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Abstract: We propose several numerical algorithms to compute the distribution of gross loss in a
positively dependent catastrophe insurance portfolio. Hierarchical risk aggregation is performed
using bivariate copula trees. Six common parametric copula families are studied. At every branching
node, the distribution of a sum of risks is obtained by discrete copula convolution. This approach is
compared to approximation by a weighted average of independent and comonotonic distributions.
The weight is a measure of positive dependence through variance of the aggregate risk. During gross
loss accumulation, the marginals are distorted by application of insurance financial terms, and the
value of the mixing weight is impacted. To accelerate computations, we capture this effect using the
ratio of standard deviations of pre-term and post-term risks, followed by covariance scaling. We test
the performance of our algorithms using three examples of complex insurance portfolios subject to
hurricane and earthquake catastrophes.

Keywords: gross loss; catastrophe insurance; copula-based risk aggregation; dependence; correlation;
tail risk; financial terms; copula convolution; aggregate distribution; stop-loss order; comonotonic risk

1. Introduction

Catastrophe models are widely used by insurers to help weather extreme natural
catastrophe events and to ascertain that they are able to manage their risk and pay their
claims (Grossi 2004; Grossi et al. 2005). The models estimate how frequent and severe
future catastrophes are likely to be, where they are likely to occur and the amount of damage
they can inflict. Individual instances of peril, e.g., a simulated earthquake with a particular
magnitude, are called events and are typically created using Monte Carlo sampling of model
parameters (Clark 2015). Large catalogs of simulated events are generated, representing an
ensemble of hypothetical catastrophes in the period of, e.g., 10,000 years. For each event in
the catalog, the model calculates the peril’s intensity (e.g., wind speed for hurricanes, degree
of ground shaking for earthquakes or water level for floods) at each location within the
affected area. Then, the intensity together with information about the type of construction
and occupancy for each insured property is converted into a probability distribution of loss
using a so-called vulnerability module. Finally, property losses are summed up into the
event’s total loss using a loss-aggregation algorithm (Grossi et al. 2005). Insurance contract
terms, applicable to the sharing of risk on each property or groups of properties, determine
loss perspective on the event total, such as:

• Ground-up loss (total loss without any policy conditions applied)
• Retained loss (loss retained by insured party)
• Gross loss (loss to an insurer after application of policy financial terms)

To investigate the impact of catalog events on a portfolio of properties, the event total losses
are further aggregated within each catalog year into an annual loss. Property loss, event to-
tal and annual loss are typically modeled as discrete random variables (Cossette et al. 2003)
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characterized by probability mass functions (pmfs). Finally, the mixture of annual loss
pmfs is transformed into the exceedance probability (EP) curve (Grossi et al. 2005). The EP
curve helps insurers determine losses that correspond to percentiles of the annual loss for
all simulated catalog years.

The basic step in portfolio loss analysis is computation of the event total loss (Cossette
et al. 2003; Dhaene et al. 2014; Wang 1998). This procedure can be thought of as estimation of
the distribution of the sum S = X1 + X2 + . . . ,+Xm of positively dependent, non-negative
random variables X1, X2, . . . , Xm when the joint distribution of these variables is unavail-
able. Many researchers have studied this problem in the context of Fréchet theory and
have shown its application to finance (see, e.g., Deelstra et al. 2011; Kaas et al. 2000; Linders
and Stassen 2016). The latter contributions offer closed-form expressions for the upper or
lower convex bounds of S when the statistics at hand are restricted to, usually parametric,
continuous marginal distributions characterizing X1, X2, . . . , Xm and partial information
on the joint dependence structure of the random vector (X1, X2, . . . , Xm). Another line
of research addressed the problem of risk aggregation, modeling the joint distribution
using copulas. By assuming a parametric form of the marginals and a parametric form
of the copula, the probability density function (pdf) of S is derived in closed form (see,
e.g., Cossette et al. 2013; Marri and Moutanabbir 2022; Vernic 2016).For high-dimensional
portfolios, however, fitting a copula that reproduces the prescribed data statistics proves
difficult. Another technical complication is that for some combinations of parametric
marginals and parametric copulas, estimation of the pdf of S entails a multivariate convo-
lution integral, which is computationally cumbersome for large portfolios. An avant garde
workaround referred to as copula-based hierarchical risk aggregation has been proposed
recently (Arbenz et al. 2012; Bruneton 2011; Côté and Genest 2015; Derendinger 2015; Joe
and Sang 2016) to alleviate the aforementioned bottlenecks. This approach eliminates
the need to parameterize one copula for all the risks as it defines the joint, usually bi-
variate, dependence between partial sums of risks in the subsequent loss accumulation
steps. Such a hierarchical pathway of adding dependent risks is represented as a bivariate
aggregation tree with copulas describing summation nodes. The original implementation
in Arbenz et al. (2012) uses Monte Carlo sampling. Significantly faster convolution-based
implementation has been discussed in our previous contribution on ground-up loss estima-
tion (Wójcik et al. 2019). In the present study, we extend this technique in three ways. First,
we adapt it to gross loss computation. Second, apart from using Fréchet copula only, we
also consider five other copula families commonly applied in insurance and mathematical
finance (see, e.g, Bouyé et al. 2000; Venter 2002). Lastly, we enhance the methodology for
risk summation from the previously implemented mixture of classical convolution and
numerical quantile addition to discrete copula convolution.

Following, we seek to approximate the pmf pφ(S) of φ(S) = φ(X1 + X2+, . . . , Xm)
where the insurance policy terms φ represent nonlinear transformations of partial loss
aggregates in hierarchical trees. We assume that the random vector (X1, X2, . . . , Xm) is
weakly associated and that the generally nonparametric marginal pmfs of Xi and the
non-negative covariance Cov[Xi, Xj] are known; see Section 2. We analyze gross loss
aggregation runs using three insurance portfolios impacted by hurricane and earthquake
events. The dependency models cover a broad range of association, shifting focus from
correlation between moderately sized losses in the bulk of distributions to correlation
between large losses in the upper tails of distributions. We compare the total gross loss
pmfs pφ(S) obtained with these models, along with their convex decomposition, in terms
of second-order statistics and tail measures of risk. We also provide a detailed discussion
of algorithmic implementation of our methods and compare their execution times. We
introduce a fast approximation based on Fréchet copula and covariance scaling. For the
analyzed portfolios, the latter generates a∼2–300× speedup compared to the other copulas.

The paper is organized as follows. To start, we provide independent and comonotonic
bounds for a gross loss sum of weakly associated risks. Then, we outline a copula-based risk
accumulation scheme and discuss the basics of bivariate copulas underlying the summation
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nodes. Next, we cover the computational aspects of two-stage gross loss accumulation.
Lastly, we perform gross loss analysis for two hurricane events and one earthquake event
in the United States. Different features of the proposed models are discussed by comparing
several risk measures and processing times of aggregation runs.

2. Preliminaries
2.1. Basic Concepts

We start with introducing some notations. A non-negative random variable X with
finite expectation and variance is called a risk. For m ≥ 2 let X = (X1, . . . , Xm) be the
portfolio of risks (locations). We assume for any pair of disjoint subsets A1, A2 ⊆ {1, . . . , m},
components of X are weakly associated:

Cov[φ(Xi), ψ(Xj)] ≥ 0 i ∈ A1, j ∈ A2 (1)

for all pairs of nondecreasing functions φ : Rk → R, ψ : Rm−k → R for 1 ≤ k < m
such that the above covariance exists (Christofides and Vaggelatou 2004). We denote by
X⊥ = (X⊥1 , X⊥2 , . . . X⊥m ) and X+ = (X+

1 , X+
2 , . . . X+

m ) independent and comonotone random
vectors characterized by the same marginals PX1 , PX2 , . . . , PXm as X. By definition, PX⊥(x) =
∏ PXi (xi) and PX+(x) = min (PX1(x1), PX2(x2), . . . , PXm(xm)). Since (1) fulfills the prop-
erties of multivariate positive dependence structure (B1–B7 in Colangelo et al. 2005), the
following stochastic order holds:

PX⊥(x) ≤ PX(x) ≤ PX+(x) ∀x ∈ Rm
+ (2)

Now, let g : Rm → R be a supermodular function such that:

g(x ∧ y) + g(x ∨ y) ≥ g(x) + g(y) ∀x, y (3)

where x ∧ y is the componentwise minimum and x ∨ y the componentwise maximum of x
and y. Christofides and Vaggelatou (2004) show that (1) leads to the following precedence:

X⊥ ≤sm X ≤sm X+ (4)

where ≤sm stands for the supermodular order. Equivalently,

E[g(X⊥)] ≤ E[g(X)] ≤ E[g(X+)] (5)

for all real supermodular functions g, provided that the expectations exist. A few exam-
ples of supermodular functions are shown in Figure 1. It follows from Proposition 7 in
Cossette et al. (2003) that (4) allows establishment of a convex order relation between the
dependent sum S = X1 + X2 + . . . + Xm and its independent S⊥ = X⊥1 + X⊥2 + . . . + X⊥m
and comonotone S+ = X+

