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Abstract: While previous academic research highlights the potential of machine learning and big
data for predicting corporate bond recovery rates, the operations management challenge is to identify
the relevant predictive variables and the appropriate model. In this paper, we use meta-learning to
combine the predictions from 20 candidates of linear, nonlinear and rule-based algorithms, and we
exploit a data set of predictors including security-specific factors, macro-financial indicators and
measures of economic uncertainty. We find that the most promising approach consists of model
combinations trained on security-specific characteristics and a limited number of well-identified,
theoretically sound recovery rate determinants, including uncertainty measures. Our research
provides useful indications for practitioners and regulators targeting more reliable risk measures in
designing micro- and macro-prudential policies.
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1. Introduction

Credit risk is the main concern for financial institutions. It is governed by three
factors: the exposure at default (EAD), the default likelihood (that is, the probability of
default, PD) and the loss given default (LGD). The latter can also be expressed as (1− RR),
where the recovery rate RR represents the percentage of EAD that can be recovered in
the event of default of the reference entity. For a long time, financial institutions focused
on the modeling of PDs. Ratings, for example, essentially quantify the risk of a default
event, the loss severity receiving little attention. However, EAD and RR are key drivers of
credit risk. For instance, they act as scaling constants when computing banks’ regulatory
capital requirements (BCBS 2017; Loterman et al. 2012; Zhang and Thomas 2012) in Basel
II (BCBS 2006) and Basel III frameworks (BCBS 2011) that banks can estimate using internal
models in the advanced (A-IRB) approach. But RR also influences the value of non-
performing loans (Bellotti et al. 2021), corporate bonds and credit derivatives (Andersen
and Sidenius 2004; Berd 2005; Gambetti et al. 2018; Pykthin 2003), as well as the price of
mainstream OTC derivatives’ products such as equity options and interest rates swaps
due to counterparty risk (Gregory 2012). This explains why recovery rates modeling and
forecasting receive more and more attention in current times.

Academic research highlights how nonlinear techniques (Loterman et al. 2012; Nazemi
and Fabozzi 2018; Nazemi et al. 2018; Qi and Zhao 2011; Tobback et al. 2014; Yao et al.
2015) and ensemble methods (Bastos 2014; Bellotti et al. 2021; Hartmann-Wendels et al.
2014; Nazemi et al. 2017) should be preferred to the traditional parametric regressions used
in earlier studies on recovery rate determinants. This finding is not confined only to RR
forecasting, but it is also in credit scoring (Liu et al. 2022; Wang et al. 2022). However, the
possibility of combining predictions from a large number of different algorithms remains
widely unexplored. This is surprising given that it is now well recognized that combining
models might be preferable (Atiya 2020) to selecting a single model. In this paper, we
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confirm this conclusion by showing that meta-learning techniques exhibit better forecasting
performance and lower model risk than methods in previous research when dealing
with RR.1

Meta-learning can be defined as the act of a) selecting and b) optimally combining the
outputs of multiple learning machines (first-level learners), according to some combination
scheme that is learned from the data (meta-learner or second-level learner) (Santos et al. 2017).
Meta-learning is very flexible: the models to be combined can be represented by expert
judgment, individual learners (e.g., lasso, MARS) or ensemble learners (e.g., random forests,
boosted trees), whose predictions themselves are already combinations of the outputs of
different models. Furthermore, the models to combine can also be trained with different
predictors. This contrasts with homogeneous ensemble methods in which, despite the
model combinations that are involved, they generally combine weak learners2 of the same
type, e.g., regression trees are combined into a random forest.

The main advantage of meta-learning is, hence, the ability to exploit a wide spectrum
of functional forms. Its promising applicability for recovery rate prediction was first
reported in Nazemi et al. (2017) using a fuzzy decision fusion approach. However, several
other alternatives are worth exploring. For example, Roccazzella et al. (2021) propose a
robust and sparse combination method that mitigates estimation uncertainty and implicitly
features forecast selection in a single step. This approach has the additional advantage of
relying on a closed-form solution for the estimation of the optimal combination strategy.

The quality of the forecasts depends also on the predictive variables we consider. Prior
studies on defaulted bonds highlight the importance of security-specific characteristics
(Altman and Kishore 1996; Bris et al. 2006; Jankowitsch et al. 2014; Schuermann 2004),
economic conditions and the credit cycle (Acharya et al. 2007; Altman et al. 2005; Betz et al.
2018, 2020; Bruche and González-Aguado 2010).3 Models based on big data and variable
selection techniques have been proposed by Nazemi et al. (2017, 2018) and Nazemi and
Fabozzi (2018). Gambetti et al. (2019) show that economic uncertainty is the most important
systematic determinant of recovery rate distributions. However, the latter study is based on
an ex post analysis. Given that uncertainty shapes the economic outlook (ECB 2009, 2016;
Gieseck and Largent 2016; Kose and Terrones 2012) and its proxies are particularly capable
of anticipating economic downturns (Ludvigson et al. 2019), it remains to be explored
whether uncertainty proxies can also improve predictive performance.

In this paper, we extend the literature on recovery rate modeling studying the fore-
casting performance of linear, nonlinear, rule-based and meta-learning algorithms across
different specifications of the predictors set.

We start our analysis by studying whether a larger set of macro-financial indicators,
uncertainty measures and idiosyncratic features in bond recovery rate forecasting mod-
els offers a significant advantage compared to a more parsimonious but economically
grounded framework. Specifically, we extend the set of macroeconomic predictors used in
Nazemi et al. (2017) and Nazemi et al. (2018) with 55 pricing factors and industry portfolio
returns. We also enlarge the spectrum of uncertainty proxies considered by Gambetti et al.
(2019) with 11 additional measures of economic uncertainty derived from text-analysis
techniques. This offers two advantages. First, as Jurado et al. (2015) point out, text-based in-
dexes can show significant independent variations from other popular uncertainty proxies,
suggesting that much of the variation in these proxies is not driven by uncertainty itself.
Second, textual data is more granular, allowing for the identification of the categories of un-
certainty, e.g. government spending uncertainty or monetary policy uncertainty, that better
predict recovery rates. In contrast to previous studies (Nazemi and Fabozzi 2018; Nazemi
et al. 2017, 2018), we find that more parsimonious models that rely on well-documented
recovery rate determinants outperform those making use of the entire set of predictors
and those relying on data-driven variable selection. A limited number of economically
grounded predictors also makes the model easier to implement and manage. Among those,
uncertainty measures are particularly relevant for recovery rate prediction. Moreover, it
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makes its results more transparent, hence, more prone to regulatory validation. This is
consistent with the regulatory requirements of IRB approaches (BCBS 2006, 2017).

Second, we provide the largest benchmark study of machine learning methods in the
context of bond recovery rate prediction. We consider a total of 20 predictive algorithms,
and we obtain similar conclusions to those of Bellotti et al. (2021) in the case of recovery
rates for nonperforming loans: random forests, quantile random forests, boosted trees and
cubist display the most promising performance and seem to be the best class of models.
Bagged MARS and model-averaged neural networks also seem to be competitive.

Third, we empirically show that meta-learning can be used to improve recovery
rate predictions compared to traditional machine learning methods while considerably
reducing model risk. This evidence is preserved both when looking at the predictive
performance within a chosen predictor set and when jointly considering predictions across
all specifications of the predictor set. The proposed methods outperform competitive
combining methods such as the equally weighted forecast and the hill-climbing algorithm
of Caruana et al. (2004), which showed promising results in the field of credit risk scoring
(for more details, see Lessmann et al. 2015). Furthermore, despite the main concern of this
paper, which is recovery rate predictions, the idea of combining heterogeneous models
trained using diverse predictors sets is not specific to credit risk modeling, and it can be
used to hedge model uncertainty across the whole field of management science.

The remainder of the paper is structured as follows. Section 2 contains an overview of
the machine learning algorithms involved in our meta-learning approach and explains the
latter. Section 3 provides a description of the data. Section 4 describes the main results of
our benchmark study. Section 5 discusses the practical implications implied by our results.
Section 6 concludes the paper.

2. Methodology

An overview of our predictive strategy can be found in Figure 1. After specifying the
bond recovery rate predictors, first-level learners are trained to minimize the mean square
error (MSE). Subsequently, the fitted residuals of the first-level learners (meta-data) become
the input of second-level learners (meta-learners), which combine the original models with
the goal of making the aggregate forecast error variance as small as possible. Finally, we
evaluate the predictive performance of the various classes of linear, nonlinear, rule-based
and meta-learning methods.

Figure 1. Predictive strategy with meta-learning techniques.
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We briefly review the predictive algorithms and combination strategies that will serve
as first- and second-level learners, respectively.

2.1. First-Level Learners

To undertake an unbiased benchmark study, the spectrum of competing models should
be as rich as possible. This requirement has rarely been respected in the context of recovery
rate modeling, except for the large-scale benchmark studies of Loterman et al. (2012) and
Bellotti et al. (2021).

For comparison purposes, we used a similar set of techniques as Bellotti et al. (2021),
who employ 20 algorithms belonging to three different classes: linear, nonlinear and
rule-based.

We provide the list in Table 1 together with the corresponding R implementations. For
more details on nonlinear and rule-based methods, we refer to Appendix A.4

Table 1. List of first-level learners and corresponding R algorithms. The three blocks of table identify
linear (top), nonlinear (middle) and rule-based (bottom) models. Note that we consider two versions
of ridge and lasso: (i) the standard one involving the penalty term associated with the best-in-sample
performance and (ii) that based on the one-standard-error rule of Hastie et al. (2009).

