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Abstract: We study two credit risk models with occupation time and liquidation barriers: the
structural model and the hybrid model with hazard rate. The defaults within the models are
characterized in accordance with Chapter 7 (a liquidation process) and Chapter 11 (a reorganization
process) of the U.S. Bankruptcy Code. The models assume that credit events trigger as soon as
the occupation time (the cumulative time the firm’s value process spends below some threshold
level) exceeds the grace period (time allowance). The hazard rate model extends the structural
occupation time models and presumes that other random factors may also lead to credit events. Both
approaches allow the firm to fulfill its obligations during the grace period. We derive new closed-from
pricing formulas for credit derivatives containing the (risk-neutral) probability of defaults and credit
default swap (CDS) spreads as special cases, which are derived analytically via a spectral expansion
methodology. Our method works for any solvable diffusion, such as the geometric Brownian motion
(GBM) and several state-dependent volatility processes, including the constant elasticity of variance
(CEV) model. It allows us to write the pricing formulas explicitly as infinite series that converges
rapidly. We then calibrate our models (assuming that GBM governs the firm’s value) to market CDS
spreads from the Total Energy company. Our calibration results show that the computations are fast,
and the fit is near-perfect.

Keywords: credit risk models; occupation time; spectral expansions; default probability; credit
default spread; hazard rate function; solvable diffusions

1. Introduction

Structural and reduced-form models are the two main mathematical modelling ap-
proaches to credit risk. Structural models assume that a credit event triggers based on the
current firm’s value movement. Such models are linked to the debt-to-equity ratio since the
higher the ratio value, the higher the firm’s risk. It is reasonable to assume that a default
occurs if the firm’s value goes (or stays) below some threshold level. The Merton model
Merton (1974) is one of the first structural models to analyze defaults. The firm in the
Merton model defaults if the firm’s value at maturity is less than some threshold level. A
significant drawback of the Merton model is that it assumes that default events can only
happen at known maturity times. The Black–Cox model Black and Cox (1976) extends the
Merton model by allowing the firm to default at any time before or at maturity. The firm
defaults once its value hits a specific barrier.

Most of the classical structural models treat default and liquidation as the same
event. For example, in the Black–Cox model and in its numerous modifications, de-
fault/liquidation occurs when the firm value reaches an absorbing low barrier. According
to the U.S. bankruptcy code, a firm that is unable to manage its debt can be given the
right to declare bankruptcy under Chapter 11 (a reorganization process) and then reor-
ganize its business. If the reorganization plan fails, Chapter 11 is converted to Chapter 7
(a liquidation process), and the firm is to be liquidated. There are many recent works in
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which a distinction between bankruptcy and liquidation is made. See, for instance, the
discussions in Moraux (2002); Nardon (2008); Galai et al. (2007); and Broadie et al. (2007).
Typically, liquidation time is introduced as the first time the firm’s asset value constantly or
cumulatively stayed below the bankruptcy level over a certain period of time.

Defaults in the Black–Cox model are characterized in the form of the U.S. Bankruptcy
Code Chapter 7. Occupation time models Makarov et al. (2015); Makarov (2016) further
extend the Black–Cox model by allowing the firm to stay below a bankruptcy barrier for
a specified amount of time as some firms admit a grace period to ensure the firm would
be able to fulfill its obligations during the grace period. Therefore, defaults in occupation
time models are characterized per both Chapters 7 and 11 of the U.S. Bankruptcy Code.
Alternatively, excursion times can be used for a temporal separation between default and
liquidation Li et al. (2014). Structural models with Parisian stopping times are related to
Parisian options (see Chesney et al. (1997); Haber et al. (1999)).

Reduced-form models are intensity-based models where the likelihood of a default is
measured by its hazard rate. Reduced-form models lack the ability to determine defaults
endogenously with the firm’s value process movements. Alfonsi and Lelong proposed in
Alfonsi and Lelong (2012) a hybrid model that unifies the Black–Cox model and reduce-
form models, in which default occurs based on hazard rate processes driven by the firm’s
value and other exogenous factors. However, the Alfonsi–Lelong model only considers the
Chapter 7 type defaults.

In this paper, we use both structural and hybrid approaches. The total value of the
firm’s assets follows some diffusion process, which we call an F-diffusion. We assume that
there exists a monotonic mapping that reduces the F-diffusion to a solvable X-diffusion,
for which we can derive some fundamental formulas in closed form. In particular, we can
obtain the joint probability density of the process value and its occupation time in the form
of a spectral series expansion. The simplest example is GBM, which can be mapped to
Brownian motion with drift. Although we focus on the GBM case in the numerical study,
our methodology applies to a broad class of solvable diffusions.

We propose two occupation time-based models where closed-form pricing formulas
for credit derivatives are derived analytically via a spectral expansion methodology. The
spectral expansion method works for any solvable diffusions, including such processes
as Brownian motion, the squared Bessel (SQB), the Cox–Ingersoll–Ross (CIR) and the
Ornstein–Uhlenbeck (OU) processes. It is used to find closed-form credit derivative prices
as a discrete expansion form that converges quickly. The first model we consider is an
occupation time model in which defaults are characterized in accordance with the U.S.
Bankruptcy Code Chapters 7 and 11. One of our occupation time models coincides with
the model in Makarov (2016), except that we now employ the spectral expansion method.
Furthermore, we derive closed-form pricing formulas for credit derivatives under this
model. We also propose a new hybrid hazard rate model, which recovers the Black–Cox
model and the Alfonsi–Lelong model as a particular case. Our hybrid model characterizes
both Chapters 7 and 11 type defaults and contains closed-form pricing formulas for credit
derivatives, leading to fast and accurate calibrations of market CDS spreads.

The paper is organized as follows. Sections 2 and 3 present the concept of occupation
time and the main results associated with occupation time processes. Section 4 states our
new developments pertaining to the occupation time models that were not exploited in
Makarov (2016) and yet will be helpful in later sections. Section 5 describes the hazard rate
model, which extends the Black–Cox and Alfonsi–Lelong models. Sections 6 and 7 present
default probabilities and implied hazard rate functions and how they relate to one another.
Section 8 entails pricing formulas for credit default swap (CDS) spreads. In Section 9, we
provide the calibration procedure and results for CDS spreads (for the GBM case).

2. Occupation Time Process for Underlying Diffusion

We fix a filtered probability space (Ω,F ,P,F) where F = {Ft}t≥0 is the natural filtra-
tion for (P,F)-Brownian motion {Wt}t≥0. Let X be a one-dimensional time-homogeneous
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regular diffusion process1 on a state space I = (l, r) ⊂ R with endpoints l, r satisfying
−∞ ≤ l < r ≤ ∞. The generator is defined by

G f (x) :=
1
2

σ2(x) f ′′(x) + µ(x) f ′(x) =
1

m(x)

(
f ′(x)
s(x)

)′
; x ∈ I , (1)

with appropriate boundary condition at the endpoints. The speed m(x) and scale s(x)
densities, where s′(x) and m(x) are continuous and positive for x ∈ I (see Borodin and
Salminen (2002)), are defined via the drift, µ(x), and diffusion, σ(x), coefficient functions
as follows:

s(x) := exp
(
−
∫ x 2µ(z)

σ2(z)
dz
)

, m(x) :=
2

σ2(x)s(x)
. (2)

The diffusion X satisfies the stochastic differential equation (SDE)

dXt = µ(Xt)dt + σ(Xt)dWt.

