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Abstract: Under-reporting in cyber incidents is a well-established problem. Due to reputational risk
and the consequent financial impact, a large proportion of incidents are never disclosed to the public,
especially if they do not involve a breach of protected data. Generally, the problem of under-reporting
is solved through a proportion-based approach, where the level of under-reporting in a data set
is determined by comparison to data that is fully reported. In this work, cyber insurance claims
data is used as the complete data set. Unlike most other work, however, our goal is to quantify
under-reporting with respect to multiple dimensions: company revenue, industry, and incident
categorization. The research shows that there is a dramatic difference in under-reporting—a factor
of 100—as a function of these variables. Overall, it is estimated that only approximately 3% of all
cyber incidents are accounted for in databases of publicly reported events. The output of this work
is an under-reporting model that can be used to correct incident frequencies derived from data sets
of publicly reported incidents. This diminishes the “barrier to entry” in the development of cyber
risk models, making it accessible to researchers who may not have the resources to acquire closely
guarded cyber insurance claims data.

Keywords: cyber insurance; cyber risk; under-reporting

1. Introduction

Under-reporting is the problem of event occurrences being reported only partially,
especially where the mechanism/conditions under which reporting occurs is not represen-
tative. It is a common problem and is mostly studied in the medical field Hirvonen et al.
(1997); Schuitemaker et al. (1997). The COVID pandemic provides a perfect example of
this. Most people only get tested if they show symptoms or have been exposed to someone
known to have been infected U.S. Centers for Disease Control and Prevention (2022). This
results in an unrepresentative sample of the full population. Medical studies are often
based on a sample of patients considering the cost associated and difficulty associated
in obtaining complete census data Stratton (2021). Ideally, everyone should be tested for
COVID regularly but this would be inordinately expensive. As a result, a less expensive
small but accurate data set is a practical solution. The small data set would be obtained
by appropriately sampling a portion of the population. This results in a sample that is
unbiased by construction. The under-reporting correction factor is computed by comparing
the small complete1 but unbiased data set to the larger but biased data set.

Cyber research has always struggled with the established and growing problem of
under-reporting of cyber incidents Touhill (2019). As a result, it is difficult to obtain a
clear picture of the true rate of cyber incidents. Organizations are reluctant to report
incidents when not required as doing so could directly impact their businesses by causing
a loss of reputation or by deterring potential prospects. In addition, there is a belief that
attackers will never be caught so that victims may consider incident reporting a waste of
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time Cavusoglu et al. (2004); Fafinski and Minassian (2009); Goucher (2010); McMurdie
(2016); McGuire (2013); Swinhoe (2019).

One of the prime cyber data providers, Advisen, gathers publicly reported information
through news, multiple online data breach clearinghouses or state and federal governments
and agencies using the freedom of information act Romanosky (2016). Highlighting the
limitations of this cyber data, Romanosky (2016) stated that the cyber data is a collection of
incidents which are detected and disclosed publicly. Such data neither includes undetected
incidents nor incidents that are detected but not disclosed. Most of the state laws are in
place to inform individuals when their personal identifiable information is compromised
Romanosky et al. (2011). Certainly, such data does not capture the information cyber
insurers have. The attacked organization might not report an incident but would definitely
file a claim to cover the associated cost for any event with material losses. Palsson et al.
(2020) also noted the problem of unreported events and focused on answering those
questions that can potentially still be answered by the available data, such as estimating
the cost of a cyber incident.

Cyber and Infrastructure Security Agency (2020) cited four key factors influencing
under-reporting problem—Variation in under-reporting over time (monthly, quarterly,
yearly), reporting requirements across different industries, analytical challenges to compute
measures using historical data, and comparing the outcomes from different datasets. In this
research, the under-reporting problem is addressed at the US level and compared between
five industries as well as three different incident types.

Hence, correcting for under-reporting in data sets of publicly reported cyber incidents
becomes necessary when building models from data that is typically included in these data
sets, but not frequently included in claims data. This includes, e.g., the number of records
lost in data compromise events. As will be shown, cyber events impacting small companies
are more under-reported than those impacting large companies. Since the number of
records compromised is typically higher for incidents impacting large companies, this
skews the distributions that are directly constructed from data sets of publicly reported
incidents. This is similar to the problem noted in the context of road accidents being
under-reported Elvik and Mysen (1999).

