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Abstract: Estimating outstanding claims reserves in the non-life insurance business is often impaired
by outlier-contaminated datasets. Widely used methods to eliminate outliers in non-life development
triangles are either limiting the number of outliers by robust statistical methods or by change of
development factors. However, the whole estimation process is likewise adversely affected so that:
(i) the total sum of all triangle payments is not correct or (ii) the difference between the original triangle
and its backward estimation via the bootstrap method is ineligible. In this paper, the properties of
the heat equation are examined to obtain an outlier smoothing technique for development triangles.
The heat equation in two dimensions is being applied on an outlier contaminated dataset where
no individual data are available. As a result, we introduce a new methodology to (i) treat outliers
in non-life development triangles, (ii) keep the total sum of all triangle payments, and (iii) provide
acceptable differences between the original and the backward estimated triangle. Consequently, the
outlying values are eliminated and the resulting development triangle could be used as an input for
any claims reserving method without a need for further robustification or change of development
factors. Additionally, the research on the application of heat equation in one dimension presented in
this paper enables one to employ the bootstrap method using Pearson’s residuals in cases where the
method was originally inapplicable due to development factors being lower than one.

Keywords: outliers; RBNS; technical reserves; heat equation; non-life insurance

1. Introduction

According to Solvency II regulations, the insurer must be able to estimate the future
claims reserves as accurately as possible. The insurer who operates in the non-life insurance
business often does not know the amount of the final claims for the year of the accident at
the end of that year. It depends on the business line in the non-life insurance industry or
the time duration of a claims settlement. Delays can occur due to the time lag between the
occurrence of the accident and the appearance of the consequences of the event. Therefore,
a run-off triangle can be considered to arrange the claims reserves. Most important is to
estimate the outstanding claims reserve. Various methods can be used, the most popular
one is the classic chain-ladder method (Verdonck et al. 2009).

“The chain ladder method is based on the assumption that the expectations underlying
the columns and the rows in the run-off triangle are proportional” (Verdonck et al. 2009).
Since the early 1990s, several articles have been published to incorporate the simple chain
ladder method into the statistical framework, and consideration has been given to stochastic
models that generate a chain ladder algorithm (Manolache 2019). Full stochastic models for
the chain ladder method were published by (Liu and Verrall 2010; Mack 1993; Murphy 1994;
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Verdonck and Debruyne 2011; Verdonck et al. 2009) and other authors. Extended versions
of these models have also been created. For example, (Peters et al. 2014) developed an
extended class of model structures for the paid–incurred chain ladder models, where they
developed exactly the Bayesian formulation of such models. (Wuthrich 2017) extended the
chain-ladder method for claims reserving to include information about the properties of
individual claims applying a neural network model. “The chain ladder method should
only be used for large portfolios where consistency of the estimates is more important than
unbiasedness and where all entries into the incurred loss triangle are rather reliable (no big
relative chance fluctuations and/or errors)” (Bühlmann 2016, p. 7).

The Cape Cod method, which is also known as the Stanard–Buhlmann method,
(Bühlmann and Straub 1983; Stanard 1985) was proposed to overcome some of the short-
comings of the chain ladder method (Saluz 2015). The a priori loss ratio in the Cape Cod
method “is calculated as the weighted average of the chain ladder ultimate loss ratios across
all years with the used premium as the weights” (Korn 2016, p. 1). Due to its simplicity
and advantages over the chain ladder method, the Cape Cod method has become a proven
method in practice (Saluz 2015). The Cape Cod method is a special case of the Generalized
Cape Cod Methods addressed by (Gluck 1997; Korn 2016; Struzzieri et al. 1998).

A popular method that generates a simulated prediction distribution to obtain the
standard errors of well-specified models is bootstrapping (Verdonck et al. 2009). This
method has already been considered in the area of claims reserving by (England and Verrall
1999; Lowe 1994; Maciak et al. 2022; Zaçaj et al. 2022). Several authors ( Peremans et al. 2017;
Verdonck et al. 2009) applied robust bootstrap procedures for the chain-ladder method.

One of the key decisions in estimating claims reserves is how to treat outliers. Ac-
cording to (Embrechts and Wüthrich 2022, p. 5) outliers in insurance typically are not data
errors but large financial claims that are an important pricing component. (Verdonck and
Van Wouwe 2011) proposed two techniques to detect and correct outliers in the bivariate
chain-ladder method—the first technique was based on the bagplot to the bivariate dataset
and the second one was the robust technique based on the MCD (Minimum Covariance
Determinant). (Avanzi et al. 2022) extended their approach and also applied two alternative
robust bivariate chain-ladder techniques to treat outlier—the first one was based on the
outlyingness and the second technique was based on bagdistance, which is derived from
the bagplot.