Description Acronym R Algorithm Reference

Linear regression lm lm R Core Team (2017)
Backward step-wise selection lm_bs leaps Lumley (2017)
Ridge regression ridge glmnet Friedman et al. (2019)
Lasso regression Lasso glmnet ''
Elastic net regression elnet glmnet ''

MARS mars earth Milborrow (2018)
Bagged MARS bmars earth ''
Model-averaged neural networks avnnet nnet Ripley and Venables (2016)
Support vector regression svr ksvr Karatzoglou et al. (2004)
Relevance vector regression rvm rvm ''
Gaussian processes gauss gausspr ''

Regression trees cart rpart Therneau et al. (2017)
Conditional inference trees cit ctree Hothorn et al. (2006)
Boosted tree bst bst Wang (2018)
Stochastic gradient boosting gbm gbm Greenwell et al. (2018)
Random forests rf randomForest Liaw and Wiener (2002)
Quantile random forests qrf quantregForest Meinshausen (2017)
Cubist cubist cubist Kuhn and Quinlan (2018)

2.1.1. Linear Models

We consider seven linear models with and without penalization. Following Bellotti
et al. (2021), they can be framed as the following minimization problem:

arg min
β0, β ∈ Rp

‖y− Xβ− β0‖2
2 + λ

(
(1− α)‖β‖2

2 + α‖β‖1

)
(1)

where y denotes the vector of the observations in the sample, X is the N-by-p matrix of
predictors and β stands for the vector of regression coefficients. Different specifications of
the penalty term λ ≥ 0 and the mixing factor 0 ≤ α ≤ 1 yield the standard linear regression
model (with and without backward selection), ridge, lasso and elastic net. Models of these
types can only reproduce linear relationships such as those reproduced in Figure 2.
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(c) Rule-based model.

Figure 2. Examples of fitted relationships for linear, nonlinear and rule-based models. The true data
generating process (dots) follows a shifted sine wave with Gaussian noise. Panel a represents the
fit obtained by a linear regression. Panel b represents the fit obtained by support vector regression.
Panel c represents the fit obtained by boosted trees with stochastic gradient boosting.
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2.1.2. Nonlinear Models

We dealt with six types of nonlinear models. Among the kernel methods, we consid-
ered support vector regression (SVR), relevance vector machines (RVM) regression and
Gaussian processes. We further considered multivariate adaptive regression splines (MARS)
and two nonlinear ensembles: model-averaged neural networks and bagged MARS. We
refer the reader to Bellotti et al. (2021) for an extended treatment of each of them. These
models are naturally suited to capture nonlinear relationships, but they can be prone to
overfit. An example of nonlinear fit is included in Figure 2.

2.1.3. Rule-Based Models

According to Gambetti et al. (2019), rule-based methods are able to identify clusters
of data with similar properties and to reproduce step-like relationships (with or without
slopes depending on the particular algorithm). We included seven types of rule-based
methods. Individual models include regression trees and conditional inference trees, while
ensembles are represented by cubist, random forests, quantile random forests and boosted
trees with and without stochastic gradient boosting. An example of rule-based model fit is
included in Figure 2.

2.2. Second-Level Learners

Starting from m predictions ŷ1, . . . , ŷm of the random variable y returned by m first-
level learners, two strategies can be adopted. The standard procedure consists of selecting
the best forecast, say ŷ := ŷi? , where model i? is selected according to some criteria. Alter-
natively, these predictions can be aggregated to form a single prediction ŷ := φ(ŷ1, . . . , ŷm)
using some function φ. Model combination offers diversification gains that makes it at-
tractive when we cannot identify ex ante the best single model.5 In addition, in the rare
cases where the best model can be identified, meta-learning techniques could still take full
advantage of the available information when the first-level learners rely on various data
sources or cover a wide spectrum of modeling assumptions.

Meta-learning learns the combination strategy φ directly from the data with the explicit
goal of minimizing a loss function. Precisely, let y be an n-dimensional column vector
containing n observations of the target variable and Ŷ be an n-by-m matrix of m unbiased
candidate forecasts of y. The optimal combination strategy consists of estimating the
function φ(Ŷ) that solves

φ∗ := arg min
φ ∈ Φ

∥∥∥y− φ(Ŷ)
∥∥∥2

2
, (2)

where Φ := Rn ×Rm → Rn is some conformable functional space.
Nevertheless, its success depends on how accurately the combination strategy can be

determined. The use of in-sample data both to train the individual models and to consecu-
tively combine them on the basis of their respective fitted residuals can significantly amplify
the initial estimation error and consequently produce poor out-of-sample predictions.

Meta-learning relies on validation techniques to assess how well the combination
weights will generalize to the out-of-sample predictive exercise. We opt to combine by
minimizing the variance of the aggregate prediction error and include robust combination
methods to hedge against potential instability.6

2.2.1. Linear Meta-Learners

Restricting ourselves to the class of linear combinations with weight summing to
one, i.e., for Φ being the set of functions from Rm ×Rn → R of the form φ(x1, . . . , xm) :=
∑m

i=1 wixi satisfying ∑m
i=1 wi = 1 leads to a combined prediction of the form ŷ = ∑m

i=1 wi ŷi.
In this case, the optimization problem becomes

w∗ := arg min
w ∈ W

∥∥∥y− Ŷw
∥∥∥2

2
where W := {w ∈ Rm | 1Tw = 1} . (3)
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Constraining the weights to sum to 1 keeps the aggregate prediction unbiased pro-
vided that the candidate forecasts are also unbiased (which is the case in this paper). By
additionally constraining the weights to be nonnegative, this approach corresponds to
Breiman’s stacked regressions (Breiman 1996), where linear combinations of different pre-
dictors are considered to further improve prediction accuracy. Granger and Ramanathan
(1984) show that this approach is equivalent to selecting the weights w∗ that minimize the
variance of the meta-learner’s prediction error.

Nevertheless, this combination strategy can lack robustness when the covariance
matrix of prediction errors is poorly estimated. This often occurs because of sample
size limitations, considerable background noise or when first-level forecasts are highly
collinear (Claeskens et al. 2016). We can tackle the potential instability of w∗ by using the
linear shrinkage estimator of the covariance matrix of prediction errors, which we denote
by Σλ. The latter consists of combining the sample covariance matrix (which is easy to
compute, asymptotically unbiased but prone to estimation errors) with an estimator that is
misspecified and biased but more robust to estimation errors (Ledoit and Wolf 2004). This
approach, initially derived in a portfolio optimization context, was recently transposed in
Roccazzella et al. (2021) to the forecast combination problem, showing that constrained
optimization with shrinkage (COS) of Σ can provide a single-step, fast and robust optimal
forecast combination strategy. Here we adapt the COS to act as a linear meta-learner, which
combines the first-level learners only on the basis of in-sample information. This leads to
the following optimization problem:

w∗λ := arg min
w ∈ W+

wTΣλw where Σλ := (1− λ)Σ + λΣ , (4)

where λ ∈ [0, 1] is the shrinkage intensity, Σ is the sample covariance matrix of prediction
errors and Σ is a predetermined reference covariance matrix. We estimate the optimal
shrinkage intensity by minimizing the expected Frobenius norm of the difference between
Σλ and the population covariance matrix of prediction errors S (Ledoit and Wolf 2004).7

λ∗ := arg min
λ ∈ [0,1]

E‖Σλ − S‖2
2 . (5)

We consider two shrinkage directions for Σ.

Definition 1 (COS-E—Constrained Optimization with Shrinkage towards Equal weights). The
target covariance matrix ΣCOS−E corresponds to the case where first-level learners are assumed to
have identical prediction error variance σ̄2 and identical pairwise correlation coefficients ρ̄:

ΣCOS−E := σ2


1 ρ . . . ρ

ρ 1
. . .

...
...

. . . . . . ρ
ρ . . . ρ 1

 . (6)

In practice, we set σ̄2 = 1
m ∑m

i=1 σ2
i , where σ2

i is the sample prediction error variance of model i (the
average error prediction variance in the set of first-level learners) and by ρ̄ = 2

m(m−1) ∑m−1
i=1 ∑m

j=i+1 ρi,j

(the average correlation coefficient of first learners’ in-sample prediction error).

Definition 2 (COS-IL—Constrained Optimization with Shrinkage towards Inverse Loss-based
weights). The target covariance matrix ΣCOS−IL corresponds to the case where first-level learners
have an identical pairwise correlation coefficient ρ̄, but their respective prediction error variance is
estimated using sample data:
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ΣCOS−IL :=



σ2
1 ρσ1σ2 . . . ρσ1σm

ρσ2σ1 σ2
2

. . .
...

...
. . . . . .

...
...

. . . σ2
m−1 ρσm−1σm

ρσmσ1 . . . ρσmσm−1 σ2
m


. (7)

As benchmarks, we also include the equally weighted forecast, i.e., φ(x1, . . . , xm) :=
∑m

i=1
1
m xi and the hill-climbing algorithm of Caruana et al. (2004). In this latter case, forward

step-wise selection is used to identify the equally weighted combination that minimizes
the root mean square error (RMSE) in a validation fold sampled from the training data.