1 + X+
2 + . . . + X+

m counterparts:

S⊥ ≤cx S ≤cx S+ (6)

where ≤cx stands for the convex order defined as:

E[v(S⊥)] ≤ E[v(S)] ≤ E[v(S+))] (7)

for all real convex functions v : R → R provided the expectations exist. Equality of ex-
pectations E[S⊥] = E[S] = E[S+] is guaranteed by the fact that X⊥, X and X+ are members
of the same Fréchet class (see, e.g., Dhaene et al. 2014). Therefore (6) yields the following
variance order:

Var[S⊥] ≤ Var[S] ≤ Var[S+] (8)
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If the joint distribution PX of the weakly associated vector X can be written as:

PX(x) = (1− w)PX⊥(x) + wPX+(x) 0 ≤ w ≤ 1, ∀x (9)

then, as originally suggested by Dhaene et al. (2014) and discussed in Wójcik et al. (2019),
the distribution PS of the positively dependent sum S can be approximated as:

PS(s) ≈ (1− w)PS⊥(s) + wPS+(s) ∀s (10)

where PS⊥ and PS+ are distributions of independent and comonotonic sums S⊥ and S+,
respectively, and the weight

w =
Var[S]−Var[S⊥]

Var[S+]−Var[S⊥]
(11)

measures dependence in portfolio X implicitly through the variance of the sum S of indi-
vidual risks (Dhaene et al. 2014). The approximation (10) with the weight in (11) preserves
the second-order moments of the target sum of risks:

E[S] = (1− w) E[S⊥] + w E[S+] (12)

Var[S] = (1− w) Var[S⊥] + w Var[S+] (13)

We emphasize that (10) does not imply that

PS⊥(s) ≤ PS(s) ≤ PS+(s) (14)

holds for all s. It only implies that P⊥S (s) and P+
S (s) can cross one or more times as an

immediate consequence of the convex order precedence in (6).
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Figure 1. Examples of typical supermodular functions used in catastrophe insurance loss ag-
gregation. Red surface represents g(x1, x2) = x1 + x2. Plotted in blue are (A) g(x1, x2) =

(x1 + x2, 3)+, (B) g(x1, x2) = min((x1− 3)+, 5)+min((x2− 3)+, 5) and (C) g(x1, x2) = (min(x1, 3)+
min(x2, 2), 2)+.

2.2. Financial Terms

Insurance financial terms are functions that modify loss payments. For individual risk
X, they act as nonlinear transformation Y = φX(X) with the constraint 0 ≤ φX(X) ≤ X. If
X is discrete with the pmf pX , then the transformation φX(X) yields:

pφX(X)(x′) = ∑
x: φX(x)=x′

pX(x) (15)

Following the mixture representation idea in (10), the gross loss distribution Pφ(S) of the
modified arbitrary sum φ(S) can be approximated as:

Pφ(S)(s
′) = w′ Pφ(S⊥)(s

′) + (1− w′) Pφ(S+)(s
′) ∀s′ (16)
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where

w′ =
Var[φ(S)]−Var[φ(S⊥)]

Var[φ(S+)]−Var[φ(S⊥)]
(17)

is the gross loss weight and φ(S) = ∑i φi(Xi); see Example 4.2 in Dhaene et al. (2014). The
most common financial term is the stop-loss function, which represents the loss to an insurer
after application of the deductible d on risk X and reads:

φX(X) = (X− d)+ ∀d > 0 (18)

Its expectation E[φX(X)] = π(d) is referred to as the stop-loss transform. The limit function
describes the application of the policy limit l :

φX(X) = min(X, l) ∀l > 0 (19)

The limited stop-loss payoff is generated by consecutive application of the deductible
and limit:

φX(X) = min((X− d)+, l) = (X− d)+ − (X− d− l)+ ∀l, d : l > d (20)

Its expectation E[φX(X)] = π(d)− π(d + l) is the difference in stop-loss transforms. On
occasion, (20) is referred to as the excess-of-loss (XOL) layer LX(d, l). An insurance contract
may also take on a share r of the layer, in which case

φX(X) = r LX(d, l) (21)

When the limited stop-loss function is applied to partition the risk X into n−layers
(ti−1; ti] i = 1, . . . , n with t0 = −∞ and tn = +∞, we have XOL layer decomposition
expressed as the comonotonic summation:

X = ∑
i

L(i)
X (ti−1, ti) = ∑

i
[(X− ti−1)+ − (X− ti−1 − ti)+] (22)

Several practical examples illustrating how the different functions above are used in typical
commercial catastrophic insurance portfolios are discussed in Wójcik and Zvezdov (2021).

2.3. Ordering the Gross Loss Sums

We recall that, by construction, a positively dependent sum of ground-up risks satisfies
convex ordering in (6). During gross loss aggregation, this sequencing can be impacted by
financial terms. For comparing gross loss sums, it is convenient to use the stop-loss order
≤sl related to the convex order by:

X ≤sl Y
E[X] = E[Y]

}
⇔ X ≤cx Y (23)

There are two fundamental compositions (Theorems D1 and D2, Chapter 6 in Marshall
et al. 1979) of supermodular functions that guarantee preservation of the stop-loss order.
The first composition passes supermodular ψ : Rm → R as an argument to convex and
non-decreasing φ : R→ R resulting in the supermodular g = φ ◦ ψ; see, e.g., Figure 2B,D.
When applied to (6) we have:

φ(X⊥1 + X⊥2 + . . . + X⊥m ) ≤sl φ(X1 + X2 + . . . + Xm) ≤sl φ(X+
1 + X+

2 + . . . + X+
m ) (24)

The second supermodular composition g = ψ(φ1, . . . , φm) is comprised of the supermod-
ular ψ : Rm → R and φi : R → R, i = 1, . . . , m, which are all non-decreasing or all
non-increasing; see, e.g., Figure 2C,F and Example 6.3.11 in Denuit et al. (2005). When
applied to the individual summands constituting (6), we obtain:
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φ1(X1)
⊥ + φ2(X2)

⊥ + . . . + φm(Xm)
⊥ ≤sl φ1(X1) + φ2(X2) + . . . + φm(Xm)

≤sl φ1(X1)
+ + φ2(X2)

+ . . . + φm(Xm)
+ (25)

(A) (B) (C)

(D) (E) (F)

(G)

X1 +X2 +X3
•

X1 X2 X3

φ(X1 +X2 +X3)
�

X1 +X2 +X3
•

X1 X2 X3

φ1(X1) + φ2(X2) + φ3(X3)
•

φ1(X1)
�

X1

φ2(X2)
�

X2

φ3(X3)
�

X3

X1 +X2 +X3
•

X1 +X2
•

X1 X2 X3

φ(X1 +X2 +X3)
�

X1 +X2 +X3
•

X1 +X2
•

X1 X2 X3

φ1(X1) + φ2(X2) + φ3(X3)
•

φ1(X1) + φ2(X2)
•

φ1(X1)
�

X1

φ2(X2)
�

X2

φ3(X3)
�

X3

ψ(φ1(X1) + φ2(X2)) + φ3(X3)
•

ψ (φ1(X1) + φ2(X2))
�

φ1(X1) + φ2(X2)
•

φ1(X1)
�

X1

φ2(X2)
�

X2

φ3(X3)
�

X3

Figure 2. Computing the sum of three risks using direct aggregation tree (A–C) and hierarchical
aggregation tree with sequential topology (D–G) from ground-up loss perspective (left column) and
gross loss perspective (middle and right columns). The branching nodes of hierarchical trees (black
dots) represent summation of the incoming pairs of individual and/or cumulative risks. For gross
loss perspective, transformation nodes (white dots) represent application of the financial terms φ, ψ

to individual and/or cumulative risks.

