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Abstract: Special-rate life annuities are life annuity products whose single premium is based on
a mortality assumption driven (at least to some extent) by the health status of the applicant. The
health status is ascertained via an appropriate underwriting step (which explains the alternative
expression “underwritten life annuities”). Better annuity rates are then applied in presence of poor
health conditions. The worse the health conditions, the smaller the modal age at death (as well as
the expected lifetime), but the higher the variance of the lifetime distribution. The latter aspect is
due to significant data scarcity as well as to the mix of possible pathologies leading to each specific
rating class. A higher degree of (partially unobservable) heterogeneity inside each sub-portfolio of
special-rate annuities follows, and this results in a higher variability of the total portfolio payout.
The present research aims at analyzing the impact of extending the life annuity portfolio by selling
special-rate life annuities. Numerical evaluations have been performed by adopting a deterministic
approach as well as a stochastic one, according to diverse assumptions concerning both lifetime
distributions and portfolio structure and size. Our achievements witness the possibility of extending
the annuity business without taking huge amounts of risk. Hence, the risk management objective
“enhancing the company market share” can be pursued without significant worsening of the annuity
portfolio risk profile.

Keywords: life annuities; standard annuities; underwritten annuities; enhanced annuities; impaired
annuities; preferred risks; substandard lives

1. Introduction and Motivation

Considerable attention is currently being devoted in insurance work (and, in particular,
in the actuarial work) to the management of life annuity portfolios and to the annuity
product design, because of the growing importance of annuity benefits paid by private
pension schemes and individual policies.

In particular, the progressive shift in many countries from defined benefit to defined
contribution pension schemes has increased the interest in life annuity products with a
guaranteed periodic benefit. Nevertheless, various “weak” features of the (standard) life
annuities should be noted, looking at the product from both the annuity provider’s and the
customer’s perspective.

However, many features can be improved by moving from traditional products to
more complex products, for example, by adding riders (that is, supplementary benefits), or
by adopting restrictions on the age intervals covered, or by allowing for individual risk
factors; hence, “tailoring” the annuity rates (at least to some extent) to specific features of
the customer.

Special-rate life annuities are life annuity products whose single premium is based on
a mortality assumption driven by the health status of the applicant. The health status is
ascertained via an appropriate underwriting step (which explains the alternative expression
“underwritten life annuities”). Better annuity rates are then applied in presence of poor
health conditions. The worse the health conditions, the smaller the modal age at death (as
well as the expected lifetime), but the higher the variance of the lifetime distribution. The
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latter aspect is due to significant data scarcity as well as to the mix of possible pathologies
leading to each specific rating class. A higher degree of (partially unobservable) heterogene-
ity inside each sub-portfolio of special-rate annuities follows, and this results in a higher
variability of the total portfolio payout. By selling special-rate annuities, on the one hand,
a higher premium income can be expected, and on the other, a higher variability of the
portfolio payout must be faced. What about the “balance”? Our achievements witness the
possibility of extending the annuity business without taking huge amounts of risk. Hence,
the risk management objective “enhancing the company market share” can be pursued
without significant worsening of the annuity portfolio risk profile.

Diverse input data might lead to worse risk profiles. An appropriate sensitivity testing
can then help in checking risk profile changes. Assuming the extension of the life annuity
business as the insurer’s target, the present paper aims at providing a simple technical tool
for assessing how and to what extent selling special-rate annuities impacts the portfolio risk
profile. The structure of the proposed tool arises from a trade-off between strictly pragmatic
approaches (frequently adopted in current actuarial practice) and rigorous mathematical
settings (which may result in implementation difficulties, notably because of data scarcity).

The remainder of the paper is organized as follows. A compact literature review is
provided in Section 2, while Section 3 describes the main products in the area of special-rate
annuities. Biometric assumptions underlying the assessment of portfolio risk profiles are
defined and commented in Section 4. In Section 5, portfolio structures are specified in terms
of sub-portfolio sizes; then, results of interest, which can express the portfolio risk profile,
are defined. Our main achievements are discussed in Sections 6 and 7 where numerical
results obtained by adopting a deterministic and a stochastic approach are respectively
presented. Finally, Section 8 concludes the paper.

2. Literature Review

The main features of life annuity products are discussed in many life insurance and
actuarial textbooks. A presentation of basic actuarial models for premium and reserve
calculations for life annuities as well as a discussion of possible innovations in life annuity
products are provided by Pitacco (2021).

Heterogeneity in mortality and risk classification constitute the natural frameworks in
which the basic features of special-rate life annuities can be analyzed. Risk classification in
life insurance and life annuities is addressed in many books and papers; a compact review,
together with an extensive reference list, is provided by Haberman and Olivieri (2014).
The impact of risk classification on the structure of life annuity portfolios is dealt with by
Gatzert et al. (2012), Hoermann and Russ (2008) and Olivieri and Pitacco (2016).

