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Abstract: This study on explaining aggregated recovery rates (ARR) is based on the largest existing
loss and recovery database for commercial loans provided by Global Credit Data, which includes
defaults from 5 continents and over 120 countries. The dependence of monthly ARR from bank
loans on various macroeconomic factors is examined and sources of their variability are stated. For
the first time, an influence of stochastically estimated monthly growth of GDP USA and Europe is
quantified. To extract monthly signals of GDP USA and Europe, dynamic factor models for panel data
of different frequency information are employed. Then, the behavior of the ARR is investigated using
several regression models with unshifted and shifted explanatory variables in time to improve their
forecasting power by taking into account the economic situation after the default. An application
of a Markov switching model shows that the distribution of the ARR differs between crisis and
prosperity times. The best fit among the compared models is reached by the Markov switching model.
Moreover, a significant influence of the estimated monthly growth of GDP in Europe is observed for
both crises and prosperity times.

Keywords: credit risk; dynamic factor model; Global Credit Data; Markov switching model; recovery
rate; regression model

1. Introduction

The global financial crisis 2007–2009, which severely affected the world economies,
showed the great importance of the appropriate calculation of credit risk in pricing financial
contracts. The most important determinants of credit risk are default probability (PD) and
recovery rate (RR) or Loss Given Default (LGD), i.e., 1− RR. There are a couple of important
reasons why those parameters should be taken into consideration. Firstly, they could be
used to estimate the expected financial loss. Secondly, the estimations of PD and RR
could help to determine an individual risk policy, e.g., if the values of the parameters are
exceptionally high, more effort could be committed in order to mitigate the loss. Moreover,
the financial risk of a portfolio, which is calculated using default probabilities and recovery
rates, is essential for fulfilling the capital requirements of Basel accords.

The appearance of contingent claims on recoveries e.g., CDS (Credit Default Swap) as
well as the variability and severity of the defaults during the financial crisis have shown the
necessity to predict the recovery rates more precisely. We intuitively expect the recovery
rate to be dependent on various factors: endogenous (characteristics of the lender and
the conditions of the contract, e.g., rating, transaction amount, collateral) and exogenous
(macroeconomic conditions, e.g., GDP (gross domestic product), unemployment or inflation
rate). The modelling of recovery rates taking into consideration endogenous variables
essentially started with Asarnow and Edwards (1995) and Altman and Kishore (1996).
The first authors analyze US C&I (Commercial and Industrial) corporate loans and US
structured loans and observe that structured loans have much higher RR than C&I loans.
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The latter examines the impact of collateralization, seniority and industry affiliation on
individual recovery rates. Eales and Bosworth (1998) report that the size of the loan
positively influences recovery rates for loan data in Australia. Carrizosa and Ryan (2013)
and Donovan et al. (2015) find that creditors of firms with more conservative accounting
prior to default have significantly higher recovery rates and Amiram and Owens (2021)
show that accounting measures available to lenders at the contracting date are informative
about future loss given default.

The influence of exogenous variables is examined e.g., by Altman et al. (2001), who
find secondary effects of macroeconomic variables on annual recovery rates. Hu and
Perraudin (2002) determine a negative correlation between the quarterly default rates
and recovery rates. Jankowitsch et al. (2014) reach a more clear conclusion, which is also
consistent with the result of Hu and Perraudin (2002). By examining US corporate bonds,
they find that high default rates imply lower recoveries. Further, Bellotti and Crook (2012)
shows that higher interest rates (measured by selected UK retail banks’ base interest rates)
and higher unemployment at the time of default lead to lower recovery rates, but a higher
earnings growth leads to increased RR. Surprisingly, Ingermann et al. (2016) claims that
unemployment and inflation lead to an increase in recovery rates. Krüger and Rösch (2017)
consider a quantile regression with endogenous as well as exogenous variables and show
that this regression model outperforms the classical regression as well as its modification
with a transformed response, beta regression, mixture regression with two components,
and regression trees.

Most researchers agree that during economic downturns recovery rates are lower.
Frye (2000) shows that during crisis times, RR might decline 20–25% with respect to
prosperity times. Brumma et al. (2014) states that the economic situation at the date of the
cash-flow weighted median of recovery payments has the highest impact on the recovery
rate. Wang et al. (2020) also report that loan characteristics influence different recovery
rates during good and bad times. Min et al. (2020) combine endogenous and exogenous
variables together with crisis prediction during the average resolution time of 18 months
to model individual recovery rates. They compare regression models as well as their
combination with decision trees, neural networks, and mixture models. They found that
the mixture regression model with regressed means of the components as well as with
regressed probabilities provides the best fit among all considered models. This shows that
the potential of regression models including crisis prediction as a regressor is not exhausted
yet and that those models could serve as attractive competitors to modern machine learning
methods. We refer to Qi and Zhao (2011) and Bellotti et al. (2021) for a comparison of
machine learning techniques with regression methods.

Felsovalyi and Hurt (1998) consider 1149 defaults from 27 countries in Latin America
over a time horizon of 27 years from 1970 to 1996. According to their empirical study, the
recovery rates are higher for larger loans which are in contrast to Bastos (2010). Surprisingly,
the authors claim that neither the economic fluctuations (measured by annual GDP growth
of Latin America) nor the sovereign events affect RR. In contrast, Covitz and Han (2004)
report a positive correlation between GDP and annually aggregated RR. Khieu et al. (2012)
examine the determinants of bank loans recoveries using the “Ultimate Recovery Database”,
a broad database supplied by Moody’s covering various debt instruments from the US
defaulted companies. These authors report a positive impact of annual GDP growth on
RR. From the more recent studies, Calabrese (2014) examines the impact of default rate,
unemployment, and GGDP (annual growth of GDP from previous years) using data from
the Bank of Italy’s Survey. Only the default rate turns out to be statistically significant,
but the value of its coefficient is close to zero. Gambetti et al. (2019) consider a general
class of beta regression models for bond recovery rates and investigate the impact of
regressors on the shape of an underlying beta distribution. They also consider GDP for the
US and linearly interpolate it for monthly observations. Depending on a considered model,
they observe either a negative nonsignificant influence of GDP or a positive statistically
significant one at a 1% level.
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Recently, several works propose interesting frameworks for modeling recovery rates.
Sopitpongstorn et al. (2021) use nonparametric logit regressions with regression parameters
depending on covariate values. A remarkable feature of this approach is its robustness with
respect to distributional assumptions on the response variable, bimodality, and asymmetry.
Candian and Dmitriev (2020) consider a dynamic stochastic general equilibrium (DSGE)
model to explain fluctuation of recovery rates. Ye and Bellotti (2019) employ a beta mixture
model combined with a logistic regression model. This is a two-stage model, which first
fits a logistic regression to predict full recovery and then fits a beta mixture regression for
recovery rates in an open unit interval. Fermanian (2020) models the joint distribution
of default times and recovery rates using a Gaussian copula. In this way, he is able to
quantify the influence of default probabilities on recovery rates in different scenarios of
structural models.

In this article, we explain the behavior of monthly aggregated recovery rates (ARR)
from the Global Credit Data (GCD) database using monthly and quarterly macroeconomic
variables in a regression framework. The individual recovery rate of a specific loan is an
important input variable for internal rating models but very hard to predict. In contrast, the
ARR can be forecasted more significantly and may serve as a good proxy for an individual
recovery rate. The database of GCD includes the default cases from 5 continents and
over 120 countries. GCD was formed in December 2004 as a credit risk data-pooling
initiative primarily designed to assist member-banks in enhancing their internal credit
risk models, completing the Basel II preparations in pursuit of the International Ratings
Based Advanced Status, and improving their risk assessment for risk and credit portfolio
management purposes. Since then, GCD has enjoyed remarkable success, both in terms of
growing its membership and establishing its international reputation through the creation
of the largest existing loss and recovery dataset for commercial loans worldwide.

Previous studies are restricted to quarterly or annual GDP growth. We first model
monthly ARR using monthly signals extracted from quarterly GDP derived from other
monthly macroeconomic variables. For this, we consider a dynamic factor model for mixed-
frequency panel data and estimate them as described in Banbura and Modugno (2014).
Keijsers et al. (2018) also consider a similar factor model to couple individual recovery rates,
three macroeconomic variables including GDP, and individual characteristics of loan and
borrower. They are able to explain the cyclicality in recovery rates and default rates driven
by latent factors for all observed variables. In contrast, we consider the ARR and do not mix
it with macroeconomic variables. Further, we consider 19 (34) macroeconomic variables
for Europe (US) to estimate monthly GDP growth rates from quarterly GDP growth rates.
Using the estimated factors, we are especially able to quantify an undisturbed influence of
GDP on monthly ARR. In order to improve the regression fit, shifts of covariates in time
are considered. A Markov switching model with two states is applied to show that the
distribution of the ARR and their dependence on explanatory variables may vary between
different states.