For the financial terms in Section 2.2, the precedence (25) always holds true. On the
other hand, the precedence (24) holds true only for (18). For (19), the sign of inequality
changes and loss precedence follows the concave order. For (20) and for the ith layer
L(i)

X (ti−1, ti) in (22), the problem is more complicated because φ is neither convex nor
concave. To proceed in such a case, we invoke the notion of the truncation transform in
Hürlimann (1998), which replaces a random variable X with:

X(a, b) = X− (a− X)+ − (X− b)+ (26)

on the finite interval [a, b] for −∞ < a, b < ∞. For two random variables X and Y that
satisfy X ≤sl Y, to establish if

X(a, b) ≤sl Y(a, b) (27)

holds, we use the Karlin–Novikoff–Stoyan–Taylor multiple-crossing conditions for PX and
PY (Karlin and Novikoff 1963; Stoyan and Daley 1983; Taylor 1983) and (Theorems 2.1 and
A.1 in Hürlimann 1998) to demand that

E[X(a, b)] ≤ E[Y(a, b)] (28)

and that either
PX(b) > PY(b) (29)

or b is the crossing point for the marginals

PX(b) = PY(b) (30)

such that the sign change of PY(x)− PX(x) in the neighborhood of b is from “-” to “+”. An
example explaining the role of requirements (28) and (29) is shown in Figure 3.
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Figure 3. An example of stop-loss order preservation under truncation transform. Here, X and
Y are random variables with discrete marginals pX and pY in (A,B), respectively. The distri-
bution pS⊥ of the independent sum S⊥ = X⊥ + Y⊥ in (C) is obtained by discrete convolution
(Algorithm A1 in Wójcik et al. 2019), while the distribution pS+ of the comonotonic sum S+ =

X+ + Y+ in (D) is computed using numerical quantile addition (Algorithm 6 in Wójcik et al. 2019).
The dashed vertical lines represent the truncation transform bounds a = 0.5 and b = 1.75. In (E), the
alignment of the corresponding cdfs PS⊥ and PS+ shows that PS⊥ (b) > PS+ (b) for b = 1.75, so (29)
holds. This, together with the necessary condition (28), implies that the truncated cdfs in (F,G) char-
acterize the stop-loss order S⊥(a, b) ≤sl S+(a, b). In (H), the binary decision whether the necessary
condition is true or false is plotted as a function of the truncation bounds 0 ≤ a < b ≤ 2. The
means µS⊥(a,b), µS+(a,b) characterize the independent and comonotonic sums after application of the
truncation transform. The red region is where the necessary condition holds. The black dot represents
the actual truncation bounds used throughout this example. The impermissible region where b < a is
plotted in grey.

Since (20) can be rewritten as:

min((X− d)+, l) = X(d, d + l)− d, (31)

determining if (6) is preserved after application of a deductible and limit comes down to
checking if

S⊥(d, d + l) ≤sl S(d, d + l) ≤sl S+(d, d + l) (32)

is true using (29) or (30). Accordingly, for XOL layers we require

S⊥(ti−1, ti) ≤sl S(ti−1, ti) ≤sl S+(ti−1, ti) (33)

3. Partial Sums and Aggregation Trees

The weighted average in (10), referred to as the mixture method in Wang (1998), cor-
responds to the direct aggregation model in Wójcik et al. (2019). In situations where the
partial sum SI = ∑i∈I Xi is of interest for any subset I ⊆ {1, . . . , m}, loss aggregation can be
performed by decomposing the positively dependent sum S using the bivariate hierarchical
aggregation model in Wójcik et al. (2019). First, we select the two risks Xi, Xj and define
a bivariate dependency model as, e.g., the one in (9) for that pair. Then, we compute the
partial sum Xi + Xj and treat it as a new, integrated risk. The procedure can be reiterated
with the remaining m− 1 risks until a single total sum has been computed. The hierarchical
models can be visualized as aggregation trees (see examples in Figure 2), which describe
collection of relationships between pairs of risks and provide a bottom-up view of the
total risk.
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When constructing a bivariate aggregation tree, we first need to identify the tree
topology, i.e., the order in which the risks are accumulated. Algorithms for computing
the order of risk additions for ground-up loss are discussed in Wójcik et al. (2019). For
gross loss, the tree topology is defined by the hierarchy of financial terms. The following
is how a typical catastrophe insurance portfolio is organized. First, the location terms
in (18), (19) or (20) are applied on individual risks. Then, locations tend to aggregate to the
sub-limits expressed as (18), (19) or (20) and applied to a geographical subset of the total
set of locations, such as, e.g., ZIP code. Thereafter, partial aggregates enter the XOL layers
in (21). Next, the layer losses are accumulated to insurance policies using comonotonic
addition in (22). Finally, policy losses are summed up to portfolio-level gross loss. We use
sequential order of aggregation to sum up risks going into the same financial structure, e.g.,
an XOL layer and for final accumulation to the event loss total. An example for three risks
is shown in Figure 2E. Based on the results in Wójcik et al. (2019), see Table 1 on p. 15, the
sequential order is a good compromise, and offers good examples, between simplicity of
implementation and accuracy of reproduction of tail statistics of partial aggregate risks as
compared to large-sample Monte Carlo runs.

3.1. Copulas at Summation Nodes

The second step in constructing an aggregation tree is to provide a description of
the bivariate joint distribution PX,Y for each pair of risks X, Y with the marginals PX, PY
entering a typical summation node in Figure 4A. In this study, we focus on the bivariate
copula functions C : [0, 1]2 → [0, 1], which, by Sklar’s theorem (Sklar 1959), provide the
following representation of the joint distribution:

PX,Y(x, y) = C(PX(x), PY(y)) (34)

(A) (B) (C)

X + Y
•

X Y

φX(X) + φY (Y )
•

φX(X)
�

X

φY (Y )
�

Y

X̃ + Ỹ
•

X̃ Ỹ

Figure 4. Three generic summation nodes: (A) ground-up node, (B) gross loss node and (C) back-
allocated version of the gross loss node.

It follows from the stochastic order in (2) that for any bivariate copula

C⊥(u, v) ≤ C(u, v) ≤ C+(u, v) (35)

where C⊥(u, v) = u v is the independence copula and C+(u, v) = min(u v) is the comono-
tonicity copula for u, v ∈ [0; 1]2, respectively. A mixture of these two distributions

Cw(u, v) = (1− w)C⊥(u, v) + w C+(u, v) (36)

is designated a Fréchet family in Denuit et al. (2002); an example is shown in Figure 5.
Other bivariate copulas used in this paper are listed in Table 1. They include a variety of
distributions often used in insurance applications: two elliptical distributions (Gaussian
and Student’s t), two Archimedean distributions (Gumbel and Joe) and a Morgenstern
distribution obtained by adding a perturbation to the independence copula; see, e.g.,
Bouyé et al. (2000); Joe (1997) for a detailed discussion of probability density shapes and
joint tail behavior, and Section 5 for discussion of the impact of these properties on gross loss
estimates. We further discretize any continuous copula C in Table 1 using the methodology
from Section 7.1 in Geenens (2020). We define the (R×O) discrete copula pmf as:
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c(
i + 1

R
,

j + 1
O

) =C
(

i + 1
R

,
j + 1

O

)
− C

(
i + 1

R
,

j
O

)
−C
(

i
R

,
j + 1

O

)
+ C

(
i
R

,
j

O

)
(37)

where (i, j) ∈ {0, . . . , R− 1} × {0, . . . , O− 1}. This discretization guarantees that the
marginals of the copula pmf are uniform, i.e., ∑j c( i+1

R , j+1
O ) = 1

R and ∑i c( i+1
R , j+1

O ) = 1
O ;

see Appendix B for details. The distribution pS of the sum S = X + Y is then expressed as
the discrete copula convolution:

pX+Y(s) = ∑
x

c(PX(x), PY(s− x))pY(s− x) (38)

Note that if (34) can be approximated using (9), we obtain Fréchet decomposition of the
copula C:

C(PX(x), PY(y)) ≈ (1− w) C⊥(PX(x), PY(y)) + w C+(PX(x), PY(y)) (39)

where the weight w is the comonotonicity coefficient in Koch and De Schepper (2006, 2011)
defined as:

w =
∑x ∑y[C(PX(x), PY(y))− PX(x)PY(y)]

∑x ∑y[min(PX(x), PY(y))− PX(x)PY(y)]
(40)

(A) (B) (C)

0

1

Figure 5. Special cases of copula distributions: (A) the independence copula C(u, v) = uv,
(B) the comonotonicity copula C(u, v) = min (u, v) and (C) Fréchet copula C(u, v) = (1− w) uv +

w min (u, v) for w = 0.5.

Table 1. Six common bivariate copula families.

Name C(u, v; θ) Parameter θ

Fréchet (1− θ)uv + θ min(u, v) θ ∈ [0, 1]
Gaussian * ΦΣ

[
Φ−1(u), Φ−1(v); θ

]
θ ∈ [0, 1]

Student’s t **
∫ x
−∞

∫ y
−∞

(
2π
√

1− θ2
)−1[

1 + x2−2θxy+y2

ν(1−θ2)

]−(ν+2)/2
dxdy,

x = P−1
ν (u), y = P−1

ν (v)
θ ∈ [−1, 1]

Gumbel exp
{
−
(
[− ln(u)]θ + [− ln(v)]θ

)1/θ
}

θ ∈ [1,+∞)

Joe 1−
[
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

]1/θ
θ ∈ [1,+∞)

Morgenstern uv[1 + θ(1− u)(1− v)] θ ∈ [0, 1]

* Φ−1 is the inverse cdf of a standard normal, and ΦΣ is the standard bivariate normal cdf with the covariance
matrix Σ parameterized by θ. ** P−1

ν is the inverse cdf of a standard Student’s t with ν ∈ {1, 3, 10, 30} degrees of
freedom. In this paper, ν is chosen a priori and not subject to the optimization in Algorithm 1; The parameter θ is
bounded by [−1, 1] instead of [0, 1] because negative θ in copula could still imply positive dependence in bivariate
joint distribution estimated in Algorithm 1.
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Algorithm 1 Estimate copula parameter and add two risks in ground-up pass
INPUT: Pmfs pX, pY with support sizes Nx, Ny, copula C(u, v; θ), (if available) partial
derivative C′(u, v; θ) = ∂C(u, v; θ)/∂θ, initial θ0 and bounds θmin, θmax, correlation ρ(X, Y),
maximum iteration tmax, numeric tolerance ε.
OUTPUT: θ∗, pS.