An occupation time A`,+
t (or A`,−

t ) is defined as the cumulative time the diffusion
X ∈ I stays above (or below) the occupation level ` ∈ I from time 0 to time t:

A`,+
t :=

∫ t

0
I[`,r)(Xs)ds; t ≥ 0, ` ∈ I ,

A`,−
t :=

∫ t

0
I(l,`](Xs)ds; t ≥ 0, ` ∈ I .

(3)

The diffusion X with imposed lower and upper (regular) killings at a and b (where
a < b), respectively, is defined by

X(a,b),t :=

{
Xt t < T(a,b)

∂† t ≥ T(a,b)
; X0 = x ∈ (a, b), (4)

where T(a,b) := inf{t ≥ 0 : Xt /∈ (a, b)} is the first exit time from the interval (a, b), and ∂†

denotes the cemetery (killed) state.2

Let λ be an instantaneous killing rate defined by:

λ(Xt) := α1I[`,r)(Xt) + α2I(l,`](Xt); 0 ≤ α1 ≤ α2. (5)

Define the following process with instantaneous killing rate λ as:

X̃(a,b),t :=

{
X(a,b),t Γt < ξ,
∂† Γt ≥ ξ,

(6)

where

Γt :=
∫ t

0
λ(Xs)ds = α1A`,+

t + α2A`,−
t (7)

is an F-adapted hazard process and ξ ∼ Exp(1) is an F-independent exponential random
variable with unit rate. It is enough to consider only the occupation time below ` (i.e.,
α1 = 0) thanks to a simple identity A`,+

t +A`,−
t = t. The hazard process in (7) can be

simplified to
Γt = α1t + (α2 − α1)A`,−

t . (8)
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In the remainder of this section (and the next section) we shall assume α1 = 0 and α2 =
α ≥ 0. We can define the transition density of the diffusion X with the instantaneous killing
rate in (5):3,4

p̃`,−
(a,b),α(t; x, y)dy :=Px

(
X̃(a,b),t ∈ dy

)
= Ex

[
e−αA`,−

t ; Xt ∈ dy, mt > a, Mt < b
]
; (9)

for t > 0, x, y ∈ (a, b), and zero otherwise, where mt := inf0≤u≤tXu and Mt := sup0≤u≤tXu.5

Since both boundaries are NONOSC (non-oscillatory), we are in the Spectral Category I
(see, e.g., Campolieti; Campolieti et al. (2013); Linetsky (2004)) and the transition density in
(9) admits a discrete spectral expansion form:

p̃`,−
(a,b),α(t; x, y) = m(y)

∞

∑
n=1

e−λ̃ntφ̃`,−
n,α (x)φ̃`,−

n,α (y), (10)

where {φ̃`,−
n,α } are eigenfunctions with eigenvalues {λ̃n} as the set of increasing simple

zeros. The explicit formulas for Brownian motion are given in Appendix A. We define
the joint density of the occupation time process (below `) and the diffusion with imposed
killing at endpoints a and b:

f (a,b)
A`,−

t ,Xt
(u, y| x)dudy := Px

(
A`,−

t ∈ du, Xt ∈ dy, mt > a, Mt < b
)

, (11)

for any u ∈ (0, t), x, y ∈ (a, b), and zero otherwise. The joint density is defective at 0 and t
where

Px

(
A`,−

t = 0, Xt ∈ dy, mt > a, Mt < b
)
=p(`,b)(t; x, y)dy,

Px

(
A`,−

t = t, Xt ∈ dy, mt > a, Mt < b
)
=p(a,`)(t; x, y)dy.

(12)

The joint density can be obtained from the transition density in (9) by Laplace inverting
with respect to α: (which can be evaluated numerically via the Gaver–Stehfest algorithm,
see Cohen (2007); Gaver (1966); Stehfest (1970))

f (a,b)
A`,−

t ,Xt
(u, y| x) = L−1

α

{
p̃`,−
(a,b),α(t; x, y)

}
(u); u ∈ (0, t), x, y ∈ (a, b). (13)

The expectations of a bounded Borel function of the X-diffusion and its occupation time
can be evaluated as:6

Ex

[
h(Xt)e−αA`,−

t ; mt > a
]
=
∫ r

a
h(y) p̃`,−

(a,r),α(t; x, y)dy,

Ex

[
h
(
A`,−

t , Xt

)
; mt > a

]
=
∫ t

0

∫ r

a
h(u, y) f (a,r)

A`,−
t ,Xt

(u, y| x)dydu

+

{∫ `
a h(t, y)p(a,`)(t; x, y)dy x ∈ (a, `],∫ r
` h(0, y)p+` (t; x, y)dy x ∈ [`, r),

(14)

where
p+` (t; x, y)dy := Px(Xt ∈ dy, mt > `); x ∈ [`, r), (15)

and zero otherwise, is the transition density of X with a lower imposed killing at level `.
Figure 1 shows some graphs of the transition density in (9) using the truncated N-term

series in (10) for the case of standard Brownian motion. The top-left graph shows that
the N-term series converges with N = 8 terms in the series with a = −5, b = 3, ` = −2,
α = 0.25, and t = 1. If we increase b to 35 in the top-right graph, we can see that it requires
more terms (N ≈ 40) to obtain convergence of the series. If we increase t to 5 (from the
top-left to the bottom-left) we can observe that the series requires less terms to demonstrate
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converge. The bottom-right graph shows that p̃`,−
(a,b),α(t; x, y)→ p(a,b)(t; x, y) as α→ 0 and

p̃`,−
(a,b),α(t; x, y) → p(`,b)(t; x, y) as α → ∞. Figure 2 shows the graph of the joint density in

(11) and works well since p̃`,−
(a,b),α(t; x, y) is a smooth function of α.
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Figure 1. Graphs of the transition density in (9) where X = W is a standard Brownian motion with
a = −5, b = 3 (b = 35 for top-right), ` = −2, t = 1 (top-left, bottom-left) t = 5 (top-right, bottom-right),
α = 0.25 (except bottom-right), N = 30 (bottom-right).
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Figure 2. Graphs of the joint density in (11) where X = W is a standard Brownian motion with a =−5,
b = 3, ` = −2, t = 5, and N = 30. We used 16 terms in the Gaver–Stehfest algorithm.
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3. Occupation Time Process for F-Diffusion

Consider an F-diffusion Ft := F(Xt), t ≥ 0 (starting at F0 := F(x), X0 = x), defined in
terms of a given diffusion X where F : I → D := (F(l), F(r)), with F(l) := min(F(l),F(r))
and F(r) := max(F(l),F(r)), is a smooth monotonic function with unique inverse X = F−1.
Assuming F′(x) > 0 (similar relations apply with a reversal of signs +/− in case F′(x) < 0),
the occupation time process below a value F(`) ∈ D for the F-diffusion is defined as (and
we have a simple relationship between the occupation times of the two diffusions X and F):

A(F),F(`),−
t :=

∫ t

0
I(F(l),F(`)](Fs)ds = A`,−

t . (16)

The transition density of the F-diffusion, with the instantaneous killing rate in (5) with
α1 = 0 and α2 = α, i.e.,