The structure of the article is as follows. In Section 2, the derivation of monthly
estimates of GDP growth using a dynamic factor model for mixed-frequency data is
presented. A description of the general idea of dynamic factor models and panel data is
given in Appendix A. In Section 3, the explanatory variables for the regression models are
introduced. Section 4 presents several regression models for the ARR. Here, we apply time
shifts to explanatory variables and combine a linear regression with a Markov switching
model. Section 5 summarizes and concludes the paper.

2. Estimating Monthly GGDP

We model monthly aggregated recovery rates using monthly and quarterly observed
data. In particular, the GDP in Europe and in the US is released only on a quarterly basis.
A rather naive approach to derive monthly estimates out of quarterly data is a linear
interpolation. In this paper, we will apply a dynamic factor model to estimate the monthly
growth of the GDP (GGDP). The monthly GGDP is observed at a particular month if
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this month is the last month of a quarter. It is then computed as a log-return of the GDP
assigned to the quarter of the considered month and the GDP of the previous quarter. For
the first and second months of a quarter, the GGDP is missing. A detailed description of
the model can be found e.g., in Banbura and Modugno (2014).

As input data in our factor model, we use a data set containing quarterly GDP as
well as many other monthly and quarterly observed economic variables describing the
macroeconomic environment, interest-rate movements, and stock-markets behavior. The
list of variables can be found in Appendix A. The GCD data, which was available to us,
covers the period from January 2000 until January 2014. For quarterly variables like GDP,
only every third observation is available and other values are missing. Out of this mixed
frequency data, we derive the factors which will be used for modeling the ARR.

Similar to Banbura and Modugno (2014), we use transformations of the variables
instead of the original data. We take the difference of consecutive observations or the
difference of the logarithms of consecutive observations to make the observed time series
stationary. In the case of the European GDP and the US GDP, we transform the variables
by taking the difference of logarithms, which results in quarterly log returns. Our goal is to
reconstruct monthly time series from the quarterly growth of GDP for Europe and the US
using dynamic factor models. The considered mixed frequency panel data sets are similar
to those in Schumacher and Breitung (2008), who were estimating the GDP of Germany.

In the case of Europe, the quarterly GDP data and most of the other observable
variables used for the estimation are average values of 19 European countries. The derived
GGDP will also be the estimation of the average GGDP of those countries. For the European
GGDP estimation, 29 variables are used and the data is almost entirely taken from the
website of the European central bank (http://sdw.ecb.europa.eu/, accessed on 31 March
2017). Only the VSTOXX volatility index observations are taken from a different source.
Those are available at https://www.investing.com/indices (accessed on 5 April 2017).
The data used for estimating the US GGDP consists of 34 variables and is available on
the webpage of the Research Division of the Federal Reserve Bank of St. Louis (https:
//fred.stlouisfed.org/ accessed on 27 March 2017).

2.1. Estimation with Dynamic Factor Models

The main idea of a factor model is to derive a few unobserved (latent) factors, which
describe the behavior of high-dimensional data. The model consists of two equations. The
first is the observation equation, which explains the relation between observation vector
yt ∈ Rn and the latent factors ft ∈ Rq for t ∈ {1, 2, ..., T}. It has the following form:

yt = W ft + et for t = 1, 2, ..., T, (1)

where W ∈ Rn×q, et ∈ Rn is a normally distributed error term with et ∼ N (0n, D), and
D ∈ Rn×n is a diagonal matrix.

The second equation is called state or transition equation. It describes the dynamics of
the unknown factors ft over time. We assume that ft follows a vector autoregressive model
of order p:

ft = A1 ft−1 + ... + Ap ft−p + ut = A f̄t−1 + ut, (2)

where f̄t−1 := [ f ′t−1, f ′t−2, ..., f ′t−p]
′ ∈ Rpq, A := [A1, ..., Ap] ∈ Rq×pq is a parameter matrix,

ut is a normally distributed and independent white noise error term with ut ∼ N (0q, Q)
for t ∈ {1, 2, ..., T}, Q ∈ Rq×q. The whole available data is centralized, i.e., the mean of the
time series was subtracted. We define Y := (y1, y2, ..., yT) ∈ Rn×T and F := ( f1, f2, ..., fT) ∈
Rq×T .

For the European and the US GGDP, we obtain monthly estimates by treating quarterly
growths as monthly data with missing values. In the observation vector yt, the missing
values are denoted by NA. To deal with the incomplete data, Banbura and Modugno (2014)
suggested introducing a diagonal matrix Mt with 0 on the diagonal if the corresponding
observation is missing and 1 if the observation is available. Using the matrix Mt, we can

http://sdw.ecb.europa.eu/
https://www.investing.com/indices
https://fred.stlouisfed.org/
https://fred.stlouisfed.org/
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split the observation vector yt into two parts, one corresponding to observed values and
one corresponding to missing values:

yt = Mtyt + (In −Mt)yt,

where In denotes the identity matrix of dimension n. Hence, the vector Mtyt does not
contain any missing values denoted by NA any more. Due to the diagonal structure of
D, the log-likelihood function of the dynamic factor model (1)–(2) can be integrated with
respect to ft and et and depends on the matrix Mt. For details, we refer to Banbura and
Modugno (2014).

The parameters θ := (A, W, D, Q) are unknown and need to be estimated. As in
Defend et al. (2021), we choose A(0) = 0q×pq for an initial estimate of A and for an initial
estimate of Q we choose Q(0) = Iq. The initial values D(0) and W(0) are calculated according
to a probabilistic principal component analysis (see Tipping and Bishop (1999)). Having
the initial estimates, we proceed with the estimation using the expectation-maximization
algorithm (see Dempster et al. (1977)). The main idea of the algorithm is to write the
log-likelihood as if the data (Y, F) was complete and to iterate between the expectation and
maximization steps. In the expectation step, we take the expectation of the log-likelihood
function L(θ|Y, F), which is dependent on the unknown model parameters θ given the
data (Y, F), under the current j estimate θ(j) of the parameters given ΩT , the observations
available up to time T. As in our situation, some observations are missing, ΩT does not
contain every value from Y. In the maximization step, we compute the maximum of the just
calculated expected log-likelihood function to derive the maximum likelihood estimates of
θ under the current estimates of θ(j). The steps of the algorithm are as follows:

• Expectation step (E-step):

Θ(θ|θ(j)) = Eθ(j)[L(θ|Y, F)|ΩT ],

• Maximization step (M-step):

θ(j+1) = arg max
θ

Θ(θ|θ(j)).

As derived in Banbura and Modugno (2014), the parameter estimates after the (j + 1)th
iteration have the following form:

A(j+1) =
( T

∑
t=1

Eθ(j)
[ f̄t f̄ ′t−1|ΩT ]

)( T

∑
t=1

Eθ(j)
[ f̄t−1 f̄ ′t−1|ΩT ]

)−1
,

vec(W(j+1)) =
( T

∑
t=1

Eθ(j)
[ f̄t f̄ ′t |ΩT ]⊗Mt

)−1
vec
( T

∑
t=1

MtytEθ(j)
[ f̄ ′t |ΩT ]

)
, (3)

D(j+1) = diag
( 1

T

T

∑
t=1

(
(In −Mt)D(j)(In −Mt) + Mtyty′t M′t

−MtytEθ(j)
[ f̄ ′t |ΩT ]W ′(j+1)Mt −MtW(j+1)Eθ(j)

[ f̄t|ΩT ]y′t M′t

+ MtW(j+1)Eθ(j)
[ f̄t f̄ ′t |ΩT ]W ′(j+1)Mt

))
,

Q(j+1) =
1
T

T

∑
t=1

(
Eθ(j)

[ f̄t f̄ ′t |ΩT ]−A(j+1)Eθ(j)
[ f̄t−1 f̄ ′t |ΩT ]

)
.