1: Compute the means µX , µY, standard deviations σX , σY, and cdfs PX , PY.
2: Goto Step 19 if C′(u, v; θ) does not exist.
3: θ∗ ← θ0; γ← 0. // γ records boundary collisions.
4: for t = 1 to tmax do
5: P(xi, yj)← C

(
PX(xi), PY(yj); θ∗

)
, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny. // Joint cdf.

6: p(xi, yj)← P(xi, yj)− P(xi−1, yj)− P(xi, yj−1) + P(xi−1, yj−1). // Joint pmf.
7: P′(xi, yj)← C′

(
PX(xi), PY(yj); θ∗

)
.

8: p′(xi, yj)← P′(xi, yj)− P′(xi−1, yj)− P′(xi, yj−1) + P′(xi−1, yj−1).

9: ρ?(X, Y)←
[

∑Nx
i=1 ∑

Ny
j=1 xiyj p(xi, yj)− µXµY

]
/(σXσY). // Correlation given θ∗.

10: ρ′(X, Y)←
[

∑Nx
i=1 ∑

Ny
j=1 xiyj p′(xi, yj)− µXµY

]
/(σXσY)

11: θ∗ ← min
(
θmax, max(θmin, θ∗ − (ρ?(X, Y) − ρ(X, Y))/ρ′(X, Y))

)
// Newton’s

method update.
12: if |ρ?(X, Y)− ρ(X, Y)| ≤ ε then break // Found root.
13: end if
14: γ← γ+ (θ ≤ θmin ∨ θ ≥ θmax). // Increment γ if the update collided with boundary.
15: if γ ≥ 3 then break // Newton’s method will not converge.
16: end if
17: end for
18: if γ ≥ 3∨ t ≥ tmax then // Newton’s method failed. Try bisection.
19: θlow ← θmin; θ∗ ← θ0; θhigh ← θmax.
20: for t = 1 to tmax do
21: Compute ρ?(X, Y) given θ∗ following Steps 5, 6 and 9.
22: if ρ?(X, Y)− ρ(X, Y) < −ε then θlow ← θ∗.
23: else if ρ?(X, Y)− ρ(X, Y) > ε then θhigh ← θ∗.
24: else break
25: end if
26: θ∗ ← (θlow + θhigh)/2.
27: end for
28: θ∗ ← (t < tmax)θ∗ + (t ≥ tmax)θmin. // If root not found, set θ∗ to θmin.
29: end if
30: Execute Steps 5 and 6.
31: pS ← 0; pS(xi + yj)← pS(xi + yj) + p(xi, yj), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny.
32: return θ∗, pS.

Figure 6 visualizes this idea. For the uniform [0; 1] marginals, (39) is equivalent to the
statement C ≈ Cw and (40) equals the Spearman correlation ρs(X, Y); (see Proposition 3 in
Koch and De Schepper 2011). As shown in Dhaene et al. (2014), we can simplify (40) to:

w =
Cov[X, Y]

Cov[X+, Y+]
(41)

The pmf of the sum X + Y is then given by (10), where its independent component is
computed as:

pX⊥+Y⊥(s) = ∑
x

pX(x)pY(s− x) (42)

and its comonotonic component by differencing:

PX++Y+(s) = sup
{

q ∈ [0; 1] : P−1
X (q) + P−1

Y (q) < s
}

(43)
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using, e.g., the algorithms in Wójcik et al. (2019). The key to application of (34) as a depen-
dency model for the gross loss summation in Figure 4B is the copula invariance:

CφX(X),φY(Y)(PφX(X)(x
′
), PφY(Y)(y

′
)) =CX,Y(PX(φ

−1
X (x

′
)), PY(φ

−1
Y (y

′
)) (44)

=CX,Y(PφX(X)(x
′
), PφY(Y)(y

′
))

under any non-decreasing transformations φX, φY such as, e.g., those representing the
financial terms in Section 2.2. As a consequence, the pmf pφX(X)+φY(Y) is determined by
plugging the marginals pφX(X), pφY(Y) into (38) or, if Fréchet decomposition is used, into (39),
with the weight expressed as:

w =
Cov[φX(X), φY(Y)]

Cov[φX(X+), φY(Y+)]
(45)

Finally, we remark that any copula family in Table 1 is positively ordered, which
implies that

C(u, v; θ1) ≤ C(u, v; θ2) (46)

for θ1 ≤ θ2 and for all u, v ∈ [0; 1]. From this inequality, we can easily see that for the
weight in (40) written as a function of θ, we have:

w(θ1) ≤ w(θ2) (47)

(A) (B)

(C) (D)

0

1

0

0.08

Figure 6. Illustration of the copula decomposition: (A) Joe copula in Table 1 with θ = 0.07 discretized
on 11 × 11 grid, (B) Fréchet decomposition of Joe copula, (C) the bivariate pmf pX,Y obtained by
combining the discretized Gamma(5, 1) marginals pX and pY (black bars) using the discretized Joe
copula and (D) Fréchet decomposition of pX,Y .

3.2. Covariance Scaling

When the available statistical descriptors are limited to only the marginals pX, pY
and the covariance Cov[X, Y], and computing speed is of particular importance (see, e.g.,
Wang 1998; Wójcik et al. 2019), it is advantageous to use the Fréchet copula in (36) as
opposed to using the Fréchet decomposition in (39) of any other copula in Table 1; see
Section 4 for details. For the ground-up summation X + Y in Figure 4A, the weight is
computed using (41). For the gross loss summation φX(X) + φY(Y) in Figure 4B, the
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weight is computed using (45). In this case we first obtain the transformed marginals
pφX , pφY using (15). Next, we express the (unknown) covariance Cov[φX(X), φY(Y)] in the
numerator of (45) by precising the condition (1) in Section 2, i.e.,

Cov[φX(X), φY(Y)] = αX,Y Cov[X, Y] (48)

Finally, we use (implicit) affine transformations of the ground-up risks:

X̃ =
σφX(X)

σX
X + βX (49)

Ỹ =
σφY(Y)

σY
Y + βY (50)

where σX, σY and σφX(X), σφY(Y) are ground-up and gross loss standard deviations for
individual risks, respectively, to write the gross loss weight as:

w =
αX,Y Cov[X, Y]

Cov[φX(X+), φY(Y+)]
=

Cov[X̃, Ỹ]
Cov[φX(X+), φY(Y+)]

(51)

where
αX,Y =

σφX(X)σφY(Y)

σXσY
(52)

Note that such ansatz does not alter the integration scheme in Figure 4B. It only approxi-
mates the gross loss weight computation when the dependence structure is given by (36).
The advantage is the substantial gain in computational speed of loss integration as com-
pared to using the copula convolution in (38); for details see Section 4.

3.3. A Comment on Back Allocation

We point out that (49) and (50) are inspired by the procedure of partitioning the gross
loss sum φX(X) + φY(Y) back to individual risk level X̃ and Ỹ. Defining the offsets in (49)
and (50) as:

βX = µφX(X) −
σφX(X)

σX
µX (53)

βY = µφY(Y) −
σφY(Y)

σY
µY (54)

where µX , µY and µφX(X), µφY(Y) are ground-up and gross loss means for individual risks,
respectively, guarantees that

E[φX(X) + φY(Y)] = E[X̃ + Ỹ] (55)

Var[φX(X) + φY(Y)] = Var[X̃ + Ỹ] (56)

In catastrophe insurance, this procedure is referred to as back allocation; see, e.g., Mitchell-
Wallace et al. (2017). By replacing the integration node in Figure 4B with its second-order
proxy in Figure 4C, the back-allocated losses are sometimes used to evaluate the impact of
financial terms on specific geographical/administrative groups of risks. For example, two
groups of risks that belong to different insurance policies and are subject to different policy
limits may contain subsets of risks that belong to one county. Therefore, back allocation is
needed if county-level gross loss is of interest. We stress that preservation of the second-
order moments in (55) and (56) makes our new back allocation method an extension of
the more traditional approach in Mitchell-Wallace et al. (2017), which satisfies only (55) by
prorating higher-level financial structure mean loss in proportion to the lower-level mean
loss(es). In this study, we do not use back allocation per se, so we leave further investigation
of the new method for future research.
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4. Computational Aspects

