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Abstract: The Lee–Carter model, the dominant mortality projection modeling in the literature, was
criticized for its homoscedastic error assumption. This was corrected in extensions to the model based
on the assumption that the number of deaths follows Poisson or negative binomial distributions. We
propose a new class of families of counting distributions, namely, the ABM class, which belongs to a
wider class of natural exponential families. This class is characterized by its variance functions and
contains the Poisson and the negative binomial distributions as special cases, offering an infinite class
of additional counting distributions to be considered. We are guided by the principle that the choice
of distribution should be made from a pool of distributions as large as possible. To this end, and
following a data mining approach, a training set of historical mortality data of the population could
be modeled using the ABM’s rich choice of distributions, and the chosen distribution should be the
one that proved to offer superior projection results on a test set of mortality data. As an alternative
to parameter estimation via the singular value decomposition used in the classical Lee–Carter
model, we adopted Bayesian estimation, harnessing the Markov Chain Monte Carlo methodology. A
numerical study demonstrates that when fitting mortality data using this new class of distributions,
while traditional distributions may provide desirable projections for some populations, for others,
alternative distributions within the ABM class can potentially produce superior results for the entire
population or particular age groups, such as the oldest-old.

Keywords: Lee–Carter; counting distributions; mortality projections; natural exponential family

1. Introduction

The seminal paper by Lee and Carter (1992) (LC) introduced a model which is one of
the most well-known and widely applied models for forecasting mortality rates. Within
this model, the time series of the log mortality rates, ln mxt, of each age is described by
an age-specific intercept αx plus a common trend kt for all age groups multiplied by an
age-specific coefficient βx,

ln mxt = αx + βxkt + εxt.

The error term εxt is assumed to be distributed with a mean 0 and variance σ2
ε , re-

flecting influences missed by the model. The age and time-specific mortality rate mxt is
calculated as (Dxt/Ext), where Dxt denotes the number of deaths in a population at age x,
x = 1, 2, · · · , P, and at time t, t = 1, 2, · · · , T, and Ext is the exposure to the risk of death. To
ensure the identifiably of model parameters, constraints are imposed such that the sum of
βx over age is 1 and the sum of kt over time is 0. To forecast mortality rates into the future,
a simple random walk with drift is proposed for kt:

kt = kt−1 + θ + wt.
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The homoscedastic error assumption of the Lee–Carter model was criticized for its
limiting impact on predictions (Brouhns et al. 2002; Danesi et al. 2015; Idrizi 2018). This led
to the introduction of the Poisson log-bilinear LC-type model (Brouhns et al. 2002), which,
in contrast, is intrinsically heteroscedastic, namely:

Dxt ∼ Poisson(µxt), µxt = Extmxt.

Here, the number of dead is directly modelled by a Poisson distribution, whose pa-
rameter is estimated by maximum likelihood estimation (MLE). This alternative approach
gained momentum and alternative discrete distributions were proposed. In particular,
a binomial distribution was proposed by Wang and Lu (2005) and a negative binomial
distribution was suggested by Delwarde et al. (2007) and Renshaw and Haberman (2008).
See Azman and Pathmanathan (2022) for further discussion of these distributions within
the GLM framework.

The Lee–Carter model has been widely used for many purposes (Shair et al. 2018), such
as forecasting mortality reduction factors, assessing the adequacy of retirement income,
population projections and the projection of mortality trends for the oldest-old (older than
80, and in some sources 85). This age group is of considerable interest for policymakers
as it is destined to grow as a proportion of the entire population and can outstrip existing
infrastructures’ capacity (Buettner 2002). This is a fairly recent phenomenon. In Canada,
for instance (Legare et al. 2015), the 21st century brought about the most significant gain
in life expectancy at age 85 (7.79% for women and 9.93% for men). Clearly, policies
need to be devised that can meet people’s special needs in what is called the fourth age
Baltes and Smith (2003), and accurate mortality projection for this age group is a must.
We shall, therefore, focus on the adequacy of potential underlying discrete distribution
functions to produce accurate mortality projections using the Lee–Carter model for this age
group. This will be discussed in Section 4.

In essence, while the above-cited papers relied on popular and commonly used dis-
crete distributions, one cannot say that one particular distribution is universally superior.
Indeed, it is entirely plausible to assume that there is a winning distribution for any given
population or even for a specific population at a certain age range. Ideally, one should
consider a rich class of family of counting distributions, much richer than the two already
suggested, and use the data to pick the most suitable distribution for the population under
study. This paper proposes an infinitely countable set of families of counting distributions,
where the Poisson, negative binomial and Abel families of distributions are special cases.
Our aim is to study this family, incorporate it into the framework of the LC model and use
real data to seek the most suitable distribution for mortality projection. While there is little
doubt that the distributions discussed above could prove adequate for specific populations
or age groups, other distributions within the suggested family could have the upper hand.

