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Abstract: Wavelet power spectrum (WPS) and wavelet coherence analyses (WCA) are used to examine
the co-movements among oil prices, green bonds, and CO2 emissions on daily data from January
2014 to October 2022. The WPS results show that oil returns exhibit significant volatility at low and
medium frequencies, particularly in 2014, 2019–2020, and 2022. Also, the Green Bond Index presents
significant volatility at the end of 2019–2020 and the beginning of 2022 at low, medium, and high
frequencies. Additionally, CO2 futures’ returns present high volatility at low and medium frequencies,
expressly in 2015–2016, 2018, the end of 2019–2020, and 2022. WCA’s empirical findings reveal (i) that
oil returns have a negative impact on the Green Bond Index in the medium term. (ii) There is a strong
interdependence between oil prices and CO2 futures’ returns, in short, medium, and long terms, as
inferred from the time–frequency analysis. (iii) There also is evidence of strong short, medium, and
long terms co-movements between the Green Bond Index and CO2 futures’ returns, with the Green
Bond Index leading.

Keywords: co-movements; dependence; wavelet analysis; oil prices; green bonds; CO2 emissions;
bibliometric analysis

1. Introduction

The inclusion of oil prices in the analysis of the environmental context comes from
the substitution and income effect caused by any change in the product price relative to its
demand function (Barsky and Kilian 2004; Hamilton 1983; Kilian 2009). The substitution
effect occurs when goods get cheaper, and this generates incentives to consume more of
the cheaper goods and less of the expensive ones. On the other hand, the income effect
occurs when the price of the goods falls and the purchasing power increase, causing a result
similar to a rise in income. This theory is called the Slutzky-Hicks Theory (Allen 1950). In
this way, oil price shocks can affect carbon emissions and green bond issuances through
changes in fossil fuel consumption. For instance, the sharp decline in oil prices during
2014–2015 increased carbon emissions due to the relatively more expensive clean energy
projects (Kassouri et al. 2022, 2021). In this context, a fall in oil prices obstructs carbon
mitigation initiatives as green bonds promote them (Kassouri et al. 2022).

With the implementation of the European Union Emissions Trading System (EU ETS)
in January 2005, EU Allowances (EUAs) became a tradeable asset that could be negotiated
in organized spot, futures, and options markets (Reboredo 2013). Likewise, in January 2014,
the International Capital Markets Association (ICMA) published the Green Bond Principles
(GBP) to establish the rules for a bond to be labeled green. Since then, investors have at
their disposal information to enable them to discern the environmental benefits of their
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fixed-income investments against alternative investments (Mejía-Escobar et al. 2021; Re-
boredo 2018). Thus, green bonds are a well-established sustainable investment instrument
that has been gaining popularity among (i) investors, especially environmentally-conscious
investors, (ii) companies concerned about climate-related risk exposition and the opportuni-
ties of financing their eco-friendly projects, and (iii) governments for the potential influence
of green bonds on their climate change policies (Reboredo 2018).

Numerous studies evidence the relationship between (i) oil prices and green bonds
(Azhgaliyeva et al. 2022, 2021; Dutta et al. 2021; Lee et al. 2021; Reboredo and Ugolini 2020;
Saeed et al. 2021; Su et al. 2022), (ii) oil prices and CO2 emissions (Alhodiry et al. 2021;
Ali et al. 2022; Habib et al. 2021; Maji et al. 2020; Mensah et al. 2019; Mujtaba and Jena 2021;
Sadorsky 2009; Wen et al. 2017; Zhang and Zhou 2022; Zou 2018), and (iii) green bonds and
CO2 emissions (Jin et al. 2020; Lichtenberger et al. 2022; Nenonen et al. 2019; Rannou et al. 2021;
Ren et al. 2022a; Tiwari et al. 2022; Wang et al. 2022).

However, a knowledge gap has been identified despite all the advances in study-
ing the previously mentioned relationships with other financial assets; just a few recent
studies in the current literature have provided an in-depth analysis of the co-movements
among the green bonds, CO2 emissions, and oil prices simultaneously (Li et al. 2022;
Marín-Rodríguez et al. 2022b). These two studies provide an important foundation for
our paper. Furthermore, by using wavelets, we contribute to the debate on the depen-
dences among green bonds, CO2 emissions, and oil prices simultaneously, conducting a
time-frequency analysis of the dependence among these three variables. Moreover, we
emphasize the economic and policy implications of the results obtained. Additionally, we
make a novel extension to the existing literature focusing on clean energy stocks and other
financial markets.

For example, Li et al. (2022) found that oil price has a negative effect on the Green
Bond Index and that carbon prices positively influence the Carbon Efficiency Index in the
short and medium term. Additionally, the Green Bond Index positively affects carbon
prices in the short and medium term and negatively impacts the Carbon Efficiency Index. In
addition, carbon price shocks positively affect the Carbon Efficiency Index in the short and
medium term. Furthermore, Marín-Rodríguez et al. (2022b) using Granger Causality and
DCC-GARCH methodologies, observed a unidirectional causality running from the Green
Bond Index to the Brent oil returns and a unidirectional causality running from the Green
Bond Index to the CO2 futures’ returns and a unidirectional causality running from the
Brent oil returns to the CO2 futures’ returns. Also, their results for DCC-GARCH indicate
a positive dynamic correlation between the Brent oil price return and the CO2 futures’
returns and a negative dynamic correlation between the Green Bond Index concerning
the oil return and the CO2 futures’ returns, presenting a solid correlation in uncertainty
periods. Thus, a deeper analysis of this concern will lead to a better comprehension of the
evolution and co-movements of these three variables in a global decarbonization scenario.

This research is aimed at quantifying such co-movements identifying their effects
on different time periods, and how this relationship varies according to the economic
conditions. Thus, this paper makes two substantial contributions to the existing body
of knowledge and practice. First, this study is the first to incorporate a scientometric
analysis of dynamic co-movements among oil prices, green bonds, and CO2 emissions with
particular emphasis on measuring different time period relationships, limiting the search
equation to the existence of co-movements, contagion, or dependence among the variables.
Second, it provides new evidence by examining the dynamic relationship among crude
oil prices, CO2 futures’ price, and green bonds using a wavelet coherence approach to
determine the effects of oil price shocks on CO2 emissions and green bonds issuances over
different time frequencies: short, middle, and long-term. In addition, this study analyzes
whether the correlation changes over different scales in the period studied 2014–2022. Thus,
this study’s outcomes can help researchers, managers, policymakers, and decision-makers
to understand the importance of the oil price shocks on the design of assets and policies
that tend to improve sustainability practices.
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The paper’s outline is as follows: Section 2 studies the background and bibliometric
analysis of asset market linkages among oil prices, green bonds, and CO2 emissions.
Section 3 presents the data, the descriptive statistics, and the methodologies used. Section 4
analyzes the results. Section 5 discusses the empirical results. Finally, in Section 6, some
concluding remarks are offered.