Our bivariate copula approach requires two separate passes of risk summation over
an aggregation tree: ground-up pass and gross loss pass. The former is performed to
identify the parameters of copulas at the summation nodes in Figure 4A such that they
reproduce imposed ground-up covariance. The gross loss pass is performed to obtain an
estimate of the total insured loss pmf using the summation nodes in Figure 4B. with copulas
parameterized during the ground-up pass. The order of summations (tree topology) is fixed
for both passes and, as mentioned in Section 3, dictated by the structure of financial terms
and sequential order of aggregation; compare, e.g., the sequential gross loss aggregation
tree in Figure 2G, which determines the order of ground-up summation in Figure 2B. In
the course of the ground-up pass, at each summation node the marginals PX and PY, the
parametric copula C(u, v; θ) (see Table 1) and the covariance Cov[X, Y] are given. Our
objective is to find:

θ? = min
θ

∣∣∣∣∣Cov[X, Y]−∑
x

∑
y
[C(PX(x), PY(y); θ)− PX(x)PY(y)]

∣∣∣∣∣ (57)

This corresponds to matching the prescribed Person’s correlation ρ(X, Y) with its copula-
based counterpart ρ?(X, Y) obtained by integrating C(PX(x), PY(y); θ?). It trivially follows
that the target variance

Var[X + Y] = ∑
x

∑
y
[C(PX(x), PY(y); θ?)] (58)

is reproduced at each node of the ground-up aggregation tree. Algorithm 1 offers a nu-
merical solution to (57). Newton’s method (see, e.g., Kelley 2003) is invoked first, and if
it fails, the bisection method in Sikorski (1982) is called. Failure occurs when Newton’s
update, which initially falls outside θ’s domain, is capped at the boundary. As a result,
the algorithm triggers an infinite loop of bouncing back and forth between the bound-
ary and the points within the domain. Both Newton’s and bisection optimizers require
O(Nx Ny) time and space in each iteration. Newton’s method takes extra time to evaluate
the derivative in Step 7, but it usually converges much faster than the bisection method
(Ehiwario and Aghamie 2014).

For Gaussian copula, the optimization procedure in Xiao and Zhou (2019) is applied to
computing ρ?(X, Y) in Algorithm 1, Step 9. The idea is to approximate a bivariate Gaussian
pdf with Hermite polynomials and to subsequently reduce the correlation function of θ to
polynomial series. Acceleration due to this technique is substantial because of Newton’s
method’s suitability for solving polynomials. In our implementation, the Taylor expansion
(Equation 39 in Xiao and Zhou 2019) stops when the rightmost term becomes less than
0.00001. For Student’s t copula, θ is bounded by [−1, 1] instead of [0, 1] while being
optimized in Algorithm 1. This is because negative θ in the copula could still imply positive
dependence in bivariate joint distribution. If spurious negative correlation between the
marginal risks is detected during the gross loss pass, we proceed assuming independence
and using discrete convolution. Numeric threshold ε and maximum iteration tmax in
Algorithm 1 are set to 0.0001 and 1000, respectively. These values provide a reasonable
balance between numeric precision and computing speed.

Next, the gross loss pass is performed with Algorithm 2 using copulas optimized in
the ground-up pass. The algorithm implements the summation node in Figure 4B. The
dominant computational overhead comes from Step 2, which has both asymptotic space
consumption and asymptotic time complexity of O(Nx Ny). The latter is due to processing
primitive arithmetic such as exponentiation and logarithm, which constitute most copulas
listed in Table 1. Speed comparison with other fundamental operations, e.g., addition
and multiplication, is shown in Table 2. In Step 7, the copula decomposition in (39) is
performed. This variant, however, is slower than the original copula approach. It requires
both computing the bivariate joint in (39) and the mixture distribution of the sum in (10)
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with the weight in (45). Computation of the mixture has asymptotic space complexity of
O(Nx + Ny) due to auxiliary memory allocations entailed in regridding and estimating the
comonotonic sum (Algorithms 3, 6 in Wójcik et al. 2019) and asymptotic time complexity
of O(Nx Ny) dominated by the convolution algorithm (Section 2.4.1 Wójcik et al. 2019). We
point out that the covariance scaling approach in Section 3.2 does not require the ground-
up pass. The weight in (45) depends only on the scaled covariance and the transformed
marginals, both computed adaptively during the gross loss pass.

Algorithm 2 Add two risks in gross loss pass
INPUT: Pmfs pφX(X), pφY(Y) with support sizes Nx, Ny, parameterized copula model
C(u, v; θ?), decomposition flag.
OUTPUT: Pmf pφ(S) of the gross loss sum φ(S) = φX(X) + φY(Y).

1: Compute cdfs PφX(X) and PφY(Y). // Time O(Nx + Ny). Space O(1).
2: Compute the joint cdf PφX(X),φY(Y) ← C

(
PφX(X)(x), PφY(Y)(y); θ?

)
. // Time O(Nx Ny).

Space O(Nx Ny).
3: Compute pmf pφX(X),φY(Y) by differencing PφX(X),φY(Y) in place. // Time O(Nx Ny).

Space O(1).
4: if decomposition flag is unset then
5: Initialize pφ(S) ← 0.
6: Let pφ(S)(x + y)← pφ(S)(x + y) + pφX(x),φY(y)(x, y). // Time O(Nx Ny). Space O(1).
7: else // Invoke the mixture method.
8: Compute w using (40). // Time O(Nx Ny). Space O(1).
9: Make mixture pφ(S) ← (1− w)pφ(S)⊥ + wpφ(S)+ . // Time O(Nx Ny). Space O(Nx +

Ny).
10: end if
11: return pφ(S).

Table 2. Actual (relative) execution times in microseconds of calling primitive functions for 10,000,000
times on double-precision floating-point numbers generated at random. Platform: Intel i9-9980HK
CPU, 32 GB RAM, Windows 10. Compiler: Mingw-w64 g++ 8.3 -std=gnu++17 -Ofast -mfpmath=sse
-msse2 -mstackrealign.

a + b ab exp(a) ln a ab arctan(a)

5593 (1) 6130 (1.1) 315,567 (56.4) 209,969 (37.5) 670,001 (119.8) 130,785 (23.4)

All algorithms were coded in C++. Bivariate Gaussian cdf implementation is based on
the C code in the library by Donnelly (1973). Bivariate Student’s t cdf implementation con-
verts the Fortran code in R package mvtnorm (see Genz et al. 2021) into C++. Figure 7 shows
the time cost of adding two random variables using copulas in Table 1. The Fréchet copula
with covariance scaling facilitates the fastest processing due to its uncomplicated form
and adaptive parameter estimation in Algorithm 3. Slightly slower Morgenstern copula
convolution takes advantage of the straightforward algebraic expression for bivariate cdf
and constant ∂C(u, v; θ)/∂θ; see Appendix A.3. Similarly, Student’s t algorithm with ν = 1
(Cauchy) gains efficiency from the uncomplicated derivative in Appendix A.4 and rela-
tively fast arctan operation; see Table 2. When ν > 1, the bivariate Student’s t cdf has a sign
function of θ that is not differentiable (Equations (10) and (11) in Dunnett and Sobel 1954).
In this case, θ? is estimated by the bisection method in Algorithm 1. Because the cdf is
evaluated in a recursion dependent on ν, the computing time grows with increasing degrees
of freedom. When Gaussian copula is used, evaluations of bivariate and inverse univariate
Gaussian cdfs are needed. Both entail integrals of computationally expensive exponential
functions, which makes risk integration slower than that based on Cauchy copula. Equa-
tions for Joe and Gumbel copulas and their partial derivatives contain compositions of
power functions (see Appendices A.1 and A.2), which is the main reason for their longest
processing times.
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Figure 7. Actual (relative) execution time in nanoseconds for computing pφX(X)+φY(Y). Here, the
support of X is Ran X = {0, 0.1429, 0.2857, 0.4286, 0.5714, 0.7143, 0.8571, 1}, and the support of Y is
Ran Y = {0, 0.1429, 0.2857, 0.4286, 0.5714, 0.7143, 0.8571, 1}, with probabilities Ran pX = {0.2327,
0.0268, 0.0051, 0.0493, 0.3023, 0.1834, 0.0093, 0.1911} and Ran pY = {0.1730, 0.0666, 0.3864, 0.1648,
0.0021, 0.0703, 0.0871, 0.0497}. Correlation values are ρ(X, Y) = {0, 0.01, 0.02, . . . , 1} and the financial
terms φX(X) = min((X− 0.2)+, 0.9)); φY(Y) = min((Y− 0.1)+, 0.8). Computing time is the average
over 101 runs. Platform: Intel i9-9980HK CPU, 32 GB RAM, Windows 10. Compiler: Mingw-w64 g++
8.3 -std=gnu++17 -Ofast -mfpmath=sse -msse2 -mstackrealign.

Algorithm 3 Add two risks in gross loss pass using Fréchet copula with covariance scaling
INPUT: Pmfs pX and pY, financial terms φX and φY, covariance Cov[X, Y].
OUTPUT: Pmf of the sum pφ(S).

