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Abstract: Stop-loss reinsurance is a risk management tool that allows an insurance company to
transfer part of their risk to a reinsurance company. Ruin probabilities allow us to measure the effect
of stop-loss reinsurance on the solvency of the primary insurer. They further permit the calculation of
the economic capital, or the required initial capital to hold, corresponding to the 99.5% value-at-risk
of its surplus. Specifically, we show that under a stop-loss contract, the ruin probability for the
primary insurer, for both a finite- and infinite-time horizon, can be obtained from the finite-time ruin
probability when no reinsurance is bought. We develop a finite-difference method for solving the
(partial integro-differential) equation satisfied by the finite-time ruin probability with no reinsurance,
leading to numerical approximations of the ruin probabilities under a stop-loss reinsurance contract.
Using the method developed here, we discuss the interplay between ruin probability, reinsurance
retention level and initial capital.

Keywords: finite-difference method; reinsurance; ruin probability; stop-loss

1. Introduction

The environment in which general insurance companies currently operate is challeng-
ing in at least two aspects. First, investment income is squeezed by unprecedented low
levels of interest rates. Second, for some classes of businesses, premium rates are relatively
low due to an abundance of industry capacity. Risk management is therefore relied upon
not only for monitoring risks but also to inform management decisions.

A risk management tool often used by insurance companies is reinsurance, especially
for very large risks or risks which are difficult to assess, for instance hurricanes, earthquakes
or wildfires. Under a reinsurance contract, the reinsurer company agrees to compensate
the primary insurer (or ceding company) for part of its insurance losses in exchange for a
reinsurance premium. In short, reinsurance is when an insurance company transfers part
of its underwritten insurance risks to a reinsurance company. By entering a reinsurance
contract, the primary insurer should attain a reduction in the probability of incurring large
losses and reduce the capital required to keep its insolvency risk at an acceptable level.
There are different forms of reinsurance treaties, and for a review of their properties, we
refer the reader to Albrecher et al. (2017). The choice of reinsurance treaty is complex,
often relying on some optimality criteria related to profit, solvency and cost of capital
(see, e.g., Haas 2012; Kull 2009) and taking into account the availability and price of the
contract, market competition and regulatory constraints: see Albrecher et al. (2017) and
references therein.

One form of reinsurance is stop-loss, under which the aggregate loss, over a given
time period, is capped at an agreed retention level and the reinsurer is liable for the excess.
This type of contract has been found to be optimal under different decision criteria, for
instance, if the primary insurer wants to minimize the variance of the retained risk as per
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Borch, Kahn and Pesonen (e.g., see Pesonen 1984) or when maximizing expected utility in
the context of risk-averse utility functions as per Arrow (1963) or Borch (1975). One can
also model the solvency of a reinsurance strategy using the concept of ruin probability.
Considering a ruin condition as the decision criterion allows to find the optimal reinsurance
treaty for the insurer. Indeed, a stop-loss type of reinsurance contract is optimal when the
criterion is to minimize the ruin probability: see Gajek and Zagrodny (2004). Minimizing
the ruin probability and maximizing the expected utility are in fact related, as shown
by Guerra and de Lourdes Centeno (2008, 2010) who again find that a stop-loss type of
reinsurance contract is optimal under certain conditions.

Because it is based on the aggregate losses, compared with other types of reinsurance
contracts, stop-loss is useful when it is difficult to allocate individual claims to particular
events due to their nature, as can happen, for instance, in agriculture. From the risk
management point of view, this type of treaty is special in the sense that it completely
relieves the primary insurer from tail risk, a major concern for solvency. In this article, we
introduce a methodology that allows us to study how stop-loss reinsurance affects the level
of capital a primary insurer must hold to sustain a low level of insolvency risk determined
by a strategic decision or regulatory directive. The regulatory solvency approach, under
Solvency II, focusses on the one-year 99.5% value-at-risk, meaning that the probability that
the aggregate loss over the year is larger than the available capital is 0.5%. Hence we use
the 0.5% ruin probability to determine the level of economic capital necessary to cover the
losses over the next year.

We first introduce a relationship between the finite and infinite-time ruin probability
for a portfolio with stop-loss reinsurance, and the finite-time ruin probability for a portfolio
with no reinsurance. Then, using a classical risk theory result, namely that the finite-
time probability of ruin in a classical no-reinsurance contract satisfies an integro-partial
differential equation (see Pervozvansky 1998), we proceed to numerically solve the equation
and thus derive the finite-time-no-reinsurance ruin probability that leads to the finite and
infinite-time ruin probability with stop-loss reinsurance.