2. Context of the Analysis and Literature Review
2.1. Context of the Analysis

For the selected analysis period, 2014–2022, some different exogenous shocks or
crises could have caused rupture or change among the linear relationships of financial
assets considered in this study. As a starting point, the financial shocks definition by
Beirne and Gieck (2014) will be used. This definition states that they are turbulences in
asset markets in advanced and emerging economies that affect other international financial
markets. Figure 1 presents the timeline of the main common financial shocks. The first
event is the Federal Reserve’s Rate reduction announcement (known as the FED’s Taper
Announcement), which caused a fall in the prices of financial assets, an increase in volatility,
and a decrease in trade volumes and market liquidity, as well as a rise in a government
bond, spreads between the end of May and August 2014 at the height of the market turmoil.
Later, the first oil price crisis emerged in 2014 and then in 2016. Subsequently, focusing
the analysis on a specific region such as Latin America, several events in the region were
affected by protectionist uncertainty in its emerging markets, especially Mexico, due to
its strong financial and commercial links with the rest of the world, particularly with the
United States. Such uncertainty started with the presidential campaign in the United
States when the financial markets reflected the tension during each presidential debate.
For example, when investors thought the then-candidate Trump would win, the market
would drop; and when candidate Clinton seemed most likely to win, markets rose. This
was especially reflected in the fluctuation of the financial markets.
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In addition to that scheme, other events have caused imbalances in financial assets,
not only in Latin America but also globally, such as the trade war between China and the
United States that began in March 2018 after Donald Trump announced the tariff imposition
of 50,000 million dollars on Chinese products. In response to those actions, the government
of the People’s Republic of China applied tariffs on numerous American products.

A dispute in which the World Trade Organization (WTO) had to intervene to reduce
tensions arose. Afterward, the global crisis caused by the COVID-19 virus pandemic (an
acronym for coronavirus disease, 2019) occurred. It originated in China in December 2019.
After it spread to different countries, on 11 March 2020, it was declared a global pandemic
by the World Health Organization (WHO). The virus’s expansion has generated economic
and social uncertainty, which has influenced the global financial and economic markets,
generating losses. Those are difficult to quantify even today, given that the pandemic has
not yet been overcome. Additionally, it is necessary to mention that during this global
pandemic, there has been a second crisis in oil prices; The member countries of OPEC
(Organization of Petroleum Exporting Countries) have decided to cut production due to the
sharp drop in crude oil prices, the decline in demand and the substantial volatility. Finally,
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the recent Russian invasion of Ukraine on 24 February 2022 is bringing consequences in
a range of areas, mainly: (i) humanitarian crisis, (ii) food security crisis, and (iii) energy
volatility crisis.

2.2. Literature Review

This research includes a scientometric review of the leading studies about the dynamic
relationships among oil prices, green bonds, and CO2 emissions. The documents reviewed
were obtained from the Scopus and Web of Science (WoS) bibliographic databases. The
research equation was: (TITLE-ABS-KEY (“oil prices*” OR “oil-price*” OR “crude oil” OR
“crude-oil”) AND TITLE-ABS-KEY (CO2 OR “CO2 emission*” OR “carbon dioxide emission*”
OR “carbon emission*” OR “emission* CO2” OR “green bond*”) AND TITLE-ABS-KEY
(“contagion” OR “interdependence*” OR “comovement*” OR “co-movement*” OR “correla-
tion*”)). All the research documents identified were downloaded and ed into the Mendeley
Reference Manager for the scientometric analysis. After removing 29 duplicates, we utilized
86 research documents for the scientometric analysis using three tools: (i) the tree of science
(Robledo et al. 2014), (ii) the VOSviewer version 1.6.18 (van Eck and Waltman 2017), and
(iii) the Bibliometrix package for R (Aria and Cuccurullo 2017). Figure 2 shows the literature
search strategy.
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As indicated by Robledo et al. (2014), the studies found at the root of the tree of science
include seminal articles from the original ones about the dynamic associations among oil
prices, green bonds, and CO2 emissions. For example, studies conducted by (Henriques
and Sadorsky 2008; Kumar et al. 2012; Reboredo 2015; Reboredo et al. 2017; Sadorsky 2012)
were found in the root, and those papers are the identified seminal studies about the
linkages among oil prices and assets related to sustainable finance, such as renewable
energy or clean energy stock prices. Refs. (Kumar et al. 2012; Sadorsky 2012) analyze the
correlations between clean energy stock prices and oil prices. The findings suggest, for
daily data from 2001 to 2010, that stock prices of clean energy companies correlate more
highly with technology stock prices than oil prices (Sadorsky 2012). Additionally, based
on the weekly observations for the period 2005–2008, Kumar et al. (2012) found that past
movements in oil prices explain the indexes of clean energy stocks, stock prices of high
technology firms, and interest rates.
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Conversely, Robledo et al. (2014) argue that documents in the trunk mainly include the
first authors who discovered the applicability and have become references for dynamic associa-
tions between oil prices and the financial markets analyzed. Here, documents that study the re-
lationship between energy markets and assets related to sustainable finance can be found, and
those used the methodologies of Dynamic Conditional Correlation analysis (DCC-GARCH)
or volatility linkages (Dutta et al. 2018; Lin and Chen 2019; Marín-Rodríguez et al. 2022b;
Reboredo 2018); and wavelet analysis (Kassouri et al. 2022; Maji et al. 2020). According to
Dutta et al. (2018), the results, using daily data from 2009 to 2017, indicate a volatility con-
nection between the emissions and the European Clean Energy Price Indexes. However,
this result does not hold for the United States market, suggesting that emissions’ return and
volatility shocks are country or region-specific. Lin and Chen (2019), using a daily dataset
from 2013 to 2017, found that: (i) There are significant time-varying correlations and a long-run
persistence between the Beijing Carbon Emissions Trading (CET) market, the coal market, the
stock market of New Energy Companies (NEC), and the coal market; (ii) the new energy stock
market has a higher volatility persistence. Additionally, (ii) there is a bi-directional spillover
effect between the coal market and the stock market of New Energy Companies.