λ(Ft) := αI(F(l),F(`)](Ft); α ≥ 0, (17)

and imposed killings at F(a) and F(b), is related to that of the X-diffusion (where x =
X(F0)):

p̃(F),F(`),−
(F(a),F(b)),α(t; F0, y)dy := EF0

[
e−αA(F),F(`),−

t ; Ft ∈ dy, mF
t > F(a), MF

t < F(b)
]

= p̃`,−
(a,b),α(t; x,X(y)) · X′(y)dy,

(18)

for t > 0 and F0, y ∈ (F(a),F(b)), and zero otherwise. Here, mF
t := inf0≤u≤tFu and

MF
t := sup0≤u≤tFu. The joint density (and its defective portion) of the F-diffusion, with

imposed killings at F(a) and F(b), are also related to that of the X-diffusion

f (F(a),F(b))

A(F),F(`),−
t ,Ft

(u, y| F0)dudy := PF0

(
A(F),F(`),−

t ∈ du, Ft ∈ dy, mF
t > F(a), MF

t < F(b)
)

= f (a,b)
A`,−

t ,Xt
(u,X(y)| x) · X′(y)dudy,

(19)

for any u ∈ (0, t) and F0, y ∈ (F(a),F(b)), and zero otherwise. The defective portion of the
density at u = 0 is:

PF0

(
A(F),F(`),−

t = 0, Ft ∈ dy, mF
t > F(a), MF

t < F(b)
)
= p(`,b)(t; x,X(y)) · X′(y)dy, (20)

for F0, y ≥ F(`) and zero otherwise. Similarly, the defective portion at u = t is:

PF0

(
A(F),F(`),−

t = t, Ft ∈ dy, mF
t > F(a), MF

t < F(b)
)
= p(a,`)(t; x,X(y)) · X′(y)dy, (21)

for F0, y ≤ F(`) and zero otherwise. The expectations of a bounded Borel function of the
F-diffusion and its occupation time can be expressed in terms of (14):

EF0

[
h(Ft)e−αA(F),F(`),−

t ; mF
t > F(a)

]
=Ex

[
h(F(Xt))e−αA`,−

t ; mt > a
]
,

EF0

[
h
(
A(F),F(`),−

t , Ft

)
; mF

t > F(a)
]
=Ex

[
h
(
A`,−

t ,F(Xt)
)

; mt > a
]
.

(22)

In this paper, we consider the F-diffusion as GBM (with state space D = (0, ∞)):

Ft = F0e(ν−
σ2
2 )t+σWt ; F0 > 0, t ≥ 0, (23)

where ν ∈ R and σ > 0 are constants. Moreover, we consider an occupation time below a
time-dependent occupation level (barrier) L := {L(u) : u ≥ 0} where

L(t) =L0eγt; L0 ∈ (0, F0), t ≥ 0, (24)
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with growth rate γ ∈ R, defined by

A(F),L,−
t :=

∫ t

0
I{Fs≤L(s)}ds; t ≥ 0. (25)

Let µ := (ν− γ)/σ and Ft := e−γtFt, t ≥ 0. Then the occupation time for the GBM process
(with the time-dependent occupation level) can be expressed as the occupation time for the
new GBM (with a constant occupation level):

A(F),L,−
t =

∫ t

0
I{Fs≤L0}ds := A(F),L0,−

t ; t ≥ 0. (26)

We apply a smooth monotonic mapping F : I → D defined by F(x) = F0eσx with unique
inverse X(F) := F−1(F) = 1

σ ln(F), where the underlying process is a Brownian motion
with drift µ (starting at X0 = x = 0):

Xt = µt + Wt; t ≥ 0. (27)

Then, equation (25) can be expressed as the occupation time for its underlying diffusion
(with constant occupation level):

A(F),L,−
t =

∫ t

0
I(−∞,`](Xs)ds := A`,−

t ; t ≥ 0, (28)

where ` = 1
σ ln(L0/F0). Moreover, let

A(t) =A0eγt; A0 ∈ (0, L0), t ≥ 0, (29)

be a time-dependent liquidation barrier. The growth rate γ of the barriers L(t) and A(t)
are kept the same, otherwise the Girsanov transformation, that effectively removes the time
dependence of the barriers, would fail. The expectations of a bounded Borel function of the
GBM and its occupation time can be expressed as integrals over the respective transition
densities for the X-diffusion:

EF0

[
h(e−γtFt)e−αA(F),L,−

t ; mF
t > A(t)

]
=
∫ ∞

a
h(F(y)) p̃`,−

(a,∞),α(t; x, y)dy,

EF0

[
h
(
A(F),L,−

t , e−γtFt

)
; mF

t > A(t)
]
=
∫ t

0

∫ ∞

a
h(u,F(y)) f (a,∞)

A`,−
t ,Xt

(u, y| x)dydu

+

{∫ `
a h(t,F(y))p(a,`)(t; x, y)dy x ∈ (a, `],∫ ∞
` h(0,F(y))p+` (t; x, y)dy x ∈ [`, ∞),

(30)

where a = 1
σ ln(A0/F0).

4. Occupation Time Model in the Risk-Neutral Measure

We fix a filtered probability space (Ω,H, P̃,H)7 with filtration H = {Ht}t≥0 whereHt
is a σ-algebra, describing the complete information up to time t. Let {Ft}t≥0 be an almost
surely (a.s.) positive F-measurable time-homogeneous Markov process, representing the
firm’s value process, where F ⊂ H is the natural filtration for (P̃,F)-Brownian motion
{W̃t}t≥0. A typical example of the firm’s value {Ft}t≥0 is GBM:

Ft = F0e(r
f− σ2

2 )t+σW̃t ; F0 > 0, t ≥ 0, (31)

where r f ≥ 0 is a constant risk-free rate, σ > 0 is a constant volatility. The diffusion process
{Ft}t≥0 satisfies the SDE dFt = r f Ftdt + σFtdW̃t.



Risks 2022, 10, 228 8 of 20

For the rest of the paper, we shall assume that the firm’s value is a GBM process
and presume an occupation time below a time-dependent occupation level (barrier) L :=
{L(u) = L0eγu : u ≥ 0} (the parameter γ ∈ R is the growth rate), defined in (25).

The time dependence of the barrier L adds more flexibility in the model (particularly
for GBM which has a constant log-volatility) by introducing an extra effective drift pa-
rameter, while still keeping the discounted value process a martingale in the risk-neutral
measure. The extra drift parameter arising from the exponent of the time-dependent bar-
riers allows for a better (more flexible) calibration of the model to default probabilities
across the different maturities (short versus long term). The parameter γ can also reflect
the compound interest rate on the firm’s debt. Additionally, higher values of γ increase the
severity of both the grace period and the default over time.

The random variable A(F),L,−
t measures the cumulative amount of time the process

{Ft}t≥0 stays below the occupation level. Let τ(ϑ) := τϑ
L ∧ τA := min(τϑ

L , τA) be an F-
stopping time where

τA := inf{t ≥ 0 : Ft ≤ A(t)}, τϑ
L := inf{t ≥ 0 : A(F),L,−

t > ϑ}, (32)

A(t) = A0eγt, t ≥ 0 is a time-dependent liquidation barrier, ϑ is a nonnegative grace period,
and we set inf{∅} = ∞ by convention.