We can then evaluate the level of risk faced by the primary insurer when covered
by a stop-loss contract compared with the risk faced without taking on reinsurance. The
risk cover provided by the reinsurance contract depends on the length of the contract.
Remarkably, the stop-loss contract provides an upper bound to the ruin probability for a
sufficiently long contract. In our numerical example, for a given set of parameters of the
risk process, ruin probability plateaus for contracts longer than four months, showing that
a realistic length of contract already provides such cap on the insolvency risk faced by the
primary insurer. This shows the relevance of our results under realistic assumptions within
a dynamic framework where the stop-loss contract can be regularly redefined in a finite
(and not excessively large) time horizon.

As in any financial enterprise, the solvency of an insurer depends on its initial capital.
Hence, it is important to understand the role of the initial capital on the solvency of the
primary insurer and how it interacts with the amount of business ceded via a stop-loss
contract. To that end, we evaluate the change in ruin probability, corresponding to different
amounts of initial capital and different reinsurance retention levels. On the one hand, we
conclude that ruin probability, and hence the risk of insolvency, is far more sensitive to the
retention level for lower than higher levels of initial capital. On the other hand, decreasing
the stop-loss retention level (or increasing the amount of risk ceded) does not imply a
linear decrease in the initial capital required to maintain a chosen level of insolvency risk.
At higher retention levels, the extra amount of initial capital necessary to compensate for
retaining extra risk is lower than at lower retention levels. This implies that the motivation
for the primary insurer to cede more risk to the reinsurer as a way of lowering the need of
capital, and associated cost, reduces as the retention level increases. This is a convenient
result in the sense that the primary insurer has diminishing incentive to seek an unlimited
stop-loss contract. In fact, unlimited stop-loss contracts are not sold systematically (except
under certain obligatory arrangements or captive solutions) because once the aggregate
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claim losses exceeds the agreed retention level the contract is a catastrophe for the reinsurer.
In a dynamic finite-time horizon setting, a possible solution is for reinsurance companies to
create side-car structures, spreading the risk among third-party private investors seeking
high-yields such as hedge funds or equity firms.

The effect of stop-loss on the primary insurer solvency is then measured by its effect
on the so-called economic capital, which is the amount of capital the insurer must hold in
order to absorb losses in excess of the average loss. The economic capital is then defined by
the value-at-risk, typically at a very high confidence level and for a one-year time horizon.
We develop a numerical example where we determine the level of initial capital necessary
to ensure that the insurer can cope with losses up to a 99.5% value-at-risk, which, in our
framework, corresponds to a 0.5% ruin probability. Our main finding is that entering into
a stop-loss reinsurance contract allows for a striking reduction in the initial capital the
primary insurer must hold to keep the desired low level of insolvency risk.

The paper is organised as follows. In the following section, we introduce the risk
process model used throughout this article. In Section 3, we show that the probability of
ruin under a stop-loss reinsurance contract can be seen as a special case of ruin probability
in finite-time. In Section 4, we propose a numerical method for approximating solutions
to the finite-time ruin probability problem. In Section 5, we apply the numerical method
to the stop-loss reinsurance model. Section 6 follows with an evaluation of the interplay
between finite-time ruin probability, stop-loss retention level and initial capital. Section 7
illustrates the application to the economic capital required by Solvency II, and Section 8
contains the conclusions.

2. The Risk Process Model

To assess the insurance risks in a mathematical framework, we consider an insurance
portfolio as follows. Assuming (Ω,F ,P) to be a probability space, let (N(t))t≥0 be a count-
ing process and (Xk)k∈N a sequence of independent and identically distributed random
variables representing, respectively, the number of claims an insurance company received
up to and including time t and the size of claim k. The classical collective risk model,
introduced by Lundberg and Cramér, defines the surplus at a given time t as

U(t) = u + ct−
N(t)

∑
k=1

Xk, (1)

which describes the evolution of the capital of an insurance company over time, starting
with an initial capital u, receiving premiums at rate c > 0 and paying out claims Xk as
they arrive. This model captures the insurer’s capital dynamics, keeping analytical and
numerical tractability, and enables us to calculate solvency indicators while maintaining
adequate amount of assumptions regarding the real world applications.

A measure of risk which takes into account the aspects of the risk process inherent to
the insurance business is ruin probability, considered over a finite or infinite time horizon.
One defines “ruin” as the event of the surplus becoming negative for the first time. To
ensure that ruin is not certain, one requires that ct > E(N(t))E(X), the so-called net profit
condition, which in case the counting process (N(t))t≥0 is Poisson with intensity λ and
the claim sizes have mean µ, becomes c > λµ; see, for example, Asmussen and Albrecher
(2010). Throughout the paper we consider a Poisson counting process.

The probability of ruin Ψ, as a function of the initial capital u, is defined as

Ψ(u) := P
(

inf
s≥0

U(s) < 0
∣∣∣∣U(0) = u

)
.