Brookmeyer and Gail (1986) advised on exclusion of under-reported data. How-
ever, Wood et al. (2016) stated that this would lead to biased statistical models. Elvik and
Mysen (1999) argued that under-reporting causes incomplete data sets and results in the
analysis being biased towards the reported data only.

There are a number of studies found in the medical domain addressing under-
reporting Hirvonen et al. (1997); Schuitemaker et al. (1997). The level of under-reporting in
a data set is estimated by comparing with fully reported but less plentiful data Elvik and
Mysen (1999); Wood et al. (2016), and more.

More than 85% of the literature applied a proportions approach that compares a
smaller but unbiased set of records against the larger population data—the approach is
easy to implement but obtaining a reliable data set, even if small, can be challenging.

Hirvonen et al. (1997) studied under-reporting and trends in dietary data to evaluate
energy levels and realized that women and over-weight individuals often under-report.
Lissner et al. (1989) performed a similar study but only on women data. They applied a
multiple regression with various combination of body composition factors as independent
predictors and computed a range for the under-reporting level of the mean daily weight
change and standard error of mean (SEM2). Again, the approach is simple but difficult to
obtain the necessary data for studies involving individuals.

Hazell and Shakir (2006) collected 37 different studies on adverse drug reactions.
They estimated an under-reporting level as the median of the inter-quartile range. This
is the most simplistic and rapid approach but it is difficult to obtain the research with
under-reporting estimates.

Krantz et al. (2020) and Krantz and Rao (2020) studied COVID-19 data before first peak
and proposed a new method with harmonic analysis and wavelets to compute the level of
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under-reporting. This approach develops complete data from the incomplete partial data
but involves complex mathematical models and is computationally intensive.

The proposed method in this work models the under-reporting correction factor as
a function of population characteristics. The study shows that there are extremely large
differences in correction factors observed as a function of these variables.

How to Use This Work

This work presents parameters of a model of under-reporting. The frequency of
cyber incidents of different types changes rapidly as attacker tactics evolve and the overall
number of bad actors increase. However, the level of under-reporting of these cyber events
is expected to change more slowly, as this would be primarily a consequence of legal
changes. In the US, applicable laws are typically at the state level, making large changes
in the level of under-reporting at the national level less likely. Therefore, the model of
under-reporting presented here should have continued value for longer than a model of
event frequency that would directly provide event frequency as a function of event type
and company characteristics.

The model of under-reporting presented here is constructed by joining a number of
proprietary data sets (see Section 2). All the constituent data sets are commercially available,
with the exception of the claims and policy data which are proprietary and thus unavailable.
It is the intent of this project for the results of this work to be used in conjunction with
commercially available historical incident data sets and firmographic data sets in order to
build unbiased cyber models without requiring access to claims data. Providing this model
of under-reporting to the academic community should therefore help lower the barrier to
entry in the development of cyber models by eliminating the need to acquire claims and
policy data.

2. Data

Two proprietary data sets are used for this study: claim-exposure data, which is
small but unbiased, and historical incident-IED3 data, which is large but biased. The
proprietary claim-exposure data is a collection of more than 30,000 US cyber insurance
policies under-written by multiple insurers and any claim information where there exist
claims against those policies. The data set includes a policy ID, start and end dates of
the policy, information about the insured company such as employee counts, geographic
location, industry, and revenue, and information about any associated claims, including an
ID, date, amount, an incident description, and an incident type/categorization (extracted
from the incident description).

The proprietary historical incident-IED data set used consists of a collection of more
than 100,000 publicly reported historical incidents in the US over a period of decades.
Although the data contains fields that are missing for many or even most records, none of
these fields were required for this research and hence no filtering of rows or data imputation
was done to the data set. The incidents in this data set were gathered via numerous collec-
tion methods, including scraping of technology and news websites, Securities Exchange
Commission (SEC) filings, and other sources. An aggregated data set was constructed by
combining a historical incident data set (Advisen) with a proprietary firmographic data
set (IED) of companies that includes, among other things, their name, location, industry,
and revenue.

From this point onwards, all provided measures and statistics are based on the US
subset of incidents.
Limitations: There might be cyber incidents which are not reported to insurers because the
losses associated with them are less than the deductible. This research does not address
this. The incident types examined are covered under any insurance policy. Incidents of
other types may have different under-reporting levels.

The number of companies in the firmographic data set was validated against US
census data and is well aligned in the number of companies by industry and size for
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companies with at least 15 employees. Below this value (which accounts for the majority of
US companies), the firmographic data set contains a much larger number of companies
than indicated in US census data. This could have the impact of overestimating the level of
under-reporting for small companies—those whose revenue is below approximately one
million USD.