The impact of heterogeneity on portfolio results and the consequent capital require-
ments are analyzed by Denuit and Frostig (2006). More specifically, Denuit and Frostig
(2007) focusses on heterogeneity among lifetimes in the context of stochastic mortality
according to the Lee-Carter model.

Heterogeneity in mortality is due to both observable and unobservable risk factors.
The reader can refer to Pitacco (2019) for a literature review from an actuarial perspective,
as well as for a discussion of models, which can be used to represent specific mortality rates
accounting for observable risk factors.

Special-rate life annuities are described in various papers and technical reports: see,
in particular Ainslie (2000), Drinkwater et al. (2006), Ridsdale (2012) and Rinke (2002).
The article by Edwards (2008) is specifically devoted to life annuity rating based on the
postcode (that is, a proxy for social class and location of housing).

An interesting analysis of market issues related to special-rate annuities is presented
by Gatzert and Klotzki (2016), where barriers on the supply side and the demand side are
in particular addressed. Practical aspects of pricing special-rate life annuities are dealt with
by Gracie and Makin (2006) and James (2016).

Special-rate annuities in the context of new product development (NPD) processes are
addressed in Chapter 9 of Pitacco (2020). In particular, the NPD according to the structure
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of the risk management process and the logic of the Stage-Gate® process is described and
commented on1.

Underwriting for special-rate life annuities can be implemented in a number of ways,
and several classifications can be conceived. An interesting classification has been proposed
by Rinke (2002), and summarized in Chapter 9 of Pitacco (2021).

Statistics regarding extra-mortality by various causes are beyond the scope of this
paper. Here, we only cite the contribution by Weinert (2006), which has suggested some
baseline choices for the lifetime distributions. For a list of references the reader can refer to
Pitacco and Tabakova (2020).

3. The Products

The terminology adopted in the technical literature to denote the various types of
special-rate annuities is not univocally defined. For example, the term “enhanced annuity”
is frequently used in the wider sense of all life annuities where, given the single premium,
the annual benefit is of a higher level than the standard, due to some customer’s char-
acteristics (health, lifestyle, etc.). In what follows, we refer to the terminology originally
adopted to define special-rate annuities, which are sold in the UK market (see Ridsdale
2012). The same terminology has also been adopted in the book (Pitacco 2021), from which
the following descriptions have been taken.

The following special-rate annuities are sold in several markets.

1. Given the single premium amount, a lifestyle annuity pays out benefits higher than
a standard life annuity because of risk factors (e.g., smoking and drinking habits,
marital status, occupation, height and weight, blood pressure and cholesterol levels),
which might result, to some extent, in a shorter life expectancy. Specific lifestyle
annuities are the following ones.

(a) Smoker life annuities: if the applicant has smoked at least a given number of
cigarettes for a certain number of years, then they are eligible for a smoker
annuity.

(b) Mortality differences between married and unmarried individuals underpin
the use of special rates in pricing the unmarried lives annuities. The observed
higher mortality rates of unmarried individuals justify a higher annuity rate.

2. The enhanced life annuity pays out an income to a person with a reduced life expectancy,
in particular because of a personal history of medical conditions. Of course, the
“enhancement” in the annuity benefit (compared to a standard-rate life annuity, same
premium) comes from the use of a higher mortality assumption.

3. The impaired life annuity pays out a higher income than an enhanced life annuity, as
a result of medical conditions which significantly shorten the life expectancy of the
annuitant (e.g., diabetes, chronic asthma, cancer, etc.).

4. Finally, care annuities are aimed at individuals with very serious impairments or
individuals who are already in a senescent-disability (or long-term care) state. These
annuities are frequently placed in the context of long-term care insurance products,
and labeled as providing benefits “in point of need” (see, for example, Pitacco 2014).

Thus, moving from type 1 to type 4 results in progressively higher mortality assump-
tions, shorter life expectancy, and hence, for a given single premium amount, in higher
annuity benefits. Of course, an insurer can decide to offer a more limited set of products.

The applicant’s health status and, notably, the presence of past or current diseases
is explicitly considered in the special-rate annuities of types 2, 3 and 4. Various factors
concerning the health status can be accounted for, and medical ascertainment is of course
required. In particular, the underwriting process for impaired-life annuities and care annu-
ities must result in classifying the applicant as a substandard risk, because of ascertainment
of significant extra-mortality. For this reason, annuities of types 3 and 4 are sometimes
named substandard life annuities.
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The above list of special-rate annuity types can be completed by the postcode life
annuities, which constitute an interesting example of “environment-based” rating. The
postcode can provide a proxy for social class and location of housing; that is, risk factors
that may have a significant impact on the lifestyle and hence on the life expectancy. Then,
its use as a rating factor for pricing life annuities can be justified.

4. The Mortality Model

To assess present values (that is, random present values and expected present values)
of benefits paid by special-rate annuities, a model quantifying the mortality of annuitants
(standard annuitants and special-rate annuitants) must be chosen. The following aspects
must be considered in particular:

• Heterogeneity in mortality inside the (total) life annuity portfolio (see Sections 4.1
and 4.2);

• Possible future mortality trends (see Section 4.1);
• The individual age-pattern of mortality (see Section 4.2).