This is the probability that the insurer’s capital balance will become negative for the
first time. This is referred to as the infinite-time ruin probability, or ruin probability in an
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infinite horizon, or simply ruin probability. One may also consider the probability of ruin
in finite time, defined as a function of the initial capital u and the time horizon T,

Ψ(u, T) := P
(

inf
0≤s≤T

U(s) < 0
∣∣∣∣U(0) = u

)
,

describing the probability that ruin occurs by time T. One way of deriving the ruin
probabilities in insurance portfolios is as solutions of integro-differential equations for
infinite horizon ruin, respectively, integro-partial differential equations for finite-time
ruin. By specifying the claims distribution, one can further reduce these equations to
differential (see, e.g., Albrecher et al. 2010), respectively, partial-differential equations (see
e.g., Pervozvansky 1998), which in specific instances have analytic solutions.

3. Stop-Loss Reinsurance and (In)Finite-Time Ruin Probability

We consider the following stop-loss reinsurance contract. A time T (may be infinite)
is agreed upon between the ceding company and the reinsurer; until then, the reinsurer
agrees to cover all the aggregate losses that exceed a certain level B ≥ 0. Let S denote the
aggregate loss up to and including time t. That is,

S(t) :=
N(t)

∑
k=1

Xk.

Then, the amount the reinsurer pays to the ceding company, up to and including time
t, is R(t) = (S(t)− B)+, where we use the notation a+ := max(a, 0) for a real number a.
Moreover, let UR denote the surplus of the ceding company who entered such contract
with the reinsurer. Clearly,

UR(t) = u + cRt− S(t) + R(t) for t ∈ [0, T], (2)

where cR is the adjusted premium income, which equals the original premium income from
the classical model c (i.e., the premium when there is no reinsurance in the model) minus
the cost of the reinsurance contract. Let ΨR denote the probability of ruin before time T
with initial capital u under this stop-loss reinsurance contract, that is,

ΨR(u, T) := P
(

inf
0≤s≤T

UR(s) < 0
∣∣∣∣UR(0) = u

)
.

Let Ψ0 be the classical ruin probability with no reinsurance

Ψ0(u, T) := P
(

inf
0≤t≤T

u + cRt− S(t) < 0
)

.

where the premium rate is cR instead of the original c.

Theorem 1. Let
t0 :=

B− u
cR

and let T∗ := (min(t0, T))+. Then

ΨR(u, T) = Ψ0(u, T∗). (3)

Proof. By definition, S(t) − R(t) = B ∧ S(t) is the retention part of aggregated claims
under the stop-loss reinsurance at time t > 0. Hence, for t ≥ t0,

UR(t) = u + cRt− S(t) + R(t) ≥ B− B ∧ S(t) ≥ 0 (4)
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which means ruin will not occur after t0.
Fixing T ∈ (0, t0), on the set {UR(t) ≥ 0, ∀t ∈ [0, T)}

UR(t) = u + cRt− B ∧ S(t) ≥ 0

it is necessary that S(t) < B; thus, R(t) = 0 and

UR(t) = u + cRt− S(t) = U(t) ∀t ∈ [0, T).

On the other hand, on the set {U(t) ≥ 0, ∀t ∈ [0, T)}

U(t) = u + cRt− S(t) ≥ 0

for every t < T < t0. Thus, S(t) < B, R(t) = 0 and

U(t) = u + cRt− S(t) + R(t) = UR(t) ∀t ∈ [0, T).

The identities above show that in the event of finite time survival, the two models
coincide for every T < t0.

In other words, for every T > 0,

ΨR(u, T) = ΨR(u, T ∧ t0) = Ψ0(u, T ∧ t0). (5)

Remark 1. Note that in the presence of a stop-loss contract, for T = ∞, ruin would never happen

after T∗ = t0 =
B− u

cR
; in other words ΨR(u, ∞) = ΨR(u, T∗) = Ψ0(u, T∗).

So far we have shown that the ruin probability of a certain type of stop-loss reinsurance
contract can be expressed in terms of the ruin probability in finite-time for an insurer
without reinsurance for a given T∗ dependent on T. To further explore finite-time ruin
probability with stop-loss reinsurance, we recall the partial integro-differential equation
for the finite-time ruin probability, derived by Pervozvansky (1998) under very general
conditions. Here we present the result for the convenience of the reader. This will be the
basis for the finite-difference numerical scheme of Section 4.