Finally, the documents in the leaves, according to Robledo et al. (2014), are recent articles
and reviews that should condense the analysis of dynamic relationships among oil prices,
green bonds, and CO2 emissions. In the literature review, Marín-Rodríguez et al. (2022a) can
be outlined. In the new trends, in the leaves, there are several methodologies identified
which have studied the dynamic relationships among energy markets and assets related
to sustainable finance, for example, using Time-Varying Parameter Vector Auto Regression
(TVP-VAR) (Li et al. 2022), wavelet analysis (Bouoiyour et al. 2023; Kassouri et al. 2022;
Luo et al. 2022; Maghyereh et al. 2019; Shah et al. 2022; Zhou et al. 2022), DCC-GARCH and its
extensions (Dutta et al. 2021; Marín-Rodríguez et al. 2022b), Copula functions (Elie et al. 2019;
Naeem et al. 2021a; Wen et al. 2017), time-varying conditional analysis comprising hedg-
ing effectiveness and optimal hedge ratios (Gustafsson et al. 2022), and quantile analysis
(Ren et al. 2022a, 2022c; Saeed et al. 2021; Zhang and Zhou 2022).

On the other hand, when exploring the existing literature about the dynamic relation-
ship among oil prices, green bonds, and CO2 emissions using the VOSviewer, the research
pointed out that the most used keywords for this type of analysis are: (1) energy markets,
(2) oil prices, (3) CO2 emissions, and (4) economic analysis. The results of the analyses are
presented in Figure 3.

Furthermore, during the revision through the Bibliometrix package for R applying
on author keyword analysis, which offers information about research trends from the
researchers’ points of view (Garfield 1970), the results indicate that the most prominent
research areas are COVID-19 (2022), green bonds (2020–2021), oil prices (2016–2022), and
CO2 emissions (2019–2022). On the other hand, implementing the analysis on the keywords
plus, which are terms extracted from titles or abstracts (Aria and Cuccurullo 2017), the
findings reveal that the leading research areas are wavelet analysis and COVID-19 (2022),
China (2020–2022), oil prices, CO2 emissions, forecasting (2019–2021), and investments
(2020–2022).

Thus, the relationships among oil prices, green bonds, and CO2 emissions can be
classified into these two major trends provided by (i) the authors’ keywords and (ii) key-
words plus. The first trend (Figure 3a) delves into the bonds among these three variables,
including the effects of the COVID-19 disease (Li et al. 2022; Marín-Rodríguez et al. 2022b).
In this trend, the keywords COVID-19, green bonds, oil prices, and CO2 emissions are
precisely leading the trend topics. This result is according to the studies in the leaves of the
Tree of Science. Additionally, in this first trend, the documents that study the impacts of
the COVID-19 on the green bonds markets can be included (Liu 2022; Naeem et al. 2021b;
Rao et al. 2022; Tiwari et al. 2022, 2021), as well as CO2 emissions (Agboola et al. 2021;
Balsalobre-Lorente et al. 2020; Dong et al. 2022; Shah et al. 2022; Tiwari et al. 2022), and oil
prices (Alshdadi et al. 2022; Ghorbali et al. 2022; Habib et al. 2021; Ozturk and Cavdar 2021;
Ren et al. 2021; Zhou et al. 2022). The findings suggest that the COVID-19 pandemic
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shock caused huge fluctuations and negative returns in green bond markets (Liu 2022).
Furthermore, the contraction of economic growth since the beginning of the COVID-19
pandemic produced a reduction in CO2 emissions (Agboola et al. 2021). Finally, the results
also indicate that COVID-19 negatively impacted crude oil prices, which contributed to the
reduction of CO2 emissions during the pandemic period (Habib et al. 2021).

Risks 2023, 11, x FOR PEER REVIEW  6  of  23 
 

 

et al. 2022b).  In  this  trend,  the keywords COVID‐19, green bonds, oil prices, and CO2 

emissions are precisely leading the trend topics. This result is according to the studies in 

the leaves of the Tree of Science. Additionally, in this first trend, the documents that study 

the  impacts of  the COVID‐19 on  the green bonds markets  can be  included  (Liu  2022; 

Naeem et al. 2021b; Rao et al. 2022; Tiwari et al. 2022, 2021), as well as CO2 emissions 

(Agboola et al. 2021; Balsalobre‐Lorente et al. 2020; Dong et al. 2022; Shah et al. 2022; 

Tiwari et al. 2022), and oil prices (Alshdadi et al. 2022; Ghorbali et al. 2022; Habib et al. 

2021; Ozturk and Cavdar 2021; Ren et al. 2021; Zhou et al. 2022). The findings suggest that 

the COVID‐19 pandemic shock caused huge fluctuations and negative returns in green 

bond markets  (Liu  2022).  Furthermore,  the  contraction  of  economic  growth  since  the 

beginning of the COVID‐19 pandemic produced a reduction in CO2 emissions (Agboola 

et al. 2021). Finally, the results also indicate that COVID‐19 negatively impacted crude oil 

prices, which contributed to the reduction of CO2 emissions during the pandemic period 

(Habib et al. 2021). 

 

 
(a) 

 
(b) 

Figure 3. Main keyword  trends  identified  in  the  research  topic are dynamic  linkages among oil 

prices, green bonds, and CO2 emissions. Source: Authors’ research using VOSviewer, Bibliometrix 

tools, Scopus, and WoS databases.  (a) Author’s keywords  trend  topics;  (b) Keywords plus  trend 

topics. 

The second trend (Figure 3b) analyzes the interlinkages between oil prices and CO2 

emissions. For  example,  (Ali  et  al.  2022; Alkathery  and Chaudhuri  2021; Apergis  and 

Payne 2015; Royal et al. 2022; Sadorsky 2009; Zaghdoudi 2017) analyze the co‐movements 

among  oil  prices,  CO2  emissions,  and  renewable  energy.  The  findings  suggest  that 

renewable  energy  improves  environmental quality  in both  the  short and  long  run; an 

increase in oil prices causes a decrease in CO2 emissions and has an important effect on 

Figure 3. Main keyword trends identified in the research topic are dynamic linkages among oil prices,
green bonds, and CO2 emissions. Source: Authors’ research using VOSviewer, Bibliometrix tools,
Scopus, and WoS databases. (a) Author’s keywords trend topics; (b) Keywords plus trend topics.

