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Abstract: We consider an insurance company whose risk reserve is given by a Brownian
motion with drift and which is able to invest the money into a Black–Scholes financial
market. As optimization criteria, we treat mean-variance problems, problems with other
risk measures, exponential utility and the probability of ruin. Following recent research,
we assume that investment strategies have to be deterministic. This leads to deterministic
control problems, which are quite easy to solve. Moreover, it turns out that there are some
interesting links between the optimal investment strategies of these problems. Finally, we
also show that this approach works in the Lévy process framework.
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1. Introduction

Inspired by [1], we first consider a mean-variance problem for an insurance company, where
the investment strategy has to be deterministic or, in other words, pre-determined at time zero.
Mathematically, the strategy has to be F0-measurable. We assume that the risk reserve is given by
a Brownian motion with drift and allow investments into a Black–Scholes market with one bond and
d risky assets. Investment strategies are determined by the amount of money that is invested in the
assets. Such a model has been considered in [2] with one stock, but different optimization criteria, and
in [3] with the emphasis towards time-consistency. Here, we present, first, the solution of the classical
mean-variance problem, where we optimize over adapted wealth-dependent investment strategies.
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The solution procedure uses a standard Hamilton–Jacobi–Bellman (HJB) approach and follows along
established lines, like in [4,5]. More interestingly, in the second part, we consider the same problem with
deterministic investment strategies. The authors in [1] motivate this approach by remarking that such a
kind of investment strategy is easier to implement, communicate and compare to alternatives. These
kinds of strategies are also partly used in defined contribution pension plans. We refer the reader to [6],
where, among others, the performance of deterministic and dynamic investment strategies is compared.
In [1], the authors consider a mean-variance problem with additional consumption, and their investment
strategies are given in terms of the fraction of wealth invested in the single risky asset. We would like
to add that our deterministic investment strategies are mathematically easier to obtain and that there are
some interesting and surprising links to optimal investment strategies for other optimization criteria, as
we will explain below. Although, when we compare the densities for the final wealth, which are obtained
under the optimal deterministic and dynamic investment strategies for the mean-variance problem, we
will see that there is quite some difference.

Mathematically, the mean-variance problem for the restricted class of strategies leads to a
deterministic control problem directly, without the problem of facing the non-separability of the target
function. In the classical adapted case, it is necessary to link the mean-variance problem to an auxiliary
linear-quadratic problem first (see, e.g., [5,7,8]) denoted by QP (η) in Section 3. This step is not
necessary in the deterministic case. Moreover, we will also show that in this special model with
deterministic strategies, the mean-variance optimal strategy is also optimal for an arbitrary mean-risk
problem, where the variance is replaced by an arbitrary law-invariant and positive homogeneous risk
measure for the deviation of the terminal wealth from the mean. This is mainly due to the fact that
the terminal wealth under a deterministic investment strategy has a normal distribution with mean and
variance depending on the strategy. This observation can also be used to solve the control problem for
other optimization criteria, like, e.g., expected exponential utility or the probability of ruin. Surprisingly,
it will turn out that the classical optimal investment strategy for a company with exponential utility
(within the class of adapted strategies) is deterministic and coincides with the optimal deterministic
strategy for the mean-variance problem. Finally, we also show that this approach works when the
involved processes are Lévy processes. In order to explain our procedure, we restrict the presentation to
the most important case, where the risk reserve process is given as in the Cramér–Lundberg model, i.e.,
the risk reserve process is a compound Poisson process. Since the jumps vanish under expectation,
we can proceed in almost the same way. In the classical setting with adapted strategies, it is also
possible to deal with Lévy processes; see, e.g., [9,10] for LQ- and mean-variance problems, [11] for
the exponential utility or [12] for more general information. In [13], a reinsurance problem with a Lévy
market has been considered, and it turned out that the optimal reinsurance strategy is deterministic in the
larger class of adapted strategies already. For a recent interesting comparison of different approaches to
solve continuous-time mean-variance problems, see [14]. The authors there also consider non-negativity
constraints on terminal wealth.