In Equation (3), ⊗ denotes the tensor product. The above estimators depend on the
conditional moments Eθ(j)

[ f̄t|ΩT ], Eθ(j)
[ f̄t−1 f̄ ′t |ΩT ], Eθ(j)

[ f̄t f̄ ′t |ΩT ] and Eθ(j)
[ f̄t−1 f̄ ′t−1|ΩT ].
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To estimate them, we use the Kalman filter and Kalman smoother (see, e.g., Nakata and
Tonetti (2010). The estimators of the latent factors ft are then given by

f̂t|T = [Iq 0q×(p−1)q] f̄ s
t|T = ( f̄ s

t|T)[1:q],

where f̄ s
t|T is an estimator of f̄t using the Kalman smoother based on the whole available

information ΩT . The termination criterion ζ is defined after Doz et al. (2011) and stops the
iteration procedure if

ζ =
L(θ(j)|Y, F)−L(θ(j−1)|Y, F)

(L(θ(j)|Y, F) + L(θ(j−1)|Y, F))/2
< 0.001.

Since factor dimension q and autoregressive order p are not known, we estimate the
model (1) and (2) for different combinations of q and p. We considered the five following
combinations of parameters (q = 1, p = 1), (q = 2, p = 1), (q = 3, p = 1), (q = 2, p = 2),
(q = 3, p = 2) and decided to choose the model, whose estimates provide the best fit in a
linear regression for aggregated recovery rates (see Section 4). According to this criterion,
in case of the European GGDP the dynamic factor model with parameters (q = 2, p = 2) is
the best and for the US GGDP the one with (q = 2, p = 1).

Estimators of Missing Data

In the dynamic factor model, we derive the latent factors using the observed data. In
order to derive the monthly estimators of missing data, we perform the opposite operation.
Thus, we calculate the estimator Ŷ = (ŷ1, ŷ2, ..., ŷT) of data Y using f̂t|T and an estimator
Ŵ of W by

ŷt = Ŵ f̂t|T .

The above equation is the observation equation with the neglected error term. The
fitted data has no missing values and we get the estimator of the GGDP from the appropri-
ate column of matrix Ŷ. In Figures 1 and 2, we present the original quarterly data and the
estimated monthly values of the GGDP for Europe and the US, respectively.
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Figure 1. Observed quarterly (grey pluses)and estimated monthly (black dotes) European GDDP.

From Figures 1 and 2, we clearly see that the estimators of the GGDP are different
compared to the estimators obtained by linear interpolation. In contrast to the linear inter-
polation, where only the GDP values observed every quarter matter and other monthly
fluctuations in the economy within those 3-months periods are completely neglected, our
estimates reflect the information about changes in the economy contained in the broad data
set used for estimation of the dynamic factor model. In the linear interpolation, we need
to know the first and last observation of the considered period to estimate the values in
between and thus this is a forward-looking estimation. In contrast to the linear interpola-



Risks 2022, 10, 18 7 of 30

tions, we do not use the observed, quarterly values, but the corresponding fitted monthly
values. Especially, we expect that the estimated GGDP will let us predict the behavior of
the aggregated recovery rates better. This statement is examined in the next section.
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Figure 2. Observed quarterly (grey pluses) and estimated monthly (black dotes) US GDDP.

In the literature, a special case of factor models, called static factor models, is also used.
In a static framework latent factors are assumed to be independent, State Equation (2)
is omitted and the model is given by Equation (1) only. We have also estimated the
European GGDP and US GGDP using the static factor model (for q = 1, 2, 3). However,
the corresponding estimators of the GGDP have less explanatory power for aggregated
recovery rates than the ones resulting from the dynamic model, which are presented in
Figures 1 and 2.

3. Data for Regression Models

The recovery rates are taken from the Loss Given Default (LGD) database of GCD
(formerly known as Pan-European Credit Data Consortium or PECDC). Global Data
Consortium was founded by 13 European banks to provide a collection of historical loss
data, analysis, and research resources to contribute to a better understanding of credit risk.
The database contains over 110,000 individual facility default records from over 50,000
obligors over a period from 1990 to date. The data is collected on the basis of 11 distinct
asset classes (all except retail), which mirror those defined in the Capital Requirements
Directive. The more than 50 member-banks are from Europe, Africa, Asia, Australia, and
North America. This is also reflected in the geographical coverage of the database which,
originally limited to Europe, has been extended to include global exposures and the records
from over 120 countries.

The database available to us includes the loss data from the period 1990–2014. The
defaults from the years 2012–2014 are partially unresolved and the banking regulations
before 2002 were significantly different. Therefore, we analyze the data from 2002 till
the end of 2011 in our study. This period covers more than one full economic cycle as
postulated in §472 of the Basel Committee on Banking Supervision (2004).

The other variables used in the regression models, 1-month Euro Interbank Offered
Rate (EURIBOR: 1M), 3-months Euro Interbank Offered Rate (EURIBOR: 3M), industrial
production of European countries (Production), 5-year Euro area Government Bench-
mark Bond yield (GY), average inflation of European countries (Inflation) and average
unemployment of European countries (Unemployment) are taken from the website of
the European central bank (http://sdw.ecb.europa.eu/, accessed on 31 March 2017). The
VSTOXX volatility index, Dow Jones Euro STOXX 50 (STOXX 50), and S&P500 are available
at https://www.investing.com/indices, accessed on 5 April 2017. In the case of Production,
Inflation, and Unemployment the data concerns 19 European countries.

http://sdw.ecb.europa.eu/
https://www.investing.com/indices
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3.1. Recovery Rates

The recovery rate is usually defined as the fraction of the exposure at default (EAD)
that is recovered from a defaulted entity. The recovery rate could be also defined as 1 −
Loss Given Default (LGD). More information on the definition of default and estimation
of LGD can be found in the guidelines EBA/GL/2016/07 (2016) and EBA/GL/2017/16
(2017) of the European Banking Authority. According to the EBA/GL/2017/16 (2017),
the workout LGD, i.e., losses computed using discounted cash-flows during a workout
process, based on the institution’s experience in terms of recovery processes and losses
is considered to be the main, superior methodology that should be used by institutions.
Therefore, in this paper, we use the workout method to calculate the LGD as provided by
the GCD.

Since we are only interested in real losses, all facilities for which the default amount
is 0 were excluded from our database. Furthermore, in order to exclude all cases with
unreasonable cash flows and the cases which are not fully resolved, we exclude all entities
for which the total sum of reported cash flows (including chargeoffs and waivers which
are not present in the calculation of economic recovery rates) divided by the outstanding
amount at default is smaller than 90% or greater than 105% of the outstanding amount at
default. In order to exclude exceptionally low or high recoveries, we remove observations
with recovery rates outside the interval [0, 1]. Those situations are possible because of costs
and fees associated with recovery rates. Note that this sample selection is in line with
Krüger and Rösch (2017) and Keijsers et al. (2018).

Table 1 presents some basic statistics of the recovery rates. In the column “Weighted”,
the statistics are computed by using the default amount as weight. “Simple” statistics are,
in contrast, equally weighted. The figures in both cases are similar.

Table 1. Basic statistics of recovery rates.

Simple Weighted

Mean 0.786 0.746
St.dev 0.296 0.281

Median 0.951 0.878
25%–Quantile 0.664 0.556
75%–Quantile 0.989 0.978

Therefore, we decided to use equally-weighted recovery rates. Figure 3 shows the
distribution of the resulting recovery rates. Thus, we can conclude that the distribution is
bimodal.

Recovery rate
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Figure 3. Frequencies of recovery rates.
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The same observation has been made by Asarnow and Edwards (1995); Schuermann
(2004); Bastos (2010); Calabrese (2012) or Ingermann et al. (2016). For defaulted bonds,
Carty and Lieberman (1996); Carty et al. (1999); Hu and Perraudin (2002) or Jankowitsch
et al. (2014) have observed unimodal or at least less skewed distributions.

3.2. Explanatory Variables

To model the monthly aggregated recovery rates, we use the European GGDP (GGDP
Europe), the GGDP of United States (GGDP USA), average inflation of European countries
(Inflation), average unemployment of European countries (Unemployment), industrial
production of European countries (Production), 1-month Euro Interbank Offered Rate
(EURIBOR: 1M), 3-months Euro Interbank Offered Rate (EURIBOR: 3M), 5-year Euro area
Government Benchmark Bond yield (GY), S&P500, Dow Jones Euro STOXX 50 (STOXX
50) and VSTOXX volatility index (VSTOXX). The first five variables describe the macroe-
conomic environment, the following three refer to interest-rate movements and the last
two are proxies for stock market behavior. The 1-month and 3-months European interbank
offered rates (EURIBOR) serve as proxies for the short-term interest rates in the Eurozone,
GY is calculated as the weighted mean of bond yields with maturities between 4.5 and
5.5 years, with default amount as weight, the Dow Jones STOXX 50 and S&P500 are proxies
for equity markets and eventually, VSTOXX is a volatility index calculated from the implied
volatilities of STOXX 50.