2.2.2. Nonlinear Meta-Learners

Thus far, we have described linear weighting schemes. Nevertheless, meta-learning
is more general. For example, in the field of image classification, meta-learning tech-
niques typically involve nonlinear methods such as deep learning or recurrent models
(Santoro et al. 2016), metric learning (Koch et al. 2015) and learning optimizers (Ravi and
Larochelle 2017). Despite being more flexible than linear methods, nonlinear meta-learners
are also more complex and prone to overfit, especially in a relatively small data set.8 For
these reasons, we opt for ensembles of shallow (one hidden layer) feed-forward neural net-
works (NNs), which can still approximate any measurable function at any desired degree
of accuracy provided that sufficiently many hidden units are available (Hornik et al. 1989).
In this case, we consider Φ to be the set of functions from Rm × Rn → Rk of the form
φ(x1, . . . , xm) := ∑k

i=1
wi

1+exp{−∑m
j=1 αijxj}

, where k is the number of neurons in the hid-

den layer.
As for the linear combination schemes, we train the NNs to minimize the in-sample

MSE using, as input, the first-level predictions. However, in this case, the output of the
meta-learning is not a linear function of the inputs, and the combining weights are not
constrained to sum to one. Therefore, studying the marginal contribution of each first-level
prediction onto the aggregate prediction is not straightforward. In our empirical exercise,
we consider two feed-forward neural networks with 1 (NN-1) and 2 (NN-2) hidden layers
and 8 and 16-8 neurons, respectively.

3. Data
3.1. Recovery Rates and Security-Specific Characteristics

The main references on bond recovery rate modeling are generally based on the
Moody’s Default & Recovery Database (Moody’s DRD) or the Standard & Poor’s Capital
IQ Database. We employ Moody’s DRD in this paper.

Following the standard market convention (Mora 2015; Schuermann 2004), the recov-
ery rate of each bond is computed as the bond price measured 30 days after the default
date, declared by the rating agency, and divided by the face value. To make our anal-
yses more comparable with earlier studies such as Nazemi et al. (2017), Nazemi et al.
(2018) and Nazemi and Fabozzi (2018), we apply a similar filtering strategy. We selected
dollar-denominated bonds issued by U.S. companies and with at least USD 5 million in
face value. To replicate the same economic conditions, we also filter for default issues
in the period 2002–2012. We only retain the observations associated with known values
for the following security-specific characteristics: debt seniority, issuer’s industrial sector,
default type, coupon level, maturity, presence of additional guarantees different from the
issuer’s asset and default date. We are thus left with 768 observations. Notice that machine
learning methods provide useful insights even with a sample of this size. In particular,
the considered predictive models mitigate the risk of overfitting, can identify the most
relevant predictive variables and explore the existence of potential nonlinearities in the
data (nonlinear and rule-based methods).
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Figure 3 includes a histogram of our recovery rate sample. We provide the correspond-
ing summary statistics in Table 2.
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Figure 3. Histogram of recovery rates in our sample. The dashed line represents the sample mean.
The average recovery rate is 30.98%, while the standard deviation is equal to 27.58, which is a large
value compared to the mean. The distribution is also highly skewed, a typical feature of recovery
rate data.

Table 2. Summary statistics of our recovery rate sample.

N Min. 1st Qu. Median Mean 3rd Qu. Max. St. Dev.

Recovery rate 768 0.01% 10.00% 20.00% 30.98% 51.41% 118.00% 27.58%

Summary statistics of recovery rates conditional on the seniority of the defaulted bond,
issuer’s industrial sector and default type are provided in Tables 3–5, respectively. They are
consistent with previous findings on recovery rate determinants. For instance, bonds with
higher seniority are associated with higher recovery rates on average, and those of senior
secured bonds are the most dispersed (Altman and Kalotay 2014; Altman and Kishore 1996).
Recovery rates are also higher, on average, when the issuer is operating in an industrial
sector featuring higher asset tangibility and in the utility sector in particular (Acharya et al.
2007; Altman and Kishore 1996; Schuermann 2004). Similarly, milder default procedures
lead to higher recovery rates (Altman and Karlin 2009; Bris et al. 2006; Davydenko and
Franks 2008; Franks and Torous 1994). Defaults on security cash flows are expected to
recover more than company reorganizations or liquidations. Controlled reorganizations
(prepackaged Chapter 11) also display higher recovery than uncontrolled reorganizations
and asset liquidations (receivership and procedures included in the “others” category).
Tables 6–8 show that our sample of recovery rates is also consistent with prior findings
about the role of coupons, maturity and backing guarantees. Recovery rates are higher
in the presence of backing guarantees, increase with coupons and decrease with maturity
(Jankowitsch et al. 2014). All these security-specific characteristics have been used as control
variables in recent articles on bond recovery rate determinants (François 2019; Gambetti
et al. 2019) and are used as predictors in our study.
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Table 3. Summary statistics of recovery rates according to the seniority of the defaulted bond.

Debt Seniority N Median Mean St. Dev. Skewness

Senior Secured 85 63.00% 60.92% 32.27% −0.29
Senior Unsecured 533 19.00% 28.03% 23.90% 0.98

Senior Subordinated 129 19.13% 25.77% 26.87% 1.33
Subordinated 21 9.13% 16.71% 23.37% 2.20

Table 4. Summary statistics of recovery rates according to the industrial sector of the bond issuer.

Industrial Sector N Median Mean St. Dev. Skewness

Banking 18 18.00% 23.47% 24.44% 0.46
Capital Industries 189 29.00% 36.44% 28.55% 0.72

Consumer Industries 88 30.25% 39.86% 28.68% 0.49
Energy & Environment 45 40.00% 44.10% 25.76% 0.64

FIRE 166 10.00% 11.95% 10.32% 3.88
Media & Publishing 90 43.62% 40.72% 31.45% 0.001
Retail & Distribution 32 36.25% 34.92% 25.89% 0.58

Technology 72 15.00% 19.89% 16.99% 2.45
Transportation 57 22.25% 31.32% 23.81% 1.16

Utilities 11 92.50% 91.89% 6.54% −0.32

Table 5. Summary statistics of recovery rates according to the default type.

Default Type N Median Mean St. Dev. Skewness

Chapter 11 371 10.50% 25.68% 25.97% 1.53
Missed interest payment 281 28.50% 37.55% 26.76% 0.53

Missed principal and
interest payments 14 58.12% 56.14% 18.85% 0.05

Missed principal payment 8 23.04% 29.76% 29.12% 0.99
Others 6 11.00% 15.59% 17.47% 1.50

Prepackaged Chapter 11 71 12.00% 31.95% 33.01% 0.71
Receivership 7 0.50% 4.57% 9.70% 2.01

Suspension of payments 10 18.50% 30.05% 26.75% 2.01

Table 6. Average recovery rate by coupon level.

Coupon [0%–2.5%) [2.5%–5%) [5%–7.5%) [7.5%–10%) ≥10%

Average RR 14.82% 24.22% 23.01% 33.11% 36.95%

Table 7. Average recovery rate by maturity level.

Maturity (Years) [0–5 y) [5 y–10 y) [10 y–15 y) [15 y–20 y) ≥20 y

Average RR 43.30% 37.88% 31.92% 19.39% 18.90%

Table 8. Average recovery rate for bonds with and without backing.

Backing Yes No

Average RR 40.02% 29.33%

3.2. Systematic Factors

We extract industry default rates from Moody’s DRD and the remaining systematic
factors from the databases managed by the Federal Reserve Bank of St. Louis: FRED and
FRED-MD (McCracken and Ng 2015). The latter include a large set of time series referring
to output and income, labor market, housing, consumption, orders and inventories, money
and credit, interest and exchange rates, prices and the stock market.9



Risks 2022, 10, 124 11 of 29

We then extend this data set with a large number of economic uncertainty measures
from three different classes: survey-based, news-based and volatility-based.10 All measures
are retrieved from the websites of the authors (Baker et al. 2016; Jurado et al. 2015; Lud-
vigson et al. 2019). We consider all five measures employed in the study by Gambetti et al.
(2019) plus 11 additional measures of categorical economic policy uncertainty. Table 9 gives
an overview. Factors relating to the market price of risk and industry portfolio returns
are instead retrieved from the Fama-French database. Predictors are measured one month
before the default date.

Table 9. List of uncertainty measures considered in this study.

Name Type Methodology References

Inflation uncertainty Survey-based Dispersion of forecasts from
the Federal Reserve Bank of Philadelphia’s
Survey of Professional Forecasters.

Zarnowitz and Lambros (1987)
Bachmann et al. (2013)
Baker et al. (2016)

Federal/State/Local expenditures uncertainty

Economic policy uncertainty

News-based

Normalized volume of newspaper articles
published in a given month containing
expressions referring to specific types of
economic uncertainty.

Baker et al. (2016)
Alexopoulos and Cohen (2015)

Monetary policy uncertainty
Fiscal policy (taxes or spending) uncertainty
Tax uncertainty
Government spending uncertainty
Healthcare uncertainty
National security uncertainty
Entitlement programs uncertainty
Regulation uncertainty
Financial regulation uncertainty
Trade policy uncertainty
Sovereign debt, currency crises uncertainty

VIX Volatility-based
(Stock market)

Stock market implied volatility index
from the Chicago Board Options Exchange.

Bloom (2009)
Bekaert et al. (2013)

Financial uncertainty Volatility-based
(Forecast error)

Conditional volatility of the purely
unforecastable prediction error of
financial time series.

Jurado et al. (2015)
Ludvigson et al. (2019)

We now proceed to present the results (Section 4) and to discuss their relevance with
respect to practical implementation in the industry (Section 5).

4. Results

We compare the performance of the considered algorithms across nine specifications
of the predictor set. All model specifications feature security-specific characteristics but
differ in the systematic variables that are included. We use two approaches to determine
the latter.

