tm, Tm+1] for some m ∈ {0, . . . , M− 2} and denote by V(t) the
value of the option, conditioned on the fact that it is not yet exercised prior to t. This value
satisfies the equation (see Glasserman 2013)

V(t) =


max

{
hM−1

(
xTM−1

)
, 0
}

if t = TM−1

max
{

hm(xt), B(t)EQ
[

V(Tm+1)
B(Tm+1)

∣∣∣Ft

]}
if t = Tm, m ∈ {0, . . . , M− 2}

B(t)EQ
[

V(Tm+1)
B(Tm+1)

∣∣∣Ft

]
if t ∈ (Tm, Tm+1), m ∈ {0, . . . , M− 2}

(5)

We refer to the random variables Cm(t) := B(t)EQ
[

V(Tm+1)
B(Tm+1)

∣∣∣Ft

]
as the hold or continuation

values. They represent the expected value of the contract if it is not being exercised up until
t but continues to follow the optimal policy thereafter. Approximations of the dynamic
formulation are typically obtained by a backward iteration based on simulations of the
underlying risk factors. The objective is then to determine the continuation values as a
function of the state of the risk factor xt. Popular numerical schemes based on regression
have been introduced in, for example, Carriere et al. (1996) and Longstaff and Schwartz
(2001).

Based on approximations of the continuation values, the optimal policy τ can be
computed as follows. Assume that, for a given scenario ω ∈ Ω, the risk factor takes the
values xT0 = x0, . . . , xTM−1 = xM−1. Then, the holder should continue to hold the option if
Cm(Tm) > hm(xm) and exercise as soon as Cm(Tm) ≤ hm(xm). In other words, the exercise
strategy can be determined as

τ(ω) = min
{

Tm ∈ T f
∣∣Cm(Tm) ≤ hm(xm)

}
Should, for some scenario, the continuation value be bigger than the immediate pay-off for
each monitor date, then τ(ω) = ∞ and the option expires as worthless.

3. A Semi-Static Replication for Bermudan Swaptions

The main concept of our method is to construct static hedge portfolios that replicate
the dynamical formulation in Equation (5) between two consecutive monitor dates. In
this section, we introduce the algorithm for a Bermudan swaption that is priced under a
multi-factor affine term structure model. The methodology is inspired by the algorithm
presented in Lokeshwar et al. (2022) and utilizes a regress-later technique in which the
intermediate option values are regressed against simple IR assets, such as discount bonds.
The regression model is chosen deliberately to represent the pay-off of an options portfolio
written on these assets. An important consequence is that the hedge can be valued in
closed form. Throughout this work, we will use the terms semi-static hedge and semi-static
replication interchangeably. A hedge in general refers to a trading strategy that reduces the
exposure to market risk of an outstanding position. A replication refers to an asset portfolio
that mirrors the value of a derivative, which is a common means to set up a hedge. As we
see the efficient valuation properties in the context of credit risk quantification as the main
application, rather than actual hedging, we will put emphasis on the term replication.

Risks 2023, 11, 168 7 of 41

3.1. The Algorithm

The regress-later algorithm is executed in an iterative manner, backward in time. The
outcome is a set of option portfolios {ΠM−1, . . . , Π0} written on pre-selected IR assets.
To be more precise, the algorithm determines the weights and strikes of each portfolio
Πm, such that it closely mirrors the Bermudan swaption after its composition at Tm−1
until its expiry at Tm. The pay-off of Πm exactly meets the cost of composing the next
portfolio Πm+1 or the Bermudan’s pay-off in case it is exercised. The methodology yields
a semi-static hedging strategy as the portfolio compositions are constant between two
consecutive monitor dates. Hence, there is no need for continuous rebalancing, as is the
case for a dynamic hedging strategy. The algorithm can roughly be divided into three steps,
presented below. Algorithm 1 summarizes the method.

Algorithm 1 The algorithm for a Bermudan swaption

Generate N risk factor scenarios for xTm for m = 0, . . . , M
Compute N corresponding asset scenarios for zm for m = 0, . . . , M
Ṽ
(

TM−1; xn
TM−1

)
← max

{
hM−1

(
xn

TM−1

)
, 0
}

for n = 1, . . . , N
Initialize GM−1 parameters ξM−1 from independent uniform distributions
for m = M− 1, . . . , 1 do

ξm ← argmin
ξ∈Rp

L(ξ|ẑm, x̂m) minimizing the MSE

for n = 1, . . . , N do
C̃m−1(Tm−1)← B(Tm−1)EQ

[
Gm(zm(Tm))

B(Tm)

∣∣∣FTm−1

]
Ṽ(Tm−1; xn

Tm−1
)← max

{
C̃m−1(Tm−1), hm−1

(
xn

Tm−1

)}
end for
ξm−1 ← ξm initialize weights of Gm−1

end for
ξ0 ← argmin

ξ∈Rp
L(ξ|ẑ0, x̂0) minimizing the MSE

return EQ
[

G0(z0(T0))
B(T0)

∣∣∣F0

]

3.1.1. Sample the Independent Variables

We start by sampling N realizations of the risk factor xt on the time grid T =
{T0, . . . , TM−1}. These realizations will serve as an input for the regression data. We will

denote the data points as x̂ :=
{(

xn
T0

, . . . , xn
TM−1

)}N

n=1
. Different sample methodologies

could be used, such as:

• Take a standard quadrature grid for each monitor date Tm, associated with the transi-
tion density of the risk factor. For example, if xt has Gaussian dynamics, one could
consider the Gauss–Hermite quadrature scaled and shifted in accordance with the
mean and variance of xt. See, for example, Xiu (2010).

• Discretize the SDE of the risk factor and sample by the means of an Euler or Milstein
scheme. Make sure that a sufficiently coarse time-stepping grid is used, which includes
the M monitor dates. See, for example, Kloeden and Platen (2013) for details.

Secondly, we select an asset that will serve as the independent variable for the regression.
We will denote this asset as zm(t). The choice for zm can be arbitrary, as long as it meets the
following conditions:

• The asset zm(Tm) should be a square integrable random variable that is FTm measur-
able, taking values in Rd.

• The risk-neutral price of zm(t) should only be dependent on the current state of the
risk factor and be almost surely unique; that is, the mapping xTm 7→ zm|xTm should be

Risks 2023, 11, 168 8 of 41

continuous and injective. This is required to guarantee a well-defined parametrization
of the option value.

Examples for zm would be a zero-coupon bond, a forward Libor rate, or a forward swap
rate. For each sampled realization of the risk factor, the corresponding realization of the
asset value will be computed and denoted as ẑ :=

{(
zn

0 , . . . , zn
M−1

)}N
n=1. This will serve as

the regression data in the following step.

3.1.2. Regress the Option Value against an IR Asset

In this phase, we compose replication portfolios Π0, . . . , ΠM−1 by fitting M regression
functions G0, . . . , GM−1. We consider functions of the form Gm : Rd → R, which assign
values in R to each realization of the selected asset zm. Fitting is performed recursively,
starting at TM−1, moving backwards in time, until the first exercise opportunity T0. Ap-
proximations of the Bermudan swaption value at each monitor date serve as the dependent
variable. At the final monitor date, the value of the contract (given it has not been exercised)
is known to be

V
(

TM−1; xn
TM−1

)
= max

{
hM−1

(
xn

TM−1

)
, 0
}

, n = 1, . . . , N

Now, assume that, for some monitor date Tm, we have an approximation of the contract
value Ṽ

(
Tm; xn

Tm

)
≈ V

(
Tm; xn

Tm

)
. Let ξm ∈ Rp for some p ∈ N denote the vector of the

unknown regression parameters. The objective is to determine ξm such that

Gm(zm(Tm)) ≈ V(Tm)

with the smallest possible error. This is carried out by formulating and solving a related
optimization problem. In this case, we choose to minimize the expected square error,
given by

EQ
[
|Gm(zm(Tm))−V(Tm)|2

]
(6)

There is no exact analytical expression available for the expectation of Equation (6). How-
ever, it can be approximated using the sampled regression data, giving rise to an empirical
loss function L given by

L(ξm|ẑm, x̂m) =
1
N

N

∑
n=1

(
Gm(zn

m)− Ṽ
(
Tm; xn

Tm

))2 (7)

The parameters ξm are then the result of the fitting procedure, such that

ξm ≈ argmin
ξ∈Rp

L(ξ|ẑm, x̂m)

If the regression model is chosen accordingly, Gm(zm) represents the pay-off at Tm of a
derivative portfolio Πm written on the selected asset zm. Details on suggested functional
forms of Gm, asset selection for zm, and fitting procedures are subject of Section 3.2.

3.1.3. Compute the Continuation Value

Once the regression is completed, the last step is to compute the continuation value
and subsequently the option value at the monitor date preceding Tm. For each scenario
n = 1, . . . , N, we approximate the continuation value as

C̃m−1(Tm−1) = B(Tm−1)EQ
[

Ṽ(Tm)

B(Tm)

∣∣∣∣FTm−1

]
≈ B(Tm−1)EQ

[
Gm(zm(Tm))

B(Tm)

∣∣∣∣FTm−1

] (8)

Risks 2023, 11, 168 9 of 41

As Gm is chosen to represent the pay-off of a derivative portfolio Πm written on zm, we
argue that computing Cm−1 is in fact equivalent to the risk-neutral pricing of Πm. In other
words, we have

C̃m−1(Tm−1) = B(Tm−1)EQ
[

Πm(Tm)

B(Tm)

∣∣∣∣FTm−1

]
:= Πm(Tm−1)

In Section 3.2, we treat examples for which Πm can be computed in closed form.
Finally, the option value at the preceding monitor date Tm−1 is given by

Ṽ
(
Tm; xn

Tm

)
= max

{
C̃m−1(Tm−1), hm−1

(
xn

Tm−1

)}
, n = 1, . . . , N

The steps are repeated recursively until we have a representation G0 of the option value at
the first monitor date. An estimator of the time-zero option value is given by

Ṽ(0) = EQ
[

G0(z0(T0))

B(T0)

∣∣∣∣F0

]
We refer to this approximation as the direct estimator.

3.2. A Neural Network Approach to Gm

In this section, we propose to represent the regression functions Gm as shallow, artifi-
cial neural networks. The choices that are presented here are adapted to a framework of
Gaussian risk factors, such as that presented in Section 2. The method, however, lends itself
to be generalized to a broader class of models by considering an appropriate adjustment to
the input or structure.

3.2.1. The 1-Factor Case

First, we discuss the case d = 1. Let m ∈ {0, . . . , M− 1}. As a regression function, we
consider a fully connected, feed-forward neural network with one hidden layer, denoted
as Gm : R→ R. The design with only a single hidden layer is graphically represented in
Figure 1 and is chosen deliberately to facilitate the network’s interpretation. As an input to
the network (the asset zm), we select a zero-coupon bond, which pays one unit of currency
at TM.

• The first layer consists of a single node and corresponds to the discount bond price,
which serves as input. It is represented by the left node in Figure 1. The hidden
layer has q ∈ N hidden nodes, represented by the center layer in Figure 1. The affine
transformation acting between the first two layers is denoted A1 : R→ Rq and is of
the form

A1 : x 7→ w1x + b, w1 ∈ Rq×1, b ∈ Rq

As an activation function ϕ : Rq → Rq acting on the hidden layer, we take the
ReLU-function, given by

ϕ :
(
x1, . . . , xq

)
7→
(
max{x1, 0}, . . . , max{xq, 0}

)
Note that the ReLU function corresponds to the pay-off function of a European option.

• The output of the network estimates contract value Ṽm ∈ R and therefore takes
value in R. It is represented by the right node in Figure 1. We consider a linear
transformation acting between the second and last layer A2 : Rq → R, given by

A2 : x 7→ w2x, w2 ∈ R1×q

On top of that, we apply the linear activation, which comes down to an identity
function, mapping x to itself.

Risks 2023, 11, 168 10 of 41

Figure 1. Suggested neural network design for Dim(xt) = 1.

Combined together, the network is specified to satisfy

Gm(·) := A2 ◦ ϕ ◦ A1

and the trainable parameters can be presented by the list

ξm =
{

w1,1, b1,1, . . . , w1,q, b1,q
}
∪
{

w2,1, . . . , w2,q
}

3.2.2. Interpretation of the Neural Network

Now that we have specified the structure of the neural network, we will discuss how
each function Gm can be interpreted as a portfolio Πm. In the one-dimensional case, Gm
can be expressed as follows:

Gm(zm) :=
q

∑
j=1

w2,j max
{

w1,jzm + bj, 0
}

We can regard this as the pay-off of a derivative portfolio Πm written on the asset zm. The
portfolio contains q derivatives that each have a terminal value equal to w2,j
max

{
w1,jzm + bj, 0

}
. In total, we can recognize four types of products, which depend

on the signs of w1,j and bj.

1. If w1,j > 0 and bj > 0, we have

w2,j max
{

w1,jzm + bj, 0
}
= w2,jw1,jzm + w2,jbj

which is the pay-off of a forward contract on w2,jw1,j units in zm and w2,jbj units of
currency.

2. If w1,j > 0 and bj < 0, we have

w2,j max
{

w1,jzm + bj, 0
}
= w2,jw1,j max

{
zm −

−bj

w1,j
, 0

}

which is the pay-off corresponding to w2,jw1,j units of a European call option written

on zm, with strike price
−bj
w1,j

.

3. If w1,j < 0 and bj > 0, we have

w2,j max
{

w1,jzm + bj, 0
}
= −w2,jw1,j max

{
bj

−w1,j
− zm, 0

}

which is the pay-off corresponding to−w2,jw1,j units of a European put option written

on zm, with strike price
bj
−w1,j

.

Risks 2023, 11, 168 11 of 41

4. If w1,j < 0 and bj < 0, we have

w2,j max
{

w1,jzm + bj, 0
}
= 0

which clearly represents a worthless contract.