In relation to the above-mentioned, the objective of designing an in-house applica-
tion (Barlak 2021) for computing non-life reserves using well-defined deterministic and
stochastic methods (Avanzi et al. 2016; Badounas and Pitselis 2020; Brazauskas et al. 2009;
Peremans et al. 2018; Verdonck and Van Wouwe 2011; Verdonck et al. 2009), and challenges
associated with the lack of person-specific data, lead us to the design of a new method
to treat outliers in non-life development triangles. By applying properties of the heat
equation, outliers could be treated without changing the whole triangle payments total
sum. Furthermore, a bootstrap method using residuals could be applied in some cases
where it was originally impossible.

The heat equation is a partial differential equation that describes temperature changes
in a given area over a period of time (Gorguis and Chan 2008). The one-dimensional heat
equation was first studied by Fourier at the beginning of the 19th century (Cannon and
Browder 1984). The heat equation has applications in various fields of science, one of the
most important of them is the theory of heat conduction (Widder 1976). It has also been
used for image enhancement (Black and Sapiro 1999; Buades et al. 2006) or for a detection
of a pollution problem (El Badia and Ha-Duong 2002). (Itkin et al. 2021) applied multi-layer
heat equations when solving financial problems and developing efficient algorithms for
pricing barrier options for time-dependent one-factor short-rate models. At present, we are
not aware of the use of the heat equation to treat outliers in non-life development triangles.
In this paper, we fill this gap by proposing a new method to treat outliers, which is based
on a heat equation.
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Based on the above, we set the aim of the paper to design a new method to treat
outliers in non-life development triangles.

The remainder of the paper is structured as follows. Section 2 outlines the theoretical
basis of methods for the calculation of technical reserves. Selected Chain-ladder and Cape
Cod deterministic methods (Section 2.1.1) with their stochastic adjustments (Section 2.1.2)
and additional stochastic modification (Cowell 2009) (Section 2.1.3) are introduced in
this section. Two different methods for treating outliers in 2-D (Sections 2.4.1 and 2.4.2)
and an approach to the numerical solution of one- and two-dimensional heat equation
(Sections 2.2 and 2.3) constitute the core part of this research. Finally, a method for adjusting
development factors to be greater than one (>1) without changing the total sum in a triangle
row is proposed in this section, with description and real-world examples being presented.
Section 3 lists the results of the practical application of the heat equation when treating
outliers in non-life development triangles. Section 5 summarizes the essential conclusions
resulting from the research and presents the significant findings.

2. Materials and Methods
2.1. Methods for Technical Reserves Calculation

Hereby, we would like to recall some concepts that underlie the technical reserves
calculation briefly. For a detailed description, the interested reader could refer to
(Avanzi et al. 2016; Badounas and Pitselis 2020; Brazauskas et al. 2009; Peremans et al.
2018; Verdonck and Van Wouwe 2011; Verdonck et al. 2009).

2.1.1. Deterministic Methods

Let us start with a brief overview of the well-known deterministic methods used for
the calculation of technical reserves in this paper. We use two deterministic methods for
the mentioned purposes. Firstly, it is the Chain-ladder method ĈCL

i,J = Ci,I−i ·∏J−1
k=I−i f̂k,

where f̂ j = ∑
I−j−1
s=0

Cs,j+1

∑
I−j−1
k=0 Ci,k

for I as maximum number of years from an event of a claim

and J stands for the total number of development years. Secondly, we have chosen
the Cape-Cod method using the following formula for technical reserves computation

ĈCC
i,J = Ci,I−i + (1− l̂i) κ̂ Pi (Dahms 2021), where κ̂ = ∑I

i=1 Ci,I−i

∑I
i=1 l̂i Pi

.

The choice for a stochastic process was subjectively the simplest one, namely the
bootstrap. We have employed two modifications of the deterministic methods. The first
one uses residuals.

2.1.2. Bootstrap Method Using Residuals

In general, we have a triangle of cumulative payments (Table 1).

Table 1. Cumulative claim payments.

i\j 0 1 . . . J-i . . . J-1 J

0 C0,0 C0,1 . . . C0,j . . . C0,I−1 C0,J

1 C1,0 C1,1 . . . C1,j C1,J−1
...

... . . .

i Ci,0 Ci,1 . . . Ci,j
... . . .

I-1 CI−1,0 CI−1,1

I CI,0
Source: own construction.

In the next step, we estimate development factors, which help us to calculate cumula-
tive payments in the lower triangle (Table 2).
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Table 2. Completed lower triangle.

i\j 0 1 . . . J-i . . . J-1 J

0 C0,0 C0,1 . . . . . . C0,I−1 C0,J

1 C1,0 C1,1 . . . C1,I−1 Ĉ1,J
...

... . . .

i Ci,0 Ci,1 . . . Ci,J−i . . . Ĉi,J−1 Ĉi,J
... . . . ...