In this paper, we do not deal with questions of the time-consistency of the optimal investment strategy.
This seems to be a key point in recent research. We just point to the recent papers [3,15,16], where
time-consistency is discussed. The deterministic investment strategies depend on time only and are
consistent for the deterministic control problem.
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The paper is organized as follows: In the next section, we introduce the insurance model and the
mean-variance problem along with some standing assumptions. Then, we explain how to reduce the
problem in general to a stochastic linear-quadratic problem. Next, we solve the problem within the
classical framework of adapted, i.e., wealth-dependent investment strategies. In Section 5, we consider
the mean-variance problem with deterministic investment strategies. We show how the problem is turned
into a deterministic control problem and solve it. In a special case, we study the form of the densities of
the optimal terminal wealth for the mean-variance problem under deterministic and adapted investment
strategies. The next section is dedicated to more general mean-risk problems and other optimization
criteria. We show that for deterministic investment strategies, the optimal one is insensitive to the choice
of the risk measure, as long as it is law-invariant and positive homogeneous. Finally, in the last section,
we deal with the Lévy process framework. We assume that the risk reserve process follows a compound
Poisson process, like in the Cramér–Lundberg model.

2. The Model

We suppose that the risk reserve process, (Yt), of the insurance company is given by the following
stochastic differential equation:

dYt = αdt+ βdW̃t (1)

where W̃ = (W̃t) is a Brownian motion and α, β are arbitrary real constants with β ≥ 0, and it is
reasonable, but not mathematically necessary to assume that α ≥ 0. The initial capital is given by
Y0 = x0 > 0. The risk reserve can be invested into a financial market, which is given by a riskless bond
with price process (S0(t)), where

S0(t) := ert

and r ≥ 0 denotes the deterministic interest rate. Further, there are d risky assets, and the price process
(Si(t)) of asset i is given by the stochastic differential equation:

dSi(t) = Si(t)
(
bidt+

k∑
j=1

σijdWj(t)
)

with Si(0) = 1. The process W = (W 1
t , . . . ,W

k
t ) is a k-dimensional Brownian motion, which may be

correlated with the driving Brownian motion of the risk reserve process. More precisely, we assume that
〈W̃ ,Wj〉t = ρjt for j = 1, . . . , k and ρ := (ρ1, . . . , ρk)

>. In what follows, we set b := (b1, . . . , bd)
> ∈

Rd and σ = (σij) ∈ Rd×k
+ . We assume that all processes are defined on a common probability space

(Ω,F ,P), that (Ft) is the filtration generated by all Brownian motions and that there is a final time
horizon T > 0.

The insurance company is now allowed to invest the risk reserve into the financial market. A classical
trading strategy π = (πt) is an (Ft)-adapted stochastic process, where πt = (π1(t), . . . , πd(t)) ∈ Rd and
πi(t) is the amount of money invested in stock i at time t. Note that short-selling is allowed and that the
bond investment (π0(t)) is given by the self-financing condition. Adaptedness means that we assume
that the decision maker is able to observe all Brownian motions, and, thus, the risk reserve and the
evolution of the financial market, and is able to react to it. Given a trading strategy, π, and the notation
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1 := (1, . . . , 1)> ∈ Rd, the corresponding wealth process of the insurance company follows the
stochastic differential equation:

dXπ
t =

[
rXπ

t + α + (b− r1)>πt
]
dt+ βdW̃t + π>t σdWt (2)

Xπ
0 = x0 (3)

In what follows, let us denote Σ := σσ>, which we assume to be positive definite. Since the quadratic
variation of (Xπ

t ) is given by:

d〈Xπ〉t =
[
π>t Σπt + β2 + 2βπ>t σρ

]
dt (4)

the process (Xπ
t ) is in a distribution equal to:

dXπ
t =

[
rXπ

t + α + (b− r1)>πt
]
dt+

√
π>t Σπt + β2 + 2βπ>t σρdŴt (5)

for a generic Brownian motion, Ŵ . The generator of the controlled Markov process (Xπ
t ) is for v ∈ C1,2

given by:

Aπv(t, x) = vt + vx
(
rx+ α + (b− r1)>π

)
+

1

2
vxx
(
π>Σπ + β2 + 2βπ>σρ) (6)

We call an investment strategy, π, admissible if all integrals in Equation (4) exist and Ex0 [(Xπ
T )2] < ∞.