The sign of the coefficient w2,j indicates if one has a short or long position of the product
in the portfolio. Hence, under the assumption of a frictionless economy, the absence
of arbitrage, and the Markov property for zm, the portfolio Πm replicates the original
Bermudan contract over the period (Tm−1, Tm]. As the portfolio composition is constant
between two consecutive monitor dates, the method described here can be interpreted as a
semi-static hedging strategy.

3.2.3. The Multi-Factor Case

In the case d ≥ 2, we propose that a basket of d zero-coupon bonds all maturing
at different dates Tm + δ1, . . . , Tm + δn is required as input to the regression. If the risk
factor space is d-dimensional, it can only be parametrized by an at least d-dimensional
asset vector.

To see why the above statement is true, simply consider n bonds P(Tm, Tm + δ1), . . . ,
P(Tm, Tm + δn) and note that the following relation holds:P(Tm, Tm + δ1)

...
P(Tm, Tm + δn)

 =


exp{A(Tm, Tm + δ1)−∑d

j=1 Bj(Tm, Tm + δ1)xj(Tm)}
...

exp{A(Tm, Tm + δn)−∑d
j=1 Bj(Tm, Tm + δn)xj(Tm)}


=⇒

B1(Tm, Tm + δ1) . . . Bd(Tm, Tm + δ1)
...

. . .
...

B1(Tm, Tm + δn) . . . Bd(Tm, Tm + δn)


x1(Tm)

...
xd(Tm)



=

A(Tm, Tm + δ1)− log P(Tm, Tm + δ1)
...

A(Tm, Tm + δd)− log P(Tm, Tm + δn)


=⇒ B(Tm)xTm = α

Since we have that rank(B(Tm)) = min{n, d}, it follows that if n < d, the image of B does
not span the whole risk factor space, whereas if n > d, the image of B is still equal to the
case n = d.

Concluding on the argument above, it would be an obvious choice to take a d−dimensional
vector of bonds as the input and generalize the architecture of Gm by increasing the input
dimension (i.e., the number of nodes in the first layer) from 1 to d. However, in that case,
Πm represents a derivatives portfolio written on a basket of bonds, by which the tractability
of pricing Πm would be lost. Therefore, we suggest two alternatives to the design of Gm,
intended to preserve the analytical valuation potential of Πm.

The basic specifications of the neural network will remain similar to the one-factor
case. We consider a feed-forward neural network with one hidden layer of the form
Gm : Rd → R.

• The first layer consists of d nodes and the hidden layer has q ∈ N hidden nodes. The
affine transformation and activation acting between the first two layers are denoted
A1 : Rd → Rq and ϕ : Rq → Rq, respectively, given by

A1 : x 7→ w1x + b, w1 ∈ Rq×d, b ∈ Rq

ϕ :
(
x1, . . . , xq

)
7→
(
max{x1, 0}, . . . , max{xq, 0}

)

Risks 2023, 11, 168 12 of 41

• The output contains a single node. A linear transformation acts between the second
and last layer A2 : Rq → R, together with the linear activation, given by

A2 : x 7→ w2x, w2 ∈ R1×q

• The network is given by Gm(·) := A2 ◦ ϕ ◦ A1.

3.2.4. Suggestion 1: A Locally Connected Neural Network

The outcome of each node in the hidden layer represents the terminal value of a
derivative written on the asset zm, which, together, compose the portfolio Πm. In the
d−dimensional case, the outcome of the jth node νj can be expressed as

νj(z) = max

{
d

∑
k=1

wjkzk + bj, 0

}

which corresponds to the pay-off of an arithmetic basket option with weights wj1, . . . wjd
and strike price bj. Such an exotic option is difficult to price. To overcome this issue, we
constrain the matrix w1 to only admit a single non-zero value in each row. The architecture
of this suggestion is graphically depicted in Figure 2a. Let the number of hidden nodes be
a multiple of the input dimension, i.e., q = n · d for some n ∈ N. The matrix w1 is set to be
of the form

w1 =



w1,1 0 0 · · · 0 0
...

...
...

...
...

w1,n 0 0 · · · 0 0
0 w2,n+1 0 · · · 0 0
...

...
...

...
...

0 w2,2n 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 wd,d·n


As a result, none of the hidden nodes are connected to more than one input node (see

Figure 2a). Therefore, the outcome of each node νj again represents a European option or
forward written on a single bond, which can be priced in closed form (see Appendix A.1).

(a) (b)

Figure 2. Suggested neural network designs for Dim(xt) ≥ 2. (a) Locally connected neural network.
(b) Fully connected neural network.

Risks 2023, 11, 168 13 of 41

We can recognize two drawbacks to this approach. First, the number of trainable
parameters for a fixed number of hidden nodes is much lower compared to the fully
connected case. This can simply be overcome by increasing q. Second, as the network is not
fully connected, the universal approximation theorem no longer applies to Gm. Therefore,
we have no guarantee that the approximation errors can be reduced to any desirable level.
Our numerical experiments however indicate that the approximation accuracy of this
design is not inferior to that of a fully connected counterpart of the same dimensions; see
Section 6.

3.2.5. Suggestion 2: A Fully Connected Neural Network

Our second approach does not entail altering the structure or weights of the network,
but suggests to take a different input. We hence consider a fully connected feed-forward
neural network with one hidden layer of the form Gm : Rd → R. The architecture is
graphically depicted in Figure 2. As a consequence, each hidden node is connected to each
input node. However, as an input, we use the log of n bonds, i.e.,

zm := (log P(Tm, Tm + δ1), . . . , log P(Tm, Tm + δn))
>

Therefore, each node νj can be compared to the pay-off of a geometric basket option written
on n assets zm equal to the log of P(t, Tm + δj). Under the assumption that the dynamics of
the risk factor xt are Gaussian, these options can be priced explicitly as we will show in
Appendix A.2.

An advantage of this approach is that it employs a fully connected network that, by
virtue of the universal approximation theorem Hornik et al. (1989), can yield any desired
level of accuracy. A drawback is that the financial interpretation of the network as a
replicating portfolio is not as strong as in suggestion 1 due to the required log in the payoff.

3.3. Training of the Neural Networks

In this section, we specify some of the main considerations related to the fitting pro-
cedure of the algorithm. The method requires the training of M shallow feed-forward
networks as specified in Section 3.2, which we denote G0, . . . , GM−1. Our numerical experi-
ments indicated that the normalization of the training set strongly improved the networks’
fitting accuracy. Details for pre-processing the regression data are treated in Appendix B.

Optimization

The training of each network is performed in an iterative process, starting with GM−1
working backwards until G0. The effectiveness of the process depends on several standard
choices related to neural network optimization, of which some are listed below.

• As an optimizer, we apply AdaMax Kingma and Ba (2014), a variation of the commonly
used Adam algorithm. This is a stochastic, first-order, gradient-based optimizer that
updates weights inversely proportional to the L∞-norm of their current and past
gradient, whereas Adam is based on the L2-norm. Our experiments indicate that
AdaMax slightly outperforms comparable algorithms in the scope of our objectives.

• The batch size, i.e., the number of training points used per weight update, is set to a
standard 32. The learning rate, which scales the step size of each update, is kept in the
range 0.0001–0.0005.

• For the initial network, GM−1, we use random initialization of the parameters. If
the considered contract is a payer Bermudan swaption, we initialize the (non-zero)
entries of w1 i.i.d. unif(0, 1) and the biases b i.i.d. unif(−1, 0). In the case of a receiver
contract, it is the other way around. The weights w2 are initialized i.i.d. unif(−1, 1).

• For the subsequent networks, GM−2, . . . , G0, each network Gm is initialized with the
final set of weights of the previous network Gm+1.

• As a training set for the optimizer, we use a collection of 20,000 data-points.

Risks 2023, 11, 168 14 of 41

Some specific choices for the hyperparameters are motivated by a convergence analysis
presented in Appendix C.

4. Lower and Upper Bound Estimates

The algorithm described in Section 3.1 gives rise to a direct estimator of the true option
price V. The accuracy of this estimator depends on the approximation performance of
the neural networks at each monitor date. Should each regression yield a perfect fit, then
the estimation error would automatically be zero. In practice, however, the loss function,
defined in Equation (7), never fully converges to zero. As the networks are trained to
closed-form exercise and continuation values, error measures such as MSE and MAE can
be easily obtained. In particular, the mean absolute errors provide a strong indication of
the error bounds on the direct estimator (see Section 5).

Although convergence errors put solid bounds on the accuracy of the estimator, they
are typically quite loose. Therefore, they give rise to non-tight confidence bounds. To
overcome this issue, we introduce a numerical approximation to a tight lower and upper
bound to the true price, in the same spirit as Lokeshwar et al. (2022). These should provide
a better indication of the quality of the estimate.

4.1. The Lower Bound

We compute a lower bound approximation by considering the non-optimal exercise
strategy τ̃ implied by the continuation values estimates introduced in Section 3.1. We define
τ̃ as

τ̃(ω) = min
{

Tm ∈ T f
∣∣C̃m(Tm) ≤ hm(xTm)

}
(9)

where C̃m refers to the approximated continuation value given in Equation (8). A strict
lower bound is now given by

L(0) = EQ
[

hτ̃(xτ̃)

B(τ̃)

∣∣∣∣F0

]
= P(0, TM)ETM

[
hτ̃(xτ̃)

P(τ̃, TM)

∣∣∣∣F0

]
(10)

where hτ̃ corresponds to the definition given in Equation (3). The term on the right is
obtained by changing the measure from Q to the TM−forward measure QTM Geman et al.
(1995). Under the TM−forward measure, the lower bound can be estimated by simulating a

fresh set of scenarios of the risk factor x̂ :=
{(

xn
t1

, xn
t2

, . . . , xn
TM

)∣∣∣n = 1, . . . , N
}

. Denote by

Pn(t, TM) the zero-coupon bond realization corresponding to xn
t . Then, the lower bound

cab be approximated as

L̃(0) =
P(0, TM)

N

N

∑
n=1

hτ̃n(xn
τ̃n)

Pn(τ̃n, TM)

4.2. The Upper Bound

We compute an upper bound by considering a dual formulation of the price expression
Equation (4) as proposed in Haugh and Kogan (2004) and Rogers (2002). LetM denote
the set of all martingales Mt adapted to F such that supt∈[0,T]|Mt| < ∞. An upper bound
U(0) to the true price V(0) is obtained by observing that the following inequality holds
(see Haugh and Kogan 2004):

V(0) ≤ M0 +EQ
[

max
Tm∈T f

{
hm(xTm)

B(Tm)
−MTm

}∣∣∣∣F0

]
:= U(0) (11)

Risks 2023, 11, 168 15 of 41

for any Mt ∈ M. To find a suitable martingale that yields a tight bound, we consider the
Doob–Meyer decomposition of the true discounted option price process V(t)

B(t) . As the price
process is a supermartingale, we can write

V(t)
B(t)

:= Yt + Zt

where Yt denotes a martingale and Zt is a predictable, strictly decreasing process such that
Z0 = 0. Note that Equation (11) attains an equality if we set Mt = Yt, i.e., the martingale
part of the option price process. The bound will hence be tight if we consider a martingale
Mt that is close to the unknown Yt. Let Gm(·) denote the neural networks induced by the
algorithm. In the spirit of Andersen and Broadie (2004) and Lokeshwar et al. (2022), we
construct a martingale on the discrete time grid {0, T0, . . . , TM−1} as follows:

M0 = EQ
[

G0(z0(T0))

B(T0)

∣∣∣∣F0

]
, MT0 =

G0(z0(T0))

B(T0)

MTm = MTm−1 +
Gm(zm(Tm))

B(Tm)
−EQ

[
Gm(zm(Tm))

B(Tm)

∣∣∣∣FTm−1

]
, m = 1, . . . , M− 1

(12)

Clearly, the process {MTm}
M−1
m=0 yields a discrete martingale as

EQ[MTm

∣∣FTm−1

]
= EQ

[
MTm−1 +

Gm(zm(Tm))

B(Tm)
−EQ

[
Gm(zm(Tm))

B(Tm)

∣∣∣∣FTm−1

]∣∣∣∣FTm−1

]
= EQ[MTm−1

∣∣FTm−1

]
+EQ

[
Gm(zm(Tm))

B(Tm)
− Gm(zm(Tm))

B(Tm)

∣∣∣∣FTm−1

]
= MTm−1

Furthermore, the process Mt as defined above will coincide with Yt if the approximation
errors in Gm(·) equal zero, hence yielding an equality in Equation (11). Note that the
recursive relation in Equation (12) can be rewritten as

MTm =
G0(z0(T0))

B(T0)
+

m

∑
j=1

(
Gj(zj(Tj))

B(Tj)
−EQ

[
Gj(zj(Tj))

B(Tj)

∣∣∣∣FTj−1

])
(13)

We can now estimate the upper bound by again simulating a set of scenarios of the risk

factor
{(

xn
t1

, xn
t2

, . . . , xn
TM

)∣∣∣n = 1, . . . , N
}

and approximate U(0) under the risk-neutral
measure as

Ũ(0) = M0 +
1
N

N

∑
n=1

max
Tm∈T f

hTm

(
xn

Tm

)
Bn(Tm)

−Mn
Tm


The upper bound can be approximated under the TM−forward measure. In that case, the
risk factor should be simulated under QTM and the numéraire B(t) should be replaced by
P(t, TM). By carrying this out, we avoid the need to approximate the numéraire on a coarse
simulation grid.

Note that by the deliberate choice of Gm(·), all the conditional expectations appearing
in Equation (13) can be computed in closed form (see Appendix A). Hence, there is no need
to resort to nested simulations, in contrast to, for example, Andersen and Broadie (2004)
and Becker et al. (2020). Especially if simulations are performed under the TM−forward
measure, both lower and upper bound estimations can be obtained at minimal additional
computational cost.