I-1 CI−1,0 CI−1,1 ĈI−1,J−1 ĈI−1,J

I CI,0 ĈI,1 . . . . . . ĈI,J−1 ĈI,J
Source: own construction.

For the moment, we use the diagonal and apply the formula ĈCL
i,J = Ci,I−i ·∏J−1

k=I−i f̂k
to estimate observed values of payments backwards (Table 3). We then get the up-
per triangle of both estimated and observed payments, which we will introduce into
a bootstrap algorithm.

Table 3. Estimated upper triangle backwards.

i\j 0 1 . . . J-i . . . J-1 J

0 Ĉ0,0 Ĉ0,1 . . . . . . Ĉ0,I−1 C0,J

1 Ĉ1,0 Ĉ1,1 . . . C1,I−1 Ĉ1,J
...

... . . .

i Ĉi,0 Ĉi,1 . . . Ci,J−i . . . Ĉi,J−1 Ĉi,J
... . . . ...

I-1 ĈI−1,0 ĈI−1,1 ĈI−1,J−1 ĈI−1,J

I CI,0 ĈI,1 . . . . . . ĈI,J−1 ĈI,J
Source: own construction.

We compute the unscaled Pearson’s residuals using ri,j =
Xi,j−X̂i,j√

X̂i,j
where i + j ≤ I.

Using Ci,j = ∑
j
k=0 Xi,k we easily get the formula from (Pesta 2011)

ri,j =
(Ci,j − Ci,j−1)− (Ĉi,j − Ĉi,j−1)√

Ĉi,j − Ĉi,j−1

, (1)

where i + 1 ≤ I + 1 likewise and additionally Ci,j−1 = Ĉi,j−1 = 0 for j = 1.
The next is the bootstrap algorithm itself, where for 1 ≤ b ≤ B (B stands for the total

number of bootstrap cycles) following steps are performed:

1. By using random sampling with replacement from the set of residuals from the upper
triangle without the diagonal elements {ri,j}, i + j < I we create a new upper triangle
of residuals in each bootstrap cycle {(b)r∗i,j}.

2. The new non-cumulative upper triangle is then computed using ri,j =
Xi,j−X̂i,j√

X̂i,j
as

(b)X∗i,j =(b) r∗i,j
√

X̂i,j + X̂i,j.

3. Non-cumulative upper triangle of the new ”observed” payments is then used as an
input to the classic deterministic method (in our case, the Chain-ladder or the Cape
Cod) to get the vector of reserves (b)R.

After B simulations, we get B columns of reserves and their sums (Table 4).
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Table 4. Simulated reserves columns and their sums.

(1)R0 (2)R0 · · · (B)R0

(1)R1 (2)R1 · · · (B)R1
...

(1)RI (2)RI · · · (B)RI

∑I
k=0 (1)Rk ∑I

k=0 (2)Rk · · · ∑I
k=0 (B)Rk

Source: own construction.

We then easily get the n-th percentile from the sorted reserves sums.

2.1.3. Chain-Ladder Bootstrap Method Using Local Development Factors

The method proposed in (Cowell 2009). Let us denote the observed local development

factors as λi,j =
Ci,j+1

Ci,j
. At the same time, the first column in a triangle of cumulative

payments is equal to the first column in the non-cumulative one. Therefore, Ci,0 = Xi,0, ∀i ∈
{0, . . . , I}. We can write the cumulative triangle schematically as in Table 5.

Table 5. Local development factors.

i\j 0 1 . . . J-i . . . J-1 J

0 C0,0 λ0,0 . . . λ0,J−i . . . λ0,J−1 λ0,J

1 C1,0 λ1,0 . . . λ1,J−i λ1,J−1
...

... . . .

i Ci,0 λi,0 . . . λi,J−i
... . . .

I-1 CI−1,0 λI−1,0

I CI,0
Source: own construction inspired by (Cowell 2009).

Where each Ci,j from the upper triangle can be expressed by the formula

ĈCL
i,J = Ci,I−i ·∏J−1

k=I−i f̂k. To compute the reserves column, we need to fill the local de-
velopment factors into the lower triangle as well. The Chain-ladder method uses one
estimated factor for each unoccupied cell in the column. In this case, the local develop-
ment factor estimation λ̂i,j is obtained as a random sample with replacement from the
set of all observed local development factors for a given development year {λk,j}, where
k ∈ {0, . . . , J − i}.

Let us have a look at an example (Table 6).