The second trend (Figure 3b) analyzes the interlinkages between oil prices and CO2 emis-
sions. For example, (Ali et al. 2022; Alkathery and Chaudhuri 2021; Apergis and Payne 2015;
Royal et al. 2022; Sadorsky 2009; Zaghdoudi 2017) analyze the co-movements among oil
prices, CO2 emissions, and renewable energy. The findings suggest that renewable energy
improves environmental quality in both the short and long run; an increase in oil prices
causes a decrease in CO2 emissions and has an important effect on economic growth. Ad-
ditionally, other documents within this trend study the effects of oil price shocks on CO2
emissions (Bassey 2015; Habib et al. 2021; Husaini et al. 2021; Maji et al. 2020; Ren et al. 2022b;
Wei et al. 2022). Their results indicate that there is a negative relationship between oil price
shocks and CO2 emissions; higher oil prices can mitigate CO2 emissions, while lower oil
prices can increase sectoral CO2 emissions. Besides, COVID-19 affects crude oil prices, the
major contributor to the reduction of CO2 emissions during the pandemic period. In this
trend, the keywords COVID-19, wavelets, China, oil prices, CO2 emissions, and forecasting
are the foremost trend topics.

Finally, based on the scientometric analysis of the main studies on the dynamic
co-movements among oil prices, CO2 emissions, and green bonds conducted by Marín-
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Rodríguez et al. (2022a) on the dynamic co-movements among oil prices and financial
markets (including energy markets and assets related to sustainable finance), the findings
indicate that the most promising areas for further research in this field are represented by
co-movement, copula, wavelet, dynamic correlation, and volatility analysis. Furthermore,
the authors indicate that energy markets and assets related to sustainable finance emerge
as crucial trends in exploring dynamic co-movements of oil prices. Additionally, as we
mentioned before, Marín-Rodríguez et al. (2022b) make a previous application to the
analysis of the dynamic co-movements among oil prices, CO2 emissions, and green bonds
using Granger causality and DCC-GARCH methodologies. Thus, in line with these two
documents and the results of the present literature review, this study attempts to make a
deeper analysis considering a time-frequency analysis (using wavelets methodology) that
searches for the connection among the three variables studied in the short, medium, and
long term.

3. Methodology
3.1. The Dataset

The dataset consists of daily closing prices of Brent oil prices, green bonds, and CO2
emissions (Table 1). Our sampling period spans from 1 January 2014 to 3 October 2022,
including 2290 daily observations. The starting date of the sample is determined by the
availability of the Green Bond Index data. All data were gathered from Bloomberg. Futures’
prices of CO2 emissions (MO1 Comdty), according to Reboredo (2013) and Rittler (2012)
were used. They indicate that the futures market leads the price training process by first lo-
cating information and then transferring it to the spot market. Furthermore, the Bloomberg
MSCI Green Bond Index (GBEUTREU Index) is a Euro fixed-income benchmark to fund
projects with direct environmental benefits. This index incorporates Euro-denominated
fixed-income securities, such as treasury, corporate, government-related, and securitized
debt. Additionally, the index reflects the performance of Euro-denominated fixed-income
securities, including treasury, corporate, government-related, and securitized debt. Fur-
thermore, the Brent oil price (CO1 Comdty) is included as a fundamental component of
energy prices.

Table 1. List of variables.

Variable Ticker Description
Oil Brent price CO1 Comdty Generic 1st Crude Oil, Brent

Green Bond Index GBEUTREU Index Bloomberg MSCI Euro Green Bond Index
Total Return Index Value Unhedged

CO2 futures price MO1 Comdty CO2 futures price, Euros per ton
Source: Authors’ own research using Bloomberg.

Figure 4 illustrates the temporal dynamics of Brent oil prices, green bonds, and CO2
emissions by pairs, evidencing that oil prices positively depend on CO2 futures prices
(MO1 Comdty). Still, the dependence is negative with the Green Bond Index (GBEUTREU
Index). Furthermore, in recent times the co-movements are increasing between the Green
Bond Index (GBEUTREU Index) and CO2 futures prices (MO1 Comdty), indicating clear
graphical evidence of dependence, particularly in 2022.

Table 2 depicts descriptive statistics of daily returns of the considered series computed
as the first difference of the natural log of the prices or indexes. The average daily returns
are close to zero for all series. The standard deviations reveal that green bonds are less
volatile than Brent oil prices and CO2 futures’ prices. All daily returns are negatively
biased and exhibit high values for the Kurtosis statistics consistent with heavy-tailed
distortions. The Jarque–Bera (JB) test strongly rejects the normality of the unconditional
distribution of the return series and the non-stationarity tests [via Augmented Dickey-
Fuller (ADF)] (Dickey and Fuller 1979) evidence that all return series are stationary. Finally,
the Ljung–Box Q-statistics (LBQ) indicate the presence of a serial correlation in both the



Risks 2023, 11, 15 8 of 21

return series and the squared return series; it is consistent with the existence of conditional
heteroskedasticity effects.
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Figure 4. Daily prices and returns of Brent oil prices (RBRENT), Green Bond Index (RGBEUTREU),
and CO2 futures’ returns (RMO1). Source: Author’s own research using data from Bloomberg.

Table 2. Summary statistics of daily returns.

Index Mean Max Min Std. Dev. Skew. Kurt. JB ADF LBQ (25) LBQ2 (25)
RBRENT −0.000063 0.1908 −0.2798 0.0256 −0.982 19.46 26198.4 * −47.16 * 48.36 [0.003] 836.81 [0]

RGBEUTREU 0.000004 0.0196 −0.0196 0.0027 −0.164 11.13 6315.4 * −44.18 * 61.73 [0] 1655.0 [0]
RMO1 0.001145 0.162 −0.1944 0.0292 −0.527 7.61 2133.5 * −50.34 * 38.42 [0.042] 306.21 [0]

Source: Authors’ own research using data from Bloomberg. Notes: This table presents summary statistics of daily
returns of Brent oil prices (RBRENT), Green Bond Index (RGBEUTREU), and CO2 futures’ returns (RMO1). The
1 January 2014—3 October 2022 sample yielded 2290 observations. (*) indicates the rejection of the null hypothesis
at the 5% level for both the normality test (via Jarque-Bera) and unit root test [via Augmented Dickey-Fuller
(ADF)], the ADF test is conducted with an intercept. LBQ (25) and LBQ2 (25) denote the Ljung–Box Q-statistics
for serial correlation in the returns and squared returns series, respectively, computed using 25 lags, with p values
reported in square brackets.