The paper is organized as follows. Section 2 presents the new class of counting
distributions. Section 3 is devoted to the new class and its Bayesian framework. Section 4
(divided into Section 4.1: Methods and Section 4.2: Results) reports a numerical study in
which superior members of this class are chosen for mortality projections of the oldest-old
in three populations. Finally, Section 5 offers a discussion.

2. A New Class of Counting Distributions on the Set of Nonnegative Integers N0

The new class of families of counting distributions on the non-negative integers be-
longs to a wider class of natural exponential families (NEFs), characterized by their variance
functions (VFs). In order to comprehend this class we decompose this section into subsec-
tions. We first present some preliminaries on NEFs and their associated VFs. We then intro-
duce a class of NEFs having polynomial structure and then suggest the new class of families
of counting distributions, named ABM, first introduced by Awad et al. (2016), where the
class was defined and its usefulness for mortality projections was preliminary sketched.
Furthermore, such a class has been investigated by Bar-Lev and Ridder (2021a, 2021b) from
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a classical frequency approach and has shown superiority with respect to various metrics or
goodness-of-fit tests for different count datasets (for further details see item 6 in Section 2.3).

2.1. NEFs—Some Preliminaries

The following preliminaries are mainly taken from Letac and Mora (1990) and are
briefly presented here for completeness.

Let ν be a non-Dirac positive Radon measure on R, and L(θ) =
∫

eθx ν(dx) its Laplace
transform. Assuming that Θ = int{θ ∈ R : L(θ) < ∞} 6= φ, then the NEF generated by ν
is defined by the probability distributions

F =
{

Fθ : Fθ(ν(dx)) = eθx−κ(θ) ν(dx), θ ∈ Θ
}

, (1)

where κ(θ) = log L(θ), the cumulant transform of ν, is strictly convex and real analytic on
Θ. If Xθ represents a r.v. having distribution Fθ of the form given in (1) then the expectation
and variance of Xθ are given, respectively, by E(Xθ)

.
= m = κ′(θ) and V(Xθ) = κ′′(θ) where

m = κ′(θ) is strictly monotone and thus its inverse, say, θ = ψ(m), m ∈ M = κ′(Θ) is well
defined. The set M of all means of (1) is called the mean parameter space of F . The
variance of Fθ can be expressed in terms of m by V(m) = κ′′(θ) = κ′′(ψ(m)). The pair
(V, M) is called the VF of F and it uniquely determines F within the class of NEFs. For
example, (m,R+) and (m2,R+) are, respectively, the VFs of the Poisson and exponential
NEFs and are uniquely determined by them.

2.2. The Mean Value Parametrization of NEFs

As indicated above, the VF of an NEF F uniquely determines F within the class of
NEFs. Let (V, M) be a given VF of an NEF F generated by ν. Then, simple calculations
show both θ = ψ(m) and the cumulant transform κ(θ) = κ(ψ(m)) of ν can be expressed in
terms of m as:

θ = ψ(m) =
∫ dm

V(m)
+ c1, k(θ) = k(ψ(m)) =

∫ m
V(m)

dm + c2, (2)

where one needs to determine the constants c1 and c2 so that Fθ , θ ∈ Θ, constitutes a
probability distribution (not an easy task). Accordingly, a mean value parametrization of
an NEF F generated by a measure ν is given by:

F = {exp{ψ(m)x− k(ψ(m))}ν(dx), m ∈ M}. (3)

Such a representation of F is more natural as it is expressed in terms of the mean m
rather than a somewhat artificial parameter θ. A comprehensive description of NEFs in
terms of their mean value representation is reviewed in Bar-Lev and Kokonendji (2017).

Remark 1. The task of computing the constants c1 and c2 is not simple and might be rather
cumbersome. However, from a Bayesian perspective, when (3) is used as a prior distribution on m,
then in the calculation of the respective posterior distribution, such constants are cancelled out (as
the likelihood function is the only relevant component). As this paper is concerned with a Bayesian
framework, one can assume without any loss of generality that c1 = c2 = 0. Henceforth, we indeed
assume so.

2.3. Polynomial VFs of Counting NEFs Supported on the Set of Nonnegative Integers N0

The innovative and breakthrough Proposition 4.4 of Letac and Mora (1990, p. 13)
provided conditions under which a given VF (V, M) is associated with a counting NEF
F supported on the set of non-negative integers N0, i.e., where all members of F are
composed of counting distributions on N0. They provided general examples of two classes
of VFs which fulfill the premises of their Proposition 4.4 and thus their associated NEFs’
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distributions are supported on the non-negative integers. One of these two classes has
the form:

V(m) = m
k

∏
i=1

(
1 +

m
pi

)
, pi > 0, i = 1, . . . , k, k ∈ N0, M = R+, where

0

∏
i=1

.
= 1. (4)

They proved that such VFs constitute counting NEFs supported on N0, namely, count-
ing distributions with non-negative integer support. Moreover, their Proposition 4.4
enables to compute (at least theoretically and numerically) the corresponding measure ν
(we skip details as they are irrelevant for our Bayesian framework analysis). Note that
the two special cases of (4) with k = 0 and k = 1 correspond, respectively, to the Poisson
and negative binomial NEFs. However, the general setting (4) for k ≥ 3 does not allow an
explicit calculation of θ = ψ(m) and k(θ) = k(ψ(m)) in (2), implying that the mean value
parametrization of the corresponding NEFs in the form (3) is not explicitly expressible in
terms of m and thus becomes useless for any practical consideration.