1: Compute standard deviations σX and σY.
2: Compute gross loss pmfs pφ(X), pφ(Y) and their standard deviations σφX(X) and σφY(Y).
3: Compute the covariance scaling factor: αX,Y ← σφX(X)σφY(Y)/(σXσY).
4: Compute the comonotonic sum pmf pφ(S)+ , and derive the comonotonic covariance

Cov[φX(X+), φY(Y+)] .
5: Compute the gross loss weight w in (51).
6: Make mixture pφ(S) ← (1− w)pφ(S)⊥ + wpφ(S)+ .
7: return pφ(S).

5. Results

To test the proposed algorithms for the copulas in Table 1, we computed gross loss for
two major hurricane events and one major earthquake event in the United States. These
natural catastrophes inflicted damage to 31,896, 9056 and 1209 locations, respectively, from
three undisclosed commercial insurance portfolios. Some characteristics of these portfolios
are shown in Table 3. Following the convention used in catastrophe insurance, we express
risk as the damage ratio, i.e., loss over the replacement value. For each event, the damage
ratio Xk|Ik based on knowledge of the peril intensity Ik at kth affected location is given by
the catastrophe model prediction ζk|Ik and described by zero-inflated, limited transformed
beta distribution (see Klugman et al. 2012; Ospina and Ferrari 2010). We assume that the
mean of each distribution is determined by the expectation of model prediction and that
covariance between risks characterizes model error, so

Xk|Ik = ζk|Ik + ηk

ξk|Ik ∼ Zero-inflated, limited TRB(r, s, α, β)

E[Xk|Ik] = E[ζk|Ik] = h(Ik) (59)

Cov
[
Xi|Ii, Xj|Ij

]
= Σi,j = E[(Xi|Ii − h(Ii))(Xj|Ij − h(Ij))]

where the zero-mean noise term η represents the epistemic uncertainty in the catastrophe
model development (see, e.g., Grossi 2004), and h is the damage function, which converts
peril intensity to damage ratio. For hurricanes the intensity is expressed as wind speed and
is computed using the U.S. hurricane model in AIR-Worldwide (2015). For earthquakes
the intensity is measured as spectral acceleration of ground motion and is obtained from
the U.S. earthquake model in AIR-Worldwide (2017). Loss distributions were discretized
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on a 64-point grid; some examples are shown in Figure 8. Spatial dependency was cap-
tured by the nested block diagonal correlation matrix R corresponding to the covariance
matrix Σ (see Figure 2B in Wójcik et al. 2019). This structure was because of imposing
exchangeable correlation in spatial grid blocks at two scales using the random effects
model in Einarsson et al. (2016). For hurricanes, the widths of spatial bins were 1 km and
20 km. The values assigned to off-diagonal entries were 0.07 if two risks were within the
same 1 km block, and 0.02 if two risks resided in the same 20 km block but different 1 km
blocks. Correlation was set to zero if any two risks belonged to different 20 km blocks. For
earthquakes, the widths of the spatial bins were 1 km and 25 km, respectively, with the
corresponding correlation coefficients 0.26 and 0.09. Any two risks from different 25 km
blocks were considered uncorrelated.

Table 3. Characteristics of three representative catastrophe insurance portfolios.

StatisticPortfolio 1 (Large)Portfolio 2 (Medium)Portfolio 3 (Small)

Event peril Hurricane Hurricane Earthquake
# of risks 31,896 9056 1209

# of sub-limits 3364 412 19
# of layers 1778 398 14

# of policies 1676 398 14
Total replacement value ()MM USD) 671,191 25,811 14,350

Total ground-up loss 410 1198 427
Total ground-up damage ratio 0.06% 4.64% 0.41%
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Figure 8. Three examples of marginal damage distributions. The mean damage ratio varies from low
in (A) to moderate in (B) and high in (C).

The insurance hierarchy which determined the order of gross loss aggregation in each
portfolio was: sub-limits, XOL layers and policies; see Section 3 for details and Table 3 for
the number of components in each tier of financial terms. A hierarchical aggregation tree
with sequential topology was chosen to perform gross loss accumulation; see, e.g., Figure 2.
In all runs, at every summation node the support size of aggregate loss pmf was limited
to 256 points, and losses with probabilities ≤10−10 were set to zero. This “tail truncation”
was intended to maintain fine discretization at the bulk of the pmf, particularly during the
ground-up pass. To speed up computations based on Fréchet copula with covariance scaling
and those based on Frechèt decomposition, we used numerical convolution with linear
regridding; see Algorithm A1 and Algorithm 3 in Wójcik et al. (2019). We also considered
a multivariate extension of the Fréchet copula in (36) with a multivariate extension of
the covariance scaling factor in (52). The multivariate Fréchet model uses the direct tree
(see Figure 2A–C) to aggregate risks going into the same financial structure, e.g., a sub-
limit. In other words, the summation nodes on an aggregation tree are followed by
the transformation nodes (financial terms) in Figure 2, with the exception of when the
risks are summed up to an event total, without breaking the summation into smaller
bivariate chunks.

Total gross loss pmfs for Portfolios 1, 2 and 3 are presented in Figures 9–11, respec-
tively. Table 4 shows three statistics characterizing these distributions: mean (µ), standard
deviation (σ) and the expectation of loss conditional on the loss being greater than the 1st,
5th and 10th percentile, correspondingly (1, 5, 10%-TVaR; see, e.g., Artzner et al. 1999). In
Portfolios 1, 2 and 3, over half of the total ground-up loss comes from the top 2.4%, 0.52%
and 0.41% properties, respectively, with the largest replacement values. Policies written
to expensive commercial properties typically have a share term on the XOL layer in (21).
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This linear term specifies that only a small ratio, e.g., 8%, of the XOL layer is covered. As
a result, the loss reduction from ground-up to gross occurs by scaling the support of the
gross loss distribution after application of the XOL layer. Accordingly, for each portfolio
in Table 4, all copulas produce gross loss pmfs with similar expected values. On the other
hand, variance of the total loss is impacted by the covariances between pairs of risks; hence,
the heterogeneity in σs is relatively high among different copulas. We observe that the
variability declines, however, from Portfolios 1 to 3 as fewer buildings dominate the total
replacement.
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Figure 9. Total gross loss pmfs for Portfolio 1. The pmfs are plotted within the same x-axis range for
clarity. Blue pmfs are obtained using aggregation tree with copulas in Table 1 at summation nodes.
Red pmfs are obtained by replacing each copula with its corresponding Fréchet decomposition into
comonotonic part and independent part.
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Figure 10. Total gross loss pmfs for Portfolio 2. The pmfs are plotted within the same x-axis range for
clarity. Blue pmfs are obtained using aggregation tree with copulas in Table 1 at summation nodes.
Red pmfs are obtained by replacing each copula with its corresponding Fréchet decomposition into
comonotonic part and independent part.
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Table 4. Means, standard deviations and tail statistics (relative to multivariate Fréchet) of the aggregate gross loss pmfs.

Portfolio 1 (Large) Portfolio 2 (Medium) Portfolio 3 (Small)

[MM $] µ σ TVaR1% TVaR5% TVaR10% µ σ TVaR1% TVaR5% TVaR10% µ σ TVaR1% TVaR5% TVaR10%

Multivariate Fréchet 293.2 (1.00) 276.5 (1.00) 1167.6 (1.00) 730.4 (1.00) 647.5 (1.00) 36.1 (1.00) 4.8 (1.00) 53.6 (1.00) 48.5 (1.00) 45.8 (1.00) 16.0 (1.00) 6.3 (1.00) 37.5 (1.00) 32.7 (1.00) 29.9 (1.00)
Fréchet 291.0 (0.99) 271.3 (0.98) 2000.7 (1.71) 1035.3 (1.42) 795.4 (1.23) 36.1 (1.00) 5.4 (1.12) 53.7 (1.00) 49.2 (1.01) 46.7 (1.02) 15.9 (1.00) 6.3 (1.00) 37.5 (1.00) 32.6 (1.00) 29.8 (1.00)

Gaussian 290.1 (0.99) 285.6 (1.03) 1626.9 (1.39) 1129.6 (1.55) 931.2 (1.44) 36.2 (1.00) 6.0 (1.25) 56.3 (1.05) 51.0 (1.05) 48.2 (1.05) 15.9 (1.00) 6.3 (1.00) 37.4 (1.00) 32.6 (1.00) 29.8 (1.00)
Gaussian decomp 290.6 (0.99) 279.9 (1.01) 2091.4 (1.79) 1085.4 (1.49) 823.6 (1.27) 36.2 (1.00) 6.0 (1.25) 57.4 (1.07) 51.2 (1.06) 48.2 (1.05) 15.9 (1.00) 6.3 (1.00) 37.6 (1.00) 32.6 (1.00) 29.8 (1.00)

Joe 291.2 (0.99) 183.6 (0.66) 1141.2 (0.98) 765.9 (1.05) 651.5 (1.01) 36.2 (1.00) 5.4 (1.13) 54.3 (1.01) 49.5 (1.02) 46.9 (1.02) 15.9 (1.00) 6.3 (1.00) 37.6 (1.00) 32.6 (1.00) 29.8 (1.00)
Joe decomp 291.4 (0.99) 183.5 (0.66) 1155.2 (0.99) 769.5 (1.05) 652.7 (1.01) 36.3 (1.00) 5.4 (1.13) 54.1 (1.01) 49.4 (1.02) 47.0 (1.03) 15.9 (1.00) 6.3 (1.00) 37.6 (1.00) 32.6 (1.00) 29.8 (1.00)