The impact of all those variables on the recovery rates is rather small when we
consider every default individually. Figure 4 shows the average recovery rate computed for
every percentile of the considered explanatory variables. None of the variables shows any
significant correlation with recovery rates. Our observations are consistent with Grunert
and Weber (2005); Dermine and Neto De Carvalho (2006) or Calabrese (2014) who did not
find any dependencies between exogenous variables and RR on the unaggregated level.
The exogenous explanatory variables become much more important when we consider
monthly aggregated recovery rates, i.e., equally-weighted monthly averages of recovery
rates based on the default date. We will examine the monthly aggregated recovery rates in
the next section.

Figure 4. Average recovery rates computed for every percentile of S&P500 (top left), STOXX 50 (top
right), GY (bottom left) and VSTOXX (bottom right).
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4. Aggregated Model
4.1. Linear Regression

We start with linear regression. The response variable is the monthly aggregated,
equally-weighted average of the recovery rates based on the default date:

ARR(ti) =
1
ni

n

∑
j=1

RRj · 1(DDj ∈ ti),

where RRj denotes the recovery rate, DDj the default date of the jth entity, j = 1, ..., n, ti
the i-th month of our data set and ni is the number of the defaults in the i-th month. We
choose the monthly averages in order to reduce random noise, which is present in smaller
time frames like daily data and to assure that the sample is sufficiently large at the same
time.

We assume a linear relationship between the logarithm of the aggregated recovery
rates and the explanatory variables:

ln(ARR(t)) =β0 + β1GGDP Europe(t) + β2GGDP USA(t) + β3Inflation(t) + β4Unemployment(t)

+β5Production(t) + β6EURIBOR: 1M(t) + β7EURIBOR: 3M(t) + β8S&P500(t) (4)

+β9STOXX 50(t) + β10VSTOXX(t) + β11GY(t) + ε(t).

The estimated model is presented in Table 2. Its coefficient of determination R2 and
adjusted coefficient of determination R2

adj are 52.8% and 47.9%, respectively. EURIBOR:
1M, EURIBOR: 3M, Inflation rate, GY, Production, and GGDP USA are significant at the
5% level.

Table 2. Fitted linear regression (4) with unshifted variables before and after model selection.

Full Model AIC Model

Variable Coefficient (Standard Error) Coefficient (Standard Error)

(Intercept) −1.195 ** (0.386) −1.04 *** (0.126)
EURIBOR:1M −0.101 *** (0.029) −0.088 *** (0.026)
EURIBOR:3M 0.064 * (0.032) 0.061 ** (0.021)

Inflation −0.023 * (0.009) −0.025 *** (0.007)
Unemployment 0.005 (0.028)

S&P500 −1.140 · 10−4 (1.001 · 10−4)
STOXX 50 2.110 · 10−5 (2.435 · 10−5)

GY 0.031 ** (0.010) 0.020 * (0.008)
VSTOXX −0.001 (0.001)

Production 0.010 *** (0.003) 0.008 *** (0.001)
GGDP Europe −0.662 (0.526)

GGDP USA 7.185 * (3.221) 10.216 *** (2.256)

R2 0.528 0.497
Adj. R2 0.479 0.470

Num. obs. 120 120
RMSE 0.040 0.040

*** p < 0.001, ** p < 0.01, * p < 0.05.

In order to avoid the impact of possible multi-collinearity and to find the most im-
portant explanatory variables, we apply the backward-forward model selection procedure
with AIC as a selection criterion (see, e.g., Draper and Smith (1998)). In the resulting
estimated model (see Table 2), all previously mentioned variables are still significant at the
5% level and the others are discarded from the model by the model selection procedure.
The explanatory power of the model does not change significantly, R2 and R2

adj remain at a
similar level as for the initial model. As expected, GGDP USA, Production, and GY have
a positive influence while Inflation has a negative influence on the aggregated recovery
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rate. Euribor:3M and Euribor:1M have an opposite influence on the aggregated recovery
rates. This might be an indication that, the more convex the term structure, the lower the
aggregated recovery rates.

For comparison, we have examined the model with the GGDP estimated using a
linear interpolation instead of a dynamic factor model. Before backward-forward selection,
this model yields R2 = 50.93% and R2

adj = 45.93%. After the selection procedure, neither

GGDP Europe nor GGDP USA is part of the reduced model. Further, its R2 = 47.55%
and R2

adj = 44.76% indicate that our reduced model still describes the behavior of the
ARR better.

4.2. Model with Time Shifted Covariables

The success of a restructuring effort or the liquidation of collaterals does not realize
immediately at the default of a borrower, but somewhere in the time span between default
and resolution (usually about two years on average). Thus, the economic situation at some
point after the default may be more significant for the recovery rates than the situation
at the time of default. Therefore, we will examine how a modification of the explanatory
variables with some form of time-shift affects the model fit. The topic of time shifts was
also discussed in the literature. Carey and Gordy (2004) stated that the conditions one
year after default matter more than the conditions just after default. Brumma et al. (2014)
used the median of the cash-flow weighted time to resolution as time shift. Cash-flow
weighted time can be different for different borrowers as it is related to the time point when
all recovery cash flows are realized. According to Brumma et al. (2014), it is 12–18 months
after default on average.

Figures 5 and 6 display some explanatory variables against the aggregated recovery
rates in order to examine their mutual dependence with the ARR. For the majority of
variables except for VSTOXX and unemployment, we observe a strong positive correlation.
We also find that time shifts can lead to even higher levels of correlation for most of
the variables.
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Figure 5. S&P500 (top left) and STOXX 50 (top right) vs. aggregated recovery rates (bottom).
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Figure 6. European GGDP (top left) and Unemployment (top right) vs. aggregated recovery rates
(bottom).

4.2.1. Optimal Time Shifts

We find an individual optimal time shift for every explanatory variable in such
a way that it yields the highest absolute correlation between the considered variable
and the recovery rate. For this, we consider all possible full-month time shifts from the
interval [0, 24] and for every explanatory variable we are looking for the solution to the
following problem:

arg max
(
|cor

(
ARR(t), variable(t + i)

)
|
)

for i ∈ {0, 1, ..., 23, 24}.

In Table 3, the optimal time shifts in months for all variables and corresponding
correlations are presented.

Table 3. Correlations between the ARR and explanatory variables before and after optimal time
shifts.

Correlation Pre-Shift Shift in Months Correlation Post-Shift

VSTOXX −0.522 0 −0.522
GY −0.013 12 0.316

GGDP USA 0.515 0 0.515
GGDP Europe 0.357 2 0.471

Production 0.324 10 0.747
EURIBOR: 1M −0.043 18 0.604
EURIBOR: 3M −0.039 18 0.619

Inflation 0.018 12 0.564
Unemployment −0.015 18 −0.456

SP 500 0.470 6 0.712
STOXX 50 0.367 6 0.635

We observe rather large time shifts for the interest-rate proxies: EURIBOR: 1M, EU-
RIBOR: 3M, and GY. Those variables are strongly correlated with interest rates set up by
central banks, e.g., FED. Central banks usually do not change their rates more often than
once in a quarter and the changes are very rarely higher than 0.5 percentage points. There-
fore, the interest rates 18 months or 12 months after the default could reflect the economic
situation related to the default much better. As terminating employees’ contracts is a long
process, another very slowly changing variable is Unemployment (18 months). A large,
12-months time shift seems to be appropriate for Inflation since price changes are in most
cases very slow. It is also easy to interpret the large time shift for Production (10 months).
The production processes are usually planned in advance in order to assure an appropriate



Risks 2022, 10, 18 13 of 30

supply of necessary materials, intermediate products, and labor supply as well as to meet
the orders of merchants. Thus, the delay in responding to a changing economic situation is
significant. The reaction of stock markets is usually believed to be fast, but S&P500 and
STOXX 50 comprise stocks of very different companies, which also react differently to the
changes on the market and therefore a 6-months shift in the case of both indexes seems to
be appropriate. GDP is released quarterly and usually reflects very quickly the condition of
the economy. Therefore, 2 and 0 month shifts for the European and US GGDP, respectively,
is not surprising. Finally, the volatility in the market is changing very dynamically, and
not applying any time shift for this explanatory variable is economically reasonable. The
relation between the optimally-shifted covariables and the aggregated recovery rates is
presented in Figures 7 and 8.
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Figure 7. Shifted S&P500 (top left) and STOXX 50 (top right) vs. recovery rate (bottom).
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Figure 8. Shifted European GGDP (top left) and Unemployment (top right) vs. recovery rate
(bottom).