At first, we are interested in the dynamic mean-variance problem of the form (for µ ∈ R)

(MV )


Varx0 [X

π
T ]→ min

Ex0 [Xπ
T ] ≥ µ

π is an admissible investment strategy

In the next section, we explain the standard way to transform this problem into a classical stochastic
control problem, which will then be solved in the subsequent sections. In order to obtain non-trivial
problems, we assume that:

µ > x0e
rT + (erT − 1)

(α
r
− β

r
(b− r1)>Σ−1σρ

)
(7)

We will discuss this condition later in a remark at the end of Section 5.

3. Transformation of MV to an Ordinary Stochastic Control Problem

Problem (MV) can be solved via the well-known Lagrange multiplier technique. The discussion in
this section follows [17], chapter 4.6. Let Lx0(π, λ) be the Lagrange-function, i.e.:

Lx0(π, λ) := Varx0 [X
π
T ] + 2λ

(
µ− Ex0 [Xπ

T ]
)

for π is an admissible investment strategy and λ ≥ 0. As usual, (π∗, λ∗) with λ∗ ≥ 0 is called a
saddle-point of the Lagrange-function, Lx0(π, λ), if:

sup
λ≥0

Lx0(π
∗, λ) = Lx0(π

∗, λ∗) = inf
π
Lx0(π, λ

∗)
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Lemma 1 Let (π∗, λ∗) be a saddle-point of Lx0(π, λ). Then, the value of (MV) is given by

inf
π

sup
λ≥0

Lx0(π, λ) = sup
λ≥0

inf
π
Lx0(π, λ) = Lx0(π

∗, λ∗)

and π∗ is optimal for (MV).

Proof: Obviously, the value of (MV) is equal to infπ supλ≥0 Lx0(π, λ) and:

inf
π

sup
λ≥0

Lx0(π, λ) ≥ sup
λ≥0

inf
π
Lx0(π, λ).

For the reverse inequality, we obtain:

inf
π

sup
λ≥0

Lx0(π, λ) ≤ sup
λ≥0

Lx0(π
∗, λ) = Lx0(π

∗, λ∗)

= inf
π
Lx0(π, λ

∗) ≤ sup
λ≥0

inf
π
Lx0(π, λ)

and the first statement follows. Further, from the definition of a saddle-point, we obtain for all λ ≥ 0

λ∗
(
µ− Ex0 [Xπ∗

T ]
)
≥ λ

(
µ− Ex0 [Xπ∗

T ]
)

and, hence, Ex0 [Xπ∗
T ] ≥ µ. Then, we conclude Lx0(π

∗, λ∗) = Varx0 [X
π∗
T ], and π∗ is optimal for (MV).

�

From Lemma 1, we see that it is sufficient to look for a saddle point (π∗, λ∗) of Lx0(π, λ). It is not
difficult to see that the pair (π∗, λ∗) is a saddle-point if λ∗ > 0 and π∗ = π∗(λ∗) satisfy:

π∗ is optimal for P (λ∗) and Ex0 [Xπ∗

T ] = µ

Here, P (λ) denotes the so-called Lagrange-problem for the parameter λ > 0

P (λ)


Lx0(π, λ)→ min

π is an admissible investment strategy

Note that the problem P (λ) is not a standard stochastic control problem. We embed the problem, P (λ),
into a tractable auxiliary problem, QP (η), that turns out to be a stochastic LQ-problem. For η ∈ R,
define

QP (η)


Ex0

[
(Xπ

T − η)2
]
→ min

π is an admissible investment strategy

The following result shows the relationship between the problems P (λ) and QP (η).

Lemma 2 If π∗ is optimal for P (λ), then π∗ is optimal for QP (η) with η := Ex0 [Xπ∗
T ] + λ.
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Proof: Suppose π∗ is not optimal forQP (η) with η := Ex0 [Xπ∗
T ]+λ. Then, there exists an admissible

π, such that:
Ex0 [(Xπ

T )2]− 2η Ex0 [Xπ
T ] < Ex0 [(Xπ∗

T )2]− 2η Ex0 [Xπ∗

T ]

Define the function U : R2 → R by

U(x, y) := y − x2 + 2λ(µ− x)