(a) Statistical approach: the algorithms can access either the full data set of systematic
variables or a set created with variable selection techniques. For variable selection,
we consider a model based on lasso-selected systematic variables and one based on
lasso with stability selection (Meinshausen and Bühlmann 2010). While the latter has
been used in Nazemi and Fabozzi (2018) to check the reliability of their lasso-selected
macroeconomic variables, those retained by lasso with stability selection have never
been used to feed predictive algorithms.11

(b) Economic approach: we create models by relying exclusively on well-identified factors
based on the results of Gambetti et al. (2019) and prior studies on recovery rate
determinants. Table 10 includes a summary of the model specifications.

We compare the considered predictive strategies by analyzing the root mean square
forecast error (RMFE), and we also assess the significance of a performance difference via a
model confidence set test (hereafter MCS, Hansen et al. 2011).12
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Table 10. Description of the different model specifications.

Specification ID Systematic Variables Reference

1 Full data set -
2 Lasso-selected macroeconomic variables Nazemi and Fabozzi (2018)
3 Lasso-selected variables with stability control -

4 Industry default rate, commercial and industrial loans delinquency rates,
industrial production, market index returns, PMI M3+ in Gambetti et al. (2019)

5 As in 4, with financial uncertainty substituted with industry default rates M4+ in ''
6 As in 4, with VIX substituted with industry default rates M5+ in ''

7 As in 4, plus financial uncertainty, news-based economic policy uncertainty,
inflation uncertainty and federal/state/local expenditures uncertainty M4++ in ''

8 As in 4, plus all uncertainty measures of Table 9 -

9 No systematic variables
M2 in ''
Nazemi and Fabozzi (2018)
Nazemi et al. (2018)

4.1. Predictive Models vs. Historical Averages

The performance of our predictive algorithms across model specifications is summa-
rized in Figure 4; the detailed out-of-sample RMSE are reported in Table 11. Each line
corresponds to a different algorithm. The solid horizontal line (in red) corresponds to the
model where we use the in-sample mean recovery rate as a prediction; it can be assimilated
to the regulatory standard approach and foundation IRB approach (BCBS 2006, 2011),
which are largely based on historical LGD values. Figure 4 highlights that forecasting
recovery rates using an algorithm always leads to more precise estimates than using the av-
erage of previously observed values. The only exception is the linear regression, which, as
expected, suffers from the curse of dimensionality when trained on the full set of predictors
(specification 1).

4.2. Models Based on Systematic Variables

Table 11 and Figure 4 also make clear that, in line with the literature, models exploiting
systematic variables (specifications 1 to 8) always yield better forecasting performance than
a model based on security-specific factors alone (specification 9).

For the selection of macroeconomic variables with data-driven methods, we observe
from Table 11 that lasso selection seems to bring more benefit to linear models than to
nonlinear or rule-based models. In particular, it appears that ensemble methods (neural
networks, bagged MARS, boosted trees, random forests, quantile random forests, cubist)
are deprived of useful predictive information when they are trained on lasso-selected
variables (specification 2). The performance of these latter algorithms improves if we
instead implement the lasso procedure with stability selection (specification 3). We obtain
particularly competitive RMSE values in this latter case; the best performance of first-level
learners reaches an RMSE of 0.174 with boosted trees. From an aggregate perspective, it is
clear that models relying on lasso selection (with or without stability control) reduce the
embedded model risk compared to using the complete set of predictors.

We find that lasso with stability selection retains financial uncertainty, uncertainty
related to government spending and uncertainty related to sovereign debt and currency
crises (Table 12). Financial uncertainty is associated with the highest probability of being
selected (95%). The second and third factors, an index of consumption expenditures and a
housing market indicator, are associated with probabilities of 88% and 86%, respectively.13

Given these results, we confirm the importance of uncertainty measures for forecasting
bond recovery rates.
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(b) Nonlinear models.
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(c) Rule-based models.
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(d) Meta-learning.

Figure 4. Illustration of forecasting performance across model specifications. The horizontal red
line is the model based on the in-sample mean recovery rate. Panel (a) highlights the performance
of linear models. Panel (b) highlights the performance of nonlinear models. Panel (c) highlights
the performance of rule-based models. Panel (d) illustrates the performance of linear and nonlinear
meta-learning methods.
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Table 11. Out-of-sample root mean square error (RMSE) metrics across model specifications. We
indicate in bold the RMSE of the models that join the superior set of models with 10% confidence level.

1 2 3 4 5 6 7 8 9 Mean

Linear Models 0.291 0.204 0.211 0.211 0.211 0.210 0.212 0.213 0.236 0.222
Lin. regression 0.774 0.206 0.205 0.206 0.206 0.206 0.206 0.209 0.233 0.272
Lin. reg. back. sel. 0.221 0.205 0.205 0.207 0.207 0.206 0.209 0.214 0.235 0.212
Lasso 1 0.203 0.203 0.206 0.207 0.207 0.207 0.208 0.209 0.233 0.209
Lasso 2 0.218 0.203 0.221 0.221 0.220 0.218 0.220 0.221 0.241 0.220
Ridge 1 0.202 0.203 0.208 0.207 0.207 0.207 0.208 0.209 0.233 0.209
Ridge 2 0.222 0.211 0.226 0.220 0.221 0.220 0.222 0.223 0.242 0.223
Elastic net 0.201 0.202 0.206 0.207 0.208 0.207 0.209 0.209 0.233 0.209

Nonlinear Models 0.211 0.203 0.207 0.206 0.211 0.208 0.207 0.213 0.237 0.211
MARS 0.207 0.199 0.214 0.197 0.202 0.198 0.194 0.216 0.237 0.207
Gaussian processes 0.211 0.204 0.205 0.207 0.207 0.208 0.207 0.211 0.234 0.210
RVM 0.236 0.212 0.200 0.207 0.223 0.214 0.216 0.212 0.230 0.217
SVM 0.191 0.197 0.212 0.212 0.212 0.212 0.211 0.213 0.245 0.212

Rule-based Models 0.232 0.225 0.233 0.216 0.217 0.213 0.221 0.216 0.240 0.224
Regression tree 0.230 0.223 0.244 0.218 0.215 0.215 0.222 0.211 0.256 0.226
Conditional inference tree 0.234 0.226 0.222 0.214 0.219 0.211 0.220 0.221 0.225 0.221

Nonlinear Ensembles 0.195 0.197 0.197 0.196 0.200 0.200 0.206 0.206 0.235 0.203
Neural networks 0.202 0.201 0.202 0.199 0.204 0.207 0.209 0.208 0.238 0.208
Bagged MARS 0.189 0.194 0.191 0.193 0.195 0.193 0.203 0.204 0.233 0.199

Rule-based Ensembles 0.189 0.191 0.186 0.186 0.187 0.185 0.183 0.185 0.229 0.191
Cubist 0.184 0.182 0.184 0.187 0.194 0.186 0.188 0.183 0.229 0.191
Boosted trees s.g.b. 0.194 0.198 0.195 0.189 0.187 0.188 0.189 0.187 0.238 0.196
Boosted trees 0.182 0.191 0.174 0.177 0.185 0.179 0.177 0.182 0.223 0.185
Quantile random forests 0.193 0.195 0.192 0.192 0.185 0.187 0.180 0.187 0.236 0.194
Random forests 0.190 0.187 0.187 0.185 0.185 0.187 0.182 0.184 0.220 0.190

Linear Meta-Learning 0.187 0.191 0.180 0.185 0.179 0.184 0.179 0.179 0.228 0.188
Opt 0.188 0.193 0.181 0.183 0.180 0.182 0.177 0.181 0.227 0.188
Opt+ 0.187 0.191 0.180 0.186 0.179 0.184 0.180 0.178 0.228 0.188
COS-E 0.187 0.191 0.180 0.186 0.179 0.184 0.180 0.178 0.228 0.188
COS-IL 0.187 0.191 0.180 0.186 0.179 0.184 0.180 0.178 0.228 0.188
Equally weighted for. 0.186 0.187 0.188 0.187 0.188 0.188 0.187 0.188 0.224 0.192
Hill climbing 0.193 0.195 0.180 0.189 0.178 0.188 0.189 0.187 0.225 0.192

NonLinear Meta-Learning 0.224 0.200 0.194 0.194 0.192 0.191 0.195 0.213 0.247 0.205
NN - 1 0.241 0.198 0.193 0.187 0.187 0.180 0.189 0.234 0.241 0.205
NN - 2 0.208 0.203 0.195 0.201 0.196 0.201 0.201 0.192 0.253 0.206

Moreover, if we consider the features of data-driven selection methods against those of
economically motivated models, we should prioritize the use of the latter. Notwithstanding
that both methods exhibit comparable predictive performance, the economically motivated
models offer several advantages. By being based on a low-dimensional set of well-identified
economic factors, they are easier to implement and monitor and yield more interpretable
results. In contrast, data-driven selection methods can fail to correctly select the best
subset of predictors when the latter feature high correlation and require the specification of
additional hyperparameters. This increases the complexity and the computational burden,
with no guarantee of perfectly selecting the full set of significant predictors.
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Table 12. List of predictor probabilities from lasso with stability selection.