3. Methodology

The proposed approach aims to correct for under-reporting in cyber incidents in more
than one dimension–revenue, event type and industry. A model of event frequency as a
function of company revenue, industry, and incident type is obtained for both the claims-
exposure data set and the historical incident-IED data set. An under-reporting factor is
computed as a function of these variables by taking the ratio of these.

Due to insufficient data when examining combinations of revenue, industry, and
incident type, separability of the models is assumed. That is, the incident frequency for a
combination of variables is expressed as a product of functions of a single variable each
Weirich (2015). First, under-reporting corrections are computed as a function of revenue as
shown in Equation (1). Assuming the revenue corrections are correct, the under-reporting
corrections for revenue given incident type are computed as a function of revenue and
incident type as shown in Equation (2). Similarly, the under-reporting corrections for
revenue given industry are computed as a function of revenue and industry as shown
in Equation (3). Extending further, the under-reporting corrections for revenue given
incident type and industry can be computed as a function of the revenue, r, incident type, t,
and industry, i, as shown in Equations (2) and (3), assuming correctness of the preceding
under-reporting model for revenue, UR(r) (Equation (1)).

Function of revenue, r: URr(r) (1)

Function of revenue, r, and incident type, t: URr,t(r, t) = URr(r)×URt(t) (2)

Function of revenue,r and industry, i: URr,i(r, i) = URr(r)×URi(i) (3)

where UR refers to under-reporting model.

A model of under-reporting as a function of revenue is constructed first as this was
found to be the variable with which there is the most variation in under-reporting.

3.1. Revenue Based Corrections

The factor URr(r) is computed as the proportion of event frequency as a function
of revenue, r from claim-exposure data, f reqCE,r(r), and historical incident-IED data,
f reqInc−IED,r(r), as shown in Equation (4).

URr(r) =
f reqCE,r(r)

f reqInc−IED,r(r)
(4)

For claim-exposure data, the raw revenue frequency, f reqCE,raw,r(r), is computed as
the ratio of the number of claims and the sum of policy years of the policies under-written
for companies with given revenue r, as shown in Equation (5). The policy year refers to the
time period, in years, the policy is written for.

f reqCE,raw,r(r) =
Claims(r)

∑p∈Pr Policy Years(p)
(5)

where Pr refers to policies written for companies with revenue r.
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Similarly, for historical incident-IED data, the raw event frequency as a function of
revenue, f reqInc−IED,raw,r(r), is computed as the ratio of the number of incidents and the
number of companies with given revenue r, as shown in Equation (6).

f reqInc−IED,raw,r(r) =
Incidents(r)

N(r)
(6)

where N(r) is the number of organizations with revenue, r.
The computed raw event frequencies are then smoothed over a rolling window of size

‘d’ with revenue taken on a log10 scale. Smoothing is required since most of the raw fre-
quency values are either zero or one as they are based on single policies or companies. This
smoothed event frequency, f reqSmooth,r, is computed as an average of the raw frequencies
in the revenue window (log10 r− d, log10 r + d), as shown in Equation (7).

f req·,Smooth,r(r) =
∑p∈P Weight(p) f req·,raw,r(r)

∑p∈P Weight(p)
(7)

where Weight(p) =

{
1− |log10 r−log10 pr|

d log10 pr ∈ (log10 r− d, log10 r + d)
0 else

pr = revenue for policy p

The value of ‘d’ is chosen to be 1.5 because smaller values of ‘d’ were showing noisy,
non-monotonic behavior whereas larger values resulted in a flattened curve at extreme
revenue values.

Considering the trend in event frequencies as a function of revenue shown in Figure 1,
an exponential function is fitted to the trend from the claim-exposure data (Figure 1a) and
a polynomial function, with event frequency on a log10 scale, is fitted to the trend from the
historical incident-IED data (Figure 1b). In both functions, revenue is taken on a log10 scale.
This is done due to heavy concentration of companies with smaller revenues, especially in
the historical incident-IED data. For the historical incident-IED data, the event frequency is
also on a log10 scale as the (uncorrected) event frequencies derived from this data set are
vanishingly small for smaller companies. In both cases, the models ensure positive values
for event frequency.

The exponential function is defined as the power function of the form shown in
Equation (8).