Table 6. Development factors estimation.

i\j 0 1 2 3 4

0 100 1.9−→ 190 1.6−→ 304 1.2−→ 365 1.0−→ 365

1 120 2.2−→ 264 1.6−→ 422 1.2−→ 506

2 200 2.0−→ 405 1.6−→ 648

3 150 1.9−→ 285 λ̂2,3−−→
4 200 λ̂0,4−−→

Source: own construction.

Let us assume we want to compute λ̂0,4. We find the factor estimation by random
sampling with a replacement from the set of observed factors in a given development
year {1.9, 2.2, 2.0, 1.9}. Factor λ̂2,3 will always be equal to 1.2; hence we cannot take any
other value from the set {1.2, 1.2}. Notice that the last column of the local development
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factors estimates will always consist of just one number as the set we are sampling is only a
single-element one.

The advantage of this approach is its simple application to the bootstrap. In every
cycle b (for 1 ≤ b ≤ B), we fill the lower triangle with estimates of the local development
factors. The reserves column is computed as Ri = Ci,0 ·∏J−i

k=0 λi,k (See Table 7).

Table 7. Computed reserves for one bootstrap cycle applying the estimated local development factors.

i\j 0 1 . . . J-i . . . J-1 J U R

0 C0,0 λ0,0 . . . λ0,J−i . . . λ0,J−1 λ0,J U0 R0

1 C1,0 λ1,0 . . . λ1,J−i λ1,J−1 λ̂1,J U1 R1
...

... . . . ...
...

i Ci,0 λi,0 . . . λi,J−i λ̂i,J−i λ̂i,J Ui Ri
... . . . ...

...
I-1 CI−1,0 λ̂I−1,0 . . . λ̂I−1,J−i . . . λ̂I−1,J−1 λ̂I−1,J UI−1 RI−1

I CI,0 λ̂I,0 . . . λ̂I,J−i . . . λ̂I,J−1 λ̂I,J UI RI
Source: own construction inspired by (Cowell 2009).

Again, we get B vectors of reserves and the percentiles from their sorted sums.

2.2. Heat Equation in One Dimension

For the sake of simplicity, we take the plain form of the heat equation (Gurevich 2016)

∂u(x, t)
∂t

=
∂2u(x, t)

∂x2 , (2)

where u(x, t) stands for a temperature in a point of one dimensional space x and in a
specific point of time t for x ∈ [0, L]. The initial condition (so called Dirichlet boundary
condition) will be the temperature of the whole interval [0, L] at t = 0 i.e., u(x, 0) = f (x) for
x ∈ [0, L]. The boundary conditions represent the temperature of the interval boundaries
(in this case points 0 and L) for the whole time period e.g., u(0, t) = u(L, t) = 0 ∀x > 0.

Notice the heat diffusion in the Figure 1 (illustrated employing an online differential
equation solver (Silvestre n.d.). Apparently, the initial condition is the whole function at
time t = 0. In this case, we use the so-called Neumann boundary conditions ∂u(0,t)

∂x =
∂u(L,t)

∂x = 0, meaning that heat will neither leave nor enter the system on its boundaries.

(a) t = 0 (b) t = 0.6 (c) t = 0.12 (d) t = 0.52

Figure 1. Heat distribution in a rod during the time period.

Notice the outlier in Figure 1a. After a very short period of time (in fact, almost
instantly—Figure 1b), the heat equation diffuses high outlying temperature to the sur-
roundings, while the function of temperature itself hardly changes. We aim to benefit from
this property.

Numerical Solution of the Heat Equation in One Dimension

By means of d f (x)
dx = f ′(x) ≈ f (x+dx)− f (x)

dx the left side of the Formula (2) can be
rewritten as

∂u
∂t

=
uτ+1 − uτ

dt
. (3)
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Now, consider the continuous interval [0, L] as a discreet set of points {xi}n
i=1, where

∀i ∈ 1, . . . , n− 1 : x+1 − xi = dx. The right side of the Equation (2) can be equally
rewritten as

∂2u(x, t)
∂x2 =

ui+1−ui
dx − ui−ui−1

dx
dx

=
ui+1 − 2ui + ui−1

dx2 . (4)

Putting (3) and (4) together we get a discreet form of (2)

uτ+1
i − uτ

i
dt

=
uτ

i+1 − 2uτ
i + uτ

i−1
dx2 , (5)

and, therefore

uτ+1
i = uτ

i +
dt

dx2

(
uτ

i+1 − 2uτ
i + uτ

i−1
)
. (6)

The space discretization is illustrated in Table 8.