2.4. A New Class of Polynomial VFs—The ABM NEFs

As we already noted, the fact that a given pair (V, M) is known to be a VF of some
NEF does not necessarily enable the construction of the corresponding mean value parame-
terization (3), as in most cases the integrals for ψ(m) and k(ψ(m)) in (2) are not explicitly
expressible analytically in closed forms, and indeed, this is the situation for the class (4)
in its general form. Consequently, one needs to search for subclasses of (4) for which the
integrals in (2) can be computed explicitly. One such special subclass takes the above point
into consideration. Indeed, by taking in (4) the special case where

p1 = p2 = · · · = pk,

and denoting
p2

.
= k ∈ N0,

we obtain a subclass of (4) with VFs with the form:

(V, M) = m
(

1 +
m
p1

)p2

,R+), p1 > 0, p2 ∈ N0. (5)

As (5) is a subclass of (4) and (4) satisfies the premises of Proposition 4.4 of Letac and Mora
(1990) it follows that the subclass (5) are VFs associated with counting NEFs supported on the
non-negative integers.

The subclass of VFs in (5) (hereafter called the ABM class) was first introduced by
Awad et al. (2016) who showed that the corresponding ψ(m) and k(ψ(m)) (calculated
from (2)) have, as opposed to the general form in (4), the following closed forms (the exact
proof details appear in Bar-Lev and Kokonendji 2017):

θ = ψ(m) = ln
m

p1 + m
+

p2−1

∑
i=1

1
i

pi
1

(p1 + m)i + c1, where
0

∑
i=1

= 0,

and

κ(ψ(m)) = −
pp2

1
(p2 − 1)(m + p1)p2−1 + c2.

Thus, its mean value parametrization is given by the probability distribution:

F(m, ν(dx)) = exp
{

x
[

ln m
p1+m + ∑

p2−1
i=1

1
i

pi
1

(p1+m)i + c1

]

+
pp2

1
(p2−1)(m+p1)

p2−1 + c2

}
, m ∈ R+, p1 > 0, p2 ∈ N

, (6)
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where hereafter we denote this probability distribution by ABM(p1, p2), where p1 is a
positive real number and p2 is a non-negative integer. (For a classical frequency approach,
the constants c1 and c2 have been computed by Bar-Lev and Ridder 2021b). However, as
noted above, for a Bayesian framework they are cancelled out when computing the posterior
distribution and thus can be taken to be c1 = c2 = 0 without any loss of generality).

Note that the ABM class of VFs
{

m
(

1 + m
p1

)p2
, p1 > 0

}
p2∈N0

, or alternatively, the

corresponding class {ABM(p1, p2)}p2∈N0
of NEFs is composed of an infinitely countable

set of families of counting NEFs supported on the non-negative integers. As special cases,
this class contains the Poisson NEF (p2 = 0), the negative binomial NEF (p2 = 1) and
the Abel NEF (p2 = 2), (c.f., Letac and Mora 1990, p. 31; Bar-Lev and Ridder 2019, for
applications to car accident claims of a Swedish insurance company dataset).

Summarizing, this ABM NEF has the following features:

1. It is a class of counting distributions supported on the non-negative integers;
2. It is overdispersed as V(m)/m > 1;
3. It allows a mean value parameterization in a closed form;
4. It is infinitely divisible, which allows the construction of an exponential dispersion

model (EDM) with dispersion parameter space equal to R+. EDMs are used to
describe the error distribution in generalized linear models (see Jorgensen 1987, 1997);

5. p1 is an unknown parameter to be estimated (see next section). p2 ∈ N0 is a parameter
governing the particular model within the ABM class and is considered to be a
decision variable (note that different values of p2 determine different ABM NEFs).
Accordingly, for given national datasets (i.e., those of US, Ireland and Ukraine), the
goal will be to locate that value of p2, which minimizes a respective RMSE (see in
the sequel). However, due to the rather cumbersome and intractable structure of the
ABM probabilities (or likelihood) in (6) and the fact that the larger the p2, the larger
the number of elements in the summands appearing in (6), no analytic solution for an
optimal p2 is feasible at all for achieving such a goal. Consequently, only numerical
search algorithms are plausible. The search starts with p2 = 0 (the Poisson NEF),
p2 = 1 (the negative binomial NEF), p2 = 2 (the Abel NEF) and so on;