4.1. General Aspects

A higher degree of heterogeneity in mortality affects a life annuity portfolio also
including special-rate annuities, with respect to a standard annuity portfolio. As is well
known, heterogeneity may be due to both observable and unobservable risk factors, which
imply diverse modeling choices. In the case of a life annuity portfolio, the practical problem
is: to what extent the underwriting process can detect, for each applicant, the outcomes
of the risk factors that entitle the individual to purchase a special-rate annuity? Even a
rigorous underwriting process can leave some degree of “residual” heterogenity inside
each special-rate class, because:

• Some risk factors are unobservable;
• Diverse pathologies entitle one to the same annuity rate.

Given that some degree of heterogeneity inside each risk class is unavoidable, the
problem is how to model its impact on the individual age-pattern of mortality. We focus on
the two following choices.

The modeling of heterogeneity in mortality due to unobservabke risk factors has found
an elegant and rigorous solution in the concept of (constant) frailty, initially described by
Beard (1959), but formally defined by Vaupel et al. (1979). A well known implementation
of frailty modeling leads to the so-called Gompertz–Gamma model, which results in one of
the Perks laws (see Perks 1932). A number of generalizations of the concept of frailty have
been proposed, in particular looking at possible dynamic features of the individual frailty
(a survey is presented, for example, by Pitacco 2019).

Frailty modeling to express heterogeneity in mortality has been adopted by various
Authors: see, for example, Denuit and Frostig (2007), and, in the context of special-rate
annuities, by Olivieri and Pitacco (2016).

Given the practical difficulties in calibrating the frailty model, the paper by Olivieri
and Pitacco (2016) specifically aims at assessing, via sensitivity analysis, the impact of
diverse assumptions for the frailty parameter values (notably, the Gamma parameters) on
portfolio results of interest.

A simpler choice can conversely consist in implicitly expressing the presence of het-
erogeneity in mortality by directly assuming a higher variance in the individual lifetime
distribution, as suggested by statistical data analyzed by various Authors (see, for example,
Weinert 2006), that is, the stronger the assumed degree of heterogeneity, the higher the
variance. If a mortality law is chosen to express the individual age-pattern of mortality, a
sensitivity analysis can be performed also in this setting.

As far as the future mortality trends are concerned, the following aspects can be
singled out:
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• An assumed future mortality trend can be taken into account by adopting projected
life tables or projected mortality laws;

• Representing uncertainty in future mortality trend, which implies systematic risk (that
is, the aggregate longevity risk), calls for the use of stochastic mortality models.

In what follows, we express heterogeneity inside each rating class via the variance of
the individual lifetime distribution (see Section 4.2). We disregard systematic longevity
risk, as heterogeneity mainly affects the idiosyncratic risk in each rating class; that is, the
risk of random fluctuations around the expected value.

Assumptions regarding the relations among individual lifetimes must supplement the
mortality model. Given the above hypotheses, in what follows we assume that individual
lifetimes are independent random variables. While this is, of course, a simplifying assump-
tion, correlation among lifetimes could be assumed, in particular to express uncertainty
about future mortality trends in the context of a stochastic mortality model. Conditional
independence would replace, in that case, the independence assumption.

4.2. Age Pattern of Mortality

Three (hypothetical) curves showing expected number dx of deaths between exact
age x and x + 1 out of a notional cohort of 100,000 individuals are shown in Figure 1. We
recall that the expected numbers of deaths are proportional to the values of the probability
density function in the time-continuous context defined below.

0

2000

4000

6000

0 25 50 75 100

Age

d
x

Impaired annuity

Enhanced annuity

Standard annuity

Figure 1. Curves of deaths for different life annuities.

The worse the health conditions, the smaller the modal age at death (as well as the life
expectancy), but the higher the variance of the lifetime distribution. The latter aspect is due
to the mix of possible pathologies leading to each specific individual classification (and also
due to data scarcity). A higher degree of (partially unobservable) heterogeneity in mortality
follows, inside each sub-portfolio of special-rate annuities. However, this heterogeneity can
be reduced by restricting the range of pathologies that entitle one to a special-rate annuity,
then making the relevant sub-portfolio more homogeneous.
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It is also worth noting that most of the available mortality statistics refer to specific
sets of pathologies (e.g., diabetes), rather than to broad sets of diseases. Splitting a class
of special-rate annuities (for example, the impaired life annuities) into pathology-related
subclasses can, hence, be an appropriate choice.

To describe the age patterns of mortality in quantitative terms, appropriate life ta-
bles can be chosen. However, the use of a mortality law (in particular a “simple” law)
significantly eases the implementation of a sensitivity analysis, which can be performed
by assigning diverse values to the relevant parameters. In line with the main purpose of
life annuities, that is, providing a post-retirement income, adult and old ages have only
been addressed in what follows. Then, the Gompertz law has been used to express the
age-pattern of mortality. Parameter values have been chosen to represent the features of
the curves of deaths, as described in Section 4.1.