Variable Selection Probability

Financial Uncertainty 0.95
Consumer Price Index for All Urban Consumers: Apparel 0.88
New One-Family Houses Sold: United States 0.86
Industrial Production: Fuels 0.82
Number Unemployed for 5–14 Weeks 0.77
Continued Claims (Insured Unemployment) 0.73
ISM Manufacturing: Supplier Deliveries Index 0.72
Securities in Bank Credit, All Commercial Banks 0.71
Industry Returns: Agricultural 0.70
Money Zero Maturity: Money Stock 0.69
Total Consumer Loans and Leases Owned and Securitized by Finance Companies 0.66
Industrial Production: Residential Utilities 0.62
Employment Cost Index: Benefits: Private Industry Workers 0.61
Reserves of Depository Institutions, Nonborrowed 0.58
Number Unemployed for Less than 5 Weeks 0.53
Total Borrowings of Depository Institutions from the Federal Reserve 0.53
Gross Saving 0.53
Economic Policy Uncertainty: Government Spending 0.50
M1 Money Stock 0.46
Light Weight Vehicle Sales: Autos and Light Trucks 0.44
Industry Portfolio Returns: Other 0.43
Economic Policy Uncertainty: Sovereign Debt Currency Crises 0.40
Fama-French Factor: Momentum 0.38
All Employees, Government 0.36
Civilian Employment Level 0.35
Change in Private Inventories 0.35
Industry Portfolio Returns: Drugs 0.34
Nonperforming Commercial Loans 0.34
Industry Portfolio Returns: Smoke 0.33
CBOE NASDAQ 100 Volatility Index 0.33
Consumer Sentiment Index 0.30
Economic Policy Uncertainty: Trade policy 0.29
Consumer Price Index for All Urban Consumers: Medical Care 0.29
Industrial Production: Nondurable Consumer Goods 0.28
National Income 0.28
Number Unemployed for 15–26 Weeks 0.27
Civilian Labor Force Level 0.26
University of Michigan: Inflation Expectation 0.26
Corporate Profits after Tax with IVA and CCAdj: Net Dividends 0.26
Industrial Production: Materials 0.25
Excess Reserves of Depository Institutions 0.25

4.3. First-Level Learners

We now discuss the findings regarding the out-of-sample performance of our algo-
rithms across model structures. In Figure 4, we highlight (in black) the performance of
ensemble methods: model-averaged NNs, bagged MARS, boosted trees (with and without
stochastic gradient boosting), cubist, random forests and quantile random forests.

In this respect, our results point in the same direction as what Bellotti et al. (2021) dis-
cover for nonperforming loans. Rule-based ensemble methods are always associated with
the most promising performance compared to both individual learners (linear or nonlinear)
and the two other ensembles (bagged MARS and model-averaged NNs). Nonetheless, even
if they are less competitive than rule-based ensembles, bagged MARS and model-averaged
neural networks outperform individual learners in almost all model specifications.

This can be explained as follows. First, the prediction errors of ensemble methods
generally have a lower variance than those of individual learners. This effect is actually
a consequence of the aggregation of several base learners; it is particularly visible when
comparing the performance of MARS against that of its bagged version. Second, rule-based
ensembles are better suited to capture subgroups of data with similar properties and to
build a separate model for each group. Recovery rates are particularly prone to behave in
this manner, as explained in Yao et al. (2015), Nazemi et al. (2018) and Bellotti et al. (2021).
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Third, rule-based methods are better suited to reproduce predictor–response relationships
that are defined on a closed interval, as is generally the case for recovery rates.

It appears that the only individual learner that can compete with rule-based ensembles
is the SVR. However, this method yields good performance only when trained using the
full set of predictors or when systematic predictors are selected using lasso without stability
selection (which corresponds to the framework adopted in Nazemi and Fabozzi (2018)).

4.4. Meta-Learning: Within and across Predictor Sets

Let us now analyze the performance of linear meta-learning algorithms within each
specification of the predictors set (highlighted in Figure 4 and Table 11). We notice a sharp
drop in the average RMSE metrics for almost all specifications compared to the other
models. In fact, the architecture of these algorithms allows the creation of more flexible
functional forms thanks to the combination of various first-level learners. The different
strengths of first-level learners are merged together to yield more accurate forecasts. The
performance of linear meta-learning algorithms can be compared to those of the best rule-
based ensembles. Indeed, Table 11 shows that OPT+, COS-E and COS-IL always join the
superior set of models with at least 10% probability outperforming the equally weighted
forecast and the hill-climbing algorithm, which, nevertheless, remain competitive especially
in specification 3, 4 and 5.

The variation of the aggregate errors within linear meta-learners is much lower than
within the class of individual or ensemble models, and the same holds true for the maximum
average loss. Therefore, model risk is sensibly reduced when relying on meta-learners
compared to on both individual learners and ensembles. This feature can be observed
from Figure 4 and holds across all model specifications. We also find that nonlinear meta-
learners (NNs) should generally be avoided. They usually display larger RMSE values than
those of linear meta-learners across all specifications of the predictor set. Moreover, their
partial advantage over ensemble methods and first-level learners in some specifications is
neutralized by considerably higher errors in others (i.e., specifications 1, 8 and 9). Hence, in
terms of model risk, ensembles and linear meta-learners should be preferred.14

Nevertheless, in practice, we do not know ex ante which among the nine specifications
of the predictors set will offer the best performance. While we have previously employed
meta-learning to learn the predictive setup within each specification, we now use the
same tools to combine all models across all specifications. In other words, we now jointly
consider 180 base learners (20 models times 9 predictors specifications). Table 13 displays
the RMSE, mean absolute error (MAE) and R2 of the best 20 predictive strategies in this
exercise. Boosted trees (specification 2, 4, 6, 7), quantile random forest (specification 3)
and random forest (specification 3) are the only base learners that join the superior set of
models. However, their performance clearly depends on the specification of the predictors
set. Among meta-learners, while Opt suffers from the increased dimensionality of the
problem and performs poorly, meta-learners with nonnegative combining weights (Opt+,
COS-E and COS-IL) occupy three of the top four places and join the superior set of models,
hence mitigating the uncertainty related to the choice of both the predictors set and the
modeling framework, i.e., individual vs. ensembles, linear vs. nonlinear vs. rule-based
methods. The results do not significantly differ when analyzing R2 instead of RMSE; this is
not surprising given the close relationship between the two metrics. The ranking remains
coherent with previous results, especially among the top-performing methods: linear meta-
learning techniques are still at the top, beaten only by boosted trees in specification 7, i.e.,
when inflation uncertainty and federal/state/local expenditures uncertainty are considered
together with industry default rate, commercial and industrial loans delinquency rates,
industrial production, market index returns, PMI and individual characteristics. Neverthe-
less, this difference in performance is not statistically significant: COS-E, COS-IL and Opt+
join the superior set of models with 10% confidence level. Conversely, equally weighted
forecast and the hill-climbing algorithm perform poorly and are both excluded from the
superior set of models. The main difference that emerges when considering the MAE is that
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quantile random forests (QRF) outperform their competitors, on average. This should not
come as a surprise: QRF are trained to minimize the MAE to mitigate the impact of outliers
on estimation error, while the loss functions of other predictive strategies are instead related
to the RMSE. Overall, COS-E, COS-IL and Opt+ still provide very competitive MAE, while,
at the same time, mitigating the uncertainty related to the choice of both the predictors set
and the modeling framework.

Table 13. Ranking of top 20 predictive frameworks according to out-of-sample root mean square
error (RMSE) metrics across all specifications of the predictors set. The symbols *, ** and *** mark
1%, 5% and 10% significance levels of the model confidence test with L2 loss, respectively. For the
sake of comparison, we also display the results corresponding to the equally weighted forecast and
hill-climbing algorithm, despite ranking, respectively, 24th and 37th.

Model Specification RMSE MAE R2 MCS

Boosted trees 7 0.1735 0.1076 0.6298 ***
Opt+ . 0.1752 0.1041 0.6175 ***

COS-E . 0.1752 0.1041 0.6175 ***
COS-IL . 0.1752 0.1041 0.6175 ***

Boosted trees 3 0.1765 0.1123 0.6142 ***
Boosted trees 6 0.1771 0.1140 0.6115 ***
Boosted trees 4 0.1789 0.1118 0.6048 ***

Quantile random forests 3 0.1796 0.0963 0.6080 ***
Boosted trees 2 0.1819 0.1117 0.5920 ***

Random forests 3 0.1820 0.1140 0.5927 ***
Boosted trees 9 0.1823 0.1140 0.5886

Cubist 8 0.1824 0.1053 0.5878
Cubist 2 0.1831 0.1053 0.5858
Cubist 7 0.1836 0.1076 0.5841
Cubist 9 0.1836 0.1029 0.5843

Random forests 2 0.1842 0.1136 0.5818
Opt . 0.1843 0.1078 0.5852

Boosted trees 5 0.1845 0.1205 0.5781
Random forests 6 0.1849 0.1164 0.5869

Quantile random forests 5 0.1853 0.0964 0.5887

Equally weighted for. . 0.1862 0.1289 0.5962
Hill climbing . 0.1890 0.1213 0.5622

5. Discussion and Practical Considerations

The results of the previous subsections convey important practical considerations that
we now summarize.

First, financial institutions should accelerate the implementation of LGD internal
models instead of maintaining the use of historical averages. We show in Section 4.1
that the predictive model does not need to be complicated to be effective. All model
specifications outperform the historical average approach, which, however, is the method
underlying the standard and foundation IRB frameworks. Unfortunately, recent regulatory
guidelines (BCBS 2017) are now pointing in the opposite direction, favoring fixed recovery
rate approaches. Our results suggest that this is perhaps not the best route to follow, as
LGD internal models can produce more reliable risk figures.