Risks 2023, 11, 168 16 of 41

5. Error Analysis

In this section, we analyze the errors of the semi-static hedge, the direct estimator,
the lower bound estimator, and the upper bound estimator, which are induced by the
imprecision of the regression functions G0, . . . , GM−1. We show that for a sufficiently large
hedging portfolio, the replication error will be arbitrarily small. Furthermore, we will
provide error margins for the price estimators in terms of the regression imprecision. We
thereby show that the direct estimator, lower bound, and upper bound will converge
to the true option price as the accuracy of the regressions increases. The cornerstone to
the subsequent theorems is the universal approximation theorem, as presented in, for
example, Hornik et al. (1989). Given that Ṽ is a continuous function on the compact set Id,
it guarantees that, for each m ∈ {0, . . . , M− 1}, there exists a neural network Gm such that

sup
x∈Id

B−1(Tm)
∣∣Ṽ(Tm; x)− Gm(zm(Tm)|x)

∣∣ < ε

for arbitrary ε > 0. In other words, the regression error can be kept arbitrarily small on any
compact domain of the risk factor.

5.1. Accuracy of the Semi-Static Hedge

Let T f = {T0, . . . , TM−1} denote the set of monitor dates. For the following theorem,
we assume that xt ∈ Id for some compact set Id ⊂ Rd. As Id can be arbitrarily large,
this assumption is loose enough to account for a vast majority of the risk factor scenarios
in a standard Monte Carlo sample. On top of that, Id can be chosen as sufficiently large

such that EQ
[∣∣Ṽ(Tm)− Gm(zm)

∣∣1{xTm 6∈Id}
∣∣∣F0

]
approaches zero. For the proof, we refer to

Appendix D.

Theorem 1. Let ε > 0 and |T f | = M. Denote by Ṽ(t) the value of the replication portfolio for a
Bermudan swaption, conditional on the fact that it is not exercised prior to time t. Assume that
there exist M networks Gm(·) such that

sup
x∈Id

B−1(Tm)
∣∣Ṽ(Tm; x)− Gm(zm(Tm)|x)

∣∣ < ε, ∀m∈{0,...,M−1}

Then, for any t ∈ [0, TM−1], we have that

sup
x∈Id

B−1(t)
∣∣V(t; x)− Ṽ(t; x)

∣∣ < Mε

5.2. Error of the Direct Estimator

Theorem 1 bounds the hedging error of the semi-static hedge in terms of the maximum
regression errors. This implicitly provides an error margin to the direct estimator under the
aforementioned assumptions. Although the universal approximation theorem guarantees
that the supremum errors can be kept at any desired level, in practice, they are substantially
higher than, for example, the MSEs or MAEs of the regression function. This is due to
inevitable fitting imprecision outside or near the boundaries of the finite training sets. In
the following theorem, we propose that the error of the direct estimator can be bounded in
terms of the discounted MAEs of the neural networks. These quantities are generally much
tighter than the supremum errors and are typically easier to estimate.

The proof of the theorem follows a similar line of thought as the proof of Theorem 1.
As the direct estimator at time-zero depends on the expectation of the continuation value at
T0, we can show by an iterative argument that the overall error is bounded by the sum of the
mean absolute fitting errors at each monitor date. The error bound in the direct estimator
therefore scales linearly with the number of exercise opportunities. For a complete proof,
we refer to Appendix E.

Risks 2023, 11, 168 17 of 41

Theorem 2. Let ε > 0 and assume that |T f | = M. Denote by Ṽ the time-zero direct estimator for
the price of a Bermudan swaption V. Assume that, for each Tm ∈ {T0, . . . , TM−1}, there is a neural
network approximation Gm(·) such that

EQ
[

B−1(Tm)
∣∣Ṽ(Tm)− Gm(zm)

∣∣∣∣∣∣F0

]
< ε

where Ṽ(Tm) := max
{

B(Tm)EQ
[

Gm+1(zm+1)
B(Tm+1)

∣∣∣∣FTm

]
, hm(xTm)

}
denotes the estimator at date Tm.

Then, the error in Ṽ is bounded as given below:∣∣V(0)− Ṽ(0)
∣∣ < Mε

5.3. Tightness of the Lower Bound Estimate

A lower bound L(t) to the true price can be computed by considering the non-optimal
exercise strategy, implied by the direct estimator (see Section 4.1). This relies on the
stopping time

τ̃(ω) = min
{

Tm ∈ T f
∣∣C̃m(Tm) ≤ hm(xTm)

}
(14)

In the following theorem, we propose that the tightness of L(0) can be bounded by the
discounted MAEs of neural network approximations.

The proof of the theorem relies on the fact that, conditioned on any realization of τ̃
and τ, the expected difference between L(0) and V(0) is bounded by the sum of the mean
absolute fitting errors at the monitor dates between τ̃ and τ. In the proof, we therefore
distinguish between the events τ̃ < τ and τ̃ > τ. Then, by an inductive argument, we can
show that the bound on the spread between L(0) and the true price scales linearly with the
number of exercise opportunities. For a complete proof, we refer to Appendix F.

Theorem 3. Let ε > 0 and assume that |T f | = M. Denote by L(0) the lower bound on the true
Bermudan swaption price as defined in Equation (10). Assume that, for each Tm ∈ {T0, . . . , TM−1},
there is a neural network approximation Gm(·), such that

EQ
[

B−1(Tm)
∣∣Ṽ(Tm)− Gm(zm)

∣∣∣∣∣∣F0

]
< ε

where Ṽ(Tm) := max
{

B(Tm)EQ
[

Gm+1(zm+1)
B(Tm+1)

∣∣∣FTm

]
, hm(xTm)

}
denotes the estimator at date Tm.

Then, the spread between V(0) and L(0) is bounded as given below:

|V(0)− L(0)| < 2(M− 1)ε

5.4. Tightness of the Upper Bound Estimate

An upper bound U(t) to the true price can be computed by considering a dual formu-
lation of the dynamic pricing equation Haugh and Kogan (2004); see Section 4.2. From a
practical point of view, the difference between the upper bound and the true price can be
interpreted as the maximum loss that an investor would incur due to hedging imprecision
resulting from the algorithm Lokeshwar et al. (2022). The overall hedging error at some
monitor date Tm is the result of all incremental hedging errors occurring from rebalanc-
ing the portfolio at preceding monitor dates. As the incremental hedging errors can be
bounded by the sum of the expected absolute fitting errors, we propose that the tightness
of U(t) can be bounded by the discounted MAEs of the neural networks and scales at most
quadratically with the number of exercise opportunities.

The proof follows a similar line of thought as that presented in Andersen and Broadie
(2004). There, it is noted that the difference between the dual formulation of the option
and its true price is difficult to be bound. Here, we make a similar remark and propose a

Risks 2023, 11, 168 18 of 41

theoretical maximum spread between U(0) and V(0) that is relatively loose. Our numerical
experiments, however, indicate that the upper bound estimate is much tighter in practice.
For a complete proof, we refer to Appendix G.

Theorem 4. Let ε > 0 and assume that |T f | = M. Denote by U(0) the upper bound on the true
Bermudan swaption price as defined in Equation (11). Assume that, for each Tm ∈ {T0, . . . , TM−1},
there is a neural network approximation Gm(·), such that

EQ
[

B−1(Tm)
∣∣Ṽ(Tm)− Gm(zm)

∣∣∣∣∣∣F0

]
< ε

where Ṽ(Tm) := max
{

B(Tm)EQ
[

Gm+1(zm+1)
B(Tm+1)

∣∣∣FTm

]
, hm(xTm)

}
denotes the estimator at date Tm.

Then, the spread between V(0) and U(0) is bounded as given below:

|U(0)−V(0)| < M(M− 1)ε

6. Numerical Experiments

In this section, we treat several numerical examples to illustrate the convergence,
pricing, and hedging performance of our proposed method. We will start by considering
the price estimate of a vanilla swaption contract in a one-factor model. This is a toy
example by which we can demonstrate the accuracy of the direct estimator in comparison
to exact benchmarks. We continue with price estimates of Bermudan swaption contracts
in a one-factor and a two-factor framework. The performance of the direct estimator
will be compared to the established least-square regression method (LSM) introduced
in Longstaff and Schwartz (2001), fine-tuned to an interest rate setting as described in
Oosterlee et al. (2016). Additionally, we will approximate the lower and upper bound
estimates as described in Section 4 and show that they are well inside the error margins
introduced in Section 5. Finally, we will illustrate the performance of the static hedge for
a swaption in a one-factor model and a Bermudan swaption in a two-factor model. For
the one-factor case, we can benchmark the performance by the analytic delta hedge for a
swaption, provided in Henrard (2003).

A T0 × TM contract (either European swaption or Bermudan swaption) refers to an
option written on a swap with a notional amount of 100 and a lifetime between T0 and TM.
This means that T0 and TM−1 are the first and last monitor dates, respectively, in case of
a Bermudan. The underlying swaps are set to exchange annual payments, yielding year
fractions of 1 and annual exercise opportunities. All examples that are illustrated here have
been implemented in Python using the Quant-Lib library Ametrano and Ballabio (2003)
for standard pricing routines and Keras with Tensorflow backend Chollet et al. (2015) for
constructing, fitting, and evaluating the neural networks.

6.1. 1-Factor Swaption

We start by considering a swaption contract under a one-dimensional risk factor
setting. The direct estimator of the true V(0) swaption price is computed similar to a
Bermudan swaption, but with only a single exercise possibility at T0. Therefore, only a
single neural network per option needs to be trained to compute the option price. We have
used 64 hidden nodes and 20,000 training points, generated through Monte Carlo sampling.
We assume the risk factor to be captured by the Hull–White model with constant mean
reversion parameter a and constant volatility σ. The dynamics of the shifted mean-zero
process Brigo and Mercurio (2006) are hence given by

dx(t) = −ax(t)dt + σdW(t), x(0) = 0 (15)

Risks 2023, 11, 168 19 of 41

For simplicity, we consider a flat time-zero instantaneous forward rate f (0, t). The risk-
neutral scenarios are generated using a discrete Euler scheme of the process above. Param-
eter values that were used in the numerical experiments are summarized in Table 1.

Table 1. Parameters 1F Hull–White model.

Parameter a σ f (0, t)

Value 0.01 0.01 0.03

Figure 3a,b show the time-zero option values in basis points (0.01%) of the notional for
a 5Y× 10Y and a 10Y× 5Y payer swaption as a function of the moneyness. The moneyness
is defined as S

K , where K denotes the fixed strike and S the time-zero swap rate associated
with the underlying swap. The exact benchmarks are computed by an application of
Jamshidian’s decomposition Jamshidian (1989). The relative estimate errors are shown in
Figure 3c,d. We observe a close agreement between the estimates and the reference prices.
The errors are in the order of several basis points of the true option price. In the current
setting, the results presented serve mostly as a validation of the estimator. We however
point out that this algorithm for swaptions is applicable in general frameworks, such as
multi-factor, dual-curve, or non-overlapping payment schemes, for which exact routines
are no longer available.

(a) 5Y× 10Y swaption valuation (b) 10Y× 5Y swaption valuation

(c) Error 5Y× 10Y swaption estimates (d) Error 10Y× 5Y swaption estimates

Figure 3. Accuracy of the direct estimator for vanilla swaptions. S5Y×10Y ≈ S10Y×5Y ≈ 0.0305.

6.2. 1-Factor Bermudan Swaption

As a second example, we consider a Bermudan swaption contract. The same dynamics
for the underlying risk factor are assumed as discussed in the previous paragraph, using the
parameter settings of Table 1. Monte Carlo scenarios are generated based on a discretized
Euler scheme associated to the SDE in Equation (15), taking weekly time-steps.

We first demonstrate the convergence property of the direct estimator, which is implied
by the replication portfolio. We consider a 1Y× 5Y Bermudan swaption with strike K = 0.03.
This strike is selected as it close to ATM, a moneyness level that is most likely to be liquid

Risks 2023, 11, 168 20 of 41

in the market. For this analysis, the neural networks were trained to a set of 2000 Monte-
Carlo-generated training points. Figure 4a shows the direct estimator as a function of the
number of hidden nodes in each neural network, alongside an LSM-based benchmark. In
Figure 4b, the error with respect to the LSM estimate is shown on a logscale. We observe
that the direct estimator converges to the LSM confidence interval or slightly above, which
is in accordance with the fact that LSM is biased low by definition. The analysis indicates
that a portfolio of 16 discount bond options is sufficient to achieve a replication of a similar
accuracy to the LSM benchmark.

(a) Convergence price (b) Convergence pricing error

Figure 4. Convergence of the direct estimator for the 1Y× 5Y Bermudan swaption price as a function
of hidden node count, with respect to the LSM benchmark under a 1-factor model.

Table 2 depicts numerical pricing results for a 1Y× 5Y, 3Y× 7Y and 1Y× 10Y receiver
Bermudan swaption. For each contract, we consider different levels of moneyness, setting
the fixed rate K of the underlying swap to, respectively, 80%, 100%, and 120% of the time-
zero swap rate. The estimations of the direct, the upper bound, and the lower bound
statistics are again reported alongside LSM-based benchmarks. Here, the neural networks
have 64 hidden nodes and are fitted using a training set of 20,000 points. The lower and
upper bound estimates, as well as the LSM estimates, are based on simulation runs of
200,000 paths each. The given lower and upper bounds are Monte Carlo estimates of the
statistics defined in Equations (10) and (11) and are therefore subject to standard errors,
which are reported in parentheses. The reference LSM results have been generated using{

1, x, x2} as regression basis functions for approximating the continuation values. The
standard errors and confidence intervals are obtained from ten independent Monte Carlo
runs. The choice for hyperparameter settings is motivated by the analysis of Appendix C.

Table 2. Results of 1-factor model. S1Y×5Y ≈ S3Y×7Y ≈ S1Y×10Y ≈ 0.0305. Standard errors are in
parentheses, based on 10 independent MC runs of 2× 105 paths each.