In terms of the force of mortality, µx, the Gompertz law is as follows:

µx = B cx, with B, c > 0 (1)

Instead of referring to the usual parametrization in (1), we refer to the “informative”
parametrization (see, for example, Carriere 1992), that is:

µx =
1
D

exp
( x−M

D

)
, with M, D > 0 (2)

where M denotes the mode of the Gompertz probability density function and D a measure
of dispersion. Relations with the usual parameters are as follows:

c = exp
( 1

D

)
(3)

B =
exp

(
− M

D

)
D

(4)

Sensitivity analysis can simply be performed by assigning values to the mode parame-
ter M and the dispersion parameter D (as described in Sections 6.2 and 7.2).

It can be proved that the elements of the corresponding life table {`x}, with `0 =
100,000, are given by the following expression:

`x = 100,000× exp
(

exp
(
− M

D

)
− exp

( x−M
D

))
(5)

From the life table {`x}, all the biometric functions of interest (e.g., dx, qx, etc.) can
immediately be derived.

As already noted, the shape of the lifetime distribution can be driven by choosing
specific values Mk and Dk for the parameters of Equation (2). The (baseline) parameter
values shown in Table 1 determine the curves of death plotted in Figure 1. We note that the
choice of the parameter values is only aimed at performing a sensitivity analysis and does
not reflect real statistical data.

Table 1. Parameters of the Gompertz law.

Rating Class k Mk Dk

Standard 1 90 5
Enhanced 2 80 8
Impaired 3 70 13

5. The Actuarial Model

After defining the portfolio structures used in the various evaluations, we define the
quantities referred to in the deterministic and the stochastic assessments.
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5.1. Portfolio Structures

We will consider a life annuity portfolio P generally consisting of three sub-portfolios:

• Sub-portfolio SP1 initially consisting of n1 standard life annuities;
• Sub-portfolio SP2 initially consisting of n2 enhanced life annuities;
• Sub-portfolio SP3 initially consisting of n3 impaired life annuities.

Of course, one of the nk can be set equal to 0. Let n denote the size of the portfolio P,
that is:

n = n1 + n2 + n3

Assumptions underlying the actuarial model are as follows:

• The lifetime distribution for annuitants in the sub-portfolio SPk follows the Gompertz
law with parameters Mk and Dk, k = 1, 2, 3 (see Section 4.2);

• All the annuitants are age x at policy issue;
• The individual lifetimes in each sub-portfolio and in the portfolio P are independent

random variables;
• The same benefit b is paid by all the life annuity policies;
• Each sub-portfolio is closed to new entries (and hence consists of a generation of policies).

5.2. Actuarial Values

Our ultimate object is to analyze the behavior of various quantities defined as functions
of n1, n2, n3, in particular: expected value, variance and coefficient of variation (risk index)
of the portfolio payouts.

To this purpose, we first recall the basic formulae for a life annuity-immediate, with
benefit b = 1 paid to an individual age x at policy issue and assigned to sub-portfolio SPk.

The expected present value (shortly, the actuarial value) of the annual benefits paid to
the individual is given (according to the traditional actuarial notation) by:

a(k)x =
ω−x

∑
h=1

ahe h|1q(k)x (6)

where:

• ω denotes the maximum attainable age;

• ahe =
1−(1+i)−h

i is the present value of an annuity-certain, with i denoting the interest
rate used for discounting;

• h|1q(k)x =
`
(k)
x+h−`

(k)
x+h+1

`
(k)
x

is the probability of a person age x dying between age x + h and

x + h + 1, according to the biometric model with parameters Mk and Dk.

For example, with the parameter values given in Table 1 and x = 65, Equation (6)
yields:

a(1)65 = 17.29

a(2)65 = 11.00

a(3)65 = 8.20

The variance of the present value of the annual benefits is given by:

σ
2(k)
x =

ω−x

∑
h=1

a2
he h|1q(k)x −

(
a(k)x

)2
(7)

For example, with the above data, from Equation (7) we obtain:



Risks 2022, 10, 65 8 of 22

σ
2(1)
65 = 16.858

σ
2(2)
65 = 26.436

σ
2(3)
65 = 27.446

We denote with E(k)(nk) and Var(k)(nk) the expected value and the variance of the
benefit payouts of sub-portfolio SPk. Assuming a benefit b = 1, we obviously have:

E(k)(nk) = nk a(k)x ; k = 1, 2, 3 (8)

and, thanks to the assumption of independence among the individual lifetimes:

Var(k)(nk) = nk σ
2(k)
x ; k = 1, 2, 3 (9)

For a generic portfolio P, consisting of n = n1 + n2 + n3 policies, we then find:

E(n1, n2, n3) =
3

∑
k=1

E(k)(nk) (10)

Var(n1, n2, n3) =
3

∑
k=1

Var(k)(nk) (11)

5.3. The Risk Index

The risk index (or coefficient of variation) is a relative risk measure that expresses the
variability of a random quantity in terms of standard deviation per unit of expected value.
It is frequently adopted in risk theory and risk management to assess the so-called pooling
effect, that is, the diversification effect which is achieved by constructing a pool of risks.