3.2. Wavelet Analysis

The wavelets methodology is one of the mathematical applications that has recently
been applied to modeling in several fields, including economics and finance. It allows for
the analysis of the time series frequency and time domain simultaneously. This methodol-
ogy is based on the Fourier Analysis, which focuses on studying frequency domain signals.
In this way, wavelets are functions that oscillate as a wave and present fades; that is, they
decay. Due to these particularities, this methodology is considered an ideal filter that allows
the fragmenting of a signal into different levels of resolution, capturing large and small
particularities of the analyzed series. This is known as multi-resolution decomposition
using wavelets, which facilitates the decomposition of the original signal into different
levels of resolution where each level will necessarily be associated with a specific time scale.
The existence of non-stationary phenomena, that is, those presenting variations over time
and which do not have a constant mean and/or variance in various disciplines such as
geophysics, medicine, statistics, economics, and finance, among others, has expanded the
use of wavelets to be ideal for the treatment of this type of series.

Ftiti et al. (2016) indicate that among their advantages, the following stand out:
(i) wavelets are a process that breaks down data into different frequency components. This
decomposition of different scales facilitates to distinguish of seasonality, structural changes,
volatility clusters, and the identification of the local and global dynamic properties of
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the variables; (ii) Wavelets provide a better alternative for exploring the interconnection
between oil and stock markets, as they do not impose parametric constraints on stock
market dynamics and oil price fluctuations and (iii) The wavelet process adapts to different
characteristics of the time series in general (such as the stock market and oil price series),
where the variance is variable over time, and the covariance matrix presents possible
structural breaks. This feature helps discriminate between interdependence (long-term
co-movement) and contagion (short-term co-movement) in the relationship between oil
and financial markets, which will be the subject of the application in this study. However,
Dibal et al. (2018) identify weaknesses in the methodology, such as its excessive redun-
dancy, its computational intensity, and the fact that an original signal cannot be perfectly
reconstructed from the coefficients estimated by the process.

This research studies the co-movement among oil prices, green bonds, and CO2
emissions, leading to knowing the linkage across different horizons (i.e., short-medium-and
long-term). The wavelet coherency approach by Grinsted et al. (2004) offers this possibility
by decomposing the economic relationship into time-frequency components. Furthermore,
the wavelet coherency can be applied to bivariate and multivariate contexts, where patterns
of covariation and causal relationships among variables across different scales are examined
over time (Ahmed 2022). This methodology is similar to the Pearson Bivariate Correlation
Coefficient. It measures the degree of co-movement in the time-frequency (location–scale)
domain between a pair of time series variables x(t) and y(t) (Singh et al. 2022).

3.2.1. The Continuous Wavelet Transform (CWT)

Thus, the wavelet technique (i) decomposes the return series into time-scale com-
ponents, and (ii) represents the variability and structure of the stochastic processes on
a scale-by-scale basis. The wavelet function is a small wave and can be manipulated
(stretched or squeezed over time) to extract the frequency components from a complex
signal (Bouri et al. 2020).

The mother wavelet is used to produce small waves. It is expressed as a function of
time and scale s as:

ψτ,s(t) =
1√

s
ψ

(
t− τ

s

)
(1)

where τ, s, and 1√
s represent the time position (translation parameter), scale (dilation

parameter related to frequency) and normalization factor, respectively. The normalization
factor ensures that the transformation remains comparable across scales and over time.

The literature provides various wavelets for the time series decomposition depending
on the research topic. To examine the wavelet coherence among oil prices, green bonds, and
CO2 emissions, the Morlet Wavelet is used (Morlet et al. 1982). This wavelet provides the
best balance between time and frequency localization (Addison 2017). Grinsted et al. (2004)
show that the Fourier period for the Morlet wavelet is almost equal to the scale used:

ψM(t) =
1

π1/4 eiω0te−t2/2 (2)

where ω0 indicates the central wavelet frequency. Like Bouri et al. (2020), this research used
ω0 = 6, as the Morlet wavelet; this central frequency provides good localization between
time and frequency.

3.2.2. Wavelet Power Spectrum

The wavelet analysis can be performed using either the continuous wavelet transforms
(CWT), or the discrete wavelet transform (DWT). The CWT has several advantages over
the DWT. For example, the CWT provides independence to select wavelets according to
the length of data, and the redundancy in the CWT makes the interpretation and discovery
of patterns or hidden information easier (Aguiar-Conraria and Soares 2011). A continuous
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wavelet transform Wx of a discrete-time series (x(t), t = 0, 1, . . . , n) with respect to ψ(t) can
be represented as:

Wx(τ, s) =
∫ +∞

−∞
x(t)ψ∗τ,s(t)dt =

1√
s

∫ +∞

−∞
x(t)ψ∗

(
t− τ

s

)
dt (3)

where * denotes the complex conjugate. Notably, the wavelet transform preserves the
energy of a time series that can be used to analyze the power spectra. Accordingly, the
variance is given by:

||x||2 =
1

Cψ

∫ ∞

0

[∫ +∞

−∞

∣∣∣Wx(τ, s)2
∣∣∣dτ

]
ds
s2 (4)

To obtain information about the time series behavior, the wavelet power spectrum
(WPS) was used in the present paper,

WPSx(τ, s) = |Wx(τ, s)|2 (5)

Refs. Hudgins et al. (1993) and Torrence and Compo (1998) define the cross-wavelet
power | Wxy(τ, s) | of two time series x(t) and y(t) with the continuous transforms Wx(τ, s)
and Wy(τ, s) as:

Wxy(τ, s) = Wx(τ, s).W∗y (τ, s) (6)

3.2.3. Wavelet Coherence

The cross-wavelet power shows the areas of high common power between two time
series in the time-frequency space. The wavelet squared coherence between the two times
series is given by:

R2
xy(τ, s) =

∣∣S(s−1Wxy(τ, s)
)∣∣2

S
(

s−1|Wx(τ, s)|2
)

.S
(

s−1
∣∣Wy(τ, s)

∣∣2) (7)

where R2
xy(τ, s) represent the wavelet squared coherency between x(t) and y(t), in other

words R2
xy(τ, s) is a direct measure of the contemporaneous correlations between x(t) and

y(t) at each point in time and for each frequency. S(.) is a smoothing parameter in scale and
time. The value of the wavelet squared coherence R2

xy(τ, s) ranges between zero (no co-
movement) and one (high co-movement) can be seen as a scale-specific squared correlation
between series. In addition, the wavelet coherence framework allows studying the lead-lag
relationship between series while avoiding the squared coherence’s inability to distinguish
between the positive and negative relationship between series. Torrence and Webster (1999)
and Bloomfield (2013) show that the phase difference depicting the phase relationship
between x(t) and y(t) is given by:

φxy(τ, s) = tan−1=
{

Wxy(τ, s)
}

<
{

Wxy(τ, s)
} , φx,y ∈ [−π, π] (8)

where the parameters = and < give the imaginary and real parts of the smooth power
spectrum, respectively. A zero-degree phase difference reveals the synchronization of
x(t) with y(t) at a particular time-frequency. On the wavelet coherence plots, φxy(τ, s) is
symbolized as black rightward, leftward, upward, and downward arrow signs within
areas of statistical significance. When the arrow points to the right (left) suggests that x(t)
and y(t) are in phase (out of phase); it means that x(t) and y(t) are positively (negatively)
associated, with negligible or no time lag. If the arrow points upwards, the first series leads
the other by π/2 (the actual period is based on the specific frequency/scale of the wavelet
coherence chart), and the opposite for a downward-pointing arrow. Additionally, for the
interpretation of the arrows, following Kirikkaleli and Güngör (2021) arrows pointing
up, right-up, or left-down denote that the second variable causes the first variable, while
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arrows pointing down, right-down, or left-up indicate that the first variable causes the
second variable.