Theorem 2. Let (N(t))t≥0 be a Poisson process with constant intensity λ > 0. Let the claims
(Xk)k∈N be independent and identically distributed with cumulative distribution function F. As-
sume that Xk has a density which is once continuously differentiable. Let F̄ = 1− F. Then, for
(u, t) ∈ (0, ∞)× (0, ∞),

∂Ψ(u, t)
∂t

− c
∂Ψ(u, t)

∂u
+ λΨ(u, t) = λ

∫ u

0
Ψ(u− y, t)dF(y) + λF̄(u) (6)

with the boundary conditions

lim
u→∞

Ψ(u, t) = 0, ∀t ∈ (0, ∞) and Ψ(u, 0) = 0, ∀u ∈ [0, ∞).

For proof of (6), see Pervozvansky (1998, Theorem 1). Note that the first boundary
condition comes from the assumption of a positive net profit, c > λE(X). The second one
follows from the definition of Ψ.
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Remark 2. There is an analytic solution to (6) in the particular case when claim sizes Xk have
an exponential distribution with the parameter β. Let J(x) := I0(2

√
x), where I0(x) denotes the

modified Bessel function; see, e.g., Rolski et al. (1999, p. 197). Then,

ψ(u, t) = 1− exp(−βu− (1 + ξ)λt) ω(βu + ξλt, λt),

where ξ = βc/λ and

ω(z, θ) = J(θz) + θ J(1)(θz) +
∫ z

0
exp(z− ν)J(θν)dν

− 1
ξ

∫ ξθ

0
exp(ξθ − ν)J(zνξ−1)dν.

4. Finite-Difference Approximations of Finite-Time Ruin Probability
4.1. Description of the Numerical Scheme

Let T > 0 be the greatest time for which we wish to calculate the ruin probability
in finite-time. We will use the finite-difference method to approximate solutions to the
above partial integro-differential equations for Ψ(u, t), u ∈ (0, ∞), t ∈ (0, T]. Let N ∈ N be
the number of time steps used in the approximation, and let τ := T/N. This is the step
size used in the temporal discretization. Let h > 0 denote the step size used in the spatial
discretisation. Let g be some function defined on [0, ∞)× [0, T]. Then,

δhg(u, t) :=
1
h
(g(u + h, t)− g(u, t)) ≈ ∂g

∂u
(u, t)

and
δτ g(u, t) :=

1
τ
(g(u, t + τ)− g(u, t)) ≈ ∂g

∂t
(u, t).

Care has to be taken when approximating the integral term, as f will typically be
unbounded at 0. Thus, we propose three possible approximations corresponding to “left-
point”, “mid-point” and “right-point” approximation:

IL
h g(ih, t) :=

i−1

∑
j=0

g((i− j)h, t) f (jh)h,

IM
h g(ih, t) :=

i−1

∑
j=0

1
2
(

g((i− j)h, t) f (jh) + g((i− j + 1)h, t) f ((j + 1)h)
)
h,

IR
h g(ih, t) :=

i−1

∑
j=0

g((i− j + 1)h, t) f ((j + 1)h)h.

We see that for S ∈ {L, M, R},

IS
h g(ih, t) ≈

∫ ih

0
g(ih− y)dF(y).

The last approximation lies in restricting the domain (0, ∞) × (0, T] to a bounded
domain, say, (0, umax]× (0, T]. For this, we need an “artificial” boundary condition. We use
the fact that Ψ is monotonically decreasing as a function of u and the boundary condition
limu→∞ Ψ(u, t) = 0 to impose an artificial boundary condition. Let us denote by u0 the
largest initial capital for which we wish to approximate the probability of ruin in finite
time. Let K ∈ N denote the multiple of u0, which we use to define the size of the interval
on which the computation is carried out. Thus, we choose

umax := min{ih : ih ≥ Ku0, i = 0, 1, . . .}.
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We will then consider the grid

Gh,τ,K := {(u, t) : u = ih, t = nτ, i = 0, 1, . . . , umax/h, n = 0, 1, . . . , N}.

We will define ΨS : Gh,τ,K → R, for S ∈ {L, M, R}, as the function that satisfies, for
i = 0, 1, . . . , umax/h− 1 and n = 0, 1, . . . , N − 1

δτΨS(ih, (n− 1)τ)− cδhΨS(ih, nτ) + λΨS(ih, nτ)

= λIhΨS(ih, (n− 1)τ) + λF̄(ih)
(7)

together with the initial and boundary condition

ψS(ih, 0) = 0, i = 0, 1, . . . umax/h,

ψS(umax, nτ) = 0, n = 0, 1, . . . N.
(8)

See Figure 1 for a graphical illustration of the dependence structure of the scheme. We
can see that (7) is a semi-implicit approximation of (6) and ψS ≈ ψ on Gh,τ ∩ [0, u0]× [0, T].

u

t

In
it

ia
lc

on
di

ti
on

:Ψ
S
(u

,0
)
=

0

Artificial b.c.: ΨS(umax , 0) = 0

0

ΨS(ih, nτ)

ΨS((i + 1)h, nτ)

ΨS(0, (n− 1)τ)

...