In this model, the stopping time τL := inf{t ≥ 0 : Ft ≤ L(t)} characterizes Chapter 11
type default. The grace period for reorganizing firm’s business begins at the moment when
the firm’s value process hits the occupation barrier L. The default time τ(ϑ) characterizes
Chapter 7 type default. If the firm’s value drops down to the liquidation level L or if
the cumulative amount of time the firm’s value process stays below the occupation level
exceeds the grace period ϑ, Chapter 11 is converted to Chapter 7, and the firm is to be
liquidated.

We may conveniently employ an appropriate transformation to the firm’s value process
to make both barriers A(t) and L(t) constant. Since e−γtFt is a monotonic function of Xt, a
(P̃,F)-Brownian motion with drift µ := (r f − γ)/σ, the default time τ(ϑ) = τϑ

` ∧ τa can be
re-expressed as (where a = 1

σ ln(A0/F0) and ` = 1
σ ln(L0/F0)):

τA = inf{t ≥ 0 : Xt ≤ a} := τa, τϑ
L = inf{t ≥ 0 : A`,−

t > ϑ} := τϑ
` . (33)

Let τ be an a.s. positive F -measurable random variable. We fix a finite time horizon
T > 0, and let Dτ∧T be the (integrable) payoff of a defaultable claim, taking the following
form:

Dτ∧T := h(τ ∧ T, Xτ∧T) = h(T, XT)I{τ≥T} + h(τ, Xτ)I{τ<T}, (34)

where h : [0, T]× I → R is a Borel function. Thus, the no-arbitrage time-t value of the
claim is

Dt :=BtẼ
[

B−1
τ∧T Dτ∧T |Ft

]
=Bt Ẽ

[
B−1

τ h(τ, Xτ)I{τ<T}|Ft

]
+ BtẼ

[
B−1

T h(T, XT)I{τ≥T}|Ft

]
; t ∈ [0, T],

(35)

where Bt := er f t is the bank account and Ẽ is the expectation operator under P̃ (the
risk-neutral expectation). In what follows, we state a new theorem pertaining to general
pricing formulas under the occupation time models (and the new results will be used to
prove general pricing formulas under the hazard rate models to be described in Section 5).
However, at first, we shall state and prove the following lemma, describing the time-
homogeneity of the price process.
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Lemma 1. Let τ(ϑ) = τϑ
` ∧ τa be the default time defined in (33), and8

Dϑ,T
t,A,x :=BtẼ

[
B−1

τ(ϑ)∧T
Dτ(ϑ)∧T |Ft

]
= BtẼt,A,x

[
B−1

τ(ϑ)∧T
Dτ(ϑ)∧T

]
(36)

be the time-t value of a T-maturity credit derivative with a grace period ϑ. Then, on the set
{τ(ϑ) > t} = {τϑ

` > t, τa > t},
Dϑ,T

t,A,x = Dϑ′ ,T−t
0,x , (37)

where ϑ′ := ϑ− A is the (realized) remaining grace period at time t.

Proof. Define τ̂(ϑ) := τ̂ϑ
` ∧ τ̂a where

τ̂a := inf{s ≥ 0 : Xt+s ≤ a}, τ̂ϑ
` := inf

{
s ≥ 0 :

∫ t+s

t
I(−∞,`](Xu)du > ϑ

}
. (38)

Then we can easily show that, on the set {τ(ϑ) > t},

τa =t + inf{s ≥ 0 : Xt+s ≤ a} = t + τ̂a,

τϑ
` =t + inf{s ≥ 0 : A`,−

s+t −A
`,−
t > ϑ−A`,−

t } = t + τ̂ϑ′
` ,

(39)

where ϑ′ = ϑ−A`,−
t . Therefore τ(ϑ) = t + τ̂(ϑ′) (a.s.) and we obtain

Dϑ,T
t,A,x = BtẼt,A,x

[
B−1

τ(ϑ)∧T
Dτ(ϑ)∧T

]
= Ẽx

[
B−1

τ̂(ϑ
′)∧(T−t)

D
τ̂(ϑ
′)∧(T−t)

]
= Dϑ′ ,T−t

0,x . (40)

Theorem 1. The time-0 value of the credit derivative in (36) is given by 9:

Dϑ,T
0,x = B−1

T

{∫ ϑ

0

∫ ∞

a
h(T, y) f (a,∞)

A`,−
T ,XT

(u, y| x)dydu +
∫ ∞

`
h(T, y)p+` (T; x, y)dy

}
+

{∫ T

ϑ
B−1

s

∫ ∞

a
h(s, y) f (a,∞)

A`,−
s ,Xs

(ϑ, y| x)dyds + B−1
ϑ

∫ `

a
h(ϑ, y)p(a,`)(ϑ; x, y)dy

}
−
{∫ ϑ

0
B−1

s h(s, a)
∫ ∞

a

∂p+a
∂s

(s; x, y)dyds

+
∫ T

ϑ
B−1

s h(s, a)

∫ ϑ

0

∫ ∞

a

∂ f (a,∞)

A`,−
s ,Xs

∂s
(u, y| x)dydu +

∫ ∞

`

∂p+`
∂s

(s; x, y)dy

ds

+
∫ T

ϑ
B−1

s h(s, a)
∫ ∞

a
f (a,∞)

A`,−
s ,Xs

(ϑ, y| x)dyds
}

,

(41)

for ϑ ∈ (0, T), and

Dϑ,T
0,x = B−1

T

∫ ∞

a
h(T, y)p+a (T; x, y)dy−

∫ T

0
B−1

s h(s, a)
∫ ∞

a

∂p+a
∂s

(s; x, y)dyds, (42)

for ϑ ≥ T.10

Proof. Here, we summarize what is needed to compute (41). By the Optional Sampling
Theorem, we have

Dϑ,T
0,x = B−1

T Ẽ
[

h(T, XT)I{τa≥T,τϑ
` ≥T}

]
+ Ẽx

[
B−1

τϑ
`

h(τϑ
` , Xτϑ

`
)I{τϑ

` <τa ,τϑ
` <T}

]
+ Ẽx

[
B−1

τa h(τa, Xτa)I{τa≤τϑ
` ,τa<T}

]
,

(43)
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where Xτa = a (i.e., the value of the process, as soon as it hits the default barrier, is a). By
computing each expectation in (43) (we omit the lengthy proof), we obtain (41).

Each bracketed term in (41) corresponds to one of the three mathematical expectations
in (43). If the firm avoids being liquidated and is solvent at maturity, the time-t value of
the claim is given by the first term in (43). If the firm is liquidated prior to maturity due
to exceeding the grace period, the claim’s value is given by the second term in (43). The
last term in (43) is the time-t claim’s value corresponding to the scenario when the firm is
liquidated early due to reaching the liquidation barrier A(t) . For simplicity of presentation,
we assume that the same function h describes the payoff value for each scenario.