For a generic portfolio P, the risk index ρ is defined as follows:

ρ(n1, n2, n3) =

√
Var(n1, n2, n3)

E(n1, n2, n3)
(12)

We note that ρ is a unit-free risk measure.

5.4. Cash Flows

Annual cash flows are, of course, random quantities. For the generic sub-portfolio
SPk, the random cash flow, that is the sub-portfolio payout, at time t, Xk(t), depends on
the number Nk(t) of annuitants alive at that time (out of the initial nk), and is of course
given by:

Xk(t) = b Nk(t); k = 1, 2, 3 (13)

Referring to a generic portfolio P, consisting of three sub-portfolios, the total payout
at time t is then given by:

X(t) =
3

∑
k=1

Xk(t) (14)

6. Portfolio Risk Profiles: Deterministic Approach

In this Section, we first assess the impact, in terms of the risk index, of the portfolio
structure on the portfolio risk profile. Biometric assumptions are as specified in Section 4.2,
with parameter values given in Table 1 (if not otherwise stated).

We then assess the impact, again in terms of the risk index, of diverse biometric
assumptions.
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6.1. Impact of the Portfolio Structure
6.1.1. Cases 1.1

We analyze the impact of the size of the sub-portfolio SP2 of enhanced annuities. Then:

n1 = 10,000

n2 = 100, 200, . . . , 1000

n3 = 0

Results are shown in Table 2.

Table 2. Cases 1.1—Impact of the portfolio structure on the risk index.

Portfolio n2 ρ(10,000, n2, 0)

P01 100 0.002378268
P02 200 0.002381505
P03 300 0.002384564
P04 400 0.002387452
P05 500 0.002390176
P06 600 0.002392740
P07 700 0.002395152
P08 800 0.002397415
P09 900 0.002399535
P10 1000 0.002401517

6.1.2. Cases 1.2

We analyze the impact of the size of the sub-portfolio SP3 of impaired annuities. Then:

n1 = 10,000

n2 = 0

n3 = 100, 200, . . . , 1000

Results are shown in Table 3.

Table 3. Cases 1.2—Impact of the portfolio structure on the risk index.

Portfolio n3 ρ(10,000, 0, n3)

P01 100 0.002382799
P02 200 0.002390524
P03 300 0.002398028
P04 400 0.002405318
P05 500 0.002412401
P06 600 0.002419283
P07 700 0.002425969
P08 800 0.002432465
P09 900 0.002438776
P10 1000 0.002444908

6.1.3. Cases 1.3

We assume that both enhanced annuities and impaired annuities are sold (together
with standard annuities), and analyze the joint impact by assuming that n3 = n2/2. Then:

n1 = 10,000

n2 = 500, 600, . . . , 1000

n3 = 250, 300, . . . , 500

Results are shown in Table 4.
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Table 4. Cases 1.3—Impact of the portfolio structure on the risk index.

Portfolio n2 n3 ρ(10,000, n2, n3)

P01 500 250 0.002407197
P02 600 300 0.002412496
P03 700 350 0.002417448
P04 800 400 0.002422070
P05 900 450 0.002426375
P06 1000 500 0.002430381

6.1.4. Cases 1.4

The launch of special-rate annuities might negatively impact on the sale of standard
annuities (the so called “cannibalization effect”). To analyze this aspect in terms of portfolio
risk profile, we assume that one half of the enhanced annuity sales (sub-portfolio SP2) are
“subtracted” from the standard annuity business (sub-portfolio SP1). Then, we consider
portfolios with the following sub-portfolio sizes:

n1 = 10,000− n2

2
n2 = 500, 600, . . . , 1000

n3 =
n2

2
= 250, 300, . . . , 500

Furthermore, it is reasonable to assume that, in case of a cannibalization effect, the mortality
in the standard annuity sub-portfolio improves. To represent this aspect, we assume
M1 = 91 (instead of M1 = 90). Results are shown in Table 5.

Table 5. Cases 1.4—Impact of the portfolio structure on the risk index.

Portfolio n1 n2 n3 ρ(n1, n2, n3)

P01 9750 500 250 0.002340041
P02 9700 600 300 0.002352541
P03 9650 700 350 0.002364783
P04 9600 800 400 0.002376774
P05 9550 900 450 0.002388521
P06 9500 1000 500 0.002400030

6.1.5. Some Comments

When considering a given set of cases, the size of subportfolios and structure of the
total portfolio change, and this of course impacts both the numerator and denominator of
the risk index. Hence, the analysis of the risk index values in the various portfolio structures
provides interesting information. We note that, in all the sets of cases we have considered,
the range of values assumed by the risk index is very narrow. From a mathematical
perspective, this is the straight consequence of a higher variability in terms of standard
deviation (the numerator of fraction (12)) offset, to a large extent, by a higher expected value
(the denominator), and, in practice, a higher volume of premiums. Therefore, the almost
constant value of the risk index witnesses this offset. A wider range of values (anyway very
limited) can be noted as the effect of the number of impaired annuities: see, for example,
the set of cases 1.2, where the increase in the risk index is equal to 2.6%, compared to the
set 1.1 where the increase is smaller than 1%.