6. As already noted, the ABM class {ABM(p1, p2)}p2∈N0
is composed of infinitely count-

able set of families of counting NEFs supported on the non-negative integers and
thus can also be used to model real datasets by employing the classical frequency
approach (and not only Bayesian). Indeed, the ABM class has been compared in
Bar-Lev and Ridder (2021a, 2021b) with other common counting probability models
(such as Poisson-inverse Gaussian distribution, new logarithmic distribution, an ex-
ponentiated discrete Lindley distribution) for various real count datasets stemming
from automobile insurance claims, marketing, biometry, health, and social sciences
(none of which is related to mortality projections). Members of the ABM counting
class have shown superiority with respect to various metrics for goodness-of-fit tests
(chi-squared test , Akaike information criterion (AIC), root-mean-square error (RMSE)
and Kullback–Leibler divergence (KL)), and provided a much better fit for each of the
datasets considered (more details can be found in Bar-Lev and Ridder 2021b).

3. ABM Based LC Model and its Bayesian Framework

As an alternative to parameter estimation via the singular value decomposition used
in the classical LC model or the MLE in the cases discussed above, we adopt the Bayesian
approach which offers advantages succinctly expressed in Antonio et al. (2015): a. The
calibration and forecast steps are combined, which leads to more consistent estimates of the
period effects; b. The Bayesian approach provides a natural framework for incorporating
parameter uncertainty in mortality forecasts, which is relevant—for example—in the new
insurance regulatory framework of Solvency II. The Bayesian approach allows adequate
handling of small populations and missing data. Like Czado et al. (2005) and Pedroza
(2006), we harness the power of the Markov Chain Monte Carlo (MCMC) methodology to
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estimate the model parameters and execute mortality projection. We note that the interest
in Bayesian solutions in the context of mortality projections has recently gained momentum
(Ellison et al. 2020; Graziani 2020; Hilton et al. 2019; Hunt and Blake 2020; Kogure et al.
2019; Liu et al. 2020; Njenga and Sherris 2020; Wong et al. 2018).

Suppose the number of deaths Dxt in a population at age x and time t is distributed
as follow:

Dxt ∼ ABM(p1, p2)(µxt), µxt = Extmxt, mxt = exp(αx + βxkt),

where

α = (αxmin , · · · , αxmax)
′, β = (βxmin , · · · , βxmax)

′, k = (ktmin , · · · , ktmax).

Bayesian estimation of the unknown parameters α, β, k and p1 are based on the joint
posterior distribution function of α, β, k and p1 given (Ext, Dxt), when x = xmin, xmin +
1, · · · , xmax, t = tmin, tmin + 1, · · · , tmax. The first step in the Bayesian estimation is to
determine the prior probability functions for these parameters.

The prior distribution for kt and θ

Let kt = kt−1 + θ + wt, and let wt ∼ N(0, σ2
w) and hence kt ∼ N(θ, tσ2

w). we as-
sume σ−2

w ∼ gamma(ak, bk) and θ ∼ N(θ0, σ2
θ ). The hyper-parameters θ0, ak, bk and σ2

θ are
arbitrary initial values.

The prior distribution for βx

We assume βx ∼ N(0, σ2
β) ∀ x, where σ−2

β ∼ gamma(aβ, bβ). The hyper-parameters
aβ, bβ are arbitrary initial values.

The prior distribution for αx

We suppose that the prior distribution of αx ∼ N(α0x, σ2
α) ∀ x, where σ−2

α ∼ gamma(aα, bα).
The hyper-parameters α0x, aα and bα are arbitrary initial values.

The prior distribution for p1

We let p1 ∼ gamma(ap1 , bp1). The hyper-parameters ap1 , bp1 are arbitrary initial values.

MH (Metropolis–Hastings) Algorithm for Estimating the Parameters α, β, k and p1

Suppose the Dxt
′s are independent random variables, which are distributed as (6) and

g(Ξ) is the joint prior distribution of the unknown parameters Ξ = (α, β, k,p1)
′. Then, the

posterior distribution of Ξ, given all available data D = {dxt} and p2, can be represented
as follows:

f (Ξ | D, p2) ∝

∏x ∏t exp
[

dxt

(
ln Exrmxt

p1+Extmxt
+ ∑

p2−1
i=1

1
i

pi
1

(p1+Extmxt)

)
+

pp2
1

(p2−1)(p1+Extmxt)
p2−1

]
× g(Ξ).

See Appendix A for the marginal posterior distributions of α, β, k and p1. We now
describe the estimation of α, β, k and p1 using the MH, conditioned on the data and all other
parameters at their respective iterations. The superscript denotes the iteration number of
the parameter of interest.