Then, U is concave and U(x, y) = Lx0(π, λ) for x := Ex0 [Xπ
T ] and y := Ex0 [(Xπ

T )2]. Moreover, we set
x∗ := Ex0 [Xπ∗

T ] and y∗ := Ex0 [(Xπ∗
T )2]. The concavity of U implies:

U(x, y) ≤ U(x∗, y∗)− 2(λ+ x∗)(x− x∗) + y − y∗

= U(x∗, y∗)− 2η(x− x∗) + y − y∗ < U(x∗, y∗)

where the last inequality is due to our assumption y − 2ηx < y∗ − 2ηx∗. Hence, π∗ is not optimal for
P (λ), leading to a contradiction. �

The implication of Lemma 2 is that any optimal solution of P (λ) (as long as it exists) can be found by
solving problem QP (η). Indeed, if P (λ) has an optimal solution and if the optimal solution of QP (η)

is unique, it must be the optimal solution of P (λ).

4. Solution of MV for a Classical Adapted Investor

We will first solve problem QP (η), which is a classical stochastic control problem with no running
cost and terminal cost (x− η)2. Let us denote

V (t, x) := inf
π
Et,x

[
(Xπ

T − η)2
]

where, as usual, Et,x is the conditional expectation given Xπ
t = x. In view of the generator of the

wealth process, the corresponding Hamilton–Jacobi–Bellman (HJB) equation reads (note that with a
slight abuse of notation, we name the action again π):

0 = inf
π∈Rd

{
vt + vx

(
rx+ α + (b− r1)>π

)
+

1

2
vxx
(
π>Σπ + β2 + 2βπ>σρ)

}
(8)

(x− η)2 = v(T, x) (9)

where we denote by vt and vx the partial derivatives. Since this is a standard LQ-problem, a solution of
the HJB equation can easily be found by using the Ansatz v(t, x) = A(t) + B(t)x + C(t)x2. Plugging
this form into the HJB equation yields:

0 = inf
π∈Rd

{
Ȧ(t) + Ḃ(t)x+ Ċ(t)x2 +

(
B(t) + 2C(t)x

)(
rx+ α + (b− r1)>π

)
+C(t)

(
π>Σπ + β2 + 2βπ>σρ)

}
where Ȧ(t) denotes the derivative w.r.t. time. The minimum point of this equation is given by:

π∗(t, x) = −Σ−1(b− r1)
( B(t)

2C(t)
+ x
)
− βΣ−1σρ (10)
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Inserting the minimum point into the HJB equation and collecting the terms without x, the terms with x
and the terms with x2 yields the following ordinary differential equations for B(t), C(t) and A(t):

Ċ(t) = −C(t)
(
2r − (b− r1)>Σ−1(b− r1)

)
(11)

Ḃ(t) = −B(t)
(
r − (b− r1)>Σ−1(b− r1)

)
− 2C(t)

(
α− β(b− r1)>Σ−1σρ

)
(12)

Ȧ(t) = −B(t)
(
α− β(b− r1)>Σ−1σρ

)
− C(t)β2

(
1− ρ>σ>Σ−1σρ

)
+ (13)

+(b− r1)>Σ−1(b− r1)
B(t)2

4C(t)
(14)

with boundary condition C(T ) = 1, B(T ) = −2η, A(T ) = η2. The differential equation for A(t)

involves only B(t) and C(t) on the right-hand side. Since we are only interested in the optimal
investment strategy, π∗, the interesting quantity is h(t) := B(t)

C(t)
. For h(t), we obtain the differential

equation

ḣ(t) =
Ḃ(t)C(t)−B(t)Ċ(t)

C2(t)
= h(t)r − 2δr

with δr := α− β(b− r1)>Σ−1σρ and boundary condition h(T ) = −2η. A solution is given by

h(t) = 2δ − 2(δ + η)e−r(T−t)

Plugging this expression into Equation (10) yields:

π∗(t, x) = −Σ−1(b− r1)
(
δ − (δ + η)e−r(T−t) + x

)
− βΣ−1σρ (15)

Altogether, we obtain the following result with a standard verification argument (cf., for example, [4,18]):

Theorem 3 The value function of problem QP (η) is given by V (t, x) = A(t) + B(t)x + C(t)x2 with
A,B,C being solutions of Equations (13), (12) and (11), respectively, and the optimal investment
strategy (π∗t ) is determined via Equation (15) by π∗t := π∗(t,X∗t ), where (X∗t ) is the corresponding
optimal wealth process solving Equation (5) with π∗.