ΨS(ih, (n− 1)τ)

...

ΨS(umax, (n− 1)τ)

Figure 1. Scheme dependence diagram.

Regarding the stability of the scheme, we present the following estimate in the en-
ergy norm.

Lemma 1. Let M := umax/h and let

En :=
M−1

∑
i=0
|ΨS(ih, nτ)|2.

Then, there is a constant C independent of h, τ and K such that for any n = 1, . . . , N

En ≤ C.

Proof. In (7), we multiply by ΨS(ih, n) for some n = 0, 1, . . . , N and use the algebraic
relations

(a− b)a =
1
2
[a2 − b2 + (a− b)2],

(a− b)b =
1
2
[a2 − b2 − (a− b)2].
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valid for any a, b ∈ R. Hence, we obtain

(1 + 2τλ)|ΨS(ih, nτ)|2 ≤ |ΨS(ih, (n− 1)τ)|2 − cτh−1[|ΨS((i + 1)h, nτ)|2

− |ΨS(ih, nτ)|2 − |ΨS((i + 1)h, nτ)−ΨS(ih, nτ)|2]
+ 2τλΨS(ih, nτ)(IhΨS(ih, (n− 1)τ) + F̄(ih)).

Note that |(IhΨS(ih, (n − 1)τ)|2 ≤ CEn−1. Using Young’s inequality, we sum over
i = 0, . . . , M− 1 and multiply by h > 0. We use the boundary condition ΨS(Mh, nτ) = 0
to obtain:

(1 + 2τλ)En ≤En−1 − cτ|ΨS(0, nτ)|2 + τλ[En + CEn−1 + C]

Iterating the above estimate and noting that E0 = 0, we obtain

En ≤ τ
n

∑
k=1

C ≤ C.

4.2. Numerical Experiments Verifying Convergence

We will use Remark 2 to obtain an analytical solution to (6). This can be compared to
numerical approximations of the solution to verify convergence. The numerical method
can then be applied for other distributions of claim size Xk. The constants used in the
numerical experiments are in Table 1.

Table 1. Constants used in the numerical experiments: T > 0 is the (finite) time horizon, c is the
premium rate, λ is the claim intensity, 1/β is the mean claim size and u0 is the largest initial capital
for which we wish to approximate the probability of ruin in finite time.

Parameter u0 T c λ β

Value 5 5 20 5 0.5

Figure 2 demonstrates the convergence of approximation with different schemes
S ∈ {L, M, S} as h→ 0 with other parameters fixed. One observes that as the number of
space steps increases, all three methods converge.

Figures 2–4 demonstrate convergence as h → 0, τ → 0, umax → ∞. When running
the experiment, the other parameters were kept as small (for h, τ) or as large (for K) as
necessary to introduce no discernible error. We note in particular that taking K = 10 (which
results in umax ≈ Ku0 = 50) results in an error of order 10−4.

4.3. Results for Finite-TIME Ruin Probability Ψ(u, T)

Until now, we have analysed the stability and checked the convergence of the numer-
ical scheme. In this section, some by-products of our algorithm will be introduced. One
advantage of applying the finite-difference method is that we will have the dynamics of
the PDE system when we solve it. We are not yet applying in this section the algorithm to
calculate the ruin probability under the stop-loss reinsurance setting.

Instead of solving a single setting of ruin probability Ψ(u, T) directly, we separate
the time horizon into many small time intervals, and this actually provides us additional
information about the ruin process with respect to the time at least when the grid size
is chosen large enough. For each of the Ψn

i s, we approximated inside the process until
reaching the final ΨN

I . We also approximate how ruin probability will behave in each
of these finite-time horizons (with accuracy decreasing while n becomes smaller). The
same by-product also comes when we divide the initial capital u into segments. These by-
products can be justified by the deterministic property of the PDE system, as in Equation (6).
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If the arguments of reaching a decent accuracy when approximating a Ψ(u, T) via this
scheme stand, then one can say that any Ψ(s, t) where s ∈ [0, u] and t ∈ [0, T] can be
approximated to the same accuracy. Thus, in one run, a large enough grid size can be found
to approximate Ψ(s, t) with the required accuracy.

Figure 2. Convergence using different S for approximating the convolution term. We note that for
mid-point and right−point schemes, the convergence is clearly linear. For the left-point scheme, it
appears to be sub−linear.

Figure 3. Convergence as τ → 0. We note that the convergence appears to be linear.
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Figure 4. Convergence as K → ∞. Here, the convergence is exponential. It appears that K of 10
already produces errors of order 10−4 in the ruin probability, and the choice of τ and h are the
determining factors for producing the required accuracy.