The wavelet coherence results are standardly shown on a chart with time and scale
(or frequency) on the respective axes and the coherences are represented by a color scale.
The color spectrum shows the intensity of the association (co-movement) between the pair
of the analyzed series. The warmer colors (red) indicate significant co-movements, while
colder colors (blues) signify weak co-movements between the series. In regions beyond the
black line cone or the cone of influence, the estimates of wavelet coefficients are statistically
insignificant at 5% significance and are not considered.

4. Application and Results
4.1. Unconditional Correlation Analysis

Pairwise correlations across the returns of the variables considered are presented in
Figure 5. The correlation of oil price return (RBRENT) with the CO2 futures’ returns (RMO1)
is positive (19%), and the Green Bond Index (GBEUTREU) is negative (−6%). Additionally,
the correlation between the CO2 futures’ returns (RMO1) and the Green Bond Index return
(GBEUTREU) is negative too (−8%).
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and CO2 futures’ returns (RMO1). Source: Authors’ own research using data from Bloomberg.

According to the existing literature, it is expected that oil prices and CO2 emissions have
a positive relationship, and their co-movement against the Green Bond Index is in the same
sense because an increase in oil prices tends to increase CO2 emissions (Mahmood et al. 2022;
Mahmood and Furqan 2021; Sadorsky 2009; Zheng et al. 2021). Additionally, increasing green
bond issuances tends to reduce CO2 emissions (al Mamun et al. 2022; Fatica and Panzica 2021).
For example, the study conducted by al al Mamun et al. (2022) shows that green finance
significantly reduces carbon emissions in the short and long run by supporting waste and
pollution control and improving energy efficiency.

4.2. Wavelet Power Spectrum

Figure 6 presents the wavelet power spectrum for the Brent oil returns (RBRENT),
Green Bond Index (RGBEUTREU), and CO2 futures’ returns (RMO1) variables, respectively.
The Brent oil returns (RBRENT), Figure 6a, appear to show significant volatility at low
and medium frequencies, particularly in 2014, the end of 2019–2020, and 2022. This
phenomenon is according to the high volatility observed in these periods due to the FED’s
Taper Announcement and the first oil prices crisis in 2014, the global COVID-19 pandemic
at the end of 2019–2020, and the Russian invasion of Ukraine in February 2022.
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and CO2 futures’ returns (RMO1). Source: Authors’ own research using data from Bloomberg.

The Green Bond Index (RGBEUTREU) behavior, Figure 6b, exhibits significant volatil-
ity at the end of 2019–2020 and the beginning of 2022 at low, medium, and high frequencies,
which is consistent with the two last events identified previously. For example, in 2019–2020,
the issuances of green bonds were extended worldwide. However, in February 2022, the
Russian invasion of Ukraine and the subsequent European energy crisis exacerbated post-
COVID-19 inflation and impacted the bond market dynamics by increasing interest rates.
As a result, high volatility resulted in decreased bond issuance. It is important to note that
the Green Bond Principles (GBP) were launched in 2014, its first update occurred in 2015,
and the development of this market is constantly changing.

Finally, CO2 futures’ returns (RMO1), Figure 6c, present high volatility at low and
medium frequencies, particularly in 2015–2016, 2018, the end of 2019–2020, and 2022.

4.3. Wavelet Coherence Approach

The wavelet coherence approach is applied to capture the causal relationship between
the Brent oil returns (RBRENT), the Green Bond Index (RGBEUTREU), and the CO2 futures’
returns (RMO1). Figure 7 presents the results from the wavelet coherence. It captures the
co-movement of these three variables in the time-frequency space.

Figure 7 and its table depict the wavelet coherence and phase difference and principal
results between each pair of times series considered. In the figure, the horizontal axis
(x-axis) represents the research period in days, while the vertical axis (y-axis) represents the
frequency domain. This study considered five frequency cycles: 1–4, 4–16, 16–64, 64–256,
and 256–512 daily bands. The shortest band, which considers 2–4 days, denotes the highest
frequency band, and the most extended band includes 256–512 days, the lowest frequency
band. For a better comprehension of the results, they include in the short-term (ST), the
signals between the 2–4 days and 4–16 bands; medium-term (MT), the signals between
the 16–64 days and 64–256 bands; and long-term (LT) the signals in 256–512 days band
(see Figure 7 and its table). Located on the right-hand side of each plot, there is the color
gradient code of power, where dark blue indicates low power (close to zero), and dark red
implies high power (close to one).
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Figure 7. Wavelet coherence among Brent oil returns (RBRENT), CO2 futures’ returns (RMO1), and
Green Bond Index (RGBEUTREU). Source: Authors’ own research using data from Bloomberg. Note:
The value of squared wavelet coherence is depicted in color, and the value of relative phase by
arrows. The color code for the coherence ranges from blue (low coherence—close to zero) to red (high
coherence—close to one). The area affected by edge effects is the semi-transparent region at the left
and right boundary separated by the black U-shaped curve, which is the cone of influence (CoI). The
thick black contours within CoI are the regions of significant coherence (at 5% level). The direction of
the arrows reveals the phase relationship between each moment pair of times series returns in the
time-frequency space. Notes: ST: short-term, MT: medium-term, LT: long-term.