Second, in Section 4.2, we confirm the necessity of including economic factors that
can capture systematic fluctuations in recovery rates. This result is in line with the current
regulatory prescriptions. Models relying on well-identified economic determinants provide
remarkable results, while big data and variable selection procedures do not necessarily
translate into better performance because results strongly depend on the considered predic-
tive algorithms. We found that financial uncertainty and text-based economic uncertainty
measures are relevant predictors of the recovery rate ex ante. This extends the finding of
Gambetti et al. (2019), where financial uncertainty and the Economic Policy Uncertainty
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Index were found to explain ex post recovery rates. Similarly, we also confirm the finding of
Nazemi and Fabozzi (2018): inflation measures, inflation expectation, industrial production,
corporate profits after tax, indicators of housing market and stock market volatility are not
only systemic determinants of recovery rates but also important predictors. This is also
confirmed when using lasso with stability selection (Table 12): the probability of including
financial uncertainty and text-based economic policy uncertainty measures is particularly
high. Specifically, financial uncertainty, economic policy uncertainty/government spend-
ing, economic policy uncertainty/sovereign debt currency crises and economic policy
uncertainty/trade policy have 95%, 50%, 40% and 29% probability of being selected, respec-
tively. Including such predictors in more parsimonious and theoretically justified models
makes the predictive setting easier to implement, interpret and backtest, making it more
prone to be validated by regulators.

Third, in a context where increasing amounts of data become publicly available, the
common practice of using standard linear regression to forecast recovery rates should be
abandoned. In Section 4.1, we confirm that this is incompatible with the possibility of
exploiting the information contained in a large data set of candidate predictors and embeds
high model risk. This result is in line with the recent findings of Dong et al. (2020) in a
similar financial context.

Fourth, we show in Section 4.3 that ensemble methods and meta-learning techniques
should be fostered in the industry. The choice of the A-IRB model should be directed
toward ensemble methods with respect to individual learners, as they always yield better
performance. However, an incorrect choice among ensembles may still lead to worse
results than an incorrect choice among meta-learning techniques. Hence, meta-learning
considerably reduces model risk compared to ensembles; it should be considered by the
regulator for a new set of A-IRB guidelines. This is particularly true for linear meta-
learning techniques that also have the advantage of providing interpretable insights about
the contribution of each individual model. As they show, the benefits of diversification can
already be appreciated by combining a limited number of high-performing algorithms.

6. Conclusions

In this paper, we explore for the first time the applicability and the potential of meta-
learning in order to forecast bond recovery rates. Meta-learning consists of combining the
predictions arising from several first-level algorithms into a single aggregated forecast.
More specifically, our purpose is to test the performance of a wide set of machine learning
methods for predicting recovery rates on defaulted corporate bonds using a data set of
predictors of unprecedented size and see whether combining them might display superior
performance. We consider as first-level algorithms both individual and ensemble methods
belonging to the classes of linear, nonlinear and rule-based models.

We contribute to the literature on bond recovery rate prediction in three ways. Our
first contribution deals with the set of predictors to use. We find that including a limited
number of well-identified recovery rate determinants and economic uncertainty yields
better predictive performance than using the full set of macroeconomic predictors, even
when combined with variable selection techniques such as lasso. This finding prevails
in all considered algorithms and contrasts with the current big data trend. The use of a
limited number of economically grounded predictors offers the additional advantages of
making the model easier to implement, to backtest and therefore, when applicable, to be
validated by regulatory instances because of mitigating the risk of overfitting and data
mining. Interestingly, we confirm the central importance of uncertainty measures that are
always retained by the considered variable selection methods.

The second and third contributions relate to the predictive method to use. Random
forests, quantile random forests, boosted trees and cubist display the most promising
results, but their performances are unstable across the considered specifications of the
predictors set: it seems difficult to identify ex ante the right pair of model and predictors set
to use. By contrast, we empirically show that meta-learning can beat this challenge. Indeed,
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meta-learning can improve recovery rate predictions compared to traditional individual
learning machines while, at the same time, considerably reduce model risk. This evidence
is preserved both when looking at the predictive performance within a chosen predictor set
and when jointly considering predictions across all specifications of the predictor set.

In all specifications, the historical average approach performs significantly worse. Yet,
this is the method underlying the standardized approach and foundation IRB framework
used to compute regulatory capital reserves, which is the primary figure used worldwide
to monitor the credit worthiness of banks. Therefore, our findings suggest that regulators
and policy makers promoting the use of more reliable risk figures should foster the im-
plementation of LGD internal models that use meta-learning techniques, while the use
of traditional linear regressions or historical averages should be challenged. Eventually,
our findings will be of practical interest to design new tools for internal economic capital
calculations as well as for stress testing purposes.
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Appendix A. Details on Nonlinear and Rule-Based Methods

Following Bellotti et al. (2021), we give more details on the nonlinear and rule-based
methods we have considered in this study. We refer to Hastie et al. (2009) for a textbook
treatment of the predictive algorithms.

Multivariate Adaptive Regression Splines (MARS)

The multivariate adaptive regression splines method of Friedman (1991) features
piecewise transformations of the original predictive variables. Specifically, given a set of
cut points t, each predictor Xj is transformed into a set of reflected pairs obtained by:

(Xj − t)+ =

{
Xj − t, if Xj > t
0, otherwise

and (t− Xj)+ =

{
t− Xj, if Xj > t
0, otherwise

(A1)

where j = (1, 2, ..., p) and t ∈ {x1j, x2j, ..., xNj}. A linear regression model is then estimated
following a greedy procedure on the reflected pairs that are selected for each predictor.
The number of selected pairs for each predictor defines the degree of the MARS algorithm.
A backward pruning procedure handles overfitting by dropping the features that are
associated with the smallest error rate when excluded. In this study, we consider MARS
of degree one, and the number of terms to be retained in the final model is estimated via
10-fold cross-validation.

K-Nearest Neighbors

K-nearest neighbors is a non-parametric method that forecasts the target variable by
using the average of the K training observations that are closest in the covariate space.
Closeness between observations is defined by the Euclidean distance. In this paper, we tune
the size of the neighborhood K via 10-fold cross-validation.
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Model-Averaged Neural Networks

Model-averaged neural networks (Ripley 1996) is an ensemble of feed-forward neural
networks where the base learners use different initial values for the optimization procedure
to estimate the parameters. In addition to reducing the model risk via averaging the
multiple predictions of the base learners, the random initialization of the parameters
mitigates the risks of converging in local optima when dealing with a backpropagation
algorithm. Individual neural networks can also include a weight decay that penalizes large
coefficients further mitigating the risk of overfitting. In this paper, we employ an ensemble
of five neural networks, and we tune the number of hidden units as well as the weight
decay via 10-fold cross-validation.

Support Vector Regression, Relevance Vector Machine and Gaussian Processes

Support vector regression (SVR) (Vapnik 1995) is a kernel-based model estimated from
the following minimization problem:

arg min
β0, β

C
N

∑
i=1

Lε(yi − f (xi)) +
p

∑
j=1

β2
j , (A2)

where Lε is an ε-insensitive loss function, and C is the penalty assigned to residuals greater
or equal to ε. The solution to this problem (A2) can be expressed in terms of a set of weights
wi and a positive definite kernel function K(·) that depends on the training set data points:

f (x) = w0 +
N

∑
i=1

wiK(x, xi) . (A3)

Training observation associated to non-zero weights are called support vectors, and
they are used to estimate the model. We consider the radial basis kernel K(x, x′) =
exp(−σ‖x − x′‖), and we estimate the penalty C via 10-fold cross-validation while the
scaling parameter is σ, following Caputo et al. (2002).

Relevance vector machine (RVM) (Tipping 2001) is a kernel method similar to SVR, but
the weights are now computed using a Bayesian framework. This allows for a probabilistic
interpretation of the model predictions, and it offers the additional advantage of producing
sparser models than standard SVR.

Williams and Rasmussen (1996) introduce Gaussian processes, a non-sparse non-
parametric generalization of the RVM framework. Gaussian processes impose a prior
distribution directly on the function values and consider Gaussian distribution with zero
mean and covariance matrix equal to the kernel matrix Kij = K(xi, xj). In this work, we
implement Gaussian processes using a radial basis kernel.

Regression Trees

Regression trees (Breiman et al. 1984) partition the predictors’ space into a set of non-
overlapping regions and fit a model in each of them. In their simplest version, predictions
are formed using the average of the target variables associated with each region. The
algorithm employs a top-down partitioning to estimate the regions, starting with the
full dataset and sequentially splitting it into groups according to the predictors and cut
points that achieve the largest decrease in the residual sum of square errors. The splitting
procedure stops when a certain criterion is met, e.g., the number of observations in the
terminal nodes. To limit overfitting, the tree is then pruned back by using cost and/or
complexity criterion, and the amount of regularization can be tuned via cross-validation.

Conditional Inference Trees

The conditional inference trees algorithm (Hothorn et al. 2006) was proposed to
overcome the potential selection bias of regression trees. In fact, in the standard regression
trees algorithm, there is a greater chance of selecting the predictors featuring a higher
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number of candidate cut points during the tree growing step. For each predictor, conditional
inference trees use statistical hypothesis testing to evaluate the difference between the
means of the two samples created by a candidate split. Multiple comparison corrections
reduce the selection bias for highly granular predictors (Westfall and Young 1993). In this
work, we estimate the p-value threshold, determining whether to consider a new split, and
the tree maximum depth via 10-fold cross-validation.