Type K/S Dir.est. Lower bnd Upper bnd UB-LB LSM est. LSM 95% CI

1Y × 5Y 80% 1.527 1.521 (0.001) 1.528 (0.000) 0.007 1.521 (0.001) [1.518, 1.523]
100% 2.543 2.534 (0.002) 2.542 (0.000) 0.008 2.534 (0.002) [2.531, 2.538]
120% 4.015 4.016 (0.002) 4.018 (0.000) 0.002 4.016 (0.002) [4.012, 4.021]

3Y × 7Y 80% 3.296 3.293 (0.002) 3.295 (0.000) 0.002 3.293 (0.002) [3.290, 3.296]
100% 4.767 4.755 (0.004) 4.761 (0.000) 0.006 4.755 (0.004) [4.747, 4.762]
120% 6.625 6.629 (0.004) 6.631 (0.000) 0.002 6.629 (0.004) [6.621, 6.638]

1Y × 10Y 80% 3.950 3.945 (0.005) 3.960 (0.000) 0.015 3.945 (0.005) [3.935, 3.955]
100% 5.818 5.811 (0.003) 5.818 (0.000) 0.007 5.811 (0.003) [5.805, 5.816]
120% 8.346 8.354 (0.005) 8.360 (0.000) 0.006 8.353 (0.005) [8.344, 8.362]

Risks 2023, 11, 168 21 of 41

The spreads between the lower and upper bound estimates provide a good indication
of the accuracy of the method. For the current setting, we obtain spreads in the order of
several basis points up a few dozen of basis points. The lower bound estimate is typically
very close to the LSM estimate, which itself is also biased low. Their standard errors are of
the same order of magnitude. The upper bound estimates prove to be very stable and show
a variance that is roughly two orders of magnitude smaller compared to that of the lower
bound. The direct estimate is occasionally slightly less accurate. This can be explained by
the fact that it depends on the accuracy of the regression over the full domain of the risk
factor, whereas, for the lower bound, only a high accuracy near the exercise boundaries
is required. In Figure 5, the mean absolute error of each neural network after fitting is
presented as a function of the network’s index. The errors are displayed in basis points of
the notional. We observe that the errors are the smallest at maturity and tend to increase
with each iteration backward in time. That the errors at the final monitor date are virtually
zero can be explained by the fact that the pay-off at TM−1 is given by

max
{

hM−1(xTM−1), 0
}
= N ·max{AM−1,M(TM−1) · (K− SM−1,M(TM−1)), 0}
= N ·max{(∆TMK + 1)P(TM−1, TM)− 1, 0}
' w2 ϕ(w1z− b)

which can be exactly captured by a network with only a single hidden node. With each
step backwards, the target function is harder to fit, yielding larger errors. We observe
MAEs up to one basis point of the notional amount. The empirical lower–upper bound
spreads remain well within the theoretical error margins provided in Sections 4.1 and 4.2.
The spreads are mostly much lower than the sum of the MAEs, indicating that the bound
estimates are in practice significantly tighter than their theoretical maximum spread.

(a) 1Y×5Y Bermudan (b) 3Y×7Y Bermudan

(c) 1Y×10Y Bermudan

Figure 5. Mean absolute errors of neural network fit per monitor date under a 1-factor model.

6.3. 2-Factor Bermudan Swaption

As a final pricing example, we consider a Bermudan swaption contract under a
two-factor model. The dynamics of the underlying risk factors are assumed to follow a

Risks 2023, 11, 168 22 of 41

G2++ model Brigo and Mercurio (2006). Monte Carlo scenarios are generated based on a
discretized Euler scheme, taking weekly time-steps, based on the SDE below:

dx1(t) = −a1x1(t)dt + σ1dW1(t), x1(0) = 0

dx2(t) = −a2x2(t)dt + σ2dW2(t), x2(0) = 0

where W1 and W2 are correlated Brownian motions with d〈W1, W2〉t = ρdt. Parameter
values that were used in the numerical experiments are summarized in Table 3.

We again start by demonstrating the convergence property of the direct estimator for
both the locally connected and the fully connected neural network designs as specified
in Section 3.2.3. The same 1Y× 5Y Bermudan swaption with strike K = 0.03 is used and
the networks are each fitted to a set of 6400 training points. Figure 6a shows the direct
estimator as a function of the number of hidden nodes in each neural network, alongside an
LSM-based benchmark. In Figure 6b, the error with respect to the LSM estimate is shown
on a logscale. We observe a similar convergence behavior, where the direct estimators
approach the LSM benchmark within the 95% confidence range. Here, it is noted that a
portfolio of eight discount bond options is already sufficient to achieve a replication of a
similar accuracy to the LSM estimator.

(a) Convergence price (b) Convergence pricing error

Figure 6. Convergence of the direct estimator for the 1Y × 5Y Bermudan swaption price as a function
of hidden node count, with respect to the LSM benchmark under a 2-factor model.

Table 3. Parameters 2F G2++ model.

Parameter a1 a2 σ1 σ2 ρ f (0, t)

Value 0.07 0.08 0.015 0.008 −0.6 0.03

In Table 4, numerical results for a 1Y× 5Y, 3Y× 7Y, and 1Y× 10Y receiver Bermudan
swaption are depicted for different levels of moneyness. We again report the direct, the
upper bound, and the lower bound estimates for both neural network designs. In this case,
all networks have 64 hidden nodes and are fitted to training sets of 20,000 points. As before,
the lower bound, the upper bound, and the LSM estimates are the result of 10 independent
Monte Carlo simulations of 200,000 scenarios.

For the LSM algorithm, we used
{

1, x1, x2, x2
1, x1x2, x2

2
}

as basis functions. Note that
the number of monomials grows quadratically with the dimension of the state space and,
with that, the number of free parameters. For our method, this number grows at a linear
rate. Choices for the hyperparameters are again based on the analysis of Appendix C. The
results under the two-factor case share several features with the one-factor results. We
observe spreads between the lower and upper bounds ranging from several basis points
up to a few dozen basis points of the option price. The lower bound estimates turn out to
be very close to the LSM estimates and the same holds for their standard errors. The upper
bounds are again very stable with low standard errors and the direct estimator appears
as slightly less accurate. If we compare the locally connected to the fully connected case,
we observe that the results are overall in close agreement, especially the lower and upper

Risks 2023, 11, 168 23 of 41

bound estimates. This is remarkable given that the fully connected case gives rise to more
trainable parameters, by which we would expect a higher approximation accuracy. In the
two-factor setting, the ratio of free parameters for the two designs is 3:4.

Table 4. Results of 2-factor model for the locally connected and fully connected neural network cases.
S1Y×5Y ≈ S3Y×7Y ≈ S1Y×10Y ≈ 0.0305. Standard errors are in parentheses, based on 10 independent
MC runs of 2× 105 paths each.

LOCALLY CONNECTED NEURAL NETWORKS

Type K/S Dir.est. Lower bnd Upper bnd UB-LB LSM est. LSM 95% CI

1Y × 5Y 80% 1.617 1.617(0.002) 1.619(0.000) 0.002 1.617(0.002) [1.614, 1.621]
100% 2.652 2.650(0.002) 2.654(0.000) 0.004 2.650(0.002) [2.646, 2.654]
120% 4.128 4.127(0.003) 4.131(0.000) 0.004 4.127(0.003) [4.121, 4.132]

3Y × 7Y 80% 3.073 3.076(0.004) 3.078(0.000) 0.002 3.077(0.004) [3.069, 3.085]
100% 4.554 4.553(0.004) 4.553(0.000) 0.000 4.552(0.004) [4.545, 4.559]
120% 6.444 6.448(0.004) 6.451(0.000) 0.003 6.446(0.005) [6.435, 6.456]

1Y × 10Y 80% 3.616 3.624(0.002) 3.626(0.000) 0.002 3.622(0.002) [3.618, 3.627]
100% 5.508 5.509(0.002) 5.514(0.000) 0.005 5.508(0.002) [5.503, 5.512]
120% 8.128 8.123(0.005) 8.130(0.000) 0.007 8.121(0.005) [8.110, 8.132]

FULLY CONNECTED NEURAL NETWORKS

Type K/S Dir.est. Lower bnd Upper bnd UB-LB LSM est. LSM 95% CI

1Y × 5Y 80% 1.617 1.617(0.002) 1.619(0.000) 0.002 1.617(0.002) [1.614, 1.621]
100% 2.651 2.650(0.002) 2.654(0.000) 0.004 2.650(0.002) [2.646, 2.654]
120% 4.129 4.127(0.003) 4.131(0.000) 0.004 4.127(0.003) [4.121, 4.132]

3Y × 7Y 80% 3.076 3.077(0.004) 3.078(0.000) 0.001 3.077(0.004) [3.069, 3.085]
100% 4.553 4.553(0.004) 4.554(0.000) 0.001 4.552(0.004) [4.545, 4.559]
120% 6.451 6.447(0.005) 6.451(0.000) 0.004 6.446(0.005) [6.435, 6.456]

1Y × 10Y 80% 3.616 3.624(0.002) 3.626(0.000) 0.002 3.622(0.002) [3.618, 3.627]
100% 5.506 5.509(0.002) 5.514(0.000) 0.005 5.508(0.002) [5.503, 5.512]
120% 8.124 8.123(0.005) 8.130(0.000) 0.007 8.121(0.005) [8.110, 8.132]

In Figure 7, the mean absolute errors of the neural networks after fitting are shown.
The MAEs for the locally connected networks are in blue; the fully connected are in red. All
are represented in basis points of the notional amount. We observe that the errors are mostly
in the same order of magnitude as the one-dimensional case. The figures indicate that the
locally connected networks slightly outperform the fully connected networks in terms of
accuracy, although this does not appear to materialize in tighter estimates of the lower and
upper bounds. For the locally connected case, we again observe that the errors are virtually
zero at the last monitor date, for the same reasons as in the one-factor setting. In the fully
connected representation, an exact replication might not exist, resulting in larger errors.
We conjecture that this effect partially carries over to the networks at preceding monitor
dates. The empirical lower–upper bound spreads remain well within the theoretical error
margins, as the spreads are in all cases lower than the sum of the MAEs. Hence, also for
the two-factor setting, we find that the bound estimates are tighter in practice than their
theoretical maximum spreads.

Risks 2023, 11, 168 24 of 41

(a) 1Y×5Y Bermudan (b) 3Y×7Y Bermudan

(c) 1Y×10Y Bermudan

Figure 7. Accuracy of neural network fit per monitor date under a 2-factor model. Blue lines represent
the locally connected (l.c.) case and the red lines represent the fully connected (f.c.) case. The legend
in Figure (c) applies to all three graphs.

6.4. Performance Semi-Static Hedge

Finally, we consider the hedging problem of a vanilla swaption under the one-factor
model and a Bermudan swaption under the two-factor model.

6.4.1. 1-Factor Swaption

Here, we compare the performance of a static hedge versus a dynamic hedge in
the one-factor model. As an example, we take a 1Y× 5Y European receiver swaption at
different levels of moneyness. The model set-up is similar to that in Section 6.2, using the
same set of parameters reported in Table 1. In the static hedge case, the option contract
writer aims to hedge the risk using a static portfolio of zero-coupon bond options and
discount bonds. The replicating portfolio is composed using a neural network with 64
hidden nodes, optimized using 20,000 training-points generated through Monte Carlo
sampling. The portfolio is composed at time-zero and kept until the expiry of the option
at t = 1 year. In the dynamic hedge case, the delta-hedging strategy is applied. The
replicating portfolio is composed of units of the underlying forward-starting swap and
investment in the money market. The dynamic hedge involves the periodic rebalancing of
the portfolio. The delta for a receiver swaption under the Hull–White model (see Henrard
2003) is given by

∆(t) =
∑M

j=1 cjP(t, Tj)ν(t, Tj)Φ(κ + αj)− P(t, T0)ν(t, T0)Φ(κ)

∑M
j=1 cjP(t, Tj)ν(t, Tj)− P(t, T0)ν(t, T0)

(16)

where κ is the solution of

M

∑
j=1

cj
P(t, Tj)

P(t, T0)
exp

(
−1

2
α2

j − αjκ

)
= 1

Risks 2023, 11, 168 25 of 41

and

α2
j :=

∫ T0

0

(
ν(u, Tj)− ν(u, T0)

)2du

where Φ denotes the CDF of a standard normal distribution, cj = ∆TjK for j = 1, . . . , M− 1,
and cM = 1+ ∆TMK. The function ν(t, T) denotes the instantaneous volatility of a discount
bond maturing at T, which, under Hull–White, is given by ν(t, T) := σ

a

(
1− e−a(T−t)

)
.

We validated the analytic expression above with numerical approximations of the Delta
obtained by bumping the yield curve. Within the simulation, the dynamic hedge portfolio is
rebalanced on a daily basis between time-zero and expiry of the option. In this experiment,
that means it is updated on 255 instances at equidistant monitor dates.

The performance of both hedging strategies is reported in Table 5. The results are based
on 10,000 risk-neutral Monte Carlo paths. The hedging error refers to the difference between
the option’s pay-off at expiry and the replicating portfolio’s final value. The quantities are
reported in basis points of the notional amount. The empirical distribution of the hedging
error is shown in Figure 8. We observe that, overall, the static hedge outperforms the
dynamic hedge in terms of accuracy, even though it involves only a quarter (64 versus 255)
of the trades. Although it is not visible in Figure 8b, the static strategy does give rise to
occasional outliers in terms of accuracy. These are associated with scenarios that reach or
exceed the boundary of the training set. These errors are typically of a similar order of
magnitude as the errors observed in the dynamic hedge. The impact of outliers can be
reduced by increasing the training set and thereby broadening the regression domain.

(a) Hedge error dynamic strategy (b) Hedge error static strategy

Figure 8. Hedge error distribution for a 1Y × 5Y receiver swaption, based on 104 MC paths.
S1Y×5Y ≈ 0.0305.

Table 5. Hedging errors for static and dynamic hedging strategy for a 1Y × 5Y receiver swaption,
based on 104 MC paths. S1Y×5Y ≈ 0.0305.