Estimation of kt using the MH algorithm

Let the marginal posterior distribution of kt be f (kt | D, α, β, k−t, θ, σ2
α , σ2

β, σ2
w, p1). The

estimation of kt, is achieved by the following steps, where.
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1. Draw k∗t from the proposal density function N(k(i)t , σ2
t ), such that σ2

t is assumed known;
2. Calculate the following probability:

Ψ
(

k(i)t , k∗t
)
= min

1,
f (k∗t | D, α, β, k(i)−t, θ, σ2

α , σ2
β, σ2

w, p1)

f (k(i)t | D, α, β, k(i)−t, θ, σ2
α , σ2

β, σ2
w, p1)

,

where k−t = (kt min, . . . , kt−1, kt+1, . . . .kt max)′;
3. Draw a value u from uniform probability function in range U(0, 1) and decide in

accordance with the following formula: i f u ≤ Ψ
(

k(i)t , k∗t
)

then k(i+1)
t = k∗t

i f u > Ψ
(

k(i)t , k∗t
)

then k(i+1)
t = k(i)t ;

.

4. Going over all values of t, we have:

k(i+1) =
(

k(i+1)
tmin

, · · · , k(i+1)
t , k(i)t+1, · · · , k(i)tmax

)′
;

5. Transforming k(i+1) and α(i) to assure identifiably:

k(i+1) − k→ k(i+1), α(i) + β(i)k→ α(i),

where

k =
1
T

(
∑
j≤t

k(i+1)
j + ∑

j>t
k(i)j

)
;

6. Repeat steps 1 to 5.

Estimation of βx using MH algorithm

Let the marginal posterior distribution of βx be f (βx | D, α, β−x, k, θ, σ2
α , σ2

β, σ2
w, p1).

The estimation of βx is achieved by the following steps.

1. Draw β∗x from the proposal density function N(β
(i)
x , σ2

β), such that σ2
β is assumed to

be known;
2. Calculate the following probability:

Ψ
(

β
(i)
x , β∗x

)
= min

1,
f (β∗x | D, α, β

(i)
−x, k, θ, σ2

α , σ2
β, σ2

w, p1)

f (β
(i)
x | D, α, β

(i)
−x, k, θ, σ2

α , σ2
β, σ2

w, p1)

,

where
β−x = (βx min, . . . , βx−1, βx+1, . . . .βx max)

′.

3. Draw a value u from uniform probability function in range U(0, 1) and decide in
accordance with the following formula: i f u ≤ Ψ

(
β
(i)
x , β∗x

)
then β

(i+1)
x = β∗x

i f u > Ψ
(

β
(i)
x , β∗x

)
then β

(i+1)
x = β

(i)
x ;

.

4. Going over all values of x, we have:

β(i+1) =
(

β
(i+1)
xmin , · · · , β

(i+1)
x , β

(i)
x+1, · · · , β

(i)
xmax

)
;′ .
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5. Transforming k(i+1) and β(i+1) to assure identifiably:

β(i+1)

βsum
→ β(i+1), k(i+1) × βsum → k(i+1),

where

βsum =

(
∑
j≤x

β
(i+1)
j + ∑

j>x
β
(i)
j

)
;

6. Repeat steps 1 to 5.

Estimation of αx using MH algorithm

Let the marginal posterior distribution of αx be f (αx | D, α−x, β, k, θ, σ2
α , σ2

β, σ2
w, p1).

The estimation of αx, is achieved by the following steps;

1. Draw α∗x from the proposal density function N(α
(i)
x , σ2

α), such that σ2
α is assumed known;

2. Calculate the following probability:

Ψ
(

α
(i)
x , α∗x

)
= min

1,
f (α∗x | D, α

(i)
−x, β, k, θ, σ2

α , σ2
β, σ2

w, p1)

f (α(i)x | D, α
(i)
−x, β, k, θ, σ2

α , σ2
β, σ2

w, p1)

,

where
α−t = (αx min, . . . , αx−1, αx+1, . . . .αx max)

′;

3. Draw a value u from uniform probability function in range U(0, 1) and decide in
accordance with the following formula: i f u ≤ Ψ

(
α
(i)
x , α∗x

)
then α

(i+1)
x = α∗x

i f u > Ψ
(

α
(i)
x , α∗x

)
then α

(i+1)
x = α

(i)
x ;

.

4. Receiving α(i+1) in (i + 1)th iteration as follows:

α
(i+1)
x =

(
α
(i+1)
xmin , · · · , α

(i+1)
x , α

(i)
x+1, · · · , α

(i)
xmax

)
;

5. Repeat steps 1 to 4.

Estimation of p1 using MH algorithm

Let the marginal posterior distribution of p1 be f (p1 | D, α, β, k, θ, σ2
α , σ2

β, σ2
w), propor-

tional to the product of the likelihood (6) and the gamma prior distribution of p1. The
estimation of p1 is achieved by the following steps;

1. Draw p∗1 from the probability function gamma(αp1 , bp1), such that αp1and bp1 are
hyperparameters and are assumed known;

2. Calculate the following probability:

Ψ
(

p(i)1 , p∗1
)
= min

1,
f (p∗1 | D, α, β, k, θ, σ2

α , σ2
β, σ2

w)

f (p(i)1 | D, α, β, k, θ, σ2
α , σ2

β, σ2
w)

;
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3. Draw a value u from uniform probability function in range U(0, 1) and decide in
accordance with the following formula: i f u ≤ Ψ

(
p(i)1 , p∗1

)
then p(i+1)

1 = p∗1
i f u > Ψ

(
p(i)1 , p∗1

)
then p(i+1)

1 = p(i)1 ;

.