One can also study the dynamics of finite-time ruin probability more directly by
iterating our algorithm on several Ψ(s, t) where s ∈ [0, u] and t ∈ [0, T]. Figure 5 gives a
comprehensive view of how the finite-time ruin probability Ψ(u, T) varies as a function of
the initial capital u and time horizon T1. One can observe that the finite-difference method
approximation gives a ruin probability that increases as the time horizon increases and
decreases as the initial capital increases, as expected.

Figure 5. Plot of finite-time ruin probability: this is a numerical approximation showing how the
initial capital and the time horizon affect the finite-time ruin probability. Initial capital varies from 10
to 20, time horizon ranges from 0 to 3, h = 0.005, τ = 0.01, K = 12, and other parameters are as in
Table 1.
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We can also analyse the finite-time ruin probability under different parameter settings.
By changing the initial capital u, premium rate c, Poisson intensity λ, and claim average size
1/β separately, we can analyse the behaviour of the finite-time ruin probabilities as well as
compare these with the infinite-time ruin probability. As one can see from Table 2, the finite-
time ruin probabilities increase with time and converge to the infinite-time ruin probability
in all settings we have considered. We can further confirm that the numerical method is
working as it should as the approximate ruin probability increases with claims intensity
and claim average size, and decreases when initial capital and premium rate increases.

Table 2. Finite and infinite-time ruin probability under different parameter settings. For the pa-
rameters, u is the initial capital, c is the premium rate, λ is the claim intensity, and 1/β is the mean
claim size.

Parameters Time Horizon, T (years)
(u, c, λ, β) 0.1 0.5 1 2 4 8 Infinity

(5, 20, 5, 0.5) 0.035165 0.099974 0.125627 0.139186 0.142946 0.143313 0.143252
(5, 15, 5, 0.5) 0.039238 0.137707 0.195929 0.244954 0.275293 0.287726 0.289732
(5, 20, 7, 0.5) 0.053630 0.174861 0.238538 0.288632 0.318013 0.329485 0.330657
(5, 20, 5, 0.3) 0.095225 0.287057 0.391502 0.484876 0.557218 0.606357 0.649001

(10, 20, 5, 0.5) 0.004292 0.020611 0.031224 0.038415 0.040771 0.041025 0.041042
(10, 15, 5, 0.5) 0.004855 0.031306 0.058143 0.088889 0.112544 0.123639 0.125917
(10, 20, 7, 0.5) 0.007359 0.046122 0.081174 0.117582 0.143278 0.154477 0.156191
(10, 20, 5, 0.3) 0.027800 0.128481 0.211560 0.303877 0.386723 0.448424 0.505442

5. Finite-Time Ruin Probability with and Without Stop-Loss Reinsurance

A direct application of the above algorithm is to calculate the finite and infinite-time
ruin probability when stop-loss reinsurance is considered. For simplicity, in this study,
we assume that the premium for the reinsurance contract is determined by the pure risk
premium principle. By definition, the pure premium principle allocates to the reinsurer a
certain proportion of the difference between the expected claims and the retention level as
its premium, i.e., α(E[S(t)]− B), where α (usually we have α ∈ (0, 1)) is the premium rate
for reinsurance. Denote by Bα the retention level of a stop-loss reinsurance contract with
premium rate α. Given the result in (3), determining the ruin probability under stop-loss
reinsurance reduces itself to the finite-time ruin probability, i.e., ΨR(u, T) = Ψ0(u, T∗), with
T∗ the only parameter left unknown. However, as shown in Theorem 1, T∗ = (min(t0, T))+,
with t0 = B−u

cR
, where T is the length of the reinsurance contract.

We can visualise the effect of buying stop-loss reinsurance on the ruin probability
by plotting in Figure 6 the ruin probability for different time horizons, with and without
reinsurance. Here, the stop-loss reinsurance contract is T years long. One can see from
the plot that, up to a certain time horizon, the ruin probability with stop-loss reinsurance
is larger than the ruin probability without stop-loss reinsurance. This can be explained
by the costs associated with the reinsurance contract. Meanwhile, if the ceding company
has not faced ruin before this particular time horizon, it will not face ruin probability for
longer horizons, since the reinsurance is capping the claims to be paid. This feature that we
observe here is consistent with the argument used in the proof of Theorem 2. Indeed, in
the same figure, one can observe that the finite-time ruin probability will not increase for
time horizons longer than marked by the red dashed line in the plot, the moment when the
stop-loss reinsurance starts to pay claims. There is a time horizon such that, as expected, for
horizons longer than that, the finite-time ruin probabilities are smaller when reinsurance
is present.
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Figure 6. Finite-time ruin probability with and without stop-loss reinsurance.