5. Hazard Rate Model

Suppose now that (Ω,H, P̃,H) is a filtered probability space where we set H := F∨ J
with filtration J so that τ is a J-stopping time. Hybrid models unify the structural and
reduced-form models by an F-adapted hazard process Γ defined by

Γt :=
∫ t

0
λ(Fs)ds; t ≥ 0, (44)

with an F-adapted hazard rate process λ. For now, let us assume that

λ(Fs) = αI{Fs≤L(s)}; α ≥ 0, (45)

where L(s) is the occupation barrier defined in (24). We define an H-stopping time τ(α) :=
τα

L ∧ τA = τα
` ∧ τa, where

τα
L := inf{t ≥ 0 : αA(F),L,−

t > ξ} = inf{t ≥ 0 : αA`,−
t > ξ} := τα

` ; ξ ∼ Exp(1), (46)

and τA = τa was defined previously. The default time τ(α) characterizes both Chapters 7
and 11 type defaults. Usually, it is convenient to rewrite the expression in (46) as

τα
` = inf{t ≥ 0 : A`,−

t > ξα}; ξα ∼ Exp(α), (47)

so that the hazard rate model11 can be viewed as the occupation time model with an
(exogenous) randomization in ϑ ∼ Exp(α). In the case where the firm’s value is the GBM
process, it is obvious that when α = 0, the hazard rate model reduces to the Black–Cox
model with default barrier A(t). Similarly when α→ ∞, the hazard rate model reduces to
the Black–Cox model with default barrier L(t). We can easily extend to where the hazard
rate process is

λ(Fs) = α1I{Fs≥L(s)} + α2I{Fs≤L(s)}; 0 ≤ α1 ≤ α2. (48)

In this case, we define the default time as τ(α1,α2) := τα1,α2
` ∧ τa, where

τα1,α2
` := inf{t ≥ 0 : α1A`,+

t + α2A`,−
t > ξ}; ξ ∼ Exp(1). (49)

For the GBM case, we can recover the Alfonsi–Lelong model by sending the default level
A(t) in the F-process to zero, i.e., a→ −∞. We will not employ the same approach used
in the Alfonsi–Lelong model, but instead we shall make use of the spectral expansion
methodology to obtain closed-form pricing formulas. The rest of this section is devoted
to general pricing formulas for credit derivatives under this new framework. Before we
state the main theorem, we will state and prove the following lemma. The lemma draws
the connections between the occupation time and hazard rate models.
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Lemma 2. Let τ(α) = τα
` ∧ τa be the default time defined in (46), and

Dα,T
t,x := BtẼ

[
B−1

τ(α)∧T
Dτ(α)∧T |Ht

]
= BtẼ

[
B−1

τ(α)∧T
Dτ(α)∧T |Xt = x

]
(50)

be the time-t value of the credit derivative under the hazard rate model (with λ defined in (45)).
Then, on the set {τ(α) > t} = {τα

` > t, τa > t}, we have

Dα,T
t,x = αLϑ

{
Dϑ,T−t

0,x

}
(α), (51)

and is independent of A`,−
t . Moreover, the price process under the occupation time model can be

recovered by

Dϑ,T
t,A,x = L−1

α

{
α−1Dα,T

t,x

}
(ϑ′); ϑ′ := ϑ− A. (52)

Proof. Let Y be an integrable H∞-measurable random variable and Γt be an F-adapted
hazard process, then by page 145 (5.11) and (5.12) from Bielecki and Rutkowski (2013), we
obtain

Ẽ
[
I{τα

` >t}Y|Ht

]
=I{τα

` >t}Ẽ
[
eΓt Y|Ft

]
. (53)

By substituting Y = I{τa>t}B
−1
τ(α)∧T

Dτ(α)∧T and Γt = αA`,−
t into (53), we obtain (51).

Theorem 2. The time-0 value of the credit derivative in (50) is given by12:

Dα,T
0,x =B−1

T

∫ ∞

a
h(T, y) p̃`,−

(a,∞),α(T; x, y)dy

+ α
∫ T

0
B−1

s

∫ ∞

a
h(s, y)

(
p̃`,−
(a,∞),α(s; x, y)− p+` (s; x, y)

)
dyds

−
∫ T

0
B−1

s h(s, a)
∫ ∞

a

∂ p̃`,−
(a,∞),α

∂s
(s; x, y) + α[ p̃`,−

(a,∞),α(s; x, y)− p+` (s; x, y)]

dyds.

(54)

Proof. By Lemma 2, we obtain (54) from (41) and (42) by direct computations.

Comparing (42) with (54), we notice that the r.h.s. of (42) is the limit of the r.h.s. of
(54), as α→ 0 or as `→ a. That is, the credit derivative value in (54) converges to the value
under the Black–Cox model with default barrier A(t).

6. Probability of Default

A survival probability is a credit derivative of the form in (34) with payoff Dτ∧T =
I{τ≥T} and Bt := 1. By Theorem 1, the (unconditional) survival probability at time t under
the occupation time model is

P̃x(τ
(ϑ) > T) =

∫ ϑ

0

∫ ∞

a
f (a,∞)

A`,−
T ,XT

(u, y| x)dydu +
∫ ∞

`
p+` (T; x, y)dy. (55)

(Note: The survival probability is clearly zero for x ≤ a.) By Theorem 2, the (unconditional)
survival probability at time T under the hazard rate model (with λ defined in (45)) is13

P̃x(τ
(α) > T) =

∫ ∞

a
p̃`,−
(a,∞),α(T; x, y)dy. (56)
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For any regular diffusion, Equation (56) can be calculated using the spectral expansion
method (assuming the spectral series can be integrated term-by-term), where b→ ∞:∫ b

a
p̃`,−
(a,b),α(T; x, y)dy =

∞

∑
n=1

e−λ̃nT
∫ b

a
m(y)φ̃`,−

n,α (x)φ̃`,−
n,α (y)dy. (57)

By Lemma 2, the (unconditional) survival probability in (55) under the occupation time
model can be obtained by (which can be evaluated numerically via the Gaver–Stehfest
algorithm)

P̃x(τ
(ϑ) > T) = L−1

α

{
α−1P̃x(τ

(α) > T)
}
(ϑ). (58)

Some graphs of the probability of default for the GBM process are shown in Figure 3.
We can observe that the larger the α value, the greater the probability of default is. This
makes sense because as α increases, the firm has to carry more risks by allowing the
counterparty to penalize more for the firm’s value staying below the occupation level.
Similarly, we can say that the smaller the ϑ value, the greater the probability of default
is, as the firm is required to default immediately once the occupation time exceeds the
grace period. The difference between the models is that default probability values under
the hazard rate model are more flexible across all maturity times, but the occupation time
model does not correct the short-time behaviour whose values overlap with that in the
Black–Cox model with default barrier A(t).
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Figure 3. Graphs of default probabilities for the hazard rate (left) and occupation time models (right).
The underlying firm’s value is GBM with F0 = 100, L0 = 50, A0 = 20, r f = 5%, σ = 30%, γ = 5%,
and N = 30. For the right graph, we used 16 terms in the Gaver–Stehfest algorithm.