The presence of special-rate annuities impacts on the standard annuity portfolios,
in particular, in terms of the lifetime distribution of standard annuitants. This has been
considered in Section 6.1.4 by increasing the modal age at death from 90 to 91, then
increasing the expected value of benefits paid by standard annuities. It is worth noting
that a (reasonable) impact on standard annuity premiums should follow, and this might, in
turn, impact the demand of standard annuities. Further interesting results, regarding the
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variability of the annual payouts, can be achieved via stochastic analysis and are presented
in Section 7.

6.2. Impact of Lifetime Distributions

Given the uncertainty in biometric assumptions, a sensitivity analysis is appropriate.
While keeping unchanged the parameters Mk (representing the modal age at death), we
propose diverse assumptions regarding the dispersion of the lifetime distributions, which
might more heavily impact on the portfolio risk profile. Hence, various values of the
parameters Dk are considered.

Figure 2 shows the graphs of the lifetime distribution for enhanced annuities, corre-
sponding to different values of dispersion (parameter D) while keeping the same modal
value (parameter M).

0

2500

5000

7500

0 25 50 75 100

Age

d
x

Enhanced (80,4)

Enhanced (80,8)

Enhanced (80,12)

Figure 2. Three assumptions on lifetime dispersion for enhanced annuities.

6.2.1. Cases 2.1

We consider a portfolio only consisting of standard annuities and enhanced annuities,
with given sub-portfolio sizes. Hence:

n1 = 10,000

n2 = 1000

n3 = 0

We analyze the impact of diverse assumptions on the dispersion of lifetimes in sub-portfolio
SP2. Then:

D2 = 4, 5, . . . , 13

(while keeping D1 = 5). Results are shown in Table 6.
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Table 6. Cases 2.1—Impact of the lifetime distribution on the risk index.

Portfolio D2 ρ(10,000, 1000, 0)

P01 4 0.002315649
P02 5 0.002341998
P03 6 0.002364379
P04 7 0.002383918
P05 8 0.002401517
P06 9 0.002417793
P07 10 0.002433146
P08 11 0.002447834
P09 12 0.002462022
P10 13 0.002475816

6.2.2. Cases 2.2

We consider a portfolio only consisting of standard annuities and impaired annuities,
with given sub-portfolio sizes. Hence:

n1 = 10,000

n2 = 0

n3 = 1 000

We analyze the impact of diverse assumptions on the dispersion of lifetimes in sub-portfolio
SP3. Then:

D3 = 11, 12, . . . , 15

Results are shown in Table 7.

Table 7. Cases 2.2—Impact of the lifetime distribution on the risk index.

Portfolio D3 ρ(10,000, 0, 1000)

P01 11 0.002422885
P02 12 0.002433728
P03 13 0.002444908
P04 14 0.002456358
P05 15 0.002468019

6.2.3. Cases 2.3

We consider a portfolio consisting of standard annuities, enhanced annuities and
impaired annuities, with given sub-portfolio sizes. Hence:

n1 = 10,000

n2 = 1000

n3 = 500

We analyze the joint impact of diverse assumptions on the dispersion of lifetimes in both
sub-portfolios SP2 and SP3. To this purpose, we assume:

D2 = D3 = 4, 5, . . . , 13

We note that lower dispersions can be achieved by restricting the range of pathologies,
which entitle the purchase of enhanced annuities and impaired annuities. Results are
shown in Table 8.
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Table 8. Cases 2.3—Impact of the lifetime distributions on the risk index.

Portfolio D2 = D3 ρ(10,000, 1000, 500)

P01 4 0.002360437
P02 5 0.002366549
P03 6 0.002373800
P04 7 0.002382362
P05 8 0.002392205
P06 9 0.002403223
P07 10 0.002415280
P08 11 0.002428234
P09 12 0.002441949
P10 13 0.002456293

6.2.4. Some Comments

Although dispersion in lifetime distributions does affect the risk profile of the annuity
portfolio, the sensitivity analysis we have performed witnesses a rather limited impact
on the risk index. We note that, of course, the broadest range of risk index values can be
found when a portfolio consisting of standard annuities, enhanced annuities and impaired
annuities is addressed, and for both the types of special-rate annuities higher values for the
dispersion parameter are considered.

7. Portfolio Risk Profiles: Stochastic Approach

Deterministic assessments performed in Section 6 only provide values of specific
markers, notably the risk index. To obtain better insights into the risk profile of a portfolio,
stochastic assessments are required. To this purpose, stochastic (Monte Carlo) simulation
procedures are commonly adopted.