Risks 2022, 10, 18 14 of 30

To model the ARR with covariates shifted in time, we assume a linear relationship
between the logarithm of aggregated recovery rates and the explanatory variables in the
following model

ln(ARR(t)) =β0 + β1GGDP Europe(t + 2months) + β2GGDP USA(t)

+ β3Inflation(t + 12months) + β4Unemployment(t + 18months)

+ β5Production(t + 10months) + β6EURIBOR: 1M(t + 18months)

+ β7EURIBOR: 3M(t + 18months) + β8S&P500(t + 6months)

+ β9STOXX 50(t + 6months) + β10VSTOXX(t)

+ β11GY(t + 12months) + ε(t). (5)

The model with shifted variables leads to a much higher coefficient of determination
and adjusted coefficient of determination than the model without shifts (see R2 = 71.1%
and R2

adj = 68.2% given in Table 4). S&P500, STOXX 50, and GGDP Europe are significant
at the 5% level. Some coefficient signs are not consistent with the correlations from Table 3
due to multicollinearity. In order to determine the most important explanatory variables,
we perform a backward-forward model selection procedure using AIC as the selection
criterion. This leads to the following model:

ln(ARR(t)) =β0 + β1GGDP Europe(t + 2months) + β2Unemployment(t + 18months)

+ β3S&P500(t + 6months) + β4STOXX 50(t + 6months) + ε(t). (6)

The results of the linear regression before and after the backward-forward model
selection procedure are presented in Table 4.

Table 4. Fitted linear regression models (5) and (6) with shifted variables.

Full Model AIC Model

Variable Coefficient (Standard Error) Coefficient (Standard Error)

(Intercept) −0.239 (0.216) −0.085 (0.057)
EURIBOR: 1M −0.028 (0.020)
EURIBOR: 3M 0.038 (0.022)

Inflation 0.010 (0.007)
Unemployment −0.017 (0.013) −0.034 *** (0.005)

S&P500 2.505 · 10−4 *** (5.749 · 10−5) 3.337 · 10−4 *** (3.570 · 10−5)
STOXX 50 −5.977 · 10−5 ** (2.167 · 10−5) −7.542 · 10−5 *** (1.449 · 10−5)

GY −0.004 (0.005)
VSTOXX −3.969 · 10−4 (4.089 · 10−4)

Production 2.985 · 10−4 (0.002)
GGDP Europe 0.863 * (0.386) 0.924 ** (0.339)

GGDP USA −2.006 (2.694)

R2 0.711 0.688
Adj. R2 0.682 0.677

Num. obs. 120 120
RMSE 0.031 0.032

*** p < 0.001, ** p < 0.01, * p < 0.05.

The reduced model (6) has similar values of R2 and R2
adj as model (5). All explanatory

variables in this model are significant at the 5% level. The coefficients of S&P500 and GGDP
Europe are positive and the coefficient of the Unemployment rate is negative. This indicates
that the higher the value of S&P500 or GGDP Europe the higher the recovery rate and
the higher the unemployment rate the lower the aggregated recovery rates. The negative
sign of the coefficient of STOXX 50 is somehow surprising. However, if this variable is
considered together with S&P500 (both are the indicators of stock markets), their joint
effect on aggregated recovery rates is positive.
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We measure this joint influence over time by mutually increasing their values by 1%.
The corresponding sensitivity (change/difference) of the logarithmized RR is presented
in Figure 9. We see that the joint effect on aggregated recovery rates is always positive.
Another interesting finding is that the influence of the stock markets is relatively higher in
prosperity times and lower in crisis times.
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Figure 9. Sensitivity of the logarithmized ARR on S&P500 and STOXX50.

Similar to the model with unshifted explanatory variables, the above two models
based on the stochastically estimated GGDP Europe and GGDP USA outperform the
corresponding ones with linearly interpolated GGDP Europe and GGDP USA in terms
of R2 and adjusted R2

adj. The estimation accuracy of Model (6) is presented in Figure 10,
where the fitted values are plotted together with the observed values. Model (6) seems to
fit the ARR very well since the estimated and observed ARR are very close to each other.
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Figure 10. Observed and predicted aggregated recovery rates.

Besides the linear model with logarithmized response variable, different regression
models were utilized to find a model with the best fit. Thus, we considered linear re-
gressions with a beta, logit, and probit transform as well as beta regression. None of the
models gives better results than the linear regression (5), but the four models lead to similar
conclusions. We observe positive correlations for EURIBOR: 3M, S&P500, GY, and GGDP
USA with the aggregated recovery rates and negative correlation for EURIBOR: 1M. After
the backward-forward selection, the regression model (6) still outperforms the above four
linear regressions.
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4.2.2. Applying the Same Time Shifts for All Variables

Now, we will examine the models with the same time shifts applied to all explanatory
variables. In Table 5, the adjusted R2

adj is reported for the models without shifts, with 6 and
12-months shifts as well as with the individual optimal shifts, as discussed in the previous
subsection for comparison.

Table 5. R2
adj for linear models with different time shifts.

Adjusted R2
adj

0-Shift 0.479
6 m-Shift 0.630

12 m-Shift 0.599
Optimal Shift 0.682

In Figure 11, we also present the prediction errors for each of the models with different
time shifts.
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Figure 11. Prediction error distribution with 5% and 95% quantiles (grey vertical lines) for the models
with no time shifts (top left), 6.month time shift (top right), 12-month time shift (bottom left) and
optimal time shifts (bottom right).

The models with 6-months and 12-months time shifts for all explanatory variables
have higher R2

adj and lower standard deviation than the unshifted model, but still lower

R2
adj and higher standard deviation than the model with optimal shifts. Therefore, in the

upcoming three subsections, we will use the optimally time-shifted variables.
We should keep in mind that it is not possible to obtain such a high precision of

prediction at the time of default as in the models with shifted variables. The required data
is not available in time. For example, in our model with optimal shifts, we need information
up to 18 months into the future. Therefore, it is essential to introduce an approach, which
allows us to get predictions at the time of default. We present here an approach, which
uses the empirical distribution of the explanatory variables.
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4.2.3. Approach Using the Empirical Distribution

As basis for the empirical distribution, we use the 120 last observations. First, we
calculate for any point in time k the vectors containing the differences for the 4 explanatory
variables from Model (6):

δij = xij − xi(j−opt(i)),

where xij is the jth observation of variable i with i ∈ {1, 2, 3, 4}, j ∈ {k− 120, k− 119, ..., k−
1}, and opt(i) is the optimal shift for variable i. Then, for any point in time k, we estimate
120 recovery rates by inserting the vectors x1,k + δ1,j, ..., x4,k + δ4,j in Model (6) and compute
the 99% prediction interval for those estimates.

The calculated prediction interval together with the mean of the predictions and the
observations are presented in Figure 12. Only 3 observations out of 144 fall out of the
interval (2.08%), which indicates good precision.
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Figure 12. Monthly aggregated recovery rates with 99% prediction interval (grey dot-dash line) and
the mean of the predictions (grey solid line) at the time of default for Model (6).

The above method could also be used when we calculate the predictions of the
recovery rate not only right after default, but at later points in time. In this situation, we
take advantage of the fact that more information might be already available at later points
and use exact values instead of distributions where the covariates are already known. We
expect that the empirical distribution of the differences in the covariates has lower variance
and therefore we expect the prediction interval to become tighter.

We extend our approach by computing the prediction intervals for the time points 3,
6, 9, and 12 months after default. The idea of the method stays the same. The results are
presented in Figures 13 and 14.

As expected, the prediction intervals become tighter and tighter if more time has
passed since default. However, the coverage of the predictions intervals becomes less
accurate for larger shifts in time. Thus, there is a trade-off between tightness and precision
of the prediction intervals for longer time after default.
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Figure 13. Monthly aggregated recovery rates with 99% prediction interval (grey dot-dash line) and
the mean of the predictions (grey solid line) 3 and 6-months after default for Model (6).
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Figure 14. Monthly aggregated recovery rates with 99% prediction interval (grey dot-dash line)
and the mean of the predictions (grey solid line) 9 and 12 months after default using empirical
distributions for Model (6).