Finally, we want to solve problem (MV). Thus, we have to compute Ex0 [X∗T ], the expected terminal
wealth under the optimal strategy, π∗, for QP (η). We obtain:

Ex0 [X∗t ] = x0 +

∫ t

0

rEx0 [X∗s ] + α + (b− r1)> E[π∗s ]ds

= x0 +

∫ t

0

rEx0 [X∗s ] + δr − a
(
δ − (δ + η)e−r(T−s) + Ex0 [X∗s ]

)
ds

with a := (b− r1)>Σ−1(b− r1). Thus, Ex0 [X∗T ] follows from solving the ordinary differential equation:

ḣ(t) = h(t)(r − a) + δr − δa+ a(δ + η)e−r(T−t)

h(0) = x0

and we get:
Ex0 [X∗T ] = x0e

−T (a−r) − δe−Ta(1− erT ) + η(1− e−Ta)

From Ex0 [X∗T ] = µ, and η = λ∗ + µ we conclude:

λ∗ =
e−Ta

1− e−Ta
(
µ− x0eTr − δ(erT − 1)

)
(16)

which is positive, due to Equation (7). Hence, we obtain the following result:
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Theorem 4 The optimal investment strategy, π∗, for problem (MV) is determined by Equation (15) with
η = µ+ λ∗ and λ∗ given by Equation (16).

5. MV Problem for an Investor with Deterministic Investment Strategies

In this section, we assume now that the investment strategy has to be pre-determined, i.e., that the
process, π is F0-measurable, which means it is deterministic and only a function of time. Thus, the
fund manager of the insurance company has to explain at t = 0 the investment strategy for the time
horizon [0, T ] without using further knowledge about the evolution of the processes. This seems at least
sometimes to be more realistic than the adaptive strategy Equation (15). A similar situation has been
considered in [1], where the authors motivate such a strategy by pension funds often being managed by
time-dependent investment strategies only. Hence, we consider

(MVD)


Varx0 [X

π
T ]→ min

Ex0 [Xπ
T ] ≥ µ

π is a deterministic investment strategy

This is now the same problem over a smaller class of investment strategies. We consider the first
problem PD(λ):

PD(λ)


Varx0 [X

π
T ] + 2λ

(
µ− Ex0 [Xπ

T ]
)
→ min

π is a deterministic investment strategy

Here, it is not necessary to consider the artificial problem, QP (η). PD(λ) can be transformed into a
deterministic control problem as follows. To this end, note that the stochastic differential Equation (5)
for the wealth can easily be solved. When we denote by X̃π

t =
Xπ
t

S0(t)
the discounted wealth process,

then we obtain:

X̃π
t = x0 +

∫ t

0

e−rs
(
α + (b− r1)>πs

)
ds+

∫ t

0

e−rs
√
π>s Σπs + β2 + 2βπ>s σρdŴs (17)

For a deterministic process, π, the second integral is obviously a true martingale, and we obtain:

Ex0 [X̃π
t ] = x0 +

∫ t

0

e−rs
(
α + (b− r1)>πs

)
ds =: x(t)

Varx0 [X̃
π
t ] =

∫ t

0

e−2rs
(
π>s Σπs + β2 + 2βπ>s σρ

)
ds =: y(t)

Note that x(t) and y(t) both depend on π. Thus, the target function of PD(λ) can be written as:

Varx0 [X
π
T ] + 2λ

(
µ− Ex0 [Xπ

T ]
)

= e2rTVarx0 [X̃
π
T ] + 2λ

(
µ− erT Ex0 [X̃π

T ]
)

= e2rTy(T ) + 2λ(µ− erTx(T ))
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The deterministic control problem is then:

PD(λ)



e2rTy(T ) + 2λ(µ− erTx(T ))→ min

ẋ(t) = e−rt
(
α + (b− r1)>πt

)
ẏ(t) = e−2rt

(
π>t Σπt + β2 + 2βπ>t σρ

)
πt ∈ Rd

The value function of this problem is:

V (t, x, y) := inf
π

{
e2rTy(T ) + 2λ(µ− erTx(T ))

}
Obviously, the related HJB equation is:

0 = inf
π∈Rd

{
vt + vxe

−rt(α + (b− r1)>π
)

+ vye
−2rt(π>Σπ + β2 + 2βπ>σρ)

}
(18)

v(T, x, y) = e2rTy + 2λ(µ− erTx) (19)

In order to find a solution, we now consider the Ansatz

v(t, x, y) = e2rT (y + g(t)) + 2λ
(
µ− erT (x+ f(t))

)
with f(T ) = g(T ) = 0. Thus, we obtain:

vt = e2rT ġ(t)− 2λerT ḟ(t)

vx = −2λerT

vy = e2rT

The minimizer of Equation (18) is determined by:

π∗t = −Σ−1(b− r1)
vx
vy

ert

2
− βΣ−1σρ

= Σ−1(b− r1)λe−r(T−t) − βΣ−1σρ (20)

Plugging this into the HJB Equation (18) yields:

0 = e2rT ġ(t)− 2λerT ḟ(t)− 2λerT ẋ∗(t) + e2rT ẏ∗(t).

Note that this equation is satisfied when ḟ(t) = −ẋ∗(t) and ġ(t) = −ẏ∗(t); thus:

f(t) =

∫ T

t

e−rs
(
α + (b− r1)>π∗s

)
ds (21)

g(t) =

∫ T

t

e−2rs
(
(π∗s)

>Σπ∗s + β2 + 2β(π∗s)
>σρ

)
ds (22)

Note that under the control π∗ and corresponding state trajectories x∗, y∗, it holds that x∗(t) + f(t) =

Ex0 [X̃∗T ] and y∗(t) + g(t) = Varx0 [X̃
∗
T ] for all t ∈ [0, T ]. We summarize our results in the following

theorem. A verification is straightforward.
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Theorem 5 The value function of problem PD(λ) is given by

V (t, x, y) = e2rT (y + g(t)) + 2λ
(
µ− erT (x+ f(t))

)
with f, g being solutions of Equations (21) and (22), respectively. The optimal investment strategy (π∗t )

is given by Equation (20).

Finally, we solve problem (MVD). First note that:

Ex0 [X∗T ] = erTx0 + δ(erT − 1) + aλT

From Ex0 [X∗T ] = µ, we obtain:

λ∗ = (aT )−1
(
µ− erTx0 − δ(erT − 1)

)
(23)

which is positive, due to condition Equation (7). Thus, we obtain the following result:

Theorem 6 The optimal investment strategy, π∗, for problem (MVD) is determined by Equation (20)
with λ∗ given by Equation (23).

Remark: In this setting, it is also easy to determine the strategy with the minimum achievable variance.
In case the financial market is not perfectly correlated with the risk reserve, this minimal variance is not
zero. For an arbitrary deterministic investment strategy, we obtain:

Varx0 [X
π
T ] = e2rT

∫ T

0

e−2rs
(
π>s Σπs + β2 + 2βπ>s σρ

)
ds

Minimizing this expression in πs yields the minimum variance investment strategy: π̂t ≡ −βΣ−1σρwith
corresponding minimal variance

Varx0 [X̂T ] =
1

2r
β2(1− ρ>σ>Σ−1σρ)(e2rT − 1)

and expectation:
Ex0 [X̂T ] = x0e

rT + δ(erT − 1)

Thus, in case µ ≤ x0e
rT + δ(erT − 1), problem (MVD) is trivial, because then, π̂ satisfies the constraint

Ex0 [X̂T ] ≥ µ and yields the minimal possible variance. As a result, condition Equation (7) is reasonable.