Figure 7a shows that wavelet coherence between the Brent oil returns (RBRENT)
and the Green Bond Index (RGBEUTREU) from scales 64 to 256 days, down arrows are
obtained in 2014, indicating that in the medium-term, the Brent oil returns (RBRENT)
significantly affected the Green Bond Index (RGBEUTREU) negatively. However, the
direction of the causality changes between 2019–2020 at different frequencies (16–64 and
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64–256 days, medium-term and long-term, respectively) since the arrows mostly point
right-up, implying a positive relationship and that the Green Bond Index (RGBEUTREU) is
an important predictor of the Brent oil returns (RBRENT) in the medium-term and long
term for the period between 2019–2020. Finally, in 2021, the Brent oil returns (RBRENT)
significantly affected the Green Bond Index (RGBEUTREU) for scales 16–64, and the arrows
mostly point left-up, indicating a negative relationship in the medium-term. The summary
of the results in the table supports a bi-directional causality relationship between the Brent
oil returns (RBRENT) and the Green Bond Index (RGBEUTREU).

Additionally, Figure 7b depicts that wavelet coherence between the Brent oil returns
(RBRENT) and CO2 futures’ returns (RMO1) presents, from scales 4 to 16 days, arrows that
point down and left-down in 2014, indicating that in the short term, the CO2 futures’ returns
(RMO1) affected Brent oil returns (RBRENT) significantly with a negative relationship. In
2018, Figure 7b indicates that from scales 4–16 and 64–256, the arrows point right, implying
that in the short-term and medium-term, Brent oil returns (RBRENT) influenced the CO2
futures’ returns (RMO1) with a positive relationship. From 2019 to 2020, Figure 7b shows
a change in the direction of the causality for the frequencies 16–64, indicating that in the
medium-term CO2 futures’ returns (RMO1) significantly influenced the Brent oil prices
(RBRENT) with a positive relationship. However, for the period between 2019–2020, left-up
arrows are obtained for a scale of 16–64, indicating that in the medium-term, the Brent oil
returns (RBRENT) significantly affected the CO2 futures’ returns (RMO1) with a negative
relationship. Additionally, for the frequency 64–256 days in the period 2021, the presence
of left-down arrows indicates that in the medium-term CO2 futures’ returns (RMO1)
significantly caused the Brent oil prices (RBRENT) with a negative relationship. Finally, for
scales 256–512 days, the arrows point right-down, indicating that in the long-term, Brent
oil returns (RBRENT) significantly caused the CO2 futures’ returns (RMO1) with a positive
relationship. The summary of the findings in the table validates a bi-directional causality
relationship between the Brent oil returns (RBRENT) and CO2 futures’ returns (RMO1).

Finally, Figure 7c presents the wavelet coherence between CO2 futures’ returns (RMO1)
and Green Bond Index (RGBEUTREU). In 2014, from scales 64 to 256 days, arrows pointed
right, denoting that the Green Bond Index (RGBEUTREU) and CO2 futures’ returns (RMO1)
have a positive relationship in the medium-term. But, in 2014, from scales 256–512, arrows
point left-down, which indicates that the Green Bond Index (RGBEUTREU) affects the CO2
futures’ returns (RMO1) in the long-term, having a negative relationship. In 2015–2016
arrows point left-down at different frequencies (4–16, 16–64, and 64–256 days), denoting
that the Green Bond Index (RGBEUTREU) causes the CO2 futures’ returns (RMO1) for
2015–2016 in short-term, medium-term, and long-term with a negative relationship. For the
period 2019–2020, for the frequency 16–64 days, arrows point right-up, indicating that the
Green Bond Index (RGBEUTREU) causes CO2 futures’ returns (RMO1) in the medium-term
with a positive relationship. In 2021, for a scale of 4–16, the arrows pointed left-down,
denoting that the Green Bond Index (RGBEUTREU) causes the short-term CO2 futures’
returns (RMO1) with a negative relationship. Finally, in 2022 the direction of the causality
changes, and for the frequency of 16–64 days, the arrows pointing down indicate that
the CO2 futures’ returns (RMO1) variable affect the Green Bond Index (RGBEUTREU) in
the medium-term with a negative relationship. The summary of the results in the table
supports a unidirectional causality relationship from the Green Bond Index (RGBEUTREU)
to CO2 futures’ returns (RMO1), with an exception in 2022 when the direction of the
causality changes.

5. Discussion

The findings from the wavelet power spectrum reveal that (i) there was significant
volatility in the Brent oil returns at low and medium frequencies, particularly in 2014, the
end of 2019–2020, and 2022 at low and medium frequencies; (ii) the Green Bond Index
exhibit significant volatility at the end of 2019–2020 and at the beginning of 2022 at low,
medium, and high frequencies; and (iii) the CO2 futures’ returns present high volatility at
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low and medium frequencies, specifically in 2015–2016, 2018, the end of 2019–2020, and
2022. This phenomenon is according to the high volatility observed in these periods due to
the FED’s Taper Announcement and the first oil prices crisis in 2014, the global COVID-19
pandemic at the end of 2019–2020, and the Russian invasion of Ukraine in February 2022.
These results are in line with Jin et al. (2020), who argues that carbon emissions and energy
markets (including oil prices) are due to the similar nature of the markets. We can include
the green bond issuances for their relationship with these two markets, which is increasing
due to the transition of energy to a decarbonized economy. Thus, the three considered
markets are sensitive to the same macroeconomic variables, such as climate change, market
conditions, and geopolitical situations, such as those reported in recent empirical facts.

Additionally, wavelet coherence results indicate that (i) the Brent oil returns have a
negative impact on the Green Bond Index in the medium term for 2015 and 2021, respec-
tively. Still, the Green Bond Index positively impacts the Brent oil returns in the period
2019–2020 in the medium-term and long-term, which indicates a feedback relationship,
suggesting that oil prices and green bond prices are interdependent when these markets
are in a bearish state. This result is in line with Lee et al. (2021). Also, the wavelet coherence
analysis indicates a negative relationship between oil prices and CO2 futures’ returns
in 2019–2020. However, the relationship becomes positive during 2018 (short-term and
medium-term) and 2022 (long-term). This paper’s findings support Li et al. (2022), since
oil price has a negative effect on the Green Bond Index and carbon price due to higher oil
prices may lead to higher consumption of non-fossil energy, and then reducing the demand
and willingness of companies to raise green financing. These research findings are also
in line with Mensah et al. (2019), which provide evidence of causality that runs from the
oil returns to the CO2 futures’ returns. For example, Mensah et al. (2019) determined a
unilateral effect from oil prices to carbon emissions both in the long and short run. In
contrast, Marín-Rodríguez et al. (2022b) found a unidirectional causality running from
the Green Bond Index to the Brent oil returns, a unidirectional causality running from the
Green Bond Index to the CO2 futures’ returns, and a unidirectional causality running from
the Brent oil returns to the CO2 futures’ returns.