Gumbel 291.3 (0.99) 184.5 (0.67) 1138.9 (0.98) 767.9 (1.05) 654.1 (1.01) 36.3 (1.01) 5.5 (1.15) 55.1 (1.03) 50.0 (1.03) 47.4 (1.03) 15.9 (1.00) 6.3 (1.00) 37.6 (1.00) 32.6 (1.00) 29.8 (1.00)
Gumbel decomp 291.4 (0.99) 185.0 (0.67) 1175.8 (1.01) 773.9 (1.06) 654.8 (1.01) 36.1 (1.00) 5.5 (1.15) 54.1 (1.01) 49.5 (1.02) 47.0 (1.03) 15.9 (1.00) 6.3 (1.00) 37.6 (1.00) 32.6 (1.00) 29.8 (1.00)

Morgenstern 293.2 (1.00) 255.9 (0.93) 1101.3 (0.94) 908.7 (1.24) 812.4 (1.25) 36.2 (1.00) 6.0 (1.25) 55.4 (1.03) 50.7 (1.04) 48.1 (1.05) 15.9 (1.00) 6.3 (1.00) 37.4 (1.00) 32.6 (1.00) 29.8 (1.00)
Morgenstern decomp 293.2 (1.00) 238.9 (0.86) 1718.7 (1.47) 971.8 (1.33) 765.7 (1.18) 36.2 (1.00) 6.0 (1.25) 57.1 (1.06) 51.1 (1.05) 48.3 (1.05) 15.9 (1.00) 6.3 (1.00) 37.6 (1.00) 32.7 (1.00) 29.8 (1.00)

Student’s t, ν = 1 290.7 (0.99) 150.3 (0.54) 794.7 (0.68) 656.9 (0.90) 582.3 (0.90) 36.8 (1.02) 4.4 (0.93) 54.2 (1.01) 49.2 (1.01) 46.4 (1.01) 16.0 (1.00) 5.8 (0.92) 36.7 (0.98) 32.0 (0.98) 29.0 (0.97)
Student’s t decomp, ν = 1 290.7 (0.99) 154.1 (0.56) 788.2 (0.68) 656.9 (0.90) 585.1 (0.90) 36.3 (1.01) 5.1 (1.06) 53.4 (1.00) 48.9 (1.01) 46.6 (1.02) 16.0 (1.00) 5.8 (0.92) 36.7 (0.98) 32.0 (0.98) 29.0 (0.97)

Student’s t, ν = 3 290.9 (0.99) 151.1 (0.55) 916.9 (0.79) 677.7 (0.93) 592.9 (0.92) 36.5 (1.01) 4.3 (0.90) 55.6 (1.04) 49.4 (1.02) 46.1 (1.01) 16.0 (1.00) 6.0 (0.95) 37.1 (0.99) 32.3 (0.99) 29.4 (0.98)
Student’s t decomp, ν = 3 291.0 (0.99) 154.4 (0.56) 791.3 (0.68) 658.1 (0.90) 586.2 (0.91) 36.3 (1.00) 5.2 (1.08) 53.4 (1.00) 49.0 (1.01) 46.7 (1.02) 16.0 (1.00) 6.0 (0.96) 37.2 (0.99) 32.3 (0.99) 29.4 (0.98)

Student’s t, ν = 10 290.9 (0.99) 177.8 (0.64) 1194.1 (1.02) 794.4 (1.09) 663.0 (1.02) 36.7 (1.02) 5.2 (1.09) 60.0 (1.12) 51.8 (1.07) 48.2 (1.05) 15.9 (1.00) 6.2 (0.99) 37.5 (1.00) 32.6 (1.00) 29.7 (0.99)
Student’s t decomp, ν = 10 291.1 (0.99) 181.6 (0.66) 1124.2 (0.96) 761.4 (1.04) 649.1 (1.00) 36.3 (1.00) 5.3 (1.11) 53.8 (1.00) 49.2 (1.01) 46.9 (1.02) 15.9 (1.00) 6.3 (1.00) 37.5 (1.00) 32.6 (1.00) 29.7 (0.99)

Student’s t, ν = 30 290.9 (0.99) 256.2 (0.93) 1596.6 (1.37) 1056.0 (1.45) 854.9 (1.32) 36.1 (1.00) 5.8 (1.21) 57.7 (1.08) 51.3 (1.06) 48.2 (1.05) 15.8 (0.99) 6.4 (1.01) 37.9 (1.01) 32.7 (1.00) 29.7 (1.00)
Student’s t decomp, ν = 30 291.2 (0.99) 257.1 (0.93) 1884.1 (1.61) 1007.5 (1.38) 782.8 (1.21) 36.2 (1.00) 5.9 (1.22) 56.6 (1.06) 50.8 (1.05) 48.0 (1.05) 15.8 (0.99) 6.4 (1.01) 37.6 (1.00) 32.7 (1.00) 29.7 (1.00)
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Figure 11. Total gross loss pmfs for Portfolio 3. The pmfs are plotted within the same x-axis range for
clarity. Blue pmfs are obtained using aggregation tree with copulas in Table 1 at summation nodes.
Red pmfs are obtained by replacing each copula with its corresponding Fréchet decomposition into
comonotonic part and independent part.

The ground-up total damage ratio of Portfolio 1 is only 0.06% (Table 3), and most
marginal, location-level loss distributions are strongly right-skewed. When imposing a
prescribed ground-up correlation between the long-tailed marginals, the correlation in the
Gaussian copula usually takes higher values than the default correlation in joint distribution.
Reason being, the Gaussian copula (family B1 in Joe 1997) is symmetric and concentrates
on dependence in the bulk more than in the right tail of the bivariate distribution. Once the
marginals become less skewed after financial terms have been applied, correlations between
the gross losses are frequently inflated compared to the corresponding correlations between
the ground-up losses. As a result, the Gaussian copula induces the highest variance
of the total gross loss. For the Fréchet copula, this effect is attenuated by covariance
scaling, which preserves the ground-up correlations. In the case of the Morgenstern copula
(family B10 in Joe 1997), the positive correlation range is limited, i.e., for θ ∈ (0; 1], the
corresponding Spearman’s correlation is ρs ∈ (0; 1/3]. Owing to this restriction, the gross
loss variance is slightly lower than the variance for the Fréchet copula. In contrast, Joe
and Gumbel copulas (families B5 and B6 in Joe 1997) are both designed to model the right
tail dependence. They need only a small value of the dependence parameter θ (Table 1) to
reproduce the imposed ground-up correlation between the marginals with heavy right tails.
During the gross loss pass, probability mass of partial loss aggregates is shifted from tail
to bulk of their pmfs, and as a result, correlation between the partial summands becomes
weaker. This leads to the low variance of the total gross loss as compared to other copulas;
see Figure 9.

In Portfolio 2, the marginals are significantly less skewed as compared to Portfolio 1.
This is manifested by high value of the total ground-up damage ratio; see Table 3. For
the Morgenstern copula, we can often find θ? < 1 to impose the prescribed correlation.
Accordingly, the variance of the total gross loss matches that estimated using Gaussian
copula and that estimated using the Fréchet decomposition of the Gaussian copula. We
remark that in Figures 9–11 the gross loss pmfs produced by the Fréchet decomposition
have close σs to their copula counterparts. To make this comparison more precise, for each
copula and its Fréchet decomposition, we computed the percentage errors for µ, σ and
1, 5, 10%-TVaR and averaged the results over all copulas and all portfolios. The errors were
0.19%, 2.21%, 5.8%, 1.43% and 1.57%, respectively. This means that the approximation
in (39) can be considered sufficiently accurate for the gross loss estimation experiments
at hand.

Both aggregation based on the Fréchet decomposition and aggregation using the
Fréchet copula with covariance scaling are instances of the same mixture method, which
slightly differ from each other in the gross loss weight computation; compare (45) with (51).
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That is why the shapes of their total gross loss pmfs are similar. We also observe that
the pmf computed with the multivariate Fréchet copula in Figure 9 has larger grid step
on a wider support with vanishing probabilities than pmf computed with the bivariate
Fréchet copula. In this instance, the final pmf’s support was determined by comonotonic
summation, where tail truncation rarely occurs; see Wójcik et al. (2019). Consequently, the
values of TVaR for the multivariate Fréchet model are smaller than those for its bivariate
version. Table 4 shows that a smaller σ indicates lower TVaRs at 1%, 5% and 10% in most
cases. Especially the Student’s t model, with low number of degrees of freedom ν, tends to
generate much lower TVaRs than other copulas. Because lower degrees of freedom shift
the dependence to the tail (Patton 2013), the σ of the pmf by Student’s t is the lowest when
ν = 1, and gradually approaches that of the Gaussian’s with increasing ν.