Hedge Error (bps) K/S Static Hedge Dyn. Hedge

Mean 80% −1.9× 10−2 0.38
100% −2.2× 10−3 0.61
120% −1.5× 10−2 0.46

St. dev. 80% 2.5 9.1
100% 3.1× 10−2 10.1
120% 4.5× 10−2 9.4

95%-percentile 80% 6.6× 10−2 15.7
100% 1.2× 10−2 17.9
120% 2.0× 10−2 16.2

6.4.2. 2-Factor Bermudan Swaption

Here, we demonstrate the performance of the semi-static hedge for a 1Y× 5Y receiver
Bermudan swaption under a two-factor model. We compare the accuracy of the hedging
strategy utilizing a locally connected network versus a fully connected neural network.

Risks 2023, 11, 168 26 of 41

In the former, the replication portfolio consists of zero-coupon bonds and zero-coupon
bond options. In the latter, the Bermudan is replicated with options written on hypothetical
assets with a pay-off equal to the log of a zero-coupon bond (see Section 3.2.3). The model
set-up is similar to that in Section 6.3, using the same set of parameters reported in Table 3.
Both networks are composed with 64 hidden nodes and optimized using 20,000 training
points generated through Monte Carlo sampling. The portfolio is set up at time-zero and
updated at each monitor date of the Bermudan until it is either exercised or expired. We
assume that the holder of the Bermudan swaption follows the exercise strategy implied by
the algorithm, i.e., the option is exercised as soon as C̃m(Tm) ≤ hm(xTm). When a monitor
date Tm is reached, the replication portfolio matures with a pay-off equal to Gm(zm(Tm)).
In case the Bermudan is continued, the price to set up a new replication portfolio is given

by Ṽ(Tm) = B(Tm)EQ
[

Gm+1(zm+1)
B(Tm+1)

∣∣∣FTm

]
, which contributes Gm(zm(Tm)) − Ṽ(Tm) to the

hedging error. In case the Bermudan is exercised, the holder will claim Ṽ(Tm) = hm(xTm),
which also contributes Gm(zm(Tm))− Ṽ(Tm) to the hedging error. The total error of the
semi-static hedge (HE) is therefore computed as

HE :=
M−1

∑
m=0

(
Gm(zm(Tm))− Ṽ(Tm)

)
1{τ̃≤Tm}

where Ṽ(Tm) := max
{

B(Tm)EQ
[

Gm+1(zm+1)
B(Tm+1)

∣∣∣FTm

]
, hm(xTm)

}
denotes the direct estimator

at date Tm and τ̃ denotes the stopping time, as defined in Equation (9).
The performance of the strategies related to locally and fully connected neural net-

works is reported in Table 6. The results are based on 10,000 risk-neutral Monte Carlo
paths and reported in basis points of the notional amount. The empirical distribution of the
hedging error is shown in Figure 9. We observe that both approaches yield an accuracy
in the same order of magnitude, although the locally connected case slightly outperforms
the fully connected case. This is in line with expectations, as the fitting performance of the
locally connected networks is generally higher. For similar reasons to the one-factor case,
the hedging experiments give rise to occasional outliers in terms of accuracy. These outliers
can be in the order of several dozens of basis points. Again, the impact of outliers can be
reduced by broadening the regression domain.

Table 6. Hedging errors of the semi-static hedging strategy for a 1Y× 5Y receiver Bermudan swaption,
based on 104 MC paths. S1Y×5Y ≈ 0.0305.

Hedge Error (bps) K/S Loc. conn. NN Fully conn. NN

Mean 80% 3.2× 10−2 2.1× 10−2

100% 7.9× 10−2 −5.5× 10−2

120% −9.4× 10−2 4.5× 10−2

St. dev. 80% 0.45 0.55
100% 0.38 0.48
120% 0.37 0.67

95%-percentile 80% 0.66 0.69
100% 0.56 0.85
120% 0.72 0.76

Risks 2023, 11, 168 27 of 41

(a) Hedge error locally connected NN (b) Hedge error fully connected NN

Figure 9. Hedge error distribution for a 1Y × 5Y receiver Bermudan swaption, based on 104 MC
paths. S1Y×5Y ≈ 0.0305.

7. Conclusions

In this paper, we have proposed a semi-static replication algorithm for Bermudan
swaptions under an affine term structure model. We have shown that Bermudan swaptions,
an exotic interest rate derivative that is heavily traded in the OTC market, can be semi-
statically replicated with an options portfolio written on a basket of discount bonds. The
static portfolio composition is obtained by regressing the target option’s value using a
shallow, artificial neural network. The choice of the regression basis functions are motivated
by their representation of an option’s portfolio pay-off, implying an interpretable neural
network structure. Leveraging the approximating power of ANNs, we proved that the
replication can achieve any desired level of accuracy given that the portfolio is sufficiently
large. We derived a direct estimator of the contract price, and an upper bound and lower
bound estimate to this price can be computed at minimal additional computational cost.

The algorithm we presented is inspired by the work of Lokeshwar et al. (2022),
which proposes a semi-static replication approach for callable equity options embedded
in the Black–Scholes model. We contribute to the literature by extending the concept of
(semi-)static replication to the field of interest rate modeling. Next, to a direct, lower bound,
and upper bound estimator, we have derived analytical error margins for these statistics.
This proves their convergence as the regression error diminishes and provides a direct
insight toward the accuracy of the estimates. Additionally, we propose an alternative ANN
design, which constrains the replication into a portfolio of vanilla bond options, even in the
case of a multi-factor model. This guarantees efficiency in the portfolio valuation, which is
key to many applications in credit risk management.

The performance of the method was demonstrated through several numerical exper-
iments. We focused on Bermudan swaptions under a one- and two-factor model, which
are popular amongst practitioners. The pricing accuracy of the method was determined
through a benchmark to the established least-square method of Longstaff and Schwartz
(2001). This reference is approached with basis point precision. A convergence analysis
showed that a portfolio of 16 bond options suffices in achieving a replication with a similar
accuracy to the LSM. Finally, the replication performance was studied through an in-model
hedging experiment. This showed that the semi-static hedge outperforms a traditional
dynamic replication in terms of hedging error.

As a look-out for further research, we consider applying the algorithm to the computa-
tion of credit risk measures and various value adjustments (xVAs). These metrics typically
rely on generating forward value and sensitivity profiles of (exotic) derivative portfolios.
We see the semi-static replication approach combined with the simple error analysis as an
effective tool to address the computational challenges associated with these risk measures.
The performance of the method in the context of quantifying CCR will therefore be studied
in a forthcoming companion paper.

Risks 2023, 11, 168 28 of 41

Author Contributions: Conceptualization, J.H., S.J. and D.K.; Formal analysis, J.H., S.J., D.K.; Investi-
gation, J.H.; Writing—original draft, J.H.; Writing—review and editing, S.J. and D.K.; Visualization,
J.H.; Supervision, S.J. and D.K.; Project administration, D.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This project has received funding from the NWO under the Industrial Doctorates grant.
Grant Number: NWA.ID.17.029

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Disclosure: The opinions expressed in this work are solely those of the authors and do not represent
in any way those of their current and past employers.

Appendix A. Evaluation of the Conditional Expectation

In this section, we will explicitly compute the conditional expectations related to the
continuation values. We will distinguish two approaches associated with the two proposed
network structures, i.e., the locally connected case (suggestion 1) and the fully connected
case (suggestion 2).

For ease of computation, we will use a simplified, yet equivalent representation of the
risk factor dynamics discussed in Section 2.1. This concerns a linear shift of the canonical
representation of the latent factors as presented in Dai and Singleton (2000). We write
xt := (x1(t), . . . , xn(t))

>, where each component xi denotes a mean-reverting zero-mean
process. The risk-neutral dynamics are assumed to satisfy

d

x1(t)
...

xd(t)

 = −

a1(t)x1(t)
...

ad(t)xd(t)

dt +

σ11(t) . . . σ1d(t)
...

. . .
...

σd1(t) . . . σdd(t)

dW(t),

x1(0)
...

xd(0)

 =

0
...
0

 (A1)

where W denotes a standard d-dimensional Brownian motion with independent entries.

By setting σ̃i(t) :=
√

∑d
j=1 σ2

ij(t), the process above can be rewritten in terms of one-
dimensional Itô processes Shreve (2004) of the form

dxi(t) = −ai(t)xi(t)dt + σ̃i(t)dW̃i(t), i = 1, . . . , d (A2)

where W̃1, . . . , W̃d denote a set of one-dimensional, correlated Brownian motions under the
measure Q. The instantaneous correlation is denoted by ρij, such that d

〈
W̃i, W̃j

〉
t = ρij(t)dt.

Appendix A.1. The Continuation Value with Locally Connected NN

We consider the network Gm(·), which is trained to approximate Ṽ(Tm). Let t ∈
[Tm−1, Tm). In order to obtain Ṽ(t), we need to evaluate EQ

[
e−
∫ Tm

t r(u)duGm(xTm)
∣∣∣Ft

]
. As

Gm(·) represents the linear combination of the outcome of q hidden nodes, we will focus
on the conditional expectation of hidden node i ∈ {1, . . . , q}. Our aim is then to compute
the following:

Hi(t) := EQ
[
e−
∫ Tm

t r(u)du ϕ(w>i P(Tm) + bi)
∣∣∣Ft

]
The map ϕ : R → R denotes the ReLU function defined as ϕ(x) = max{x, 0}. The

weight vector wi (corresponding to hidden node i) and P(Tm) are defined as

wi =

wi
1

...
wi

d

, P(Tm) =

P(Tm, Tm + δ1)
...

P(Tm, Tm + δd)



Risks 2023, 11, 168 29 of 41

with Tm < Tm + δ1 < . . . < Tm + δd ≤ TM. Recall that, as a characteristic of the affine term
structure model, the random variable P(t, T) can be expressed as

P(t, T) = eA(t,T)−∑d
i=1 Bi(t,T)xi(t)

for deterministic functions A and Bi, which are available in closed form (see Brigo and
Mercurio 2006). By the structure of the network, the weight vector is constrained to have
only a single non-zero entry, which we will denote to have index k. Therefore, we can
rewrite

Hi(t) = EQ
[
e−
∫ Tm

t r(u)du max
{

wk
i P(Tm, Tm + δk) + bi, 0

}∣∣∣Ft

]
As we argued before, if wk

i and bi are both non-negative, Hi(t) denotes the value of a
forward contract. In that case, we have

Hi(t) = EQ
[
e−
∫ Tm

t r(u)du
(

wk
i P(Tm, Tm + δk) + bi

)∣∣∣Ft

]
= wk

i E
Q
[

e−
∫ Tm

t r(u)duEQ
[

e−
∫ Tm+δk

Tm r(u)du
∣∣∣FTm

]∣∣∣∣Ft

]
+ biEQ

[
e−
∫ Tm

t r(u)du
∣∣∣Ft

]
= wk

i P(t, Tm + δk) + biP(t, Tm)

If, on the other hand, bi < 0 < wk
i or wk

i < 0 < bi, we are dealing with a European
call or put option, respectively. Closed-form expressions for European bond options are
available based on Black’s formula and have been treated extensively in the literature; see,
for example, Musiela and Rutkowski (2005), Filipovic (2009), or Brigo and Mercurio (2006).
In our case, we have

Hi(t) =

{
wk

i P(t, Tm + δk)Φ(d+) + biP(t, Tm)Φ(d−) if bi < 0 < wk
i

−biP(t, Tm)Φ(−d−)− wk
i P(t, Tm + δk)Φ(−d+) if wk

i < 0 < bi

where Φ denotes the CDF of a standard normal distribution, and we define

d± :=
log
(
−wk

i P(t,Tm+δk)

bi P(t,Tm)

)
± 1

2 Σ(t, Tm)√
Σ(t, Tm)

and

Σ(t, Tm) :=
∫ Tm

t
‖ν(u, Tm + δk)− ν(u, Tm)‖2du

In the expression above, the function ν(t, T) ∈ Rd refers to the instantaneous volatility
at time t of a discount bond maturing at T. Under the dynamics of Equation (A1), ν is
given by

ν(t, T) =

∑d
i=1 Bi(t, T)σi1(t)

...
∑d

i=1 Bi(t, T)σid(t)

 (A3)

Appendix A.2. The Continuation Value with Fully Connected NN

Once again, we consider the network Gm(·), focus on the outcome of hidden node i ∈
{1, . . . , q}, and let t ∈ [Tm−1, Tm). Now, our aim is to evaluate the conditional expectation
below, which, by a change in numéraire argument, can be rewritten as

EQ
[
e−
∫ Tm

t r(u)du ϕ(w>i log P(Tm)− bi)
∣∣∣Ft

]
= P(t, Tm)ETm

[
max

{
w>i log P(Tm)− bi), 0

}∣∣∣Ft

]

Risks 2023, 11, 168 30 of 41

where the expectation on the right is taken under the Tm-forward measure, taking P(t, Tm)
as the numéraire. The weight vector wi (corresponding to hidden node i) and log P(Tm)
are defined as

wi =

wi
1

...
wi

d

, log P(Tm) =

log P(Tm, Tm + δ1)
...

log P(Tm, Tm + δd)


with Tm < Tm + δ1 < . . . < Tm + δd ≤ TM. We set the input dimension equal to the number
of risk factors (i.e., d = n). Therefore, we can write

w>i log P(Tm) =
d

∑
j=1

wi
j log P(Tm, Tm + δj)

=
d

∑
j=1

wi
j A(Tm, Tm + δj)−

d

∑
j=1

wi
j

d

∑
k=1

Bk(Tm, Tm + δj)xk(Tm)

=
(
wi

1 . . . wi
d
)A(Tm, Tm + δ1)

...
A(Tm, Tm + δd)



−
(
wi

1 . . . wi
d
)B1(Tm, Tm + δ1) . . . Bd(Tm, Tm + δ1)

...
. . .

...
B1(Tm, Tm + δd) . . . Bd(Tm, Tm + δd)


x1(Tm)

...
xd(Tm)


=w>i A(Tm)−w>i B(Tm)xTm

where we implicitly define

A(Tm) :=

A(Tm, Tm + δ1)
...