Table 8. Space discretization applied in the one-dimensional heat equation.

t\x 0 1 . . . i− 1 i i + 1 n n + 1

0 u0
0 u0

1 . . . u0
i−1 u0

i u0
i+1 . . . u0

n u0
n+1

1 u1
0 u1

1 . . . u1
i−1 u1

i u1
i+1 . . . u1

n u1
n+1

...
...

...
τ uτ

0 uτ
1 . . . uτ

i−1 uτ
i uτ

i+1 . . . uτ
n uτ

n+1

↘ ↓ ↙ ...
τ + 1 uτ+1

0 uτ+1
1 . . . uτ+1

i−1 uτ+1
i uτ+1

i+1 . . . uτ+1
n uτ+1

n+1
...

...
...

Source: own construction.

We can see temperatures in the discreet one-dimensional space for each time point
in columns 1 to n. Columns 0 and n + 1 are boundary conditions. In this case, we do not
prefer the heat to enter nor to leave the space; therefore, we simply set the column 0 equal
to the column 1 (and, respectively, the column n + 1 equal to the column n).

When using the numerical solution of a partial differential equation, it is very im-
portant to regard the stability of the solution. In this case, the stability condition must be
satisfied (Gurevich 2016)

dt ≤ 1
2

dx2. (7)

2.3. Heat Equation in Two Dimensions

Let us examine the heat equation in two dimensions

∂u(x, y, t)
∂t

=
∂2u(x, y, t)

∂x2 +
∂2u(x, y, t)

∂y2 , (8)

where u(x, y, t) is temperature at point (x, y) in a two-dimensional space and time t. For our
purpose, we can simplify our space to (x, y) ∈ Λ = [0, L]× [0, L]. Thus, the initial condition
will be considered as function of temperature on the whole subspace Λ at t = 0, i.e.,
u(x, y, 0) = f (x, y) for x ∈ Λ. Boundary conditions will be represented by the temperature
on the edges of the subset Λ at each time point. In the case of Dirichlet boundary conditions,
we set u(0, y, t), u(L, y, t), u(x, 0, t), u(x, L, t) as constants. Respectively, using the Neumann
boundary conditions as constants, we set the derivatives of the mentioned points, where
again, temperature does not leave or enter the boundary of Λ.

The following Figure 2 shows escaping heat from a very thin plate in time.
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Figure 2. Escaping heat. Inspired by (Hill 2016).

Numerical Solution of the Heat Equation in Two Dimensions

Let us rewrite the equation in continuous form (8) to a discreet form as

uτ+1
i,j − uτ

i,j

dt
=

uτ
i+1,j − 2uτ

i,j + uτ
i−1,j

dx2 +
uτ

i,j+1 − 2uτ
i,j + uτ

i,j−1

dy2 , (9)

i.e.,

uτ+1
i,j =

dt
dx2 (u

τ
i+1,j − 2uτ

i,j + uτ
i−1,j) +

dt
dy2 (u

τ
i,j+1 − 2uτ

i,j + uτ
i,j−1). (10)

Discretization scheme in time t = τ is then (Table 9):

Table 9. Discretization in time τ for the two-dimensional heat equation.

uτ
0,1 uτ

0,2 . . . uτ
0,j−1 uτ

0,j uτ
0,j+1 . . . uτ

0,n
uτ

1,0 uτ
1,1 uτ

1,2 . . . uτ
1,j−1 uτ

1,j uτ
1,j+1 . . . uτ

1,n uτ
1,n+1

uτ
2,0 uτ

2,1 uτ
2,2 . . . uτ

2,j−1 uτ
2,j uτ

2,j+1 . . . uτ
2,n uτ

2,n+1
...

...
...

uτ
i,0 uτ

i,1 uτ
i,2 . . . uτ

i,j−1 uτ
i,j uτ

i,j+1 . . . uτ
i,n uτ

i,n+1
...

...
...

uτ
m,0 uτ

m,1 uτ
m,2 . . . uτ

m,j−1 uτ
m,j uτ

m,j+1 . . . uτ
m,n uτ

m,n+1
uτ

m+1,1 uτ
m+1,2 . . . uτ

m+1,j−1 uτ
m+1,j uτ

m+1,j+1 . . . uτ
m+1,n

White part of the Table 9 contains temperatures mapped from the set Λ in a discreet
form. Initial condition represents temperature within the subspace Λ at τ = 0. Grey part of
the table comprises boundary conditions. Finally, the temperature at time τ + 1 is computed
by means of uτ

i,j−1, uτ
i,j and uτ

i,j+1 according to the Equation (10).
Stability of the numerical solution will be conditioned by the form

dt ≤ dx2dy2

2(dx2 + dy2)
. (11)
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2.4. Heat Equation Application

The heat equation has many applications, one of which is damaged painting restora-
tions. For the majority of points in a painting, when taking a very small surrounding of a
given point, the “difference” between it and other points is small, unlike some scratches
(or naturally some edges of objects) where the “difference” is obviously bigger. Using the
heat equation, we can smooth these differences at a cost of distorting the edges. Thus, the
adjusted result can be blurred. Notice the woman’s forehead in the Figure 3. In this case,
the heat diffusion had a sufficient amount of time to soften the damage but not enough to
make it too blurred.