Table 5. Average time cost in seconds (relative to multivariate Fréchet) of 3 runs for each portfolio.
The timing starts from adding location loss distributions and excludes all the preprocessing steps.

Name Portfolio 1 (Large) Portfolio 2 (Medium) Portfolio 3 (Small)

Multivariate Fréchet 0.43 (1.0) 0.11 (1.0) 0.01 (1.0)
Fréchet 0.54 (1.3) 0.15 (1.3) 0.01 (1.1)

Gaussian 22.57 (52.5) 16.81 (152.8) 0.28 (28.0)
Gaussian decomp 22.72 (52.8) 18.44 (167.6) 0.29 (29.4)

Joe 34.89 (81.1) 15.12 (137.5) 0.45 (44.5)
Joe decomp 35.02 (81.4) 15.91 (144.6) 0.45 (44.8)

Gumbel 52.66 (122.5) 23.40 (212.7) 0.63 (63.3)
Gumbel decomp 52.91 (123.0) 24.04 (218.6) 0.65 (65.4)

Morgenstern 1.03 (2.4) 0.49 (4.4) 0.02 (2.0)
Morgenstern decomp 1.10 (2.6) 0.50 (4.5) 0.02 (2.2)

Student’s t, ν = 1 15.52 (36.1) 5.28 (48.0) 0.32 (32.1)
Student’s t decomp, ν = 1 15.80 (36.7) 5.85 (53.2) 0.35 (34.7)

Student’s t, ν = 3 40.25 (93.6) 16.30 (148.2) 1.11 (110.6)
Student’s t decomp, ν = 3 40.95 (95.2) 17.26 (156.9) 1.15 (114.6)

Student’s t, ν = 10 81.55 (189.7) 34.18 (310.7) 2.20 (220.3)
Student’s t decomp, ν = 10 83.40 (194.0) 34.55 (314.1) 2.37 (236.8)

Student’s t, ν = 30 104.66 (243.4) 35.76 (325.1) 3.04 (303.7)
Student’s t decomp, ν = 30 105.52 (245.4) 35.83 (325.7) 3.07 (307.2)

The aggregation trees were implemented using linked lists. This data structure is easy
to maintain and straightforward to extend, e.g., to account for different arrangements of
financial terms. The associated computational cost is negligible unless the portfolio size
is trivial, e.g., ten risks. For the Fréchet family, the covariances to scale (Section 3.2) are
first located by a tree search and then added up for deriving the mixture weight between
partial sums. We point out that for nested block-diagonal covariance matrices described
in our previous study (Wójcik et al. 2019), the sum of covariances can be computed in
asymptotically linear time using the second Newton’s identity, see, e.g., Mead (1992).
During portfolio runs, the computational cost of the search and summation includes the
delays in main memory access. These extra costs in the portfolio runs will reduce the relative
time differences in Figure 7, where all the data reside in L1 cache during the benchmark
test. However, the overall speed advantage of the Fréchet family remains substantial, as
shown in Table 5. Because loss distributions in Portfolio 2 are less skewed than those in
Portfolio 1 and Portfolio 3, the pmfs during loss accumulation have fewer probabilities to
truncate and thus maintain larger support sizes. This incurs extra computing time for all the
copulas in Table 1 other than the Fréchet family due to the quadratic space complexity of
Algorithms 1 and 2. Therefore, the relative time costs for Portfolio 2 are noticeably higher
in Table 5.
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6. Conclusions

We have proposed a two-stage gross loss estimation procedure based on the concept
of copula-based risk aggregation. Partial sums of weakly associated risks were computed
using bivariate aggregation trees equipped with six commonly used copula distributions.
The results for three typical insurance portfolios show that the total gross loss characteristics
depend not only on the choice of copula determining which part of the bivariate distribution
has the strongest dependency, but also on the total ground-up damage ratio, the shape
of the marginal loss distributions, and on the parameters describing the financial terms
at different tiers of the gross loss accumulation. We conclude that the relative time cost
of portfolio aggregation is mainly affected by two components: the copula optimization
algorithm in the ground-up pass and data management in the gross loss pass. Processing
speed of the former is slower in the case of copulas with difficult algebraic expressions for
partial derivatives. Substantial acceleration is achieved by introducing the Fréchet copula
with covariance scaling, which replaces optimization with adaptive weight estimation. For
the largest portfolio, with the highest variability of total loss characteristics, this approach
compares agreeably with Gaussian and Morgenstern copulas in terms of the second-order
moments, and with other copulas in terms of tail risk measures.

7. Future Research

The impact of the back-allocation procedure in Section 3.3 on gross loss aggregation
requires further investigation. Implementation of more flexible copulas, e.g, the Berstein
copula or generalizations of Archimedean copulas at summation nodes would be compelling,
as they have been applied in the risk aggregation problem (see Marri and Moutanabbir 2022).
Finally, empirical validation of the copula models at hand using insurance claims data
remains an open research problem. Our model output is the total loss distribution of a
portfolio. For validation, ideally we should also have the actual total loss distribution
inferred from claims data. However, for a particular catastrophic event, we can only obtain
a single realization, the sum of claims, from the claims data. A potential solution would be
to create an ensemble of sub-portfolios to estimate the empirical distribution of the sum of
claims, and then compare predicted vs. empirical distributions using probability scores in
Gneiting and Raftery (2007), e.g., those derived from Bregman divergences.
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Appendix A. Bivariate Copulas and Their Partial Derivatives

A simple instance of copula-based loss aggregation in Algorithm 1 involves solving
the minimization problem in (57) using Newton’s method. The update step requires
an algebraic formula for the partial derivative ∂C(u, v; θ)/∂θ. For copulas listed below,
the derivative can be obtained analytically, yet intermediary variables are needed, and
use of symbolic manipulation software is handy. Here, the analytical expressions for
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the derivatives are exported from WolframAlpha at https://www.wolframalpha.com/
(accessed on 18 July 2022).

Appendix A.1. Joe Copula

C(u, v; θ) = 1− A1/θ ,

∂C(u, v; θ)/∂θ = 1/θ2 A1/θ−1(A ln A− Bθ),
(A1)

where h = 1− u, k = 1− v, A = hθ + kθ − (hk)θ , B = hθ ln h + kθ ln k− (hk)θ ln(hk), θ ≥ 1.
In the actual implementation, θ ∈ [1, 100] due to numeric precision threshold.

Appendix A.2. Gumbel Copula

C(u, v; θ) = exp
{
−L1/θ

}
,

∂C(u, v; θ)/∂θ = 1/θ2C(u, v; θ)L1/θ−1[L ln L− θ(A ln h + B ln k)
]
,

(A2)

where A = hθ , B = kθ , L = A + B, h = − ln(u), k = − ln(v) for θ ≥ 1. In the actual
implementation, θ ∈ [1, 100] due to numeric precision threshold.

Appendix A.3. Morgenstern Copula

C(u, v; θ) = uv[1 + θ(1− u)(1− v)],

∂C(u, v; θ)/∂θ = uv(1− u)(1− v), θ ∈ [0, 1].
(A3)

Appendix A.4. Student’s t Copula, ν = 1 (Cauchy)

C(u, v; θ) = (2π)−1 arctan
[−AB− CD

CB− AD

]
,

∂C(u, v; θ)/∂θ = (2πD)−1,
(A4)

where A = x + y, B = xy + θ, C = xy− 1, D =
√

x2 − 2θxy + y2 + 1− θ2, x = f−1
t (u),

y = f−1
t (v), ft is the standard univariate Cauchy pdf and θ ∈ [−1, 1]. We note that for

the bivariate Student’s t distribution, negative θ could still imply non-negative correlation
imposed on marginal distributions.

Appendix B. Copula pmf on Finite Precision Machine

On a finite precision machine, any continuous copula C is in fact discrete on the
regular mesh

{
0, 1

R , . . . , R−1
R , 1

}
×
{

0, 1
O , . . . , O−1

O , 1
}

over the unit square [0; 1]2 (Gee-
nens 2020). The values of R and O do not depend on the discretization of PX and PY,
i.e., {PX(x1), PX(x2), . . . , PX(xNx )} and {PY(y1), PY(y2), . . . , PY(yNy)}, but are calculated
as follows:

R = lcm
(

1
PX(x1)

,
1

PX(x2)
, . . . ,

1
PX(xNx )

)
,

O = lcm

(
1

PY(y1)
,

1
PY(y2)

, . . . ,
1

PY(yNy)

) (A5)

where lcm is the least common multiple function for rational numbers, e.g., lcm (0.3, 0.55) = 100.
In practice, computing the full pmf c(u, v) in (37) is intractable because of the support size

https://www.wolframalpha.com/
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RO, which is prohibitively large due to the high numeric precision on modern computers.
Doing so is also unnecessary because we only need Nx Ny probabilities from the copula
pmf, namely {c

(
PX(xi), PY(yj)

)
}1≤i≤Nx ,1≤j≤Ny , to obtain pX+Y using (38).
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