4.3. Linear Model with Interactions

In this subsection, we try to improve the prediction power of Model (6) by introducing
interactions. The model with the original four factors and all their possible two-factor
interactions consists of 10 variables and leads to a coefficient of determination R2 = 73.4%
and an adjusted coefficient of determination R2

adj = 70.9%. As before, we apply the
backward-forward model selection procedure in order to select important interactions. The
obtained model has the following form:

ln(ARR(t)) =β0 + β1Unemployment(t + 18months) + β2S&P500(t + 6months) + β3STOXX 50(t + 6months)

+β4GGDP Europe(t + 2months) + β5Unemployment(t + 18months) ∗ S&P500(t + 6months)

+β6Unemployment(t + 18months) ∗ STOXX50(t + 6months)

+β7S&P500(t + 6months) ∗GGDP Europe(t + 2months)

+β8STOXX 50(t + 6months) ∗GGDP Europe(t + 2months) + ε(t). (7)

The estimation results for the models before and after the selection are presented in
Table 6. Note that the reduced model has similar R2 and R2

adj.



Risks 2022, 10, 18 19 of 30

Table 6. Fitted linear regression model (7) with interactions before and after model selection.

Full Model AIC Model

Variable Coefficient (Standard Error) Coefficient (Standard Error)

(Intercept) 1.040 ** (0.394) 0.503 (0.257)
Unemployment −0.126 *** (0.033) −0.094 *** (0.028)

S&P500 −0.001 ** (3.639 · 10−4) −0.001 * (3.169 · 10−4)
STOXX 50 3.257 · 10−5 (1.020 · 10−4) 1.578 · 10−4 * (7.088 · 10−5)

GGDP Europe −0.633 (7.773) −0.317 (1.662)
Unemployment x S&P500 1.202 · 10−4 *** (3.124 · 10−5) 1.030 · 10−4 *** (3.018 · 10−5)

Unemployment x STOXX 50 −1.793 · 10−5 * (6.871 · 10−6) −2.121 · 10−5 ** (6.471 · 10−6)
Unemployment x GGDP Europe 0.096 (0.64)

S&P500 x STOXX 50 7.157 · 10−8 (3.923 · 10−8)
S&P500 x GGDP Europe 0.005 (0.003) 0.006 * (0.003)

STOXX 50 x GGDP Europe −0.002 (0.002) −0.002 * (0.001)

R2 0.734 0.724
Adj. R2 0.709 0.704

Num. obs. 120 120
RMSE 0.030 0.030

*** p < 0.001, ** p < 0.01, * p < 0.05.

Incorporating interactions allows to explain the behavior of aggregated recovery rates
better, but even more interesting than this gain in degree of explanation is the possibility
to have a closer look at the interdependence between the explanatory variables. In the
estimated reduced model from Table 6, the coefficients of S&P500 and STOXX 50 have op-
posite signs as compared to Model (6). Further, the impact of the factors on the aggregated
recovery rates depends now on other factors as well and the interpretation of the estimated
coefficients is not straightforward anymore.

Similarly, as in the case of Model (6), we assume growth of 1% of the considered
variable, use monthly values of the remaining variables, and investigate the sensitivity of
the logarithmized recovery rates over time. The results are presented in Figures 15 and 16.
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Figure 15. Sensitivity of the logarithmized ARR on S&P500 (left) and STOXX50 (right).

The impact of S&P500 on recovery rates depends on Unemployment and GGDP
Europe, but it is still clear and intuitive. An increase in S&P500 in all possible economic
conditions leads to an increase in recovery rates. The interpretation is also clear for Un-
employment. The growth of this variable has a negative effect on the aggregated recovery
rates in all possible economic conditions. The impact of STOXX 50 on logarithmized ARR
is less intuitive. Except for two short time periods at the beginning of 2006 and at the end
of 2008, an increase in STOXX50 leads to lower aggregated recovery rates. However, if the
impact of STOXX50 is considered together with the impact of S&P500, the joint effect of
those two variables has a positive impact on ARR in all economic conditions. This effect is
shown in Figure 17.
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Figure 16. Sensitivity of the logarithmized ARR on Unemployment (left) and GGDP Europe (right).
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Figure 17. Sensitivity of the logarithmized ARR on a joint movement of S&P500 and STOXX50.

From Figures 15 and 16, we can also see that the impact of the explanatory variables
changes over time. The influence of GGDP Europe is low in crisis times and gets higher
in prosperity times. The opposite behavior could be observed for Unemployment. The
impact of this variable is bigger in crisis times. To investigate this changing influence of the
variables, we consider a Markov switching model in the next section and examine the data
separately in crisis and prosperity times.

Using the empirical distribution approach, we calculate the prediction intervals for
the reduced model from Table 6 as it was done for Model (6). The results are presented in
Figure 18. The obtained prediction intervals are tighter than ones for Model (6). Only 1
observation out of 144 (0.69%) falls out of them, which indicates a higher precision.
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Figure 18. Monthly aggregated recovery rates with 99% prediction interval (grey dot-dash line)
and the mean of the predictions (grey solid line) at the time of default for the reduced model with
intersections.

4.4. Markov Switching Model

In this subsection, we consider two stochastic processes in discrete time. The first
one, (St)t∈N0 , is an unobservable Markov chain with several states, i.e., its state space is
Ω = {1, 2, ..., r}. The second stochastic process, (Yt)t∈N0 , is observable and we assume its
distribution to be normal. In our analysis, the observable process is represented by the
logarithmized aggregated recovery rates ln(ARR(t)).

The distribution of (Yt)t∈N0 depends on the unobservable state of the Markov chain.
We denote the transition matrix of the Markov chain by Π = (πjl)j,l=1,...,r, where πjl =
P(St = l|St−1 = j) and the initial distribution by δ, with δ = δ(s) = P(S0 = s) for
s = 1, ..., r. The probability density of (Yt)t∈N0 given the particular state of (St)t∈N0 we
denote by:

p(s, y) = P(Yt = y|St = s) =
1√

2πσ2
s

exp
{
− (y− µs)2

2σ2
s

}
,

where µs and σs are the state-dependent distribution parameters with s ∈ {1, 2, ..., r}.
First, the initial distribution, transition matrix, and the parameters of the distribution

are estimated. A very common approach to do this is the Baum-Welch algorithm (Baum
et al. (1970)). Second, we need to determine the number of states r. Since the estimation
results for the models with r = 3 and r = 4 are not stable, i.e., heavily dependent on the
initial values, we proceed in our analysis using a model with two states and call these
states S1 and S2.

The parameters µ and σ in Table 7 correspond to an expected value and standard
deviation for the logarithm of the aggregated recovery rates in states S1 and S2. We can see
that the standard deviation σ in both states is similar, but the expected value µ is higher in
State S1. We apply the Viterbi algorithm (see Viterbi (1967)) to estimate the “most likely”
state sequence. The results are presented in Figure 19. We see that the Markov chain starts
in State S2 and after about one year it changes to State S1 and stays there for about 4 years
until 2007, when it returns to State S2. In 2010, it changes for the last time back to State
S1. We can associate State S2 with crisis times. During the year 2002, the world economy
was in depression after the Dot-com crash and between 2007 and 2010 it was affected by
the global financial crisis. In opposite to State S2, State S1 can be associated with times of
prosperity. As expected, aggregated recovery rates in State S1 are on average higher than
in State S2 and this can also be seen in Figure 19.