(ii) The wavelet coherence analysis results also show that there is a causal relationship
between CO2 futures’ returns and oil prices, which was negative in 2014 (short-term) and
2021 (medium-term); however, this relationship becomes positive in 2019–2020 (medium-
term). This paper’s finding is in line with Li et al. (2022), who showed that carbon emissions
trading is negatively affected by oil price shocks, and the impact is negative in both the
short and medium term. A possible explanation for this is that an increase in oil prices
may lead to a rise in the use of low-carbon energy and then diminish firms’ demand for
carbon credits.

(iii) Finally, other results from wavelet coherence suggest that the Green Bonds Index
negatively affects the CO2 futures’ returns in the medium-term in 2022. Additionally,
the Green Bond Index significantly affected CO2 futures’ returns positively (2014 and
2019–2020) and negatively (2015–2016 and 2021) in the short-term, medium-term, and
long-term. In contrast, Li et al. (2022) using time-varying impulse response analysis found
that carbon emission trading price is mainly positively affected by the impact of the Green
Bond Index in the short and medium-term and tends to 0 in the long term.

The findings in this study extend several implications for researchers, managers,
policymakers, and decision-makers. Thus, (i) The negative relationship between oil prices
and green bonds causes the financial markets to generate incentives to raise green financing
in the context of higher oil prices. Additionally, the positive linkage between oil prices and
CO2 emissions generates that policy decisions on the transition of energy to a decarbonized
economy should consider the incentives for generating green bond issuances, which are an
essential instrument for the transition to a climate-resilient economy. These results are in
line with Jin et al. (2020).

Our findings are also relevant in the contribution to formulating green finance policies
and supporting renewable investments. This is due to the negative relation found between
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green bonds and CO2 emissions. This topic acquires a particular interest in emerging
countries where more outstanding efforts are required to expand the offer of these eco-
friendly instruments. The preceding is because, for example, in Latin American and the
Caribbean markets there is a strong demand for this type of instrument by investors in
the local markets. Additionally, the support from policymakers towards the generation
of energy transition policies could facilitate and encourage the generation of renewable
energies procuring the criteria of climate bond initiatives.

The findings are also according to Jin et al. (2020), who suggests that investors in
green bond markets are sensitive to fluctuations in energy and carbon markets because
the carbon market can reflect climate change, uncertainty in green public policies, and
changes in geopolitical situations. Additionally, we can admit that the search for sustainable
investments promoted for the climate change risk has increased the popularity of green
bonds, contributing to the enhanced correlation among the green bond market, oil prices,
and the carbon market. This phenomenon can explain that during the outbreak of COVID-
19 and the recent Russian invasion of Ukraine in February 2022, a greater percentage of
co-movement among green bonds was driven by linkage connections among the markets
(Tiwari et al. 2022).

Finally, for market players and decision-makers, our results can help to improve
portfolio composition since we present the diversification potential of green bonds to
CO2 emissions and oil prices. Furthermore, based on the principal findings, several co-
movements patterns in different frequency bands suggest that investors should determine
the corresponding risk prevention strategies based on their investment time horizons. The
above results can assist investors in making portfolio selection decisions within Brent oil
price, green bond markets, and carbon markets, as well as scale-conscious (or investment
horizons-conscious) traders making trading decisions, as Omane-Adjepong et al. (2019)
and Qureshi et al. (2020) mentioned.

6. Conclusions

The present study explores the time-dependency among the Brent oil returns, the
Green Bond Index, and the CO2 futures’ returns using the wavelet power spectrum and
wavelet coherence for measuring the co-movements and causality test over the period
2014 to 2022 over different time frequencies: short, middle, and long term. The use of the
wavelet approach permits the present research to (i) capture the volatility periods of the
Brent oil returns, the Green Bond Index, and the CO2 futures’ returns; and (ii) to study the
short-term, medium-term and long-term causal relationships among the Brent oil returns,
the Green Bond Index, and the CO2 futures’ returns since the approach combines both time
and frequency domain causalities.

Understanding the co-movements among the Brent oil returns, the Green Bond Index,
and the CO2 futures’ returns are essential in assessing macroeconomic performance in the
global decarbonization scenario. These three instruments are fundamental in implementing
Sustainable Development Goals (SDGs) and the three traditional pillars of sustainable
development based on the environmental, social, and economic domains. The SDGs
represent the efforts to guide humanity toward long-term prosperity, and the variables
used in this study are essential in the analysis of the global goals about affordable and clean
energy, sustainable cities and communities, responsible consumption and production, and
climate action. However, their implementation represents significant challenges due to
the tensions and trade-offs among the three pillars of sustainability (Giuliodori et al. 2022).
In this context, knowing the relationships among these variables can help researchers,
managers, policymakers, and decision-makers to understand the importance of the oil price
shocks on the design of assets and policies that tend to improve sustainability practices. For
example, Rodriguez-Fernandez (2016) found a positive bidirectional relationship between
Corporate Social Responsibility and Financial Performance, originating a positive feedback
virtuous circle in Spanish-listed companies.
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On the other hand, based on Kirikkaleli and Güngör (2021), climate change risk and its
direct and indirect impacts on the price formation of energy markets and assets related to
sustainable finance seem to be one of the main areas of further research due to the pressures
of climate change over production technologies, investment practices, and regulations. In
this point, green bonds have a pivotal role in being an essential instrument for financing
energy transition reinforcing the importance it should have for policymakers to improve
the legal framework relating to their issuance. Thus, there is great potential for further
research on exploring the relationships among the Brent oil returns, the Green Bond Index,
and the CO2 futures’ returns, for example, using artificial intelligence techniques such as
machine learning models that have been used for predicting the direction of markets. In
particular, deep learning strategies that use neural networks can be helpful for measuring
the co-movements among the variables considered; for example, Deep Neural Networks
(DNN); Convolutional Neural Networks (CNN); Autoencoders; and Recurrent Neural
Networks (RNN) like Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM),
stacked LSTM (SLSTM) or Gated Recurrent Unit (GRU) networks. These studies could also
be extended to Latin American and Caribbean markets, where the lack of data makes this
kind of research scarce.

Although this study enlarges the discussion around the dynamic association among
oil prices, green bonds, and CO2 emissions and addresses the diversification potential
of green bonds to CO2 emissions prices and oil prices in different frequency bands, a
possible limitation of our study can be related to the data time-frequency. For example,
some investors in energy markets and sustainable assets can prefer to make decisions over
longer investment horizons, which is in line with Saeed et al. (2021). Therefore, future
research can address this limitation by using lower frequency data (i.e., weekly or monthly
data) and considering the heterogeneity of investors over different investment horizons.
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