As we focus on the biometric features of the various portfolios, simulation of the
numbers of survivors, that is Nk(t), k = 1, 2, 3 and t = 1, 2, . . . , is only needed. Then, via
Equations (13) and (14), the simulated outcomes of the payouts and, finally, the relevant
(empirical) distributions are obtained. Consistent with the approach adopted in Section 6,
we assume that all the assessments are performed at time t = 0, and hence our information
is given by the initial sizes of the sub-portfolios, that is, n1, n2 and n3.

The following Sections 7.1 and 7.2 are organized similarly to Sections 6.1 and 6.2,
respectively, but with a reduction in the number of cases analyzed.

Besides “descriptive” results in terms of (empirical) distributions of the annual payouts,
the stochastic approach can also yield “operational” results: an example is provided in
Section 7.3, where amounts of assets are calculated, which are needed to meet the annual
payouts with an assigned probability.

7.1. Impact of the Portfolio Structure

As already noted, we follow the organization in the cases adopted in Section 6.1,
although reducing the number of alternatives.

7.1.1. Cases 1.1

We analyze the impact of the size of the sub-portfolio SP2 of enhanced annuities. Then:

n1 = 10,000

n2 = 100, 500, 1000

n3 = 0

Empirical distributions at times 5 and 10 of the portfolio payout, that is, empirical distri-
butions of X(5) and X(10), are sketched in Figures 3 and 4, where the three portfolios are
denoted by P01, P02 and P03, respectively.
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Figure 3. Impact of the number of enhanced annuities: empirical distributions of the annual benefit
payout at time t = 5.
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Figure 4. Impact of the number of enhanced annuities: empirical distributions of the annual benefit
payout at time t = 10.
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7.1.2. Cases 1.4

To assess the impact of a possible cannibalization effect, we consider three portfolios
with the following sub-portfolio sizes:

n1 = 10,000− n2

2
n2 = 500, 800, 1000

n3 =
n2

2
= 250, 400, 500

As previously noted, to represent an improvement in mortality in the standard annuity
sub-portfolio, we assume M1 = 91 (instead of M1 = 90). Empirical distributions of the
portfolio payout X(5) and X(10) are sketched in Figures 5 and 6, respectively, where the
three portolios are denoted by P01, P02 and P03.
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Figure 5. Impact of cannibalization effect: empirical distributions of the annual benefit payout at
time t = 5.
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Figure 6. Impact of cannibalization effect: empirical distributions of the annual benefit payout at
time t = 10.

7.1.3. Some Comments

Results are self-explanatory, and in line with the findings in the deterministic setting:
the larger the (initial) number of enhanced annuities in Cases 1.1, the higher the dispersion
in the annual payouts. The same effect is, of course, witnessed by the distributions of
payouts in Cases 1.4, where presence of both enhanced annuities and impaired annuities
is assumed.

7.2. Impact of the Lifetime Distribution

To assess the impact of uncertainty in biometric assumptions, we only analyze the
Cases 2.1 considered in Section 6.2.

7.2.1. Cases 2.1

We consider a portfolio only consisting of standard annuities and enhanced annuities,
with given sub-portfolio sizes. Hence:

n1 = 10,000

n2 = 1000

n3 = 0

We analyze the impact of diverse assumptions on the dispersion of lifetimes. Then:

D2 = 4, 6, 8, 10, 12

(while keeping D1 = 5). Empirical distributions of the portfolio payout X(5) and X(10) are
sketched in Figures 7 and 8, where the portfolios are respectively denoted by P01, . . . , P05.
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Figure 7. Impact of different dispersion parameters: empirical distributions of the total payout at
time t = 5.
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Figure 8. Impact of different dispersion parameters: empirical distributions of the total payout at
time t = 10.
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7.2.2. Some Comments

These results are self-evident: a larger dispersion in the lifetime distribution of an-
nuitants with enhanced annuity implies a larger dispersion in the total portfolio payout
(compare, in particular, distributions in portfolio P05 and P01. Moreover, for all the portfo-
lios, dispersions increase with time (compare the distributions in Figure 7 to the ones in
Figure 8).

7.3. Meeting the Annual Payouts

Appropriate resources must be assigned to the portfolio in order to meet the annual
payouts with a high probability. Diverse criteria can be adopted to quantify the above
resources which, whatever the criterion adopted, will partly be provided by single premi-
ums cashed at policies issued (via decumulation of the portfolio reserve) and partly by
shareholders’ capital allocated to the portfolio. In what follows, we focus on the annual
total amount of resources needed, disregarding the funding source.

7.3.1. The Percentile Principle

Referring to a generic portfolio and the relevant cash flows, we recall that X1(t),
X2(t), X3(t) denote the random payouts at time t, related to standard annuities, enhanced
annuities and impaired annuities, respectively (see Section 5.4), and:

X(t) = X1(t) + X2(t) + X3(t) (15)

denotes the portfolio total payout at time t.
We adopt the percentile principle. Hence, we have to find, for t = 1, 2, . . . , the amount

A(t) such that:
Pr[X(t) > A(t)] = ε (16)

where ε denotes an assigned (small) probability; hence, 1− ε can be interpreted as the
“adequacy” level.