4. Then receiving p(i+1) in (i + 1)th iteration;
5. Repeat steps 1 to 4.

Estimation of θ, σ2
α, σ2

βand σ2
w using the Gibbs sampler

The Gibbs sampler can be used for estimating θ, σ2
α , σ2

β and σ2
w since the marginal

posterior distribution of these parameters can be written explicitly (See: Czado et al. 2005).
The following are the marginal posterior sampling distributions of each of these parameters,
conditioned on the data and all other parameters at their respective iterations.

1. Sampling θ:

The posterior probability function of the parameter θ, is presented as follows:

f (θ | D, α, β, k, σ2
α , σ2

β, σ2
w, p1) = f (θ | k, σ2

α , σ2
β, σ2

w, p1) ∝ f (k | θ, σ2
w) f (θ).

The prior probability function of the parameter θ is N(θ0, σ2
θ ), and the hyper-parameters

θ0 and σ2
θ are set by the user, hence the posterior probability function of the parameter is:

(θ | k, σ2
α , σ2

β, σ2
w) ∼ N

(
θ0σ2

w

Tσ2
θ + σ2

w
,
(

Tσ2
θ + σ2

w

)−1
)

.

2. Sampling σ2
α :

The posterior probability function of the parameter σ2
α is presented as follows:

f (σ2
α | D, α, β, k, θ, σ2

β, σ2
w, p1) ∝ f (α | σ2

α) f (σ2
α).

The prior probability function of the parameter σ2
α such that σ−2

α ∼ gamma(aα, bα),
and the hyper-parameters aα and bα are set by the user, so the posterior probability function
of the parameter is:

(σ−2
α | D, α, β, k, θ, σ2

β, σ2
w, p1) ∼ gamma

(
aα +

xmax

2
, bα +

1
2

xmax

∑
x=xmin

(αx − α)2

)
,

where

α =
1

xmax

xmax

∑
x=xmin

αx.

3. Sampling σ2
β:

The posterior probability function of the parameter σ2
β is presented as follows:

f (σ2
β | D, α, β, k, θ, σ2

α , σ2
w, p1) ∝ f (β | σ2

β) f (σ2
β).

The prior probability function of the parameter σ2
β such that σ−2

β ∼ gamma(aβ, bβ),
and the hyper-parameters aβ and bβ are set by the user, so the posterior probability function
of the parameter is:

(σ−2
β | D, α, β, k, θ, σ2

α , σ2
w, p1) ∼ gamma

(
aβ +

xmax

2
, bβ +

1
2

xmax

∑
x=xmin

(βx)
2

)
.
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4. Sampling σ2
w:

The posterior probability function of the parameter σ2
w, is presented as follows:

f (σ2
w | D, α, β, k, θ, σ2

α , σ2
β, p1) ∝ f (k | σ2

w) f (σ2
w).

The prior probability function of the parameter σ2
w such that σ−2

w ∼ gamma(ak, bk),
and the hyper-parameters ak and bk are set by the user, so the posterior probability function
of the parameter is:

(σ−2
w | D, α, β, k, θ, σ2

α , σ2
β, p1) ∼ gamma

(
ak +

T
2

, bk +
1
2

tmax

∑
t=tmin

(kt − kt−1 − θ)2

)
.

4. Numerical Experiment
4.1. Methods

To test the adequacy of the ABM class, we analyzed mortality data of men in Ireland,
Ukraine and the USA, downloaded from the database of Human Mortality Database
(https://www.mortality.org accessed on 8 March 2013). The data contain the number of
dead and the size of the population exposed to risk by age and year; Ireland’s and the
USA’s data are for 1950–2007, and Ukraine’s data are for 1959–2009. This analysis aims to
examine sixteen models within the ABM class, p2 = 0, . . . , 15, with a particular emphasis on
forecasting the mortality of the oldest-old (see below an argumentation for the restriction
of the values of p2 to {0, . . . , 15}). These models also include the Poisson and negative
binomial models which feature widely in the literature, for which p1 = 0 and p2 = 1,
respectively. Adopting a data mining approach, the models were fitted using training
sets and were examined using test sets. The training sets contained data up to 2000 and
the test sets, aimed at monitoring the quality of predictions, contained data from 2001 to
2007 for Ireland and the USA, and from 2001 to 2009 for Ukraine. Predictions are carried

out with the estimated parameters, ln[mx,t+s] =
∧
αx +

∧
β ∗
∧
kt+s, s = 1, 2, . . . , where model

performance (using the test sets) was checked using the root of the mean squared errors
(RMSE), which was calculated in two ways:

1. Predicting mortality rates (µ) by age. In other words, after model parameters were
estimated, mortality rates were predicted for a given age across years. For instance,
predicting mortality rates for those age 70 was carried out over the years beyond 2000;

2. Predicting mortality rates (µ) by cohort. In other words, after model parameters were
estimated, mortality rates were predicted for a cohort that was at a particular age at
the beginning of the test period. For example, predicted mortality rates in 2001–2007
for a cohort aged 70 in 2001.