YExp(x) = aebx (8)

where a and b are the fitted parameters

The parameters a and b computed using RMSE approach, as shown in Equation (9).

Minimize
a,b

√
∑
r∈R

(
f reqSmooth,r(r)−YExp(r)

)2 (9)

where R is the set of revenues over all policies. To find the optimal degree for the polynomial
used to fit the historical incident-IED data, a polynomial is fitted for multiple degrees on a
training set from the historical incident-IED data and tested on the remaining data. Let the
polynomial of degree n be denoted by YPoly(x; a) (as shown in Equation (10)).

YPoly(x; a) = a0 + a1x + a2x2 + . . . + anxn (10)

where a = (a0, a1, . . . , an) is a vector of fitted parameters
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The optimal polynomial degree is four, derived by minimizing the root mean square
error (RMSE), as shown in Equation (11).

Minimize
n∈0,1,...

Minimize
a∈Rn+1

√
∑
r∈R

(
f reqSmooth,r(r)−YPoly(r; a)

)2
(11)

where n refers to the range of degree to be evaluated for the polynomial and R is the set of
revenues over all policies (for the claim exposure dataset) or companies (for the historical
incident-IED dataset).

(a) Claim Exposure

(b) Historical incident-IED

Figure 1. Smoothed Frequency Plots.
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The under-reporting correction factors are computed as the ratio of the frequencies
computed from the claim-exposure and historical incident-IED models as a function of
revenue, as shown in Equation (12).

URr(r) =
YExp(r)

10YPoly(r)
(12)

where YExp is the exponential model used for the claim-exposure data, and YPoly is the
polynomial model used for the historical incident-IED data with frequency on a log10 scale.

3.2. Revenue and Incident Type Corrections

Incident type factors are determined by comparing the event frequency as a function
of revenue and incident type to the overall event frequency as a function of revenue
(irrespective of any incident type). By the separability assumption, event frequency as a
function of revenue and incident type is equal to the corresponding incident type factor
multiplied by the revenue-only event frequency.

Since the policies are not specifically under-written for a subset of the incident types
of interest, all policies are taken into consideration when computing event frequency w.r.t.
revenue and incident type. For claim-exposure data, the raw event frequency as a function
of revenue and some incident type t can be computed as shown in Equation (13).

f reqCE,raw,r,t(r, t) =
Claims(r, t)

∑p∈Pr Policy Years(p)
(13)

where Claims(r, t) refers to the number of claims with incident type t for insureds with
revenue r. Similarly, the raw event frequency with respect to revenue and incident type is
computed from the historical incident-IED data as shown in Equation (14).

f reqInc−IED,raw,r,t(r, t) =
Incidents(r, t)

N(r)
(14)

where Incidents(r, t) refers to number of incidents with revenue r and incident type t
and N(r) refers to the number of companies with revenue r. Again, these raw frequen-
cies, f reqCE,raw and f reqInc−IED,raw, are further smoothed over a rolling window of size
d to compute smooth frequencies, f reqCE,Smooth and f reqInc−IED,Smooth, respectively, as
discussed earlier.

Incident type factors, f·,t(t), are then computed under the assumption that the models of
frequency as a function of revenue are correct. The frequency scalar for each given incident
type, f·,t(t), are computed such that the models of frequency given incident type and revenue
can be determined by scaling the overall (i.e., non event type specific) models of frequency
given revenue, f req·,Fitted,r, by incident type factor, f·,t(t). This is done for both the claim-
policy and historical incident-IED data sets, as shown in Equations (15) and (16).

f reqCE,Smooth,r,t(r, t) ≈ fCE,t(t)× f reqCE,Fitted,r(r) (15)

f reqInc−IED,Smooth,r,t(r, t) ≈ f Inc−IED,t(t)× f reqInc−IED,Fitted,r(r) (16)

where fCE,t(t) and f Inc−IED,t(t) are incident type frequency scalars computed by a curve
fitting approach that minimizes the sum of squared differences between smoothed frequen-
cies, f req·,Smooth,r,t(r, t), and incident type frequency scalar times model fitted frequencies,
f·,t(t) × f req·,Fitted,r(r), where the sum is taken over the set of revenue values, as shown in
Equation (17).

Minimize
f·,t(t)

∑
r∈R

(
f req·,Smooth,r,t(r, t)− f·,t(t)× f req·,Fitted,r(r)

)2

(17)
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where R is the set of policies for claim exposure data and revenue for historical incident data.
Accordingly, the under-reporting correction factor for a given incident type t is computed

as a function of both revenue and incident type, as shown in Equations (18) and (19).