A more detailed analysis could be performed by separately addressing the risk profile
of each sub-portfolio, thus calculating, for k = 1, 2, 3 and t = 1, 2, . . . the quantities Ak(t)
such that:

Pr[Xk(t) > Ak(t)] = εk (17)

However, we only focus on the overall requirement (16), which clearly takes into account
the pooling effect.

7.3.2. Numerical Results

We consider four portfolios with the structures defined in Table 9.

Table 9. Portfolio structures.

Portfolio n1 n2 n3

P01 10,000 0 0
P02 10,000 1000 0
P03 10,000 0 500
P04 10,000 1000 500

This way, we can analyze the risk profile of a “traditional” portfolio only consisting of
standard annuities (P01), a portfolio including standard annuities and enhanced annuities
(P02) or standard annuities and impaired annuities (P03) and finally a portfolio including
both types of special-rate annuities (P04).

Values of the parameters Mk and Dk for standard life annuities (k = 1), enhanced
annuities (k = 2) and impaired annuities (k = 3), respectively, are as specified in Table 1.
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Asset requirements (at a given time t), in terms of ratios
Assets

EV
, where EV denotes the

expected value of the total payout, are plotted in Figures 9–11 against the probability 1− ε.
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Figure 9. Impact of the portfolio structure on assets requirements at time t = 1.
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Figure 10. Impact of the portfolio structure on assets requirements at time t = 5.
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Figure 11. Impact of the portfolio structure on assets requirements at time t = 10.

7.3.3. Some Comments

Results in terms of assets requirements are also encouraging. We note that the range of
values, expressed by the ratio between assets required and expected values of total payout,
corresponding to the various portfolio structures are very limited, whatever the adequacy
level chosen. A higher sensitivity with respect to the adequacy level 1− ε can be observed
in particular for t = 10, because of a dispersion of the numbers of survivors and hence of
the total payouts, which increases with time.

We note that the portfolio structure of course evolves over time and, notably, the
share of standard annuities progressively increases because of longer lifetimes of standard
annuitants. Increasing shares of standard life annuities (characterized, according to a
reasonable assumption, by a variance lower than that of special-rate annuities) imply a
lower riskiness in the (total) annuity portfolio. In terms of the ratio Assets/EV, this effect
appears in particular when comparing the requirements (according to each probability
1− ε) represented in Figures 9–11.

8. Concluding Remarks

By offering special-rate life annuities, on the one hand, a higher premium income can
be expected, while on the other hand, a higher variability of the total portfolio payout will
follow because of both the larger size and the specific higher variability of payouts related
to special-rate annuities.

The analysis, in quantitative terms, of the “balance” between the two aspects (that is,
higher risk and higher premium income) has been the aim of this research. A number of
numerical evaluations have been performed by adopting both a deterministic approach and
a stochastic one as well. Diverse hypotheses on lifetime distributions have been assumed,
and various portfolio sizes and structures (in terms of numbers of standard, enhanced and
impaired annuities) have been considered.

It is worth noting that, whatever the choice of the parameter values for the Gompertz
law, the mortality model is deterministic, in the sense that no uncertainty in future mortality
trend is accounted for. In this context, it is reasonable to assume independence among
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the individual lifetimes. An interesting extension of our simple model should allow
for uncertainty in mortality trends via an appropriate stochastic mortality model. Then,
correlation among lifetimes would follow, so that independence assumption would be
replaced by conditional independence. Moreover, diverse trends and diverse degrees of
uncertainty could be considered for the various special-rate annuities by taking into account
possible improvements in medical treatments, surgery, etc.

Special attention should be placed on the “cannibalization” effect. First, a reduction in
the size of the standard annuity sub-portfolio may occur, provided that some applicants can
be eligible to special-rate annuities. A lower average mortality in the standard sub-portfolio
then follows (as noted in Section 6.1.5), leading to a (reasonable) increase in standard
annuity premiums. This might in turn impact the demand of standard life annuities (even
beyond the reduction mentioned above).

A further aspect that is interesting to investigate is the impact on the insurer’s liabilities
(and, notably, on the portfolio risk profile) of an incorrect allocation of individual risks
to the various rating classes. Because of the presence of unobservable risk factors, a
misspecification of the rating class is always possible. This would result in an unfair
annuity rate applied to some individuals and then in an increased (or reduced) probability
of loss for the insurer. In this regard, the research task should concern, in particular, the
modeling of the incorrect specification of the rating class.

The results we have obtained of course depend on assumptions (notably, regarding
both the portfolio structure, the mortality model and the relevant parameters). Nevertheless,
the broad range of assumptions regarding both the portfolio structure and the lifetime
distributions has allowed us to perform an effective sensitivity analysis, whose interesting
achievements witness the possibility of extending the life annuity business without taking
huge amounts of risk. Hence, the creation of values for customers (and an increase in the
insurer’s market share) can be pursued without a significant worsening of the company’s
risk profile.
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