For every member of the ABM class (controlled by p2), the Markov chains used to
obtain posterior distributions/parameter estimates comprised 4000 iterations with the first
1000 considered a burn-in period. Convergence was established using graphical means
and a sensitivity analysis ascertained that the choice of arbitrary initial hyper-parameters
did not affect the final outcomes. We report the outcomes for the Poisson distribution
(p2 = 0) and the negative binomial distribution (p2 = 1). In addition, we examined the
ABM members for which p2 ∈ {2, . . . , 15}. We limited our reporting to p2 ∈ {2, . . . , 15}
since, for the data under study, increasing p2 beyond 15 (our study explored all models up
to p2 = 50) did not alter our findings of the optimal p2 for varying ages and resulted in
much larger RMSE than those found up to p2 = 15. In practice, we analyzed all 16 models
within the p2 range and, for each, we estimated p1 as well as all other unknown parameters.
Finally, we reported graphically the RMSE for the Poisson, negative binomial and for the
ABM member which produced the minimal RMSE for various ages.

https://www.mortality.org
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4.2. Results

Figure 1a,b shows Ireland’s mortality projections by age and cohort, respectively.
A superior model for an age range is the one which produced the smallest RMSE. It is
evident that the Poisson performs best for most ages above 70, with the negative binomial
lagging behind. However, at a very old age, the Poisson diverges and the best ABM
member to be chosen instead is ABM(·, p2 = 3). A similar result is shown for the USA
(Figure 2a,b), except that the best ABM for the very old is ABM(·, p2 = 4). A different
picture emerges when we focus on Ukraine’s mortality projections by age and cohort
(Figure 3a,b, respectively). While the Poisson and negative binomial perform well (with
Poisson being better), for ages above 96 (by cohort) or 104 (by age), the negative binomial
drifts away, leaving ABM(·, p2 = 10) to be the winner of the ABM class. Clearly, the
recommended projection policy for Ukraine is to use the Poisson for most ages but to rely
on ABM(·, p2 = 10) for very old ages. Naturally, other countries with their specific national
datasets may yield different ABM models (i.e., different p2’s) for mortality projections.
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Figure 1. RMSE for projecting mortality rate, Ireland, 2001–2007. (a) by age; (b) by cohort.
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Figure 2. RMSE for projecting mortality rate, USA, 2001–2007. (a) by age; (b) by cohort.
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Figure 3. RMSE for projecting mortality rate, Ukraine, 2001–2009. (a) by age; (b) by cohort.

5. Discussion

Several extensions to the LC model assume that the number of deaths is distributed
Poisson or negative binomial. These distributions have offered adequate mortality projec-
tions in several populations reported in the literature. It is not implausible that cases where
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these two failed were not reported. Rather than deciding a priori to choose a particular
distribution, we aimed to enrich the LC model by allowing a richer pool of candidate
distributions. The chosen distribution would be the one providing the best projection for
the population and age range under study. To achieve this goal, we proposed a new class
of counting distributions on the non-negative integers, the ABM class, which belongs to
a wider class of natural exponential families characterized by their variance functions.
This class includes the Poisson and negative binomial distributions which are included in
an infinitely countable set of additional members. A data mining approach was adopted
whereby the model is fitted using a training set and tested using a test set with the RMSE
used to pick the winning model. As an alternative to parameter estimation via the singular
value decomposition (SVD) used in the classical LC model, we adopted Bayesian estima-
tion, harnessing the Markov Chain Monte Carlo (MCMC) methodology. While we do not
suggest that MCMC is superior to SVD (for a comparison of the two, see Ichikawa et al.
2021), we still promote the former since the Bayesian framework frees us from the burden of
calculating the normalizing constant of the ABM. This is indeed a great plus, even though
running the MCMC requires more computer time for the mid-size databases of the kind
used for national mortality projections. We note, however, that the use of MCMC is rather
costly and might fail if the dataset is huge. So, perhaps other Bayesian techniques such as
Variational Bayes can be more helpful. However, employing such a suggestion is beyond
the scope of this paper. We examined ABM models for three countries and established that,
for the countries examined, the commonly adopted Poisson distribution is justified except
for a very old age for which an alternative member of the ABM class offers better projection.
We do not claim that to suggest a superior model. When deciding on an underlying model,
one can adopt as an example the Poisson model or the negative binomial model. Rather
than adopting a model, we suggest adopting a class of models (the ABM) comprising the
Poisson, negative binomial, and numerous other counting distributions. The superiority of
this approach lies in the ability to choose a model amongst candidate models. Since no one
single model necessarily fits every population and every age group well, the ABM class
could allow picking, as an example, the Poisson for members of the population aged under
50, the negative binomial for those aged 50 to 80, and another member of the class to the
oldest-old. The suggested criteria for preferring one member of the class over another is the
mean squared projection errors (RMSE). This advantage is gained at the cost of additional
complexity, which is justified given the financial benefits associated with more accurate
modeling. We conclude that it is no longer appropriate to assume a single distribution for
the whole process of mortality projection. Instead, for every country and every relevant
range of ages, a desirable approach is to pick a member of the ABM class that provides
the best mortality projection. In the numerical study reported here, neither the Poisson
nor the negative binomial distributions adequately serve the very oldest-old and superior
alternatives are within reach in the suggested novel ABM class of distributions.
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Appendix A