7. Implied Hazard Rate Function

A reduced-form model is a model where a default event is characterized by a hazard
rate (ordinary) function λ(t). The hazard rate function is defined so that λ(t)∆t is the
probability of defaulting between time t and t + ∆t conditional on no default until time t
(where τ is a default time):

λ(t) := lim
∆t→0

P̃(t ≤ τ ≤ t + ∆t|τ > t)
∆t

=
− d

dt P̃(τ > t)

P̃(τ > t)
. (59)

If τ is the default time pre-specified by a model, then the hazard rate function implied by
the model, denoted by λ∗(t), can be calculated using (59). Implied hazard rate functions
provide a uniform way of comparing default behaviours across different models. Under
the hazard rate model (with λ defined in (45)), the implied hazard rate function can be
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computed analytically via the spectral expansion method (assuming that the series in (57)
can be differentiated term-by-term):14

λ∗(t) =
∑∞

n=1 λ̃ne−λ̃nt ∫ b
a m(y)φ̃`,−

n,α (x)φ̃`,−
n,α (y)dy

∑∞
n=1 e−λ̃nt

∫ b
a m(y)φ̃`,−

n,α (x)φ̃`,−
n,α (y)dy

. (60)

Some graphs of the implied hazard rate functions are given in Figure 4. We can see
that the implied hazard rate functions are generally increasing in time. For large α (small ϑ),
implied hazard rate functions increase sharply up to certain times, and decrease gradually
(and end up converging to a certain value). The hazard rate functions under the occupation
time model are relatively lower (especially for short times) compared to that under the
hazard rate model. This observation makes sense from the shape of the probability of
defaults described in Section 6.
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Figure 4. Graphs of implied hazard rate functions for the hazard rate model (left) and occupation
time model (right). The underlying firm’s value is GBM with F0 = 100, L0 = 50, A0 = 20, r f = 5%,
σ = 30%, γ = 5%, and N = 30. For the right graph, we used 16 terms in the Gaver–Stehfest
algorithm.

8. Credit Default Swap (CDS) Spreads

We assume that there are p regular (time-proportional) payments on the time grid
{T1, T2, . . . , Tp} with 0 < T1 < · · · < Tp = T until the default event and one last payment
at time τ. The fair price of the CDS spread is given by

R(0, T) :=
DL(0, T)
PL(0, T)

=
LGD[e−r f TP̃(τ ≤ T) +

∫ T
0 r f e−r f uP̃(τ ≤ u)du]∫ T

0 e−r f uP̃(τ > u)du−
∫ T

0 r f e−r f u(u− Tβ(u)−1)P̃(τ > u)du
. (61)

where LGD ∈ [0, 1] is the Loss Given Default, which is assumed to be deterministic, and
β(t) ∈ {1, . . . , p} is the index of the next payment date satisfying Tβ(t)−1 ≤ t < Tβ(t). For
our convenience, we shall rewrite the Equation (61) in terms of the survival probabilities:

R(0, T) =
1− e−r f TP̃(τ > T)− r f f(T)

f(T)− r f (g(T)− [Tp−1f(T)−∑
p
i=1(Ti − Ti−1)f(Ti)])

(62)

where

f(t) :=
∫ t

0
e−r f uP̃(τ > u)du, g(t) :=

∫ t

0
ue−r f uP̃(τ > u)du. (63)

We use the following proposition to calculate the fair value of the CDS spreads under the
hazard rate model.
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Proposition 1. Under the hazard rate model (with λ defined in (45)), the time-0 value of a CDS
spread is given in (62), where f and g are defined in (63), admit spectral expansion forms:15,16

f(t) =
∫ b

a
G̃`,−

α (r f ; x, y)dy−
∞

∑
n=1

e−(λ̃n+r f )t

λ̃n + r f

∫ b

a
m(y)φ̃`,−

n,α (x)φ̃`,−
n,α (y)dy,

g(t) =−
∫ b

a

∂

∂λ
G̃`,−

α (λ; x, y)dy
∣∣∣∣
λ=r f

−
∞

∑
n=1

1 + (λ̃n + r f )t
(λ̃n + r f )2

e−(λ̃n+r f )t
∫ b

a
m(y)φ̃`,−

n,α (x)φ̃`,−
n,α (y)dy,

(64)

where G̃`,− is the Green function defined by G̃`,−
α (λ; x, y) := Lt{ p̃`,−

α (t; x, y)}(λ).

Proof. For f, we can integrate term by term to obtain

f(t) =
∫ b

a
m(y)

(
∞

∑
n=1

φ̃`,−
n,α (x)φ̃`,−

n,α (y)
λ̃n + r f −

∞

∑
n=1

e−(λ̃n+r f )t

λ̃n + r f φ̃`,−
n,α (x)φ̃`,−

n,α (y)

)
dy. (65)

We know, by definition, that the first series in (65) is simply the Green function

G̃`,−
α (λ; x, y) = m(y)

∞

∑
n=1

φ̃`,−
n,α (x)φ̃`,−

n,α (y)
λ̃n + λ

. (66)

For g we can employ the integration by parts formula to get

g(t) =
∞

∑
n=1

(
1

(λ̃n + r f )2
− 1 + (λ̃n + r f )t

(λ̃n + r f )2
e−(λ̃n+r f )t

) ∫ b

a
m(y)φ̃`,−

n,α (x)φ̃`,±
n,α (y)dy, (67)

where the first series in (67) can be expressed in terms of the Green function, and hence we
obtain (64).

Both series in (64) converge rapidly since the denominator λ̃n + r f tends to ∞ as
n→ ∞.

9. Calibration of CDS Spreads: GBM Case

We calibrate our models to some market data where the underlying firm’s value
is assumed to be GBM. We extract the market CDS spreads data for the Total Energies
company (TTE) with spot time on 1 June 2022. The market data contain eight sample market
data points at the following tenor values: T = 0.5, 1, 2, 3, 4, 5, 7, 10 years. Our calibration
approach is find optimal parameter values that (locally) minimizes the gap between the
market and model prices through a loss function. Here, we use the (unweighted) root
mean squared error (RMSE) as the loss function (where Θ is the set of parameters in a
given model):

L(Θ) =

√√√√∑8
i=1

(
RMdl

Ti
− RMkt

Ti

)2

8

where RMkt
Ti

is the ith observed market CDS spread and RMdl
Ti

is the CDS spread implied by
the model at Ti. We compare the following four models:

• The Black–Cox model Black and Cox (1976)
• The occupation time model Makarov (2016)
• The Alfonsi–Lelong model Alfonsi and Lelong (2012)
• The new hazard rate model (with λ defined in (48))

The summary of the market data used, as well as the calibration results, can be found
in Tables 1–3. We employ an iterative scheme for our calibration procedure, that is, we
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calibrate parameters in the Black–Cox model, and then use the calibrated values as initial
guesses to calibrate other parameters in the occupation time and hazard rate models. We
do not use the iterative scheme for the Alfonsi–Lelong model since that model does not
contain the default barrier A(t). Figure 5 shows that the Black–Cox and occupation time
models fitted poorly for small tenors. The hazard rate model significantly improve the
result and led to a near-perfect calibration. The Alfonsi–Lelong model still outperforms
the Black–Cox model, but is not as accurate as the hazard rate model. We use calibrated
values from Table 3 to calculate the risk-neutral probabilities implied from the market CDS
spreads under the hazard rate model. Based on Figure 6, we see that the Total Energies
company is currently at a low default risk.

Table 1. Initial Information about the market.

Variable Name Description Value

F0 initial firm’s value 55.59

r f constant risk-free rate 5%

σ constant volatility 28%

LGD constant Loss Given Default 0.6

Table 2. Market Data of Tenor (year) and CDS spread (bps).