URr,t(r, t) = URr(r)×URt(t) ≈
fCE,t(t)× f reqCE,Fitted,r(r)

f Inc−IED,t(t)× f reqInc−IED,Fitted,r(r)
(18)

≈ fCE,t(t)
f Inc−IED,t(t)

×URr(r) (19)

3.3. Revenue and Industry Corrections

Under-reporting corrections for revenue and industry are computed in almost the
same way as for revenue and incident type. The only difference is that–unlike incident type–
industry is a property of the company itself. Therefore, when computing event frequencies,
both the set of claims/historical incidents and the set of policies/companies are filtered to
only those for companies of the industry under consideration.

From claim exposure data, the revenue frequency for industry i can be computed as
shown in Equation (20).

f reqCE,raw,r,i(r, i) =
Claims(r, i)

∑p∈Pr,i
Policy Years(p)

(20)

where Claims(r, i) refers to number of claims with revenue r, and industry i.
From historical incident-IED data, the revenue frequency for industry i can be com-

puted as shown in Equation (21).

f reqInc−IED,raw,r,i(r, i) =
Incidents(r, i)

Nr,i
(21)

where Incidents(r, i) refers to number of incidents occurred in the industry i and Nr,i refers
to number of companies with revenue r in the industry i.

4. Results

In this section, under-reporting corrections are presented as a function of revenue,
revenue and incident type, and revenue and industry.

4.1. Under-Reporting Factors: Revenue

Figure 2 shows how under-reporting varies as a function of revenue (defined in
Equation (12)). These results show that the under-reporting factor is highest for low
revenue companies—most events are not reported—and approaches one for high revenue
companies—most events are reported.

4.2. Under-Reporting Factors: Revenue and Incident Type

Based on the availability of claim-exposure data, three incident types are investigated:
Hacking (HACK), Social Engineering (SOC) and Ransomware (RAN). Although the list of
incident types is not exhaustive, these incident types account for the majority of incidents in
both the claim-exposure and the historical incident data sets. HACK and SOC are different
types of data compromise incidents. An incident which begins with HACK or SOC but
ultimately leads to ransom is classified as RAN.

Table 1 shows the computed under-reporting factors for three incident types, and
Figure 3 shows these factors as a function of both revenue and event type. Although HACK
and SOC have a comparatively lower under-reporting factor when compared to RAN, the
correction factor for SOC is more than double that of HACK.
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Figure 2. Under-reporting Factors as a function of Revenue.

Table 1. Under-reporting Factors: Incident Type.

Incident Type Factor

HACK 0.7607
SOC 1.5926
RAN 5.2864

A likely explanation for the much higher factor for RAN is that there are reporting
requirements for data compromise incidents such as HACK and SOC whereas RAN does
not have such requirements. The results emphasize the need for under-reporting factors to
be computed individually by incident type.

Figure 3. Under-reporting Factors as function of Revenue and Incident Type.
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4.3. Under-Reporting Factors: Revenue and Industry

Based on the availability of claim-exposure data, five industries are investigated: Retail
Trade (RT), Manufacturing (MFG), Finance and Insurance (FnI), Professional, Scientific, and
Technical Services (PSTS), and Wholesale Trade (WT). Table 2 shows the under-reporting
factors for five different industries. The RT and MFG industries have under-reporting
factors less than one whereas FnI, PSTS and WT have more than one. The WT industry has
the largest under-reporting factor at 4.2.

Table 2. Under-reporting Factors: Industry.

Industry Factor

RT 0.0931
MFG 0.8577
FnI 1.4919
PSTS 1.1985
WT 4.2024

Figure 4 shows how under-reporting factors vary as a function of revenue for the
five examined industries in comparison to the overall (i.e., industry-independent) under-
reporting curve. It should be noted that the under-reporting factor for RT is below one at
revenues above approximately ten million; this indicates that the separability assumption
may not be adequate for this industry. Again, these results show that there are substantial
differences in under-reporting factors for different industries.

Figure 4. Under-reporting Factors as function of Revenue and Industry.