A(Tm, Tm + δd)

,

B(Tm) :=

B1(Tm, Tm + δ1) . . . Bd(Tm, Tm + δ1)
...

. . .
...

B1(Tm, Tm + δd) . . . Bd(Tm, Tm + δd)


In order to compute the conditional expectation of Equation (A4), a change in measure is
required to obtain the dynamics of x1, . . . , xn under the Tm−forward measure. Consider
the Radon–Nikodym derivative process Beyna (2013), defined by

dQTm

dQ

∣∣∣∣Ft =
B(t)

B(Tm)

P(Tm, Tm)

P(t, Tm)
= exp

{
−
∫ Tm

t
ν(u, Tm) · dW(u)− 1

2

∫ Tm

t
‖ν(u, Tm)‖2du

}
where ν refers to to the instantaneous volatility of the numéraire, given in Equation (A3).
The dynamics of the risk factors under QTm can be obtained by an application of Girsanov’s
theorem Musiela and Rutkowski (2005). Denote by σi(t) := (σi1(t), . . . , σid(t)) the ith row
of the volatility matrix of xt and let W̃Tm

i be Brownian motions under QTm ; then,

dxi(t) = −ai(t)xi(t)dt− σi(t) · ν(t, Tm)dt + σ̃i(t)dW̃Tm
i (t), i = 1, . . . , d (A4)

Let Θi(t, Tm) =
∫ Tm

t σi(s) · ν(s, Tm)e−
∫ Tm

s ai(u)duds; then, the SDE above solves to

xi(Tm) = xi(t)e−
∫ Tm

t ai(u)du −Θi(t, Tm) +
∫ Tm

t
σ̃i(s)e−

∫ Tm
s ai(u)dudW̃Tm

i (s), i = 1, . . . , d (A5)

Risks 2023, 11, 168 31 of 41

It follows that, as a property of the Itô integral, the risk factors (x1(Tm), . . . , xn(Tm)) as
presented in Equation (A5), conditional on Ft, have a multivariate normal distribution
under QTm . Their mean vector and co-variance matrix are, respectively, given by

µ :=

µ1
...

µd

 :=

ETm [x1(Tm)|Ft]
...

ETm [xd(Tm)|Ft]

 =


x1(t)e−

∫ Tm
t a1(u)du −Θ1(t, Tm)

...

xd(t)e−
∫ Tm

t ad(u)du −Θd(t, Tm)



C :=

c11 . . . c1d
...

. . .
...

cd1 . . . cdd

 :=

Cov[x1(Tm), x1(Tm)|Ft] . . . Cov[x1(Tm), xd(Tm)|Ft]
...

. . .
...

Cov[xd(Tm), x1(Tm)|Ft] . . . Cov[xd(Tm), xd(Tm)|Ft]


cii =

∫ Tm

t
σ̃2

i (s)e
−2
∫ Tm

s ai(u)duds ∀i∈{1,...,d}

cij =
∫ Tm

t
ρ(s)σ̃i(s)σ̃j(s)e

−
∫ Tm

s (ai(u)+aj(u))duds ∀i 6=j

As a result, it should be clear that the random variable Y := w>i log P(Tm) is normally
distributed with mean and variance given, respectively, by

µY = w>i A(Tm)−w>i B(Tm)µ

and variance
σ2

Y = w>i B(Tm)CB(Tm)
>wi

As a result, we can compute

EQ
[
e−
∫ Tm

t r(u)du ϕ(w>i log P(Tm)− bi)
∣∣∣Ft

]
= P(t, Tm)ETm

[
max(Y− bi, 0)

∣∣Ft
]

where the conditional expectation on the right-hand side can be expressed in closed form
following a similar analysis as presented in Musiela and Rutkowski (2005). Let di := µY−bi

σY
and denote by ξ ∼ N(0, 1) a standard normal random variable. Then, it follows that

ETm
[
max(Y− bi, 0)

∣∣Ft
]
= ETm

[
(Y− bi)1{Y>bi}

∣∣Ft

]
= ETm

[
(Y− µY)1{Y>bi}

]
+ (µY − bi)QTm

[
Y > bi

∣∣Ft
]

= σYETm

[
Y− µY

σY
1{ Y−µY

σY
>−di

}∣∣∣∣Ft

]
+ (µY − bi)QTm

[
Y− µY

σY
> −di

∣∣∣∣Ft

]
= σYE

[
−ξ1{−ξ<di}

]
+ (µY − bi)P[ξ < di]

= σYφ(di) + (µY − bi)Φ(di)

where φ denotes the standard normal density function and Φ the standard normal cumula-
tive density function.

Appendix B. Pre-Processing the Regression-Data

A procedure that significantly improves the fitting performance of the neural networks
is the normalization of the training data. The linear rescaling of the input to the optimizer
is a common form of data pre-processing Bishop et al. (1995). In the case of a multivariate
input, the variables might have typical values in different orders of magnitude, even though
that does not reflect their relative influence on determining the outcome Bishop et al. (1995).
Normalizing the scale avoids the impact of a certain input being prioritized over another

Risks 2023, 11, 168 32 of 41

input. Also, the transfer of the final weights in Gm+1 to the initialization of Gm is more
effective as the target variables are of roughly the same size at each time-step. In the default
situation, the average continuation values would change in magnitude and the risk factor
distribution would grow with each passing of a monitor date.

Another argument for pre-processing the input is that large data values typically
induce large weights. Large weights can lead to exploding network outputs in the feed-
forward process Goodfellow et al. (2016). Furthermore, it can cause an unstable optimiza-
tion of the network, as extreme gradients can be very sensitive to small perturbations in the
data Goodfellow et al. (2016).

In practice, we propose the following rescaling of the data. Denote by

ẑ(Tm) :=


z1(Tm)

...
zd(Tm)


1

, . . . ,

z1(Tm)
...

zd(Tm)


N

, V̂(Tm) :=
{

Ṽ
(

Tm; x1
Tm

)
, . . . , Ṽ

(
Tm; xN

Tm

)}

the training points for the in- and output of network Gm. Define the standard sample mean
and standard deviations as

µzi (Tm) :=
1
N

N

∑
n=1

zn
i (Tm), µV(Tm) :=

1
N

N

∑
n=1

Ṽ
(
Tm; xn

Tm

)
σzi (Tm) :=

1
N − 1

N

∑
n=1

(zn
i (Tm)− µzi)

2, σV(Tm) :=
1

N − 1

N

∑
n=1

(
Ṽ
(
Tm; xn

Tm

)
− µV(Tm)

)2

We then perform a simple element-wise linear transformation to obtain the scaled data ẑ†

and V̂† given by

ẑ†
i (Tm) :=

ẑi(Tm)− µzi (Tm)

σzi (Tm)
, V̂†(Tm) :=

V̂(Tm)

σV(Tm)

With the transformations above in mind, it is important to adjust the associated composition
of the replicating portfolio accordingly. For the two network designs, this has the following
implications:

The locally connected NN case: Consider the outcome of the ith hidden node νi and de-
note the input of the network as z. Then, νi = ϕ

(
wk

i zk + bi

)
, where k is the index of

the only non-zero entry of wi, the ith row of weight matrix w1. The transformation
z 7→ z−µz

σz
implies that

νi 7→ ϕ

(
wk

i
zk − µzk

σzk

+ bi

)
= ϕ

(
wk

i
σzk

zk +

(
bi −

wk
i µzk

σzk

))

As a consequence, in the analysis of Appendix A.1, the transformations wk
i 7→

wk
i

σzk

and bi 7→ bi −
wk

i µzk
σzk

should be taken into account. Additionally, the transformation

w2 7→ σVw2 is required to account for the scaling of V̂.

The fully connected NN case: Again, consider the outcome of the ith hidden node νi. This
time, the transformation z 7→ z−µz

σz
implies that

νi 7→ ϕ

(
w>i

z− µz

σz
+ bi

)
= ϕ

 d

∑
j=1

wj
i

σzj

zj +

bi −
d

∑
j=1

wj
iµzj

σzi



Risks 2023, 11, 168 33 of 41

As a consequence, in the analysis of Appendix A.2, the transformations wi 7→
(

w1
i

σz1
, . . .

, wd
i

σzd

)>
and bi 7→ bi − ∑d

j=1
wj

i µzj
σzi

should be taken into account. And, again, the

transformation w2 7→ σVw2 is required to account for the scaling of V̂.

Appendix C. Hyperparameter Selection

The accuracy of the neural network fitting procedure is dependent on the choice
of several hyperparameters. For the numerical experiments reported in Section 6, the
hyperparameters have been selected based on a convergence analysis. We focused on the
following:

• Hidden node count: see Figure A1;
• Size training set: see Figure A2;
• Learning-rate: see Figure A3.

Several numerical experiments indicated that the batch size did not have a significant
impact on the fitting accuracy and is therefore fixed at a default of 32. For the convergence
analysis of the parameters listed above, we considered a 1Y × 10Y receiver Bermudan
swaption with a fixed rate of K = 0.03. Experiments were performed under the two-factor
G2++ model using the model specifications depicted in Table 3. The figures show the mean
absolute errors of the neural network fits per monitor date in basis points of the notional.

(a) Locally connected NN (b) Fully connected NN

Figure A1. Impact hidden node count: accuracy of the neural network fit per monitor date under a
2-factor model. # training points = 5000. Learning-rate = 0.0002.

(a) Locally connected NN (b) Fully connected NN

Figure A2. Impact size training set: accuracy of the neural network fit per monitor date under a
2-factor model. # hidden nodes = 64. Learning-rate = 0.0002.

Risks 2023, 11, 168 34 of 41

(a) Locally connected NN (b) Fully connected NN

Figure A3. Impact learning-rate: accuracy of the neural network fit per monitor date under a 2-factor
model. # hidden nodes = 64. # training-points = 10,000.

Appendix D. Proof of Theorem 1

Proof. We prove by induction on m. At the last exercise date of the Bermudan, i.e.,
t = TM−1, we have V(TM−1; x) = Ṽ(TM−1; x) := max{hM−1(x), 0}, representing the final
pay-off of the contract, which at TM−1 is exactly known. Hence, it should be obvious that

sup
x∈Id

B−1(TM−1)
∣∣V(TM−1; x)− Ṽ(TM−1; x)

∣∣ = 0

For the inductive step, assume that, for some Tm+1 ∈ T f , an approximation Ṽ(Tm+1) of the
price is given, satisfying

sup
x∈Id

B−1(Tm+1)
∣∣V(Tm+1; x)− Ṽ(Tm+1; x)

∣∣ < kε

We will show that it follows that, for all t ∈ [Tm, Tm+1),

sup
x∈Id

B−1(t)
∣∣V(t; x)− Ṽ(t; x)

∣∣ < (k + 1)ε

First, consider the case t ∈ (Tm, Tm+1). It follows that

sup
x∈Id

∣∣∣∣V(t; x)− Ṽ(t; x)
B(t)

∣∣∣∣ = sup
x∈Id

∣∣∣∣Cm(t; x)− C̃m(t; x)
B(t)

∣∣∣∣
= sup

x∈Id

∣∣∣∣EQ
[

V(Tm+1)

B(Tm+1)

∣∣∣∣xt = x
]
−EQ

[
Gm+1(zm+1)

B(Tm+1)

∣∣∣∣xt = x
]∣∣∣∣

≤ sup
x∈Id

EQ
[

B−1(Tm+1)|V(Tm+1)− Gm+1(zm+1)|
∣∣∣xt = x

]
= sup

x∈Id

EQ
[

B−1(Tm+1)
∣∣V(Tm+1)− Ṽ(Tm+1)

+Ṽ(Tm+1)− Gm+1(zm+1)
∣∣∣∣∣xt = x

]
≤ sup

x∈Id

(
EQ
[

B−1(Tm+1)
∣∣V(Tm+1)− Ṽ(Tm+1)

∣∣∣∣∣xt = x
]

+EQ
[

B−1(Tm+1)
∣∣Ṽ(Tm+1)− Gm+1(zm+1)

∣∣∣∣∣xt = x
])

In the last expression above, the first term is bounded due to the induction hypothesis,
i.e., B−1(Tm+1)

∣∣V(Tm+1)− Ṽ(Tm+1)
∣∣ < kε. The second term is bounded by assumption,

i.e., there exists a network Gm+1(·) such that B−1(Tm+1)
∣∣Ṽ(Tm+1)− Gm+1(zm+1)

∣∣ < ε. We
hence conclude that

sup
x∈Id

B−1(t)
∣∣V(t; x)− Ṽ(t; x)

∣∣ < (k + 1)ε, ∀t∈(Tm ,Tm+1)

Risks 2023, 11, 168 35 of 41

If, on the other hand, t = Tm, we have that

sup
x∈Id

∣∣∣∣V(t; x)− Ṽ(t; x)
B(t)

∣∣∣∣ = sup
x∈Id

∣∣∣∣∣max{Cm(t; x), hm(x)} −max
{

C̃m(t; x), hm(x)
}

B(t)

∣∣∣∣∣
Denoting H(x): = B−1(t)

∣∣max{Cm(t; x), hm(x)} −max
{

C̃m(t; x), hm(x)
}∣∣ in the

expression above, we can distinguish four cases for each x ∈ Id, which are

• Cm(t; x), C̃m(t; x) > hm(x), then H(x) = B−1(t)
∣∣Cm(t; x)− C̃m(t; x)

∣∣ < (k + 1)ε;
• Cm(t; x), C̃m(t; x) < hm(x), then H(x) = B−1(t)|hm(x)− hm(x)| = 0 < (k + 1)ε;
• Cm(t; x) < hm(x) < C̃m(t; x), then H(x) = B−1(t)

∣∣hm(x)− C̃m(t; x)
∣∣

< B−1(t)
∣∣Cm(t; x)− C̃m(t; x)

∣∣ < (k + 1)ε;
• C̃m(t; x) < hm(x) < Cm(t; x), then H(x) = B−1(t)|Cm(t; x)− hm(x)|

< B−1(t)
∣∣Cm(t; x)− C̃m(t; x)

∣∣ < (k + 1)ε.