6. Finite-Time Ruin Probability, Stop-Loss Retention Level and Initial Capital

Next, we study the dynamics of the ceding company’s ruin probability under a stop-
loss reinsurance contract. The 3-d graph in Figure 7 shows how initial capital u, and
stop-loss retention level B affect the finite-time ruin probability. When the initial capital
is large and the stop-loss retention level is small (corner further away in the plot), the
ruin probability equals zero (i.e., there is no ruin). In fact, when the stop-loss retention
level B is smaller than (or equal to) the initial capital u, we obtain from Theorem 1 that
T∗ = (min(t0, T))+ = 0, and hence the probability of ruin Ψ(u, 0) is zero. Then, as the
retention level increases, which indicates that the reinsurer takes fewer risks and the ceding
company may face more risks itself, the ruin probability for the ceding company increases.

Figure 7. Plot of finite-time ruin probability with stop-loss reinsurance: this is a numerical approxi-
mation showing how initial capital and stop-loss retention level influence finite-time ruin probability.
Initial capital varies from 3 to 10, the retention level from 5 to 20, h = 0.005, τ = 0.01, K = 12, and all
other parameters are as in Table 1.
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We can also observe in the plot that the reduction in the initial capital increases
the ruin probability as we expected. We do not know exactly how ruin probability will
behave without accurate parameter estimates and the exact reinsurance pricing mechanism.
However, in the case studied here, the ceding company’s premium is relatively high; as a
matter of fact, it is so high, that for longer time horizons, with the help from the reinsurance
company, it will not face ruin. We can observe these finite-time ruin probability dynamics
in Figure 7.

Moreover, Figure 7 tells us an even more interesting story, namely how the initial
capital will compensate for the choice of stop-loss retention level, which, consequently,
compensates for the cost of buying stop-loss reinsurance. Telling from the colour, choosing
any fixed retention level, the increase in initial capital will drop the ruin probability, and
for any fixed initial capital, the increase in retention level will boost the ruin probability
up to some point. Moreover, the curves in the initial capital versus retention level plain,
which help us tell the height of the surface, are actually a measure of how the initial capital
compensates for the stop-loss retention level and thus ensure the efficiency of the stop-loss
reinsurance contract.

For example, for relatively low initial capitals, say the high retention level and low
initial capital corner, the small size of initial capital requires a small retention level of
stop-loss reinsurance to keep it in the lower ruin probability region, i.e., the dark blue
part. This small retention level of stop-loss reinsurance means an expensive contract, as
the reinsurer takes more risks. On the other hand, with relatively large initial capitals,
the ceding company can stay safe (i.e., small ruin probability) even with large retention
levels, which means cheaper reinsurance contracts, but more risk for the ceding company.
One sees here how initial capital and retention level compensate for each other. In reality,
it all depends on the ceding company itself to choose between buying a more expensive
reinsurance contract or just raising more capital (rather than spending on reinsurance).

Furthermore, one can easily observe that, whenever the company targets a certain ruin
probability, as the retention level becomes larger, the increase on itself will compensate less
and less for the increase in the initial capital, thus exhibiting “diminishing returns”. This
indicates a low sensitivity of ruin probability to retention level when the latter is large.

7. Stop-Loss Reinsurance and The Primary Insurer Solvency

Risk of insolvency has sustained an increase in risk regulation for the insurance
industry over the last decades. In the United States, the National Association of Insurance
Commissioners supports the development of insurance regulations by individual states
and has promoted the notion of risk-based capital for insurance companies. In Europe,
the European Insurance and Occupational Pensions Authority oversees the development
of the Solvency II framework. Under Solvency II, insurance companies must calculate
their Solvency Capital Requirement, or Solvency II Economic Capital (EC), where all assets
and liabilities should be valued on a market-consistent basis. According to this regulatory
framework the EC ensures that the probability of insolvency over a one-year period does
not surpasses 0.5%. To calculate their portfolio overall capital requirement, an insurance
company must consider all the risks and their interactions. The methodology developed
in this article can be used in the calculation of the capital requirement for a homogeneous
insurance segment. According to Solvency II, the capital requirement for the all insurance
company can then be calculated using an internal model or a simpler standard formula
where the aggregation of risks is done using correlation parameters. A discussion of the
aggregation properties of the two different approaches is out of the scope of this article.

From a risk measurement perspective, the EC, being an estimate of the capital nec-
essary to keep the probability of insolvency below 5%, can be calculated as the one-year
market-value based value-at-risk (VaR). In our framework, we take the initial capital corre-
sponding to a one-year horizon ruin probability of 0.5% as the required EC. By simulation
and interpolation of the results from our algorithm, we can calculate the initial capital
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corresponding to a ruin probability of 0.5% with a one-year time horizon. The results are in
Table 3.