Remark: Of course, for a given expected return of µ, when we minimize the variance over the smaller
set of deterministic investment strategies, the variance will be not smaller than in the classical stochastic
case. Indeed, when we suppose that α = β = 0, i.e., no additional insurance business and d = k = 1,
we obtain the density of the optimal terminal wealth for (MVD), as well as for (MV). From Section 5,
we conclude that for (MVD), the optimal terminal wealth satisfies:

X∗T ∼ N
(
µ,

(µ− x0erT )2

aT

)
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For problem (MV), an optimal terminal wealth can be derived from the Lagrangian approach and is given
by (cp.Theorem 3.3 in [14]):

X∗T=
1

eaT − 1

(
µeaT − x0erT + (x0e

rT − µ)LT

)
where LT is the risk neutral density given by:

LT = exp
(
− 1

2
aT −

√
aWT

)
In Figure 1, we plotted the two densities of the optimal terminal wealth for (MVD) and (MV) for the
parameters x0 = 10, µ = 12, r = 0.02, b = 0.15, σ = 0.2 and T = 1.

Figure 1. Densities of the optimal terminal wealth for (MVD) and (MV).

Obviously, for this time horizon (T = 1), there is a great difference in the performance of the two
strategies. It seems that deterministic strategies here only make sense for small time horizons.

6. More General Mean-Risk Problems and Other Optimization Criteria

In this section, we will briefly discuss some other optimality criteria for the investment problem with
deterministic investment strategies. Of course, when the solution of the classical stochastic control
problem with adapted investment strategies yields an optimal strategy, which is itself deterministic,
then this strategy is also optimal in the smaller class of deterministic strategies. A situation like this
can occur when we consider the probability of ruin or the expected exponential utility as a target
function. We discuss these cases below. However, we start this section with the observation that in
the mean-variance framework, our optimal deterministic investment strategy is not only optimal w.r.t. to
minimizing the variance.
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6.1. More General Mean-Risk Problems

The variance or standard deviation is, of course, just one way to measure risk. Suppose now that % is
an arbitrary, law invariant and positive homogeneous risk measure, i.e., %(λX) = λ%(X) for all λ > 0.
We claim now that the problem

(MRD)


%
(
Xπ
T − Ex0 [Xπ

T ]
)
→ min

Ex0 [Xπ
T ] ≥ µ

π is a deterministic investment strategy

has the same solution as (MVD), which is obtained when we use the standard deviation %(X) :=√
Var[X].

Theorem 7 The optimal investment strategy for (MRD) coincides with the optimal investment strategy
for (MVD).

Proof: First note that in both cases, because of Varx0 [X
π
T ] = e2rTVarx0 [X̃

π
T ] and the fact that

%
(
Xπ
T − Ex0 [Xπ

T ]
)

= erT%
(
X̃π
T − Ex0 [X̃π

T ]
)
, we can minimize the target function with Xπ

T replaced by
X̃π
T and the side constraint, Ex0 [X̃π

T ] ≥ µe−rT . Now, due to Equation (17), we see that for deterministic
investment strategies, X̃π

T has a normal distribution, N(mπ, s
2
π), with parameters:

mπ = x0 +

∫ T

0

e−rs
(
α + (b− r1)>πs

)
ds

s2π =

∫ T

0

e−2rs
(
π>s Σπs + β2 + 2βρπ>s σ

)
ds

Hence, in distributionXπ
T

d
= mπ+sπZ, where Z is a standard normal random variable. The optimization

problem (MRD) can thus be written as:

(MRD)


%(sπZ)→ min

mπ ≥ µe−rT

π is a deterministic investment strategy

Since % is positive homogeneous, we obtain %(sπZ) = sπ%(Z), which means that we have to minimize
the standard deviation of Xπ

T . Hence, the statement follows. �

As a consequence, the optimal investment strategy we obtained is very robust w.r.t. the choice of
risk measure. Indeed, it does not depend on the precise risk measure, as long as we agree to take a
law invariant and positive homogeneous one. Indeed, the result is also valid for a function, %, which is
positive homogeneous of any order.
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6.2. Maximizing Exponential Utility of Terminal Wealth

In this subsection, we consider the problem of maximizing Ex0
[
− 1

γ
e−γX

π
T

]
with γ > 0. For the

classical stochastic case and only one stock, this has been done in [2]. We now directly consider the
multi-asset model in the framework of deterministic strategies, i.e., we consider: Ex0 [− 1