Tenor 0.5 1 2 3 4 5 7 10

CDS 11.86 15.13 21.29 28.79 37.21 45.83 60.03 73.17

Table 3. Calibration Results for model parameters (the underlying process is GBM). NA means not
applicable.

Variable Description Black–Cox Occupation A–L Hazard Rate

A0 default barrier (at time 0) 18.96 13.47 NA 12.83

γ growth rate of barrier −3.51% −0.19% 11.22% −0.32%

L0 occupation barrier (at time 0) NA 23.29 28.78 38.42

θ/T grace period relative to T NA 0.2368 NA NA

α1 killing rate (above L) NA NA 0.27% 0.18%

α2 killing rate (below L) NA NA 3.42% 2.33%

loss function value 5.70× 10−6 5.16× 10−6 3.10× 10−8 5.77× 10−10
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Figure 5. Graphs of CDS Spreads for four models: Black–Cox (top-left), occupation time (top-right),
Alfonsi–Lelong (bottom-left), and hazard rate (bottom-right). The underlying firm’s value is GBM.
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Figure 6. Implied risk-neutral probability for the hazard rate model (the underlying firm’s value
is GBM).

10. Conclusions

This study led to the innovation of two new credit risk models, namely, the occupation
time and hazard rate models. They captured both Chapters 7 and 11 type defaults (the
occupation time model was considered in Makarov et al. (2015); Makarov (2016) but
the papers did not use the spectral expansion method). We derived closed-form pricing
formulas for credit derivatives. Moreover, the hazard rate model prices can be expressed
explicitly for diffusions, such as a geometric Brownian motion, and many other solvable
processes. The pricing formulas under the occupation time model can be obtained by
a Laplace inverse transformation of the hazard rate model. The Laplace inversion is
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performed numerically using the Gaver–Stehfest algorithm. The hazard rate model can
capture versatile default probability values, which, in the occupation time models, are
immovable at short maturity times. Our models are calibrated to the market CDS spreads
from the Total Energies company. Our calibration results show that the computations are
fast and lead to near-perfect calibrations to typical market CDS spread data.

Our main future work is to employ explicit expressions for alternative solvable dif-
fusions. We can then consider pricing credit derivatives under such alternative models
including the Constant Elasticity of Variance (CEV) model and other nonlinear local volatil-
ity models. Additionally, we can construct new structural models of credit risk based on the
last passage time. In this paper, we have only considered senior debts, but we may also look
into junior (subordinated) debts as well. One example is a contingent convertible (CoCo)
bond which is a bond that converts into equity once the debt-to-equity ratio falls to a certain
threshold level. CoCo bonds are popular among firms since firms can avoid default events,
to a certain extent, by converting the CoCo bonds into equity once a catastrophic event
triggers. We may also consider the pricing and calibrations of the new models to standard
equity options, and thereby study the interplay between equity and credit markets.
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Appendix A. Explicit Expressions for a Drifted Brownian Motion

We provide explicit expressions on default probabilities and the CDS spread valuations
for a Brownian motion with drift µ ∈ R, starting at x ∈ (a, b) with imposed killings at
levels a, b where a < x < b.

Appendix A.1. Default Probabilities

In what follows, we provide explicit formulas for the integral in (57). Let {λ̃n} be the
eigenvalues (refer to Equation (10)), satisfying the following eigenvalue equation:17

√
2(λ̃n−α) cos

(√
2(λ̃n−α)(`−a)

)
sin
(√

2λ̃n(b−`)
)

+
√

2λ̃n cos
(√

2λ̃n(b−`)
)

sin
(√

2(λ̃n−α)(`−a)
)
=0, λ̃n > α,

√
2(α−λ̃n) sin

(√
2λ̃n(b−`)

)
cosh

(√
2(α−λ̃n)(`−a)

)
+
√

2λ̃n cos(
√

2λ̃n(b−`)) sinh
(√

2(α−λ̃n)(`−a)
)
=0, λ̃n ∈ (0, α),

(A1)

and let {φ̃`,−
n,α } be the eigenfunctions given as follows. We only provide formulas for x ≥ `

(i.e., the firm’s value starts above the liquidation level) since the other case is rarely used in
practice.

• If x ∈ [`, b), y ∈ (a, `], λ̃n ∈ (0, α),
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φ̃`,−
n,α (x)φ̃`,−

n,α (y)=
{

sin(
√

2λ̃n(b−`))
[
(b−a) sinh(

√
2(α−λ̃n)(`−a)+ cosh(

√
2(α−λ̃n)(`−a))√
2(α−λ̃n)

]

− cos(
√

2λ̃n(b−`))
[

sinh(
√

2(α−λ̃n)(`−a))√
2λ̃n

+

(√
α−λ̃n

λ̃n
(b−`)−

√
λ̃n

α−λ̃n
(`−a)

)
cosh(
√

2(α−λ̃n)(`−a))
]}−1

×sin(
√

2λ̃n(b−x)) sinh(
√

2(α−λ̃n)(y−a)).

(A2)

• If x ∈ [`, b), y ∈ (a, `], λ̃n > α,

φ̃`,−
n,α (x)φ̃`,−

n,α (y)=
{

sin(
√

2λ̃n(b−`))
[
(b−a) sin(

√
2(λ̃n−α)(`−a)− cos(

√
2(λ̃n−α)(`−a))√

2(λ̃n−α)

]

− cos(
√

2λ̃n(b−`))
[

sin(
√

2(λ̃n−α)(`−a))√
2λ̃n

+

(√
λ̃n−α

λ̃n
(b−`)+

√
λ̃n

λ̃n−α
(`−a)

)
cos(
√

2(λ̃n−α)(`−a))
]}−1

×sin(
√

2λ̃n(b−x)) sin(
√

2(λ̃n−α)(y−a)).

(A3)

• If x ∈ [`, b), y ∈ [`, b), λ̃n ∈ (0, α),

φ̃`,−
n,α (x)φ̃`,−

n,α (y)=
√

2(α−λ̃n) cosh(
√

2(α−λ̃n)(`−a)) sin(
√

2λ̃(`−a))−
√

2λ̃n cos(
√

2λ̃n(`−a)) sinh(
√

2(α−λ̃n)(`−a)√
2λ̃n sin(

√
2λ̃n(b−a))

×
{

cos(
√

2λ̃n(b−`))
[

sinh(
√

2(α−λ̃n)(`−a))√
2λ̃n

+

(√
α−λ̃n

λ̃n
(b−`)−

√
λ̃n

α−λ̃n
(`−a)

)
cosh(
√

2(α−λ̃n)(`−a))
]

− sin(
√

2λ̃n(b−`))
[
(b−a) sinh(

√
2(α−λ̃n)(`−a)+ cosh(

√
2(α−λ̃n)(`−a))√
2(α−λ̃n)

]}−1

×sin(
√

2λ̃n(b−x)) sin(
√

2λ̃n(b−y)).