From all the cases, we can induce that

sup
x∈Id

B−1(t)
∣∣V(t; x)− Ṽ(t; x)

∣∣ ≤ (k + 1)ε

We conclude that, by induction on m = M− 1, . . . , 0,

sup
x∈Id

B−1(t)
∣∣V(t; x)− Ṽ(t; x)

∣∣ < Mε

for all t ∈ [0, TM−1].

Appendix E. Proof of Theorem 2

Proof. First, we fix some notation.

• Let Vm := V(Tm) denote the true price of the Bermudan swaption at Tm conditioned
on the fact that it is not yet exercised.

• Let C̃m := B(Tm)EQ
[

Gm+1(zm+1)
B(Tm+1)

∣∣∣∣FTm

]
denote the estimator of the continuation value

at Tm.
• Let Ṽm := max

{
C̃m, hm(xTm)

}
denote the estimator of Vm.

• Let Gm := Gm(zm) denote the neural network approximation of Ṽm.
• Let Bm := B(Tm) denote the numéraire at Tm.
• Let hm := hm(xTm).

Let Tm ∈ {T0, . . . , TM−1}. We will prove the theorem by induction on m. For the base case,
note that at time zero we have∣∣V(0)− Ṽ(0)

∣∣ = ∣∣∣∣EQ
[

V0

B0

∣∣∣∣F0

]
−EQ

[
G0

B0

∣∣∣∣F0

]∣∣∣∣ ≤ EQ
[∣∣∣∣V0 − G0

B0

∣∣∣∣∣∣∣∣F0

]
(A6)

which is induced by Jensen’s inequality. For the inductive step, assume that, for some
m ∈ {0, . . . , M− 1}, we have that

∣∣V(0)− Ṽ(0)
∣∣ < EQ

[∣∣∣∣Vm − Gm

Bm

∣∣∣∣∣∣∣∣F0

]
+ m · ε (A7)

The expectation in (A7) can be rewritten using the triangular inequality

EQ
[∣∣∣∣Vm − Gm

Bm

∣∣∣∣∣∣∣∣F0

]
= EQ

[∣∣∣∣Vm − Ṽm + Ṽm − Gm

Bm

∣∣∣∣
∣∣∣∣∣F0

]

≤ EQ
[∣∣∣∣Vm − Ṽm

Bm

∣∣∣∣
∣∣∣∣∣F0

]
+EQ

[∣∣∣∣ Ṽm − Gm

Bm

∣∣∣∣
∣∣∣∣∣F0

] (A8)

Risks 2023, 11, 168 36 of 41

The second term in (A8) is, by assumption, bounded by ε. Note that the first term in (A8)
can be bounded as

EQ
[∣∣∣∣Vm − Ṽm

Bm

∣∣∣∣
∣∣∣∣∣F0

]
= EQ

[∣∣∣∣∣max{Cm, hm} −max
{

C̃m, hm
}

Bm

∣∣∣∣∣
∣∣∣∣∣F0

]

≤ EQ
[∣∣∣∣Cm − C̃m

Bm

∣∣∣∣
∣∣∣∣∣F0

]

= EQ
[∣∣∣∣EQ

[
Vm+1

Bm+1

∣∣∣∣FTm

]
−EQ

[
Gm+1

Bm+1

∣∣∣∣FTm

]∣∣∣∣
∣∣∣∣∣F0

]

≤ EQ
[
EQ
[∣∣∣∣Vm+1 − Gm+1

Bm+1

∣∣∣∣∣∣∣∣FTm

]∣∣∣∣∣F0

]

= EQ
[∣∣∣∣Vm+1 − Gm+1

Bm+1

∣∣∣∣∣∣∣∣F0

]
It follows that ∣∣V(0)− Ṽ(0)

∣∣ < EQ
[∣∣∣∣Vm+1 − Gm+1

Bm+1

∣∣∣∣∣∣∣∣F0

]
+ (m + 1) · ε

For the final step, note that if m = M− 1, we have

EQ
[∣∣∣∣Vm − Gm

Bm

∣∣∣∣∣∣∣∣F0

]
= EQ

[∣∣∣∣max{hM−1, 0} − GM−1

BM−1

∣∣∣∣∣∣∣∣F0

]
< ε

We conclude by induction on m that
∣∣V(0)− Ṽ(0)

∣∣ < Mε

Appendix F. Proof of Theorem 3

Proof. We consider the following three events: {τ = τ̃}, {τ < τ̃}, and {τ > τ̃}. Note that

V(0)− L(0) = EQ
[

hτ(xτ)

B(τ)
− hτ̃(xτ̃)

B(τ̃)

∣∣∣∣F0

]
= EQ

[(
hτ(xτ)

B(τ)
− hτ̃(xτ̃)

B(τ̃)

)
1{τ=τ̃}

∣∣∣∣F0

]
+EQ

[(
hτ(xτ)

B(τ)
− hτ̃(xτ̃)

B(τ̃)

)
1{τ<τ̃}

∣∣∣∣F0

]
+EQ

[(
hτ(xτ)

B(τ)
− hτ̃(xτ̃)

B(τ̃)

)
1{τ>τ̃}

∣∣∣∣F0

]
= E1 + E2 + E3

We will bound the three terms above one by one.
Bounding E1:Starting with the event {τ = τ̃}, we observe that we can write

E1 = EQ
[(

hτ(xτ)

B(τ)
− hτ(xτ)

B(τ)

)
1{τ=τ̃}

∣∣∣∣F0

]
= 0

Bounding E2:We continue with the event {τ < τ̃}. For this, we will introduce two types of
sub-events: Am: = {τ = Tm ∧ τ̃ > Tm} and Bm := {τ ≤ Tm ∧ τ̃ > Tm}, where ∧ denotes
the logical AND operator. Also, we define the difference process em: = Ṽ(Tm)

B(Tm)
− hτ̃(xτ̃)

B(τ̃) . It

should be clear that 1{τ<τ̃} = ∑M−1
m=0 1Am . Therefore, it holds that

E2 =
M−1

∑
m=0

EQ
[(

hτ(xτ)

B(τ)
− hτ̃(xτ̃)

B(τ̃)

)
1Am

∣∣∣∣F0

]
≤

M−1

∑
m=0

EQ
[
em1Am

∣∣∣F0

]

Risks 2023, 11, 168 37 of 41

where the inequality follows from the fact that the direct estimator has the property
Ṽ(Tm) = max{C̃m, hm} ≥ hm. Now, we will show by induction that E2 < (M − 1)ε.
First, observe that A0 ≡ B0. Second, note that, for any m ∈ {0, . . . , M− 1}, we have that

EQ
[
em1Bm

∣∣∣F0

]
= EQ

[(
EQ
[

Gm+1(zm+1)

B(Tm+1)

∣∣∣∣FTm

]
− hτ̃(xτ̃)

B(τ̃)

)
1Bm

∣∣∣∣F0

]
= EQ

[(
Gm+1(zm+1)

B(Tm+1)
− hτ̃(xτ̃)

B(τ̃)

)
1Bm

∣∣∣∣F0

]
≤ EQ

[∣∣∣∣Gm+1(zm+1)

B(Tm+1)
− Ṽ(Tm+1)

B(Tm+1)

∣∣∣∣1Bm

∣∣∣∣∣F0

]
+EQ

[
em+11Bm

∣∣∣F0

] (A9)

The first equality follows from the fact that Ṽ(Tm) = C̃m in the event τ̃ > Tm. The
second equality follows from the tower rule in combination with the fact that 1Bm is
FTm−measurable. The final inequality follows from an application of the triangle inequality.
The first term in (A9) is, by assumption, bounded by ε. The second term in (A9) can be
rewritten by observing that 1Bm := 1B1

m
+ 1B2

m
:= 1{τ≤Tm∧τ̃=Tm+1} + 1{τ≤Tm∧τ̃>Tm+1}. We

have that

EQ
[
em+11B1

m

∣∣∣F0

]
= EQ

[(
hm+1(xTm+1)

B(Tm+1)
−

hm+1(xTm+1)

B(Tm+1)

)
1B1

m

∣∣∣∣F0

]
= 0

Furthermore, we have that 1B2
m
+ 1Am+1 = 1Bm+1 . Therefore we can infer that

EQ
[
em1Bm

∣∣∣F0

]
+EQ

[
em+11Am+1

∣∣∣F0

]
< ε +EQ

[
em+11B2

m

∣∣∣F0

]
+EQ

[
em+11Am+1

∣∣∣F0

]
= ε +EQ

[
em+11Bm+1

∣∣∣F0

]
Together with the fact that A0 ≡ B0, we conclude by induction on m that

E2 ≤ EQ
[
e01B0

∣∣∣F0

]
+

M−1

∑
m=1

EQ
[
em1Am

∣∣∣F0

]
< ε +EQ

[
e11B1

∣∣∣F0

]
+

M−1

∑
m=2

EQ
[
em1Am

∣∣∣F0

]
...

< (M− 1)ε +EQ
[
eM−11BM−1

∣∣∣F0

]
= (M− 1)ε

Bounding E3:We finalize the proof by considering the third event {τ > τ̃}. In a similar
fashion as before, we introduce two types of sub-events: Am: = {τ̃ = Tm ∧ τ > Tm} and
Bm: = {τ̃ ≤ Tm ∧ τ > Tm}. Also, again define a difference process, this time given by em:

= hτ(xτ)
B(τ) −

Ṽ(Tm)
B(Tm)

. It should be clear that 1{τ>τ̃} = ∑M−1
m=0 1Am . Therefore, it holds that

E3 =
M−1

∑
m=0

EQ
[(

hτ(xτ)

B(τ)
− hτ̃(xτ̃)

B(τ̃)

)
1Am

∣∣∣∣F0

]
=

M−1

∑
m=0

EQ
[
em1Am

∣∣∣F0

]

Risks 2023, 11, 168 38 of 41

where the second equality follows from the fact that the direct estimator has the property
Ṽ(τ̃) = hτ̃ . Now, we will show by induction that E3 < (M − 1)ε. Note that, for any
m ∈ {0, . . . , M− 1}, we have that

EQ
[
em1Bm

∣∣∣F0

]
≤ EQ

[(
hτ(xτ)

B(τ)
−EQ

[
Gm+1(zm+1)

B(Tm+1)

∣∣∣∣FTm

])
1Bm

∣∣∣∣F0

]
= EQ

[(
hτ(xτ)

B(τ)
− Gm+1(zm+1)

B(Tm+1)

)
1Bm

∣∣∣∣F0

]
≤ EQ

[∣∣∣∣ Ṽ(Tm+1)

B(Tm+1)
− Gm+1(zm+1)

B(Tm+1)

∣∣∣∣1Bm

∣∣∣∣∣F0

]
+EQ

[
em+11Bm

∣∣∣F0

] (A10)

The first inequality follows from the fact that Ṽ(Tm) = max{C̃m, hm} ≥ C̃m. The sub-
sequent equality follows from the tower rule in combination with the fact that 1Bm is
FTm−measurable. The final inequality follows from an application of the triangle inequal-
ity. The first term in (A10) is, by assumption, bounded by ε. The second term in (A10) can
be rewritten by observing that 1Bm : = 1B1

m
+ 1B2

m
:= 1{τ̃≤Tm∧τ=Tm+1} + 1{τ̃≤Tm∧τ>Tm+1}.

We have that

EQ
[
em+11B1

m

∣∣∣F0

]
= EQ

[(
hm+1(xTm+1)

B(Tm+1)
− Ṽ(Tm+1)

B(Tm+1)

)
1B1

m

∣∣∣∣F0

]
≤ 0

where the inequality follows from the fact that Ṽ(Tm+1) = max{C̃m+1, hm+1} ≥ hm+1.
Furthermore, we have that 1B2

m
+ 1Am+1 = 1Bm+1 . Therefore, we can once again infer that

EQ
[
em1Bm

∣∣∣F0

]
+EQ

[
em+11Am+1

∣∣∣F0

]
< ε +EQ

[
em+11B2

m

∣∣∣F0

]
+EQ

[
em+11Am+1

∣∣∣F0

]
= ε +EQ

[
em+11Bm+1

∣∣∣F0

]
Together with the fact that A0 ≡ B0, we again conclude by induction on m that

E3 ≤ EQ
[
e01B0

∣∣∣F0

]
+

M−1

∑
m=1

EQ
[
em1Am

∣∣∣F0

]
< ε +EQ

[
e11B1

∣∣∣F0

]
+

M−1

∑
m=2

EQ
[
em1Am

∣∣∣F0

]
...