The idea of the Markov switching model is based on the assumption that the dis-
tribution of the observable variable depends on the state of the hidden Markov chain.
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Therefore, we assume that the influence of explanatory variables on the recovery rate
is state-dependent. In the linear model, we can present this impact by an additional
explanatory variable S1(t). Thus, the corresponding model is given by

ln(ARR(t)) =S1(t)
(

βS1
0 + βS1

1 GGDP Europe(t + 2months) + βS1
2 GGDP USA(t)

+ βS1
3 Inflation(t + 12months) + βS1

4 Unemployment(t + 18months)

+ βS1
5 Production(t + 10months) + βS1

6 EURIBOR: 1M(t + 18months)

+ βS1
7 EURIBOR: 3M(t + 18months) + βS1

8 S&P500(t + 6months)

+ βS1
9 STOXX 50(t + 6months) + βS1

10VSTOXX(t) + βS1
11GY(t + 12months)

+ σS1ε(t)
)
+ S2(t)

(
βS2

0 + βS2
1 GGDP Europe(t + 2months) + βS2

2 GGDP USA(t)

+ βS2
3 Inflation(t + 12months) + βS2

4 Unemployment(t + 18months)

+ βS2
5 Production(t + 10months) + βS2

6 EURIBOR: 1M(t + 18months)

+ βS2
7 EURIBOR: 3M(t + 18months) + βS2

8 S&P500(t + 6months)

+ βS2
9 STOXX 50(t + 6months) + βS2

10VSTOXX(t) + βS2
11GY(t + 12months)

+ σS2ε(t)
)

, (8)

where S2(t) = 1− S1(t), ε(t) are i.i.d with ε(t) ∼ N (0, 1), σS1 and σS2 are positive. The
regression parameters should be estimated separately for State S1 and State S2. We assume
that S1(t) = 1 when the Markov Chain is in State 1 and 0 otherwise.

Table 7. Estimated parameters of the Markov switching model.

State S1 State S2

δ 0 1
π·1 0.984 0.016
π·2 0.045 0.955
µ −0.206 −0.287
σ 0.038 0.039
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Figure 19. States sequence of the Markov chain.

The estimation of Model (8) is presented in Table 8. The estimated coefficients are quite
different, but there is only one variable that is significant at a 5% level. As before, we apply
the backward-forward model selection procedure based on AIC. The estimated models
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are presented in Table 9. This estimated Markov switching model has the highest (Adj.)
R2 among all considered models. Further, after the selection procedure, more variables
are significant at the 5% level and we consider this model for the rest of this subsection.
In State S1, which we associate with prosperity times, the coefficient of unemployment is
positive. At the end of a crisis, e.g., companies release people to increase efficiency while
the ARR increases with the coming economic upswing. Therefore, ARR could increase with
unemployment. This result is consistent with Ingermann et al. (2016) and Grunert (2010).
The latter obtains a positive impact of Unemployment in the model with very high ARR
(bigger than 77.46%). In our model, in State S1, only 3 observations are lower than this
value and thus, the results are comparable. On the other side, the impact of Unemployment
is negative in crisis times. This could explain why Calabrese (2014) does not observe a
significant impact of Unemployment on individual recovery rates. A positive impact in
State S1 and a negative one in State S2 of Unemployment can offset each other if the crisis
and prosperity times are not considered.

As could be expected, an increase of GGDP Europe leads to an increase in recovery
rates. This was also observed by Altman et al. (2001) and Covitz and Han (2004). We
observe a positive statistically significant (at 5% level) coefficient of GGDP Europe similar
to Gambetti et al. (2019). In contrast, Calabrese (2014) report nonsignificant negative
influence of a GDP growth rate. Further, a higher EURIBOR: 3M should intuitively result
in a higher recovery rate. However, Bellotti and Crook (2012) observe an opposite picture
for UK retail credit cards. Our explanation for these controversial empirical findings
is the different nature of defaulted entities. Defaulted holders of retail credit cards are
not influenced by a positive market sentiment in the same manner as defaulted entities
from the GCD database. A positive nonsignificant impact of stock returns on weighted
average bond recovery rates was already noted by Altman et al. (2001). We can confirm
this observation for prosperity times and this effect is even statistically significant at a 1%
level. In crises times, we observe a nonsignificant negative impact of STOXX 50. In State
S2 (crisis times), an increase in production, which could be considered as an indicator for
the upcoming recovery of the economy, leads to higher aggregated recovery rates. This is
expressed by its positive influence, which is however not significant. Similarly, a negative
nonsignificant influence of Production in times of prosperity (State S1) could implicitly
indicate the importance of the economic situation after the time of default and not at the
time of default.

Table 8. Fitted regression model (8) with 2 Markov states before stepwise model selection.

State S1 State S2

Variable Coefficient (Standard Error) Coefficient (Standard Error)

(Intercept) −2.692 · 104 (0.388) −0.1023 (0.503)
EURIBOR: 1M −0.009 (0.029) −0.074 (0.074)
EURIBOR: 3M 0.027 (0.033) 0.020 (0.085)

Inflation −0.001 (0.010) 0.010 (0.018)
Unemployment 0.022 (0.024) −0.034 (0.039)

S&P 500 3.646 · 10−5 (1.362 · 10−4) 1.867 · 10−4 (1.286 · 10−4)
STOXX 50 6.912 · 10−5 (4.771 · 10−5) −8.218 · 10−5 (4.798 · 10−5)

GY −0.007 (0.006) −0.030 (0.025)
VSTOXX −1.428 · 10−4 (0.001) 1.018 · 10−4 (0.001)

Production −0.006 (0.004) 0.004 (0.003)
GGDP Europe 1.174 (0.594) 1.183 * (0.579)

GGDP USA −2.776 (7.230) 5.520 (5.614)

R2 0.7708
Adj. R2 0.7159

Num. obs. 120
*** p < 0.001, ** p < 0.01, * p < 0.05.
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Table 9. Fitted regression models (8) with 2 Markov states after stepwise model selection.

State S1 State S2

Variable Coefficient (Standard Error) Coefficient (Standard Error)

(Intercept) −0.124 (0.247) −0.433 (0.251)
EURIBOR:3M 0.021 * (0.009)

Unemployment 0.027 ** (0.008) −0.020 (0.014)
S&P500 1.446 · 10−4 (9.477 · 10−5)

STOXX 50 7.359 · 10−5 ** (2.670 · 10−5) −6.048 · 10−5 (3.127 · 10−5)
GY −0.008 (0.005) −0.019 (0.014)

Production −5.568 · 10−3 (3.223 · 10−3) 4.223 · 10−3 (2.177 · 10−3)
GGDP Europe 1.116 * (0.530) 1.3 * (0.487)

R2 0.759
Adj. R2 0.737

Num. obs. 120
*** p < 0.001, ** p < 0.01, * p < 0.05.
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Figure 20. Monthly aggregated recovery rates with 99% prediction interval (grey dot-dash line)
and the mean of the predictions (grey solid line) at the time of default for the reduced Markov
switching model.

As before, we calculate the prediction intervals using the empirical distribution ap-
proach for the reduced Markov switching model. This time we do it separately for States
S1 and S2 assuming that they are known at the time of calculation. The prediction intervals
together with the means of the predictions are presented in Figure 20. We observe again
very high precision of the estimation, i.e., only one observation is outside the prediction
interval (0.69%).

4.5. Out-of-Sample Performance

The presented empirical results are done in-sample. To compare the out-of-sample
performance of the considered models, we split the time series of the aggregated recovery
rates into two sub-samples. The first sub-sample consists of 96 monthly aggregated recovery
rates and covers the time period from 2002 to 2009. It serves as in-sample data to select and
to fit the models in the framework of the previous analysis. First, we predict the aggregated
recovery rate for the first month of the second sub-sample. For the Markov switching
model, the Viterbi algorithm provides the estimated state sequence and we use the last
estimated state as our state prediction for the first month of the second sub-sample. In this
manner, we iterate our prediction framework for each month of the second sub-sample. The
second sub-sample serves as out-of-sample data and consists of the remaining 24 monthly
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aggregated recovery rates covering the time period from 2010 to 2011. Note that the models
are selected only once using in-sample data. The selected models are fitted each time
using the aggregated recovery rates from the in-sample data and the available aggregated
recovery rates from the out-of-sample data. Therefore, this approach is static with respect
to selected models.

Using the root mean squared error (RMSE), we compare a prediction performance
of the linear model with shifted variables, the resulting linear model with intersections,
and the Markov switching model. The RMSE of the Markov switching model is 0.0291
and the smallest one among all others since the RMSEs of the linear model and the linear
model with intersections is equal to 0.0358 and 0.0362, respectively. The out-of-sample
prediction results are presented in the left plot of Figure 21. We observe that the Markov
switching model better predicts due to an acceptable prediction of crisis and prosperity
times. Nevertheless, we also observe that there is sometimes a prediction lag of one month,
which is caused by our simple prediction framework. Surprisingly, the linear model
performs slightly better than the one with intersections. We think that this is a consequence
of the static model and variable interactions chosen at the beginning becoming a burden for
static models. Therefore, we perform the second comparison by selecting the best model at
each prediction step.