(A4)

• If x ∈ [`, b), y ∈ [`, b), λ̃n > α,

φ̃`,−
n,α (x)φ̃`,−

n,α (y)=
√

2(λ̃n−α) cos(
√

2(λ̃n−α)(`−a)) sin(
√

2λ̃(`−a))−
√

2λ̃n cos(
√

2λ̃n(`−a)) sin(
√

2(λ̃n−α)(`−a)√
2λ̃n sin(

√
2λ̃n(b−a))

×
{

cos(
√

2λ̃n(b−`))
[

sin(
√

2(λ̃n−α)(`−a))√
2λ̃n

+

(√
λ̃n−α

λ̃n
(b−`)+

√
λ̃n

λ̃n−α
(`−a)

)
cos(
√

2(λ̃n−α)(`−a))
]

− sin(
√

2λ̃n(b−`))
[
(b−a) sin(

√
2(λ̃n−α)(`−a)− cos(

√
2(λ̃n−α)(`−a))√

2(λ̃n−α)

]}−1

×sin(
√

2λ̃n(b−x)) sin(
√

2λ̃n(b−y)).

(A5)

Then, by the Girsanov theorem (or via a Doob h-transform), the transition density of
the drifted Brownian motion follows as

p̃`,−
(a,b),α(T; x, y) = eµ(y−x)− µ2T

2

∞

∑
n=1

2e−λ̃nT φ̃`,−
n,α (x)φ̃`,−

n,α (y), (A6)

where φ̃`,−
n,α (x)φ̃`,−

n,α (y) is given by (A2)–(A5). To implement (57), the integrals∫ b

a
eµ(y−x)φ̃`,−

n,α (x)φ̃`,−
n,α (y)dy, n ≥ 1

can be obtained explicitly by direct computations.
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Appendix A.2. CDS Spread

Let {λ̃n} be the eigenvalues and let {φ̃`,−
n,α } be the eigenfunctions defined in (A1)–(A5).

Then we have explicit formulas for f and g, defined in Proposition 1:

f(t) =
∫ b

a
eµ(y−x)G̃`,−

α (r f + µ2/2; x, y)dy

−
∞

∑
n=1

e−(λ̃n+r f +µ2/2)t

λ̃n + r + µ2/2

∫ b

a
2eµ(y−x)φ̃`,−

n,α (x)φ̃`,−
n,α (y)dy,

g(t) =−
∫ b

a
eµ(y−x) ∂

∂λ
G̃`,−

α (λ; x, y)dy
∣∣∣∣
λ=r f +µ2/2

−
∞

∑
n=1

1 + (λ̃n + r f + µ2/2)t
(λ̃n + r f + µ2/2)2

e−(λ̃n+r f +µ2/2)t
∫ b

a
2eµ(y−x)φ̃`,−

n,α (x)φ̃`,−
n,α (y)dy,

(A7)

where G̃`,−
α (λ; x, y) is the Green function with explicit expressions given below (we only

provide for x ≥ `):

• If y ∈ (a, `],

G̃`,−
(a,b),α(λ;x,y)= 2 sinh(

√
2λ(b−x)) sinh(

√
2λ+2α(y−a))√

2λ cosh(
√

2λ(b−`)) sinh(
√

2λ+2α(`−a))+
√

2λ+2α cosh(
√

2λ+2α(`−a)) sinh(
√

2λ(b−`))
,

• If y ∈ [`, b),

G̃`,−
(a,b),α(λ;x,y)= 2 sinh(

√
2λ(x∧y−a)) sinh(

√
2λ(b−x∨y))√

2λ sinh(
√

2λ(b−a))
+

2 sinh(
√

2λ(b−x)) sinh(
√

2λ(b−y))√
2λ sinh(

√
2λ(b−a))

×
√

2λ cosh(
√

2λ(`−a)) sinh(
√

2λ+2α(`−a))−
√

2λ+2α cosh(
√

2λ+2α(`−a)) sinh(
√

2λ(`−a))√
2λ cosh(

√
2λ(b−`)) sinh(

√
2λ+2α(`−a))+

√
2λ+2α cosh(

√
2λ+2α(`−a)) sinh(

√
2λ(b−`))

,

and the integral ∫ b

a
eµ(y−x)G̃`,−

α (λ; x, y)dy

can be obtained explicitly as well. In practice, due to the lengthy expressions of the Green
function, we may obtain∫ b

a
eµ(y−x) ∂

∂λ
G̃`,−

α (λ; x, y)dy =
∂

∂λ

∫ b

a
eµ(y−x)G̃`,−

α (λ; x, y)dy

by numerical differentiations (since it is a smooth function in λ).

Notes
1 Here we distinguish the X-diffusion from the F-diffusion (i.e., the firm’s value process) F := F(X) which is obtained through a

smooth monotonic mapping F : I → D (where D is the state space for the F-diffusion) with unique inverse X = F−1.
2 The cemetery state ∂† is not included in the interval I . When the process is killed and immediately sent to the cemetery state, it

stays there indefinitely.
3 Ex[X; A] := Ex[XIA] for any random variable X and event A.
4 Px

(
X̃(a,b),t ∈ dy

)
:= P

(
X̃(a,b),t ∈ dy|X0 = x

)
.

5 When α = 0, we obtain the regular transition density of X(a,b) without an instantaneous killing:

p(a,b)(t; x, y)dy := Px(Xt ∈ dy, mt > a, Mt < b); t > 0, x, y ∈ (a, b),

and zero otherwise.
6 The transition and joint densities are pointwise convergent as b→ r:

p̃`,−
(a,r),α(t; x, y) := lim

b→r
p̃`,−
(a,b),α(t; x, y), f (a,r)

A`,−
t ,Xt

(u, y| x) := lim
b→r

f (a,b)
A`,−

t ,Xt
(u, y| x).
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7 We assume there exists a risk-neutral probability P̃ equivalent to P so that the discounted price process of the defaultable
claim is a Doob–Levy (P̃,F)-martingale. In the GBM model, we clearly have the discounted firm’s value process e−r f tFt =

F0e−
σ2
2 t+σW̃t , t ≥ 0, as a (P̃,F)-martingale.

8 Ẽt,A,x
[
h(τ ∧ T, X̃τ∧T)

]
:= Ẽ

[
h(τ ∧ T, X̃τ∧T)|A`,−

t = A, Xt = x
]
.

9 For 0 ≤ t < T, Theorem 1 extends to the time-t value of the credit derivative since Dϑ,T
t,A,x = Dϑ−A,T−t

0,x , thanks to Lemma 1.
10 τ(ϑ) ∧ T = τa ∧ T (a.s.), for ϑ ≥ T, where the T-maturity credit derivative price Dϑ,T

0,x corresponds to that in the Black–Cox
model with default barrier A(t).

11 The name "hazard rate model" comes from the fact that we are employing a hazard rate process to model default probabilities.
12 For 0 ≤ t < T, Theorem 2 extends to the time-t value of the credit derivative: Dα,T

t,x = Dα,T−t
0,x .

13 We can easily extend it to the hazard rate model with λ defined in (48), since

P̃x(τ
(α1,α2) > T) = e−α1T

∫ ∞

a
p̃`,−
(a,∞),α2−α1

(T; x, y).

14 Under the occupation time model, the implied hazard rate function can be computed by Laplace inverting, with respect to α, of
the numerator and denominator in (60) separately.

15 We can easily extend it to the hazard rate model with λ defined in (48), by sending r f → r f + α1 and α→ α2 − α1.
16 Under the occupation time model, the implied hazard rate function can be computed by Laplace inverting, with respect to α, of f

and g in (64).
17 The eigenvalues {λ̃n}n≥1 can be obtained numerically by the bisection or Newton-Raphson methods.
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