Figure 3. Damaged image restoration. Source: (Schönlieb 2012).

Small red squares on the Figure 3 mark the damaged areas. On the right side, we can
see the effect of the heat equation application. This characteristic of the heat equation was a
motivation to study its application also in non-life development triangles.

Let us have a set Z = {z1, z2, . . . zn−1, zn} with its quartiles labeled as Q1, Q2, Q3 a Q4.
We then mark zi ∈ Z as an outlier if zi < Q1− 1.5 · IQR or zi > Q3 + 1.5 · IQR, where
IQR = Q3−Q1.

2.4.1. Practical Use—Triangle Transformation

Function of the non-cumulative payment development, depending on the develop-
ment year, is generally decreasing. Thus, we cannot use the heat equation on a pure triangle.
The first approach is to transform the non-cumulative payments triangle before it enters the
heat equation. This way appears incorrect, but for the sake of research, we introduce this
method, as well. In this case, from each payment, we subtract the median of its column. The
resulting triangle is then the initial condition for the heat equation. For every whole row
or column of a triangle in time τ in a form {ξ1, ξ2, . . . , ξk−1, ξk}τ , a vector with boundary
conditions will simply be {ξ1, ξ1, ξ2, . . . , ξk−1, ξk, ξk}τ , ensuring that no heat will enter or
leave. (Nota bene: these boundary conditions are in Neumann’s form). To secure stability,
we set dt = 0.05 with dx = dy = 1 and the number of steps being at least two for letting
the heat propagate to at least all eight adjacent cells (see Figure 4b).
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(a) One step (b) Two steps
Figure 4. Heat diffusion to adjacent points.

For our purposes, we set a maximum number of steps to four. After running the heat
equation, it is important to transform the adjusted triangle back to the original form by
adding medians to its values. At this point, we can run methods for reserves computation
on a new adjusted triangle. In practice, however, an insurance company does not have a
stable number of clients during accident years, for instance, which calls for a solution.

2.4.2. Practical Use—Heat Equation Adjustment

Instead of transforming the triangle, we try to transform the heat equation itself to
be able to cope with systematic changes during the accident years, as well as the natural
decline of payments during the development period. Let us rewrite the Formula (10) to

uτ+1
i,j =

dt
dx2

[
(uτ

i+1,j − uτ
i,j) + (uτ

i−1,j − uτ
i,j)
]
+

dt
dy2

[
(uτ

i,j+1 − uτ
i,j) + (uτ

i,j−1 − uτ
i,j)
]
. (12)

We compare incomparable values in all four round brackets. It is similar to com-
paring today’s 100 € to 100 € in 5 years. Therefore, we simply use the equivalent to the
compounding and discounting approach.

Let us define horizontal factors between the non-cumulative values of payments as

ĥj = m

({
X0,j+1

X0,j
, . . . ,

XI−1,j+1

XI−1,j

}
,
{

X0,j, . . . , XI−1,j
})

, (13)

where function m(x, w) is a weighted median of values xj and of their corresponding

weights wj. In case a local horizontal factor
Xi,j+1

Xi,j
does not make sense (e.g., division by zero),

the weighted median is computed without this local factor and its corresponding weight.
We set the horizontal factor to 0.5 if it does not exist or is lower than zero. As a consequence,
we preserve decreasing in the non-cumulative payments during the development period.
Whether a constant is to be precisely determined in this case is up to the reader.

The vertical factors are set simply as

v̂i =
Xi+1,0

Xi,0
, (14)

to eliminate possible edge problems during the accident years. Xi,0 is the first possible
non-cumulative payment (development year zero). Weighted medians are not used here
because payments up to one year are the biggest carrier of information. In practice, it is
not unusual that the outlier in the later development period clearly damages the ratio of
payments between the accident years. The vertical factor is set to 1 if it does not exist or
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is lower than zero. As a result, we assume no systematic change between the following
accident years.