5. Validation

To validate the model, both the claim-exposure and the historical incident-IED data
sets are split into two-thirds for training and one-third for test, and an under-reporting
model is built from each of 100 bootstrapped samples of the training data. This produces
95% confidence intervals for the model, against which a model built from the test data is
compared. The train-test split of the claim-exposure data used stratified sampling to keep
the proportion of policies with claims approximately the same in both the train and test
sets. The train-test split was not balanced with respect to any other variables.
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With 100 samples each from the independent claim-exposure and historical incident-
IED data sets, 10,000 under-reporting factors are computed by comparing all claim-exposure
samples with each historical incident-IED sample. The 95% confidence intervals for the
under-reporting factors are computed separately for URr(r), URt(t), and URi(i) to validate
against the corresponding factors obtained from the test data. Figure 5 shows the validation
of the under-reporting curve for revenue with 95% confidence interval bands. The plot
indicates that there is higher level of under-reporting for organizations with lower revenue
when compared to ones with higher revenue. The under-reporting factors could be more
than 100 for low revenue organizations but are found to be lower than one for organizations
with revenues above 100 million in the test data. This is likely a statistical anomaly, as the
confidence intervals widen for larger revenues, and the under-reporting factor computed
at these revenues is at the lower 95% confidence interval.

Figure 5. Under-reporting Factors: Revenue.

Figure 6 shows under-reporting factors for three incident types. The under-reporting
factor for RAN could range from 1.1 to 5.5. The upper estimate of the HACK under-
reporting factor is less than the lower estimate for RAN, and the upper estimate of the SOC
under-reporting factor is around 2.2 times the lower estimate for RAN. There is a much
larger range of uncertainty in the SOC under-reporting estimate.

Figure 7 shows that there is a contrast observed between the retail and wholesale
trade industries where RT has the lowest under-reporting factor and WT has the highest. A
potential explanation for this is that retail trade is a business-to-consumer (B2C) industry
and would therefore have large quantities of PII4, placing greater legal requirements on
them in the event of a data breach. Conversely, wholesale trade is a business-to-business
(B2B) industry. The latter point, however, should in principle apply to manufacturing as
well, which has one of the lower under-reporting factors.

The under-reporting factor for the FnI industry based on test data is found to be above
the 95 percentile range, whereas the under-reporting factor for the WT industry based on
test data is found to be below the 95 percentile range. This could be a consequence of the
split in data between the train and test sets, which used sampling that was stratified on
claims but not on revenue, incident type or industry.
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Figure 6. Under-reporting Factors: Incident Type.

Figure 7. Under-reporting Factors: Industry.

6. Conclusions

This research proposed a method to quantify the extent of under-reporting in data
sets of public cyber incidents. It quantified the under-reporting factor with respect to
revenue, as well as some incident types and industries. It found significant differences
in under-reporting with respect to each of these variables, but especially with respect to
revenue, where lower revenue companies were found to have approximately 100 times
the under-reporting of larger revenue companies. With a model of under-reporting as a
function of revenue as a baseline, under-reporting factors were computed for three incident
types: hacking (HACK), social engineering (SOC) and ransomware (RAN). Again, this
research showed large differences in these factors, with RAN having a significantly higher
level of under-reporting compared to either HACK or SOC. Thirdly, under-reporting factors
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were computed for five industries–Retail Trade (RT), Manufacturing (MFG), Finance and
Insurance (FnI), Professional Scientific Technical Services (PSTS) and Wholesale Trade (WT)–
again under the assumption that the model of under-reporting with respect to revenue is
correct. The research showed that the WT, FnI, and PSTS industries have greater levels
of under-reporting whereas the MFG and especially the RT industries have lower levels.
The research indicates the necessity not only to correct for under-reporting in data sets of
publicly reported cyber incidents, but to take multiple variables in consideration when
doing so.

Using the under-reporting model and the historical incident-IED data, an estimate
of the overall proportion of all incidents that are accounted for by databases of publicly
reported events can be determined. By scaling the number of reported events at each
revenue by the reciprocal of the under-reporting factor for that revenue and summing over
all revenues, an estimate for the true number of cyber incidents can be arrived at. Taking
the ratio of the number of reported incidents and this value gives an estimate of 3% for
the proportion of events that are accounted for in databases of publicly reported events.
This is not far from the level of under-reporting for the smallest companies (since the vast
majority of companies have revenues below 1M USD), but not quite as dramatic since
smaller companies nevertheless suffer fewer cyber incidents when compared to larger ones.
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Notes
1 Data are considered complete where all incidents are reported for a particular population.
2 SEM = σ√

n , where n is sample size.

3 IED stands for Industry Exposure Database.
4 Personal Identifiable Information.
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