Bagged Trees and Random Forests

Bagged trees (Breiman 1996) is an ensemble method resulting from the aggregation
of the predictions of multiple regression trees estimated on bootstrapped samples of the
training set. In this work, we tune the number of trees composing the ensemble by 10-fold
cross-validation.

Random forests (Breiman 2001) is an evolution of the bagged trees algorithm that was
motivated by overcoming the problem of high correlation between individual trees. In fact,
for bagged trees, all predictors are considered at each split during the tree-growing process,
which results in trees grown in very similar structures. The random forests algorithm
instead considers a subset of randomly selected predictors at each split. This reduces the
correlation between the trees and the variance of the ensemble prediction. We tune the
number of randomly selected predictors via 10-fold cross-validation.

Boosted Trees

Boosted trees is an ensemble algorithm where the individual trees are sequentially
fitted by multiple weak learners, and to avoid overfitting, only a percentage of each fitted
value (called learning rate) is subtracted from the residual from the previous learner. The
number of boosting iterations, i.e., the number of trees, the learning rate and the individual
trees’ depth, are the main hyper-parameters for this model. Stochastic gradient boosting
is a version of the algorithm that includes a random sampling scheme of the training
data at each iteration to improve computational efficiency and further mitigate the risk of
overfitting. In this work, we tune the hyper-parameters via 10-fold cross-validation.

Cubist

Cubist (Quinlan 1993) combines the M5 model tree of Quinlan (1992) with some
features from boosting and K-nearest neighbors algorithms. Cubist has a tree structure
where each node contains a linear regression model whose covariates are the same variables
that satisfy the rule defining a specific node. After the model is estimated, the predictions
in each node are recursively smoothed by using the fitted values from the respective parent
node. Smoothing consists of linearly combining the two models, with the one that has
the smallest RMSE having the largest weight. To limit overfitting, the rules can be pruned
using the adjusted error rate criterion as in M5. Cubist can also adjust the forecast using a
weighted average of sample neighbors. Committees, i.e., ensembles, can also be created
using multiple model trees in a boosting-like framework. In this work, we tune the number
of neighbors and the number of committees via 10-fold cross-validation.

Appendix B. A Closer Look at Uncertainty Measures

Following Gambetti et al. (2019), we provide more details on the financial and eco-
nomic uncertainty measures employed in this study.

We consider two measures of financial uncertainty: (a) stock market volatility and (b)
the financial uncertainty index of Jurado et al. (2015). On the one hand, the stock market
volatility-based measure of financial uncertainty included in our data set is represented by
the stock market implied volatility index VIX, retrieved from the Chicago Board Options
Exchange database. It has monthly frequency, and it is also included in the FRED monthly
database. On the other hand, we select the one-month horizon financial uncertainty indica-
tor of Jurado et al. (2015) and Ludvigson et al. (2019) that is instead based on forecast error
volatility. This latter method identifies uncertainty with unpredictability, i.e., the more or
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less the macroeconomic series have become predictable, the less or more uncertainty agents
face. Specifically, Jurado et al. (2015) define h-period ahead uncertainty in the variable Y
to be the conditional volatility of the purely unforecastable (at horizon h) component of
the future value of the series. Data was retrieved from the authors’ website. Uncertainty
measures can also be based on text analysis. This is the case of the economic policy uncer-
tainty index and its sub-components from Baker et al. (2016). The series, available monthly,
are retrieved from https://www.policyuncertainty.com/ (accessed on 28 April 2022) and
include a range of sub-indexes based solely on news data. Specifically, these are extracted
from the Access World News database of over 2000 US newspapers and measure coverage
frequency. For example, each sub-index measures the coverage frequency of economic,
uncertainty and policy terms as well as a set of categorical policy terms, e.g., monetary
policy, tax government spending or trade policy (see the news-based measures in Table 9
for the complete list), in the pool of articles under analysis. For instance, articles that fulfill
the requirements to be coded as economic policy uncertainty and contain the term ’federal
reserve’ would be included in the monetary policy uncertainty sub-index. For more details,
please refer to Appendix B of Baker et al. (2016). We also consider survey-based measures
that are available at https://www.policyuncertainty.com/ (accessed on 28 April 2022). The
first, drawing on reports by the Congressional Budget Office, reflects the number of federal
tax code provisions set to expire over the next 10 years. The second, relying on the Federal
Reserve Bank of Philadelphia’s Survey of Professional Forecasters, measures the dispersion
between individual forecasters’ predictions about future levels of the Consumer Price Index,
federal expenditures and state and local expenditures among economic forecasters as a
proxy of uncertainty about policy-related macroeconomic variables.

Appendix C. Economic Data

The list of the variables considered in this study is provided below. We indicate with
∆ the differencing order and with log the natural logarithm operator. The column Tcode
denotes the following data transformation for a series x: (1) no transformation; (2) ∆xt;
(3) ∆2xt; (4) log(xt); (5) ∆log(xt); (6) ∆2log(xt); (7) ∆( xt

xt−1
− 1). For more details on the

calculation of the variables denoted with (*), please refer to the data appendix of Jurado
et al. (2015) .

Variable Description Tcode

COUP_RATE Coupon Rate 1
BACK_F Presence of additional backing guarantees 1

different from the issuer’s assets
DEF_DEBT_SENR.Senior.Subordinated Seniority Status 1
DEF_DEBT_SENR.Senior.Unsecured Seniority Status 1
DEF_DEBT_SENR.Subordinated Seniority Status 1
MOODYS_11_CODE.Capital.Industries Industry Code 1
MOODYS_11_CODE.Consumer.Industries Industry Code 1
MOODYS_11_CODE.Energy...Environment Industry Code 1
MOODYS_11_CODE.FIRE Industry Code 1
MOODYS_11_CODE.Media...Publishing Industry Code 1
MOODYS_11_CODE.Retail...Distribution Industry Code 1
MOODYS_11_CODE.Technology Industry Code 1
MOODYS_11_CODE.Transportation Industry Code 1
MOODYS_11_CODE.Utilities Industry Code 1
DEF_TYP_CD.Missed.interest.payment Deafult Type 1
DEF_TYP_CD.Missed.principal.and.interest.payments Deafult Type 1
DEF_TYP_CD.Missed.principal.payment Deafult Type 1

https://www.policyuncertainty.com/
https://www.policyuncertainty.com/
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Variable Description Tcode

DEF_TYP_CD.Others Deafult Type 1
DEF_TYP_CD.Prepackaged.Chapter.11 Deafult Type 1
DEF_TYP_CD.Receivership Deafult Type 1
DEF_TYP_CD.Suspension.of.payments Deafult Type 1
FinUnc_h.1 Financial Uncertainty 1
Baseline_overall_index Economic Policy Uncertainty index 1
News_Based_Policy_Uncert_Index Newspaper-Based Policy Uncertainty 1
FedStateLocal_Ex_disagreement Federal Tax Code Uncertainty 1
CPI_disagreement CPI Survey Disagreement 1
X1..Economic.Policy.Uncertainty 1. Economic Policy Uncertainty 1
X2..Monetary.policy 2. Monetary Policy 1
Fiscal.Policy..Taxes.OR.Spending. Fiscal Policy (Taxes OR Spending) 1
X4..Government.spending 4. Government spending 1
X5..Health.care 5. Healthcare 1
X6..National.security 6. National Security 1
X7..Entitlement.programs 7. Entitlement Programs 1
X8..Regulation 8. Regulation 1
Financial.Regulation Financial Regulation 1
X9..Trade.policy 9. Trade Policy 1
X10..Sovereign.debt..currency.crises 10. Sovereign Debt, Currency Crises 1
RPI Real Personal Income 5
W875RX1 Real Personal Income excluding 5

R current transfer receipts
DPCERA3M086SBEA Real Personal Consumption Expenditures 5
CMRMTSPLx Real Manu. and Trade Industries Sales 5
RETAILx Retail and Food Services Sales 5
IPFINAL IP: Final Products (Market Group) 5
IPCONGD IP: Consumer Goods 5
IPDCONGD IP: Durable Consumer Goods 5
IPNCONGD IP: Nondurable Consumer Good 5
IPBUSEQ IP: Business Equipment 5
IPMAT IP: Materials 5
IPDMAT IP: Durable Materials 5
IPNMAT IP: Nondurable Materials 5
IPB51222S IP: Residential Utilities 5
IPFUELS IP: Fuels 5
CUMFNS Capacity Utilization: Manufacturing 2
HWI Help-Wanted Index for U.S. 2
HWIURATIO Ratio of Help Wanted/No. Unemployed 2
CLF16OV Civilian Labor Force 5
CE16OV Civilian Employment 5
UNRATE Civilian Unemployment Rate 2
UEMPMEAN Average Duration of Unemployment (Weeks) 2
UEMPLT5 Civilians Unemployed for Less Than 5 Weeks 5
UEMP5TO14 Civilians Unemployed for 5-14 Weeks 5
UEMP15OV Civilians Unemployed for 15 Weeks and Over 5
UEMP15T26 Civilians Unemployed for 15-26 Weeks 5
UEMP27OV Civilians Unemployed for 27 Weeks and Over 5
CLAIMSx Initial Claims 5
PAYEMS All Employees: Total Nonfarm 5
CES1021000001 All Employees: Mining and Logging: Mining 5
USCONS All Employees: Construction 5
DMANEMP All Employees: Manufacturing 5
NDMANEMP All Employees: Nondurable goods 5
USWTRADE All Employees: Wholesale Trade 5
USTRADE All Employees: Retail Trade 5
USFIRE All Employees: Financial Activities 5
USGOVT All Employees: Government 5
CES0600000007 Avg Weekly Hours : Goods-Producing 1
AWOTMAN Avg Weekly Overtime Hours : Manufacturing 2
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Variable Description Tcode