< (M− 1)ε +EQ
[
eM−11BM−1

∣∣∣F0

]
= (M− 1)ε

Conclusion: We hence find that

V(0)− L(0) = E1 + E2 + E3 < 0 + (M− 1)ε + (M− 1)ε = 2(M− 1)ε

Appendix G. Proof of Theorem 4

Proof. The discounted true price process is a supermartingale under Q. Therefore, we
have that V(t)

B(t) = Yt + Zt for a martingale Yt and a predictable process Zt, which starts
at zero (i.e., Z0 = 0) and is strictly decreasing. Define a difference process on T , given

Risks 2023, 11, 168 39 of 41

by eTm = V(Tm)−Gm(zm)
B(Tm)

. We can rewrite martingale Mt as defined in (13) in terms of et as
follows:

MTm =
G0(z0)

B(T0)
+

m

∑
j=1

(
Gj(zj)

B(Tj)
−EQ

[
Gj(zj)

B(Tj)

∣∣∣∣FTj−1

])

= YTm − eT0 −
m

∑
j=1

(
eTj −EQ

[
eTj

∣∣FTj−1

])
Substituting the expression for Mt into the definition of U(0) yields

U(0) = M0 +EQ
[

max
Tm∈T f

{
hm(xTm)

B(Tm)
−MTm

}∣∣∣∣F0

]

= EQ
[

G0(z0)

B(T0)

∣∣∣∣F0

]
+EQ

[
max

m∈{0,...,M−1}

{
hm(xTm)

B(Tm)
−YTm + eT0

+
m

∑
j=1

(
eTj −EQ

[
eTj

∣∣FTj−1

])}∣∣∣∣∣F0

]

≤ EQ
[

V(T0)

B(T0)

∣∣∣∣F0

]
+EQ

[
max

m∈{0,...,M−1}

{
m

∑
j=1

(
eTj −EQ

[
eTj

∣∣FTj−1

])}∣∣∣∣∣F0

]

The last step follows by merging EQ[eT0

∣∣F0
]

with M0 and by noting that hm(xTm)
B(Tm)

−YTm ≤
V(Tm)
B(Tm)

− YTm = ZTm ≤ 0. The remaining inequality is not easy to bound Andersen and
Broadie (2004). However, by taking the absolute values of the difference process, we can
obtain a loose bound as follows:

U(0) ≤ V(0) +EQ
[

max
m∈{0,...,M−1}

{
m

∑
j=1

∣∣∣eTj

∣∣∣+ m

∑
j=1

∣∣∣EQ
[
eTj

∣∣FTj−1

]∣∣∣}∣∣∣∣∣F0

]

≤ V(0) +EQ
[

M−1

∑
j=1

∣∣∣eTj

∣∣∣+ M−1

∑
j=1

∣∣∣EQ
[
eTj

∣∣FTj−1

]∣∣∣∣∣∣∣∣F0

]

≤ V(0) + 2
M−1

∑
j=1

EQ
[∣∣∣eTj

∣∣∣∣∣∣F0

]

Note that, as a consequence of Theorem 2, we have that EQ
[
|eTm |

∣∣∣F0

]
< (M − m)ε. It

follows that

|U(0)−V(0)| < 2
M−1

∑
m=1

(M−m)ε = M(M− 1)ε

This concludes the proof.

References
Ametrano, Ferdinando, and Luigi Ballabio. 2003. Quantlib—A Free/Open-Source Library for Quantitative Finance. Available online:

https://github.com/lballabio/QuantLib (accessed on 1 March 2020).
Andersen, Leif, and Mark Broadie. 2004. Primal-dual simulation algorithm for pricing multidimensional american options. Management

Science 50: 1222–34. [CrossRef]
Andersen, Leif B. G., and Vladimir V. Piterbarg. 2010a. Interest Rate Modeling, Volume I: Foundations and Vanilla Models. London:

Atlantic Financial Press.
Andersen, Leif B. G., and Vladimir V. Piterbarg. 2010b. Interest Rate Modeling, Volume II: Term Structure Models. London: Atlantic

Financial Press.
Andersson, Kristoffer, and Cornelis W. Oosterlee. 2021. A deep learning approach for computations of exposure profiles for

high-dimensional bermudan options. Applied Mathematics and Computation 408: 126332. [CrossRef]
Becker, Sebastian, Patrick Cheridito, and Arnulf Jentzen. 2019. Deep optimal stopping. Journal of Machine Learning Research 20: 74.

https://github.com/lballabio/QuantLib
http://doi.org/10.1287/mnsc.1040.0258
http://dx.doi.org/10.1016/j.amc.2021.126332

Risks 2023, 11, 168 40 of 41

Becker, Sebastian, Patrick Cheridito, and Arnulf Jentzen. 2020. Pricing and hedging american-style options with deep learning. Journal
of Risk and Financial Management 13: 158. [CrossRef]

Beyna, Ingo. 2013. Interest Rate Derivatives: Valuation, Calibration and Sensitivity Analysis. Berlin/Heidelberg: Springer Science &
Business Media.

Bishop, Christopher M. 1995. Neural Networks for Pattern Recognition. Oxford: Oxford University Press.
Breeden, Douglas T., and Robert H. Litzenberger. 1978. Prices of state-contingent claims implicit in option prices. Journal of Business 51:

621–51. [CrossRef]
Brigo, Damiano, and Fabio Mercurio. 2006. Interest Rate Models-Theory and Practice: With Smile, Inflation and Credit. Berlin/Heidelberg:

Springer, vol. 2.
Carr, Peter, and Jonathan Bowie. 1994. Static simplicity. Risk 7: 45–50.
Carr, Peter, Katrina Ellis, and Vishal Gupta. 1999. Static hedging of exotic options. In Quantitative Analysis in Financial Markets: Collected

Papers of the New York University Mathematical Finance Seminar. Singapore: World Scientific, pp. 152–76.
Carr, Peter, and Liuren Wu. 2014. Static hedging of standard options. Journal of Financial Econometrics 12: 3–46. [CrossRef]
Carriere, Jacques F. 1996. Valuation of the early-exercise price for options using simulations and nonparametric regression. Insurance:

Mathematics and Economics 19: 19–30. [CrossRef]
Chollet, François. 2015. Keras. Available online: https://keras.io (accessed on 1 May 2020).
Chung, San-Lin, and Pai-Ta Shih. 2009. Static hedging and pricing american options. Journal of Banking & Finance 33: 2140–49.
Dai, Qiang, and Kenneth J. Singleton. 2000. Specification analysis of affine term structure models. The Journal of Finance 55: 1943–78.

[CrossRef]
Derman, Emanuel, Deniz Ergener, and Iraj Kani. 1995. Static options replication. Journal of Derivatives 2. [CrossRef]
Duffie, Darrell, and Rui Kan. 1996. A yield-factor model of interest rates. Mathematical Finance 6: 379–406. [CrossRef]
Ferguson, Ryan, and Andrew Green. 2018. Deeply learning derivatives. arXiv arXiv:1809.02233.
Filipovic, Damir. 2009. Term-Structure Models. A Graduate Course. Berlin/Heidelberg: Springer.
Geman, Helyette, Nicole El Karoui, and Jean-Charles Rochet. 1995. Changes of numeraire, changes of probability measure and option

pricing. Journal of Applied probability 32: 443–58. [CrossRef]
Glasserman, Paul. 2013. Monte Carlo Methods in Financial Engineering. Berlin/Heidelberg: Springer Science & Business Media, vol. 53.
Glasserman, Paul, and Bin Yu. 2004. Simulation for american options: Regression now or regression later? In Monte Carlo and

Quasi-Monte Carlo Methods 2002. Berlin/Heidelberg: Springer, pp. 213–26.
Gnoatto, Alessandro, Christoph Reisinger, and Athena Picarelli. 2023. Deep xva solver—A neural network based counterparty credit

risk management framework. SIAM Journal on Financial Mathematics 14: 314–352. [CrossRef]
Goodfellow, Ian, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep Learning. Cambridge: MIT Press Cambridge, vol. 1.
Gregory, Jon. 2015. The xVA Challenge: Counterparty Credit Risk, Funding, Collateral and Capital. Hoboken: John Wiley & Sons.
Hagan, Patrick S. 2005. Convexity conundrums: Pricing cms swaps, caps, and floors. The Best of Wilmott 305.. [CrossRef]
Harrison, J. Michael, and Stanley R. Pliska. 1981. Martingales and stochastic integrals in the theory of continuous trading. Stochastic

Processes and Their Applications 11: 215–60. [CrossRef]
Haugh, Martin B., and Leonid Kogan. 2004. Pricing american options: A duality approach. Operations Research 52: 258–70. [CrossRef]
Henrard, Marc. 2003. Explicit bond option formula in heath–jarrow–morton one factor model. International Journal of Theoretical and

Applied Finance 6: 57–72. [CrossRef]
Henry-Labordere, Pierre. 2017. Deep Primal-Dual Algorithm for Bsdes: Applications of Machine Learning to CVA and IM. Available

online: https://ssrn.com/abstract=3071506 (accessed on 1 October 2020).
Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feedforward networks are universal approximators. Neural

Networks 2: 359–66. [CrossRef]
Hutchinson, James M., Andrew W. Lo, and Tomaso Poggio. 1994. A nonparametric approach to pricing and hedging derivative

securities via learning networks. The Journal of Finance 49: 851–89. [CrossRef]
Jain, Shashi, and Cornelis W. Oosterlee. 2015. The stochastic grid bundling method: Efficient pricing of bermudan options and their

greeks. Applied Mathematics and Computation 269: 412–31. [CrossRef]
Jamshidian, Farshid. 1989. An exact bond option formula. The Journal of Finance 44: 205–209. [CrossRef]
Kingma, Diederik P., and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv arXiv:1412.6980.
Kloeden, Peter E., and Eckhard Platen. 2013. Numerical Solution of Stochastic Differential Equations. Berlin/Heidelberg: Springer Science

& Business Media, vol. 23.
Kohler, Michael, Adam Krzyżak, and Nebojsa Todorovic. 2010. Pricing of high-dimensional american options by neural networks.

Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 20: 383–410. [CrossRef]
Lapeyre, Bernard, and Jérôme Lelong. 2019. Neural network regression for bermudan option pricing. arXiv arXiv:1907.06474.
Lokeshwar, Vikranth, Vikram Bharadwaj, and Shashi Jain. 2022. Explainable neural network for pricing and universal static hedging

of contingent claims. Applied Mathematics and Computation 417: 126775. [CrossRef]
Longstaff, Francis A., and Eduardo S. Schwartz. 2001. Valuing american options by simulation: A simple least-squares approach. The

Review of Financial Studies 14: 113–47. [CrossRef]
Musiela, Marek, and Marek Rutkowski. 2005. Martingale Methods in Financial Modelling. Berlin/Heidelberg: Springer Finance.

http://dx.doi.org/10.3390/jrfm13070158
http://dx.doi.org/10.1086/296025
http://dx.doi.org/10.1093/jjfinec/nbs014
http://dx.doi.org/10.1016/S0167-6687(96)00004-2
https://keras.io
http://dx.doi.org/10.1111/0022-1082.00278
http://dx.doi.org/10.3905/jod.1995.407927
http://dx.doi.org/10.1111/j.1467-9965.1996.tb00123.x
http://dx.doi.org/10.2307/3215299
http://dx.doi.org/10.1137/21M1457606
http://dx.doi.org/10.1002/wilm.42820030211
http://dx.doi.org/10.1016/0304-4149(81)90026-0
http://dx.doi.org/10.1287/opre.1030.0070
http://dx.doi.org/10.1142/S0219024903001785
https://ssrn.com/abstract=3071506
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1111/j.1540-6261.1994.tb00081.x
http://dx.doi.org/10.1016/j.amc.2015.07.085
http://dx.doi.org/10.1111/j.1540-6261.1989.tb02413.x
http://dx.doi.org/10.1111/j.1467-9965.2010.00404.x
http://dx.doi.org/10.1016/j.amc.2021.126775
http://dx.doi.org/10.1093/rfs/14.1.113

Risks 2023, 11, 168 41 of 41

Oosterlee, Kees, Qian Feng, Shashi Jain, Patrik Karlsson, and Drona Kandhai. 2016. Efficient computation of exposure profiles on
real-world and risk-neutral scenarios for bermudan swaptions. Journal of Computational Finance 20: 139–72. [CrossRef]

Pelsser, Antoon. 2003. Pricing and hedging guaranteed annuity options via static option replication. Insurance: Mathematics and
Economics 33: 283–96. [CrossRef]

Rogers, Leonard C. G. 2002. Monte carlo valuation of american options. Mathematical Finance 12: 271–86. [CrossRef]
Ruf, Johannes, and Weiguan Wang. 2020. Neural networks for option pricing and hedging: A literature review. Journal of Computational

Finance. in press. [CrossRef]
Shreve, Steven E. 2004. Stochastic calculus for finance II: Continuous-time models. Berlin/Heidelberg: Springer Science & Business Media,

vol. 11.
Wang, Haojie, Han Chen, Agus Sudjianto, Richard Liu, and Qi Shen. 2018. Deep learning-based bsde solver for libor market model

with application to bermudan swaption pricing and hedging. arXiv arXiv:1807.06622.
Xiu, Dongbin. 2010. Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton: Princeton University Press.
Zhu, Steven H., and Michael Pykhtin. 2007. A guide to modeling counterparty credit risk. GARP Risk Review, July/August. Available

online: https://ssrn.com/abstract=1032522 (accessed on 10 November 2020).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.21314/JCF.2017.337
http://dx.doi.org/10.1016/S0167-6687(03)00154-9
http://dx.doi.org/10.1111/1467-9965.02010
http://dx.doi.org/10.21314/JCF.2020.390
https://ssrn.com/abstract=1032522

	Introduction
	Mathematical Background
	Model Formulation
	The Bermudan Swaption Pricing Problem

	A Semi-Static Replication for Bermudan Swaptions
	The Algorithm
	Sample the Independent Variables
	Regress the Option Value against an IR Asset
	Compute the Continuation Value

	A Neural Network Approach to Gm
	The 1-Factor Case
	Interpretation of the Neural Network
	The Multi-Factor Case
	Suggestion 1: A Locally Connected Neural Network
	Suggestion 2: A Fully Connected Neural Network

	Training of the Neural Networks

	Lower and Upper Bound Estimates
	The Lower Bound
	The Upper Bound

	Error Analysis
	Accuracy of the Semi-Static Hedge
	Error of the Direct Estimator
	Tightness of the Lower Bound Estimate
	Tightness of the Upper Bound Estimate

	Numerical Experiments
	1-Factor Swaption
	1-Factor Bermudan Swaption
	2-Factor Bermudan Swaption
	Performance Semi-Static Hedge
	1-Factor Swaption
	2-Factor Bermudan Swaption

	Conclusions
	Evaluation of the Conditional Expectation
	The Continuation Value with Locally Connected NN
	The Continuation Value with Fully Connected NN

	Pre-Processing the Regression-Data
	Hyperparameter Selection
	Proof of theorem: sup error
	Proof of theorem: MAE error
	Proof of theorem: lower bound
	Proof of theorem: upper bound
	References