Out−of−sample prediction (static)

Time

A
R

R

 01−2010  04−2010  07−2010  10−2010  01−2011  04−2011  07−2011  10−2011
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Out−of−sample prediction (dynamic)
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Figure 21. Out-of-sample prediction of the linear model (LM), the linear model with intersecations
(LMwI) and the Markov switsching model (MSM) for static models (left) and the dynamic models
(right). The observed ARR is displayed in the solid line.

In the second method for out-of-sample prediction, we perform model selection at
each prediction step. This approach is dynamic with respect to the selected models. Now,
the RMSE of the Markov switching model is no longer the smallest among all models and
equals 0.0289. The RMSEs of the linear model and the linear model with intersections are
equal to 0.0306 and 0.0283, respectively. As expected, the linear model with intersections
predicts better than the one without intersections and it is even slightly better than the
Markov switching model. However, there is still room for improvement in the Markov
switching model by incorporating more sophisticated frameworks for state prediction.
In particular, we still observe a possible prediction lag of one month in the right plot of
Figure 21 due to the naive framework for the state prediction.

5. Summary and Conclusions

In this paper, we examine the relation between monthly aggregated recovery rates
and different exogenous factors describing the macroeconomic environment, interest-rate
movements, and stock markets. For this, we consider the Global Credit Data, which is
the biggest loan loss and recovery data set worldwide containing over 110,000 individual
facility default records from all over the world. Furthermore, we use the quarterly released
GDP of the US and Europe and derive monthly estimates of their growth using a dynamic
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factor model for mixed frequency data. To our best knowledge, stochastic monthly esti-
mated GGDP is introduced to models for the ARR for the first time and this assures better
fitting than a naive linear interpolation.

It is also shown that models for the ARR with time-shifted explanatory variables
outperform the ones with unshifted explanatory variables. Thus, our finding suggests
that modeling with forecasted explanatory variables can improve the prediction power of
statistical models for recovery rates. In particular, we apply optimal time shifts separately
for every single variable. As the restructuring effort and the liquidation of collaterals do
not realize immediately, the behavior of explanatory variables after a default significantly
influences the monthly ARR. Since relevant values of explanatory variables are not available
at the time of default, we empirically sample their monthly changes from the corresponding
last 120 ones to construct prediction intervals.

We have also considered beta, logit, probit, and log transformation of the ARR in the
framework of linear regression as well as beta regression for the ARR. The linear regression
model with a logarithmized response variable fits the ARR best and is extended in two
directions. The first extension is built by adding interactions to the linear regression model.
The second extension is a combination of the linear regression and a Markov switching
model with two states, which can be interpreted as crisis and prosperity times. The reduced
Markov switching model explains over 75% of the variability of the aggregated recovery
rates and outperforms the model with interactions. In prosperity times, the variables
EURIBOR:3M, Unemployment, STOXX 50, and GGDP Europe are significant (at 5% or
1% level) drivers of the aggregated recovery rate at least while PRODUCTION (at level
10%) and GGDP (at 5% level) are significant indicators in crises times. Our out-of-sample
comparison of the considered models shows the superiority of the Markov switching model
in general and a good potential of the linear model with intersections.

Overall, the final model we propose uses a dynamic factor model with mixed fre-
quency data to forecast the monthly GGDP, an optimal time shift in the variables, and
a Markov switching model. The forecasted ARR could be used as an explanatory vari-
able to model individual recovery rates. We expect that the modeling framework of
Min et al. (2020); Sopitpongstorn et al. (2021) as well as Ye and Bellotti (2019) could gain
more prediction power by considering the predicted ARR as an additional explanatory vari-
able. The limitation of the proposed methodology is that the state of the Markov switching
model is not known. For applications, this state should be predicted similarly to Haupt-
mann et al. (2014). Much empirical research on individual recovery rates using GDP or its
interpolation, see, e.g., Calabrese (2014) and Gambetti et al. (2019), could be reconsidered by
employing monthly extracted signals from GDP. Finally, the approach of Fermanian (2020)
shows a great potential of copulas for describing the dependence structure of recovery
rates and macroeconomic variables. This all is a topic of future research.

Author Contributions: Conceptualization, all authors; software, S.H., A.M., J.W.; validation, A.M.,
J.W.; formal analysis, all authors; investigation, all authors; resources, all authors; writing—original
draft preparation, all authors; writing—all authors; visualization, A.M., J.W.; supervision, R.Z.; project
administration, R.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Aggregated recovery rate is not publicly available since it is computed
using the database of Global Credit Data. Panel data is publicly available. The respective sources are
stated in Appendix A in detail.

Acknowledgments: The authors would like to thank Global Credit Data for granting access to their
database. They would also like to thank Nina Brumma for her helpful comments. Finally, the authors
are grateful to the unknown referees for their constructive and helpful comments. This work was



Risks 2022, 10, 18 27 of 30

supported by the German Research Foundation (DFG) and the Technical University of Munich within
the TUM Open Access Publishing Fund.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Data for GGDP Estimation

In this appendix, all variables for estimation of GGDP in Europe and GGDP in the
USA are listed.

Appendix A.1. Data for European GGDP Estimation

Most of the variables are average values of 19 European countries: Austria, Belgium,
Cyprus, Estonia, Finland, France, Germany, Greece, Ireland, Italy, Latvia, Lithuania, Lux-
embourg, Malta, Netherlands, Portugal, Slovakia, Slovenia, and Spain. The data is almost
entirely taken from the website of the European central bank (http://sdw.ecb.europa.eu/
accessed on 31 March 2017 ). Only the VSTOXX volatility index observations are taken
from a different source (https://www.investing.com/indices accessed on 5 April 2017).

Variable Log Diff Monthly Quarterly

Industrial production total manufacturing x x x
Industrial production excluding construction x x x
Industrial production intermediate goods x x x
Industrial production capital goods x x x
Industrial production energy x x x
Industrial production durable goods x x x
Industrial production non-durable goods x x x
Industrial production construction x x x
New orders from domestic economy x x x
New orders—capital goods x x x
New orders—manufacturing x x x
Inflation x x
EURIBOR—1-month rate x x
EURIBOR—3-months rate x x
10 years governmental bond yield x x
5 years governmental bond yield x x
Dow Jones Euro STOXX 50 x x x
VSTOXX volatility index x x x
exchange rate USD/Euro x x
GDP x x x
Private consumption x x x
Gross Fixed Capital Formation x x x
Export x x x
Import x x x
Gross value added x x
Gross value added—trade, transport, accomodation, food services x x
Property income x x x
Entrepreneurial income—non-financial corporations x x x
Entrepreneurial income—financial corporations GDP x x x

http://sdw.ecb.europa.eu/
https://www.investing.com/indices
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Appendix A.2. Data for US GGDP Estimation

The entire data used for derivation of US GGDP consists of 34 variables and is avail-
able at the webpage of the Research Division of the Federal Reserve Bank of St. Louis
(https://fred.stlouisfed.org/ accessed on 27 March 2017).

Variable Log Diff Monthly Quarterly

10-Years Aaa Corporate Bond Yield x x x
10-Years Baa Corporate Bond Yield x x x
New Orders: Consumer Nondurable Goods Industries x x x
New Orders: All Manufacturing Industries Excluding Defense x x x
New Orders: Nondefense Capital Goods Industries x x x
New Orders for Capital Goods Industries x x x
New Orders: Durable Goods x x x
Exchange rate USD/Euro x x
1-Year Treasury Constant Maturity Rate x x
10-Year Treasury Constant Maturity Rate x x
2-Year Treasury Constant Maturity Rate x x
3-Year Treasury Constant Maturity Rate x x
Industrial Production Index x x
Industrial Production: Consumer energy products x x
Industrial Production: Non-energy materials x x
Industrial Production: Construction supplies x x
Industrial Production: Consumer Goods x x
Industrial Production: Durable Consumer Goods x x
Industrial Production: Manufacturing (NAICS) x x
Industrial Production: Manufacturing (SIC) x x
Industrial Production: Nondurable Consumer Goods x x
3-Month Rates: Certificates of Deposit x x
Interbank Rate for the United States x x
Personal Consumption Expenditures x x x
Total Share Prices for All Shares for the United States x x
GDP x x x
Gross value added (IMA) x x x
Real Exports of Goods and Services x x x
Real Government Consumption Expenditures and Gross Investment x x x
Real imports of goods and services x x x
Employed full time: Median usual weekly real earnings x x x
Nonfinancial noncorporate business; gross value added, Flow x x x
Gross Fixed Capital Formation in United States x x x
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