Appendix A.1

The marginal posterior probability function of the time index kt is

f (kt | D, α, β, k−t, θ, σ2
α , σ2

β, σ2
w, p1) ∝ f (Dtmin | ktmin , α, β, p1)× f (ktmin | θ, σ2

w)

×∏tmax
j=tmin+1 f (Dj | k j, α, β, p1)× f (k j | k j−1, θ, σ2

w),

where

f (Dt | α, β, kt, p1) =

∏x exp
[

dxt

(
ln Exrµxt

p1+Extµxt
+ ∑

p2−1
i=1

1
i

pi
1

(p1+Extµxt)

)
+

pp2
1

(p2−1)(p1+Extµxt)
p2−1

]
.

For the remaining expressions we distinguish between three cases:

1. For t = tmin, the marginal posterior probability function of the time index kt is:

f (kt | D, α, β, k−t, θ, σ2
α , σ2

β, σ2
w, p1) ∝ f (Dt | α, β, kt, p1)× f (kt | θ, σ2

w)× f (kt+1 | kt, θ, σ2
w),

where

f (kt | θ, σ2
w) = exp

(
− 1

2σ2
w
(kt − θ)2

)
and

f (kt+1 | kt, θ, σ2
w) = exp

(
− 1

2σ2
w
(kt − kt−1 − θ)2

)
.

2. For tmin < t < tmax, the marginal posterior probability function of the time index kt is:

f (kt | D, α, β, k−t, θ, σ2
α , σ2

β, σ2
w, p1) ∝ f (Dt | α, β, kt, p1)

× f (kt | kt−1, θ, σ2
w)× f (kt+1 | kt, θ, σ2

w),

where

f (kt | kt−1, θ, σ2
w) = exp

(
− 1

2σ2
w
(kt − kt−1 − θ)2

)
and

f (kt+1 | kt, θ, σ2
w) = exp

(
− 1

2σ2
w
(kt+1 − kt − θ)2

)
.

3. For t = tmax, the marginal posterior probability function of the time index kt is:

f (kt | D, α, β, k−t, θ, σ2
α , σ2

β, σ2
w, p1) ∝ f (Dt | α, β, kt, p1)× f (kt | kt−1, θ, σ2

w),

where

f (kt | kt−1, θ, σ2
w) = exp

(
− 1

2σ2
w
(kt − kt−1 − θ)2

)
.

Appendix A.2

The marginal posterior probability function of βx is

f (βx | D, α, β−x, k, θ, σ2
α , σ2

β, σ2
w, p1)

∝ ∏xmax
j=xmin

f (Dj | α, β j, k, p1)× f (β j) ∝ f (Dx | α, βx, k, p1)× f (βx),

where

f (Dx | α, βx, k, p1) =

∏t exp
[

dxt

(
ln Exrµxt

p1+Extµxt
+ ∑

p2−1
i=1

1
i

pi
1

(p1+Extµxt)

)
+

pp2
1

(p2−1)(p1+Extµxt)
p2−1

]
,
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and

f (βx) = exp

(
− 1

2σ2
β

(βx)
2

)
.

Appendix A.3

The marginal posterior probability function of αx is

f (αx | D, α−x, β, k, θ, σ2
α , σ2

β, σ2
w, p1)

∝ ∏xmax
j=xmin

f (Dj | αj, β, k, p1)× f (αj) ∝ f (Dx | αx, β, k, p1)× f (αx),

where

f (Dx | αx, β, k, p1) =

∏t exp
[

dxt

(
ln Exrµxt

p1+Extµxt
+ ∑

p2−1
i=1

1
i

pi
1

(p1+Extµxt)

)
+

pp2
1

(p2−1)(p1+Extµxt)
p2−1

]
,

and

f (βx) = exp
(
− 1

2σ2
α
(αx − α0x)

2
)

.
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