In panel A, we list, for different parameter values and when there is no reinsurance
contract in place, the value of the initial capital corresponding to a 0.5% ruin probability
for a time horizon ranging from about 5 weeks to 8 years. The initial capital necessary
to maintain the desired level of ruin probability increases with the average aggregate
claims and decreases when the premium rate increases. In panel B we list, for two values
of reinsurer premium rates, the value of the initial capital corresponding to a 0.5% ruin
probability for a one-year time horizon when there is a stop-loss reinsurance contract
in place. We observe that reinsurance substantially lowers the amount of initial capital
(economic capital) required in relation to the no-reinsurance case. Interestingly, once there
is a stop-loss reinsurance contract in place, increasing the reinsurance premium rate from
α = 0.3 to α = 0.9 does not increase the required initial capital that much when compared
with the significant reduction implied by the introduction of reinsurance.

Table 3. Initial capital corresponding to a 0.5% ruin probability for different parameter values of the
risk process. For the parameters, c is the insurer premium rate, λ is the claim intensity, 1/β is the
mean claim size, and α is the reinsurer premium rate.

Panel A: Without Reinsurance

Parameters Time Horizon, T (years)
(c, λ, β) 0.1 0.5 1 2 4 8

(20, 5, 0.5) 9.593921 14.188087 16.232585 17.713893 18.320151 18.405424
(15, 5, 0.5) 9.893007 15.643934 19.054614 22.792824 26.261153 28.565091
(20, 7, 0.5) 10.857631 17.401518 21.315918 25.605376 29.565199 32.094999
(20, 5, 0.3) 16.802917 27.698801 34.573297 40.518959 46.216685 52.393767

Panel B: With Reinsurance and T = 1

Retention Level, Bα

α = 0.3 1 2 4 6 8 10

(20, 5, 0.5) 3.532088 3.521673 3.500712 6.379115 4.432340 11.204400
(15, 5, 0.5) 3.699426 3.689711 3.670160 6.463373 3.168102 10.553199
(20, 7, 0.5) 4.997532 4.994197 4.987510 5.584031 3.922885 8.700725
(20, 5, 0.3) 7.370037 7.367306 7.361851 7.357099 7.292685 6.793047

α = 0.9

(20, 5, 0.5) 3.712315 3.683212 3.623897 6.436518 4.343473 11.204400
(15, 5, 0.5) 3.867475 3.840345 3.785043 6.474379 2.375872 10.553199
(20, 7, 0.5) 5.082380 5.072757 5.053388 5.607053 3.322549 6.186034
(20, 5, 0.3) 7.456775 7.448370 7.431625 7.415705 7.327712 6.533600

8. Conclusions

We employ ruin probability as a measure of the risk of an insurance company solvency.
We propose a relationship between the finite and infinite-time ruin probability for a portfolio
with stop-loss reinsurance and the finite-time ruin probability for a portfolio with no
reinsurance contract. This can be found in Theorem 1. According to Remark 1, ruin
would never happen for a time horizon longer than a certain T∗ for a portfolio with
stop-loss reinsurance, which is illustrated in Figure 2. When employing aggregate stop-
loss reinsurance, we build on two novel approaches: firstly, the connection introduced
here between the finite and infinite-time ruin probability of a stop-loss portfolio and the
finite-time ruin probability of a classical reinsurance free portfolio, and secondly, on the
adaptation of the finite-difference method normally used for solving partial differential
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equations to solve the integro-partial differential equation the finite-time ruin satisfies. With
the results at hand, a risk analysis is performed, identifying the combination of initial capital
and retention level for which ruin is no longer possible, the diminishing returns of the
balancing of initial capital and retention level and, not last, the variations on solvency for
different time horizons. Analysing these dynamics between the parameters involved proves
relevant to the risk management of an insurance portfolio. The methodology presented in
this article allows us to identify the level of the primary insurer capital and corresponding
retention level under a stop-loss contract necessary to keep a desired low level of insolvency
risk. By entering in a stop-loss contract, the primary insurer can significantly reduce the
capital without increasing the level of insolvency risk. In most cases, employing reinsurance
is always better than not in terms of ruin probabilities and solvency capital requirements.
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Note
1 note the difference between Figures 5 and 7. In here, we present how time horizon affects ruin probability, which is not the

same concept as how big is the retention level of stop-loss reinsurance. Referring to the formula linking the critical time t0 and
the retention level B, we can see that the retention level is a function of time and initial capital; since we are changing both of
these parameters here, each point on this surface represents a different retention level, which results in a different story of how
stop-loss affects ruin probability.
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