For both factors (horizontal and vertical), we set their distance from zero to be at least
0.001 to avoid unreasonably high multiplications. Then the adjusted step for the numerical
solution is set as

uτ+1
i,j =

dt
dx2

[(
uτ

i+1,j
1√
vi
− uτ

i,j
√

vi

)
+

(
uτ

i−1,j
√

vi−1 − uτ
i,j

1
√

vi−1

)]

+
dt

dy2

uτ
i,j+1

1√
hj

− uτ
i,j

√
hj

+

uτ
i,j−1

√
hj−1 − uτ

i,j
1√
hj−1

. (15)

2.4.3. Non-Positive Increments Estimates

The stochastic modification methods described in Section 2.1.2 are based on the com-
putation of the residuals using the Formula (1). The square root in the denominator implies
that the bootstrap method cannot be used when estimated increments are zero or lower
(meaning that the development factors must be more than one).

For this case, we use the one-dimensional heat equation to try to adjust the devel-
opment factors to values greater than one. The initial condition for the row of the trian-
gle {r1, r2, . . . , rk−1, rk} will be the row itself. The boundary condition in time τ will be
{r1, r1, r2, . . . , rk−1, rk, rk}τ . The time step is set to dt = 0.05 to satisfy stability condition (7),
having dx = 1. The maximum number of steps is set to 8. If, after running the heat
equation, any development factor is still one or lower than the bootstrap, the methods from
Section 2.1.2 will not be used.

3. Results
3.1. Practical Use—Triangle Transformation

Let us start with the triangle with an artificially created outlier, the number with bold
in Table 10.

Table 10. Non-cumulative payments with an artificial outlier.

0 1 2 3 4

0 27,595,371 16,541,317 955,064 221,151 253,000
1 30,177,361 35,000,000 2,654,823 5200
2 27,421,072 13,715,687 4,783,474
3 22,757,188 12,915,963
4 37,314,432

Source: Adapted from (Gatialova 2010).

The original non-outlier value was 15,888,572. After three steps1 of the two-dimensional
heat equation, we get the result displayed in Table 11 with reduced outlier value with bold.

Table 11. Non-cumulative payments triangle after three steps of the heat equation in two dimensions.

0 1 2 3 4

0 28,296,830 17,912,300 2,003,148 625 254,360
1 31,230,863 26,046,477 4,647,049 162,163
2 27,389,026 16,254,519 4,301,611
3 25,447,541 12,975,899
4 35,388,691

Source: own production.
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For the following results, it is important to be aware of the fact that the reserves
were computed using the original vector of earned premium from (Gatialova 2010) for
Tables 12 and 13.

Table 12. Computed quantiles of reserves with outlier without using the heat equation in two
dimensions.

50th 75th 90th 95th
CL 34,130,722
CC 28,506,180
BCL 34,496,727 47,019,901 64,831,451 80,843,126
BCC 28,868,084 34,393,630 39,639,634 42,741,521
BCL_C 29,435,838 47,904,121 54,952,155 55,865,054

Source: own production.

Table 13. Computed quantiles of reserves with outlier using the heat equation in two dimensions.

50th 75th 90th 95th
CL 31,616,200
CC 28,492,405
BCL 31,560,638 36,415,770 41,173,703 44,909,633
BCC 28,372,479 31,116,043 33,344,732 34,786,776
BCL_C 30,043,105 33,191,035 39,069,138 40,057,328

Source: own production.

As expected, besides the slightly modified point estimates, using the heat equation
caused lower variance in the bootstrap methods.

3.2. Non-Positive Increments Estimates

Let us take the original triangle from (Gatialova 2010) (Table 14) and set one increment
to −10,000. It is up to the reader why −500 is not enough in this case.

Table 14. Triangle of non-cumulative payments with a negative value above the diagonal.

0 1 2 3 4
0 27,595,371 16,541,317 955,064 −10,000 253,000
1 30,177,361 15,888,572 2,654,823 5200
2 27,421,072 13,715,687 4,783,474
3 22,757,188 12,915,963
4 37,314,432

Source: Adapted from (Gatialova 2010).

After running the heat equation in one dimension (apparently on the first row of the
triangle), we get the following adjusted triangle (Table 15).

Table 15. Triangle of non-cumulative payments after the adjustment by the heat equation in one
dimension.

0 1 2 3 4
0 27,042,668 16,314,707 1,686,123 51,403 239,850
1 29,462,922 15,941,324 3,184,029 137,681
2 26,735,803 13,954,346 5,230,085
3 22,265,127 13,408,024
4 37,314,432

Source: own production.



Risks 2022, 10, 171 13 of 17

Whereas the sum of payments in each row before and after the adjustment is the same.
Rounded development factors are summarized in Table 16.

Table 16. Development factors before and after the adjustment.

0→ 1 1→ 2 2→ 3 3→ 4
Before (Table 14) 1.54711 1.06390 0.99995 1.00561
After (Table 15) 1.56507 1.07802 1.00202 1.00532

Source: own production.