M1SL M1 Money Stock 6
M2REAL Real M2 Money Stock 5
AMBSL St. Louis Adjusted Monetary Base 6
TOTRESNS Total Reserves of Depository Institutions 6
NONBORRES Reserves Of Depository Institutions 7
BUSLOANS Commercial and Industrial Loans 6
REALLN Real Estate Loans at All Commercial Banks 6
NONREVSL Total Nonrevolving Credit 6
CONSPI Nonrevolving Consumer Credit to Personal Income 2
S.P..indust S&P’s Common Stock Price Index: Industrials 5
S.P.div.yield S&P’s Composite Common Stock: Dividend Yield 5
S.P.PE.ratio S&P’s Composite Common Stock: Price–Earnings Ratio 5
FEDFUNDS Effective Federal Funds Rate 2
CP3Mx 3-Month AA Financial Commercial Paper Rate 2
TB3MS 3-Month Treasury Bill 2
TB6MS 6-Month Treasury Bill 2
GS1 1-Year Treasury Rate 2
GS5 5-Year Treasury Rate 2
AAA Moody’s Seasoned Aaa Corporate Bond Yield 2
BAA Moody’s Seasoned Baa Corporate Bond Yield 2
COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS 1
TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 1
TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 1
T1YFFM 1-Year Treasury C Minus FEDFUNDS 1
T10YFFM 10-Year Treasury C Minus FEDFUNDS 1
AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS 1
BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS 1
TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies, Goods 5
EXSZUSx Switzerland/U.S. Foreign Exchange Rate 5
EXJPUSx Japan/U.S. Foreign Exchange Rate 5
EXUSUKx U.S./U.K. Foreign Exchange Rate 5
EXCAUSx Canada/U.S. Foreign Exchange Rate 5
WPSFD49207 PPI: Finished Goods 6
WPSID62 PPI: Crude Materials 6
OILPRICEx Crude Oil, Spliced WTI and Cushing 6
PPICMM PPI: Metals and Metal Products 6
CPIAPPSL CPI : Apparel 6
CPIMEDSL CPI : Medical Care 6
CUSR0000SAD CPI : Durables 6
CUSR0000SAS CPI : Services 6
DDURRG3M086SBEA Personal Cons. Exp: Durable Goods 6
DNDGRG3M086SBEA Personal Cons. Exp: Nondurable Goods 6
DSERRG3M086SBEA Personal Cons. Exp: Services 6
CES0600000008 Avg Hourly Earnings : Goods-Producing 6
CES2000000008 Avg Hourly Earnings : Construction 6
CES3000000008 Avg Hourly Earnings : Manufacturing 6
UMCSENTx Consumer Sentiment Index 2
MZMSL MZM Money Stock 6
DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding 6
DTCTHFNM Total Consumer Loans and Leases Outstanding 6
INVEST Securities in Bank Credit at All Commercial Banks 6
DelRate.ConsumerLoans Delinquency Rates on Consumer Loans 1
DelRate.CreditCardLoans Delinquency Rates on Credit Card Loans 1
DelRate.CommIndLoans Delinquency Rates on Commercial and Industrial Loans 1
AMR.Def..Rate American Default Rate 1
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Variable Description Tcode

D_log.DIV. CRSP - Dividends * 5
D_Preinvested CRSP - Price Under Reinvestment * 5
d.p CRSP - Dividend to Price * 5
R15.R11 FF Factor (Small, High) Minus (Small, Low) 1

Sorted On (size, Book-to-Market)
CP.factor FF Factor - Cash Profitability 1
SMB FF Factor - Small - Big 1
UMD FF Factor - Momentum 1
Agric Portfolio Return 1
Food Portfolio Return 1
Beer & Liquor Portfolio Return 1
Smoke Portfolio Return 1
Toys - Recreation Portfolio Return 1
Fun - Entertaiment Portfolio Return 1
Books - Printing and Publishing Portfolio Return 1
Hshld - Consumer Goods Portfolio Return 1
Clths - Apparel Portfolio Return 1
MedEq - Medical Equipment Portfolio Return 1
Drugs - Pharmaceutical Products Portfolio Return 1
Chems - Chemicals Portfolio Return 1
Rubbr - Rubber and Plastic Products Portfolio Return 1
Txtls - Textiles Portfolio Return 1
BldMt - Construction Materials Portfolio Return 1
Construction Portfolio Return 1
Steel Portfolio Return 1
Machinery Portfolio Return 1
Electrical Equipment Portfolio Return 1
Autos - Automobiles and Trucks Portfolio Return 1
Aero - Aircraft Portfolio Return 1
Ships Portfolio Return 1
Mines - Non-Metallic and Industrial Metal Mining Portfolio Return 1
Coal Portfolio Return 1
Oil Portfolio Return 1
Util - Utilities Portfolio Return 1
Telcm - Communication Portfolio Return 1
PerSv - Personal Services Portfolio Return 1
BusSv - Business Services Portfolio Return 1
Hardw - Computers Portfolio Return 1
Chips - Electronic Equipment Portfolio Return 1
LabEq - Measuring and Control Equipment Portfolio Return 1
Paper - Business Supplies Portfolio Return 1
Boxes - Transportation Portfolio Return 1
Trans - Transportation Portfolio Return 1
Whlsl - Wholesale Portfolio Return 1
Rtail - Retail Portfolio Return 1
Meals - Restaurants, Hotels, Motels Portfolio Return 1
Banks - Banking Portfolio Return 1
Insur - Insurance Portfolio Return 1
RlEst - Real Estate Portfolio Return 1
Fin - Trading Portfolio Return 1
Other Portfolio Return 1
A032RC1A027NBEA National Income 5
HOUSTNE Housing Starts, Northeast 4
HOUSTW Housing Starts, West 4
ACOGNO New Orders for Consumer Goods 5
AMDMNOx New Orders for Durable Goods 5
ANDENOx New Orders for Nondefense Capital Goods 5
AMDMUOx Unfilled Orders for Durable Goods 5
BUSINVx Total Business Inventories 5
ISRATIOx Total Business: Inventories to Sales Ratio 2
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Notes
1 We define model risk from three perspectives: (i) maximum average loss across model specifications and model classes, (ii)

average loss and (iii) its variability within each model class.
2 A weak learner is any machine learning algorithm that provides an accuracy slightly better than random guessing.
3 Models based on economic principles approximate the latter using industry default rates, loan delinquency rates, market and in-

dustrial production returns and recession indicators (Altman et al. 2005; Gambetti et al. 2019; Jankowitsch et al. 2014; Mora 2015).
4 Hyperparameters for first-level learners are tuned using 10-fold cross-validation in the training sample. Folds are created using

stratified sampling based on seniority type, as in Nazemi et al. (2017), Nazemi and Fabozzi (2018) and Nazemi et al. (2018). The
same applies for generating the training and test sets, with proportions of 70% and 30%.

5 Forecast selection outperforms the forecast combination only in very specific situations that are typically not encountered in
practice: for instance, when the variance of the prediction errors of one model is lower than those of the others by several orders
of magnitude, see, e.g., Roccazzella et al. (2021).

6 Another strategy consists of using an additional validation fold (Wolpert 1992). This has the drawback of extending the original
data with potentially informative observations that would unevenly boost the performance of meta-learning techniques with
respect to those of individual models and ensemble methods. In this paper, we empirically show that combining schemes that do
not rely on additional sample splitting perform remarkably well compared to the a posterior best predictive framework. This is
surprising especially for combination schemes whose weights are estimated using the same in sample information.

7 For further details on the COS methodology and for the explicit formula to estimate the optimal shrinkage intensity, we refer to
Roccazzella et al. (2021).

8 For example, Dodge and Karam (2016) documents that deep learning methods are particularly sensitive to noise levels in image
classification tasks.

9 We refer to Appendix C for the full list of the variables and the transformations performed on the raw data.
10 The reader can refer to Appendix B for more details and to Gambetti et al. (2019) for a detailed literature review on the topic.
11 We apply lasso with stability selection based on the R implementation stabs by Hofner and Hothorn (2017). We determine the

dimension of bootstrapped lasso models using pointwise control (Meinshausen and Bühlmann 2010). Moreover, we specify a
threshold of 0.6 for the selection probability as in Nazemi and Fabozzi (2018).

12 The MCS tests whether a subset of methods enters jointly in the superior set of models by repeatedly testing the null hypothesis
of equal predictive performance with significance level α. LetM0 be the set of all forecasting models (both individual candidates

and forecasts combinations), and letM∗ be the superior set of models. Formally, the MCS tests H0 : E
[
di,j

]
= 0, ∀i, j. If the null

hypothesis is rejected, then the procedure eliminates the model with the greatest relative loss from the setM. This procedure is
sequentially repeated until the null hypothesis is not rejected at the chosen probability level α. We compute the MCS p-values via
bootstrapping (10000 replications) and using the Oxford MFE Toolbox publicly available at https://www.kevinsheppard.com/
code/matlab/mfe-toolbox/ (accessed on 28 April 2022) .

13 We find our list of selected variables to be largely consistent with those highlighted in Nazemi and Fabozzi (2018). A table of
predictor probabilities is included in the Appendix C.

14 We find this conclusion to be robust to different specifications of the nonlinear meta-learner’s architecture (i.e., the number of
hidden units in the artificial neural networks). The results are available upon request.
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