As soon as all the development factors are greater than one, the adjusted triangle
can be used as an input for the bootstrap method using residuals. For other methods, the
original triangle was used. Afterwards, the reserves shown in Table 17 are obtained.

Table 17. Computed quantiles of reserves for the Table 14 applying the heat equation in one dimen-
sion.

50th 75th 90th 95th
CL 27,465,613
CC 23,074,551
BCL 30,027,309 34,617,421 39,368,558 42,569,244
BCC 24,681,341 26,913,779 29,159,449 30,773,575
BCL_C 27,663,269 29,795,669 31,530,287 33,215,173

Source: own production.

3.3. Practical Use—Heat Equation Adjustment

Let us introduce a real insurance company example (Motor insurance). As NBS is
allowed to publish only aggregated data, the triangle is multiplied by a constant. Numbers
are therefore different, but the ratios stay the same. For our purposes, it is also sufficient to
show only a part of the triangle as shown in Table 18.

Table 18. Triangle of non-cumulative payments for Motor insurance.

0 1 2 3 4 . . .
2002 747,090 179,926 2209 2454 0
2003 1,258,341 675,284 44,707 2134 5332
2004 4,014,851 1 107,703 30,763 2752 −9282
2005 4,594,908 1,291,662 20,091 63,549 −3747
2006 6,560,239 1,567,906 −23,166 9402 14,918
2007 8,578,376 1 991,642 43,927 −16,275 3801
2008 10,200,767 1,698,292 12,573 7004 55,160
2009 9,229,452 1,451,055 28,551 −1621 9922

...
Source: NBS—adjusted report.

In this case (systematic changes during accident years), it is not appropriate to use
the triangle transformation technique. Some outliers can be smoothed; some others will
appear. Figure 5 shows boxplots of the local development factors before and after the
inappropriate adjustment.



Risks 2022, 10, 171 14 of 17

(a) Before (b) After

Figure 5. Failed attempt to outlier elimination using the triangle adjustment technique.

Using the heat equation adjustment technique from the Section 2.4.2, we get the
boxplots of the local development factors as shown in Figure 5, where existing outliers are
smoothed and the new ones do not appear again as they do in Figure 6.

(a) Before (b) After
Figure 6. Outlier elimination using the heat equation adjustment technique.

Both figures represent the boxplots of the local development factors for each devel-
opment year. The Figure 5 shows how the development factors change after applying
the heat equation on the original development triangle using an inappropriate triangle
transformation technique. In Figure 6, the appropriate heat equation adjustment technique
has been used.

4. Discussion

There are different approaches to mitigate outliers during the loss reserves estimation.
The mitigation of outliers is usually dependent on a specific methodology (Bornhuetter
and Ferguson 1972; Bühlmann and Straub 1983; Stanard 1985; Taylor 1977; Verdonck et al.
2009) for calculating reserves and the subsequent creation of a robust alternative.

Current research on the removal of outliers in contaminated datasets for claims re-
serves is quite limited as the traditional methods are preferably applied. In the light of the
most recent works published in this topic (Avanzi et al. 2022b; Badounas et al. 2022), our
method takes on a different approach. First, outlying values are detected and smoothed by
the heat equation application. The resulting development triangle could then be used as an
input for any method without the need for its robustification.

The future work shall address the appropriate setting for the parameters of the nu-
merical solution of the heat equation, such as the step length or the maximum number
of steps. The current parameters are set as constants, which seems to be sufficient for the
demonstration of the methodology.

5. Conclusions

Outlier management in the non-life development triangles for calculation of technical
reserves estimates has been thoroughly addressed in the existing literature. This article
presents another way to approach the problem naturally occurring in the non-life develop-
ment triangles. The heat equation and its properties introduced in the paper help address
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the lack of person-specific data while keeping the whole original triangle payments total
sum and reasonable differences between the original and the backward estimated triangle.
The method enables to smooth out the outliers across the neighboring years instead of their
elimination which yields more realistic results. Hence, the unscaled Pearson’s residuals for
the stochastic modifications and the one-dimensional heat equation are used to adjust the
development factors to values greater than one. Otherwise, the bootstrap method cannot
be used. Introducing the one-dimension and the two-dimension heat equation offers an
uncommon overview of the simplest stochastic process coupled with the physical equation
and their potential in overcoming the challenges of the field.
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Abbreviations
The following abbreviations are used in this manuscript:

CL Chain-ladder method
CC Cape Cod method
BCL Bootstrap Chain-ladder method using residuals
BCC Bootstrap Cape Cod method using residuals
BCL_C Bootstrap Chain-ladder method using local development factors (Cowell 2009)
NBS National Bank of Slovakia

Note
1 Two steps were not enough—the value was still evaluated as an outlier.
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