γ
e−γX

π
T ]→ max

π is a deterministic investment strategy

It turns out that the solution of this problem is very easy. We know already for deterministic π that Xπ
T

has a normal distribution N(mπ, s
2
π) with parameters:

mπ = erT
(
x0 +

∫ T

0

e−rs
(
α + (b− r1)>πs

)
ds
)

s2π = e2rT
(∫ T

0

e−2rs
(
π>s Σπs + β2 + 2βρπ>s σ

)
ds
)

Hence, we can write Xπ
T = mπ + sπZ, and the target function thus reduces to:

Ex0 [−
1

γ
e−γX

π
T ] = −1

γ
e−γmπ Ex0 [e−γsπZ ] = −1

γ
e−γmπ+

1
2
γ2s2π

Obviously, the problem is equivalent to minimizing − 2
γ
mπ + s2π, and we end up with the following

deterministic control problem:

e2rTy(T )− 2
γ
erTx(T )→ min

ẋ(t) = e−rt
(
α + (b− r1)>πt

)
ẏ(t) = e−2rt

(
π>t Σπt + β2 + 2βπ>t σρ

)
πt ∈ Rd

However, this is equivalent to problem PD(λ) with λ = 1
γ

, and we know from Equation (20) that the
optimal investment strategy is given by:

π∗t = Σ−1(b− r1)
1

γ
e−r(T−t) − βΣ−1σρ

Thus, due to Equation (23), there is a one-to-one relation between optimal mean-variance strategies
and optimal strategies for the problem with the exponential utility function. For an early discussion
about the relation of expected utility and mean-variance, see, e.g., [19,20]. Note that it can be shown
that the optimal investment strategy we have computed here is also optimal within the larger class of
adapted strategies.

6.3. Minimizing the Probability of Ruin

Another popular ‘risk measure’ in the actuarial sciences is the probability of ruin of a controlled risk
reserve. When we consider the classical situation of (Ft)-adapted investment strategies, it is very easy
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to find the one which minimizes the probability of ruin of process Equation (5). According to [21],
the optimal feedback function, π∗(x), is obtained by maximizing the ratio of mean over variance of the
process, i.e.:

rx+ α + (b− r1)>π

π>Σπ + β2 + 2βπ>σρ

Obviously, when r = 0, then the maximizer, π∗, is independent of x and deterministic. If further
d = k = 1 and α = 0, then π∗ = β

σ
.

7. Problems with Lévy Processes

The standard model for the risk reserve process of an insurance company is the so-called
Cramér–Lundberg model. It assumes that the risk reserve process follows a Lévy process given as the
difference of the premium income process and the claims that have been paid out so far. More precisely,
it is usually assumed that:

Yt = x0 + ct−
Nt∑
k=1

Uk (24)

where c > 0 is the premium income rate, N = (Nt) is a Poisson process with parameter ν > 0,
which counts the number of claims, and U1, U2, . . . are independent and identically distributed random
variables, representing the claim sizes. We denote m := EU and m2 := EU2. The process in
Equation (1) can be seen as a diffusion approximation of process Equation (24) when claims are small
and frequent. The mean-variance problems we have considered in Sections 4 and 5 can be dealt with
in a Lévy framework along the same lines. The solution of the classical problem (MV) may be derived
from [10]. Here, we concentrate on the problem (MVD) with deterministic investment strategies. We
assume that:

µ > x0e
rT + (erT − 1)

c− νm
r

(25)

In order to have an elegant notation, we write (Yt) with the help of its Poisson random measure,
M([0, t]×B), t ≥ 0, B ∈ B(R+), which is the sum of all claims taking values in the set B up to time t.
Hence, we can write:

Yt = x0 + ct−
∫
[0,t]

∫
R+

y M(ds, dy) (26)

For simplicity, we leave the financial market as in the sections before, though one might also allow
for jumps there. We again assume here that admissible trading strategies π = (πt) are F0-measurable.
The corresponding wealth of the insurance company follows the stochastic differential equation:

dXπ
t =

[
rXπ

t + (b− r1)>πt
]
dt+ dYt + π>t σdWt (27)

Xπ
0 = x0

We consider again the deterministic mean-variance problem (MVD) of Section 5. As in Section 5, we
start with problem PD(λ): Next, we compute Ex0 [Xπ

t ]. To this end, note that Yt − (c − νm)t is a
martingale. Thus, we obtain:

Ex0 [Xπ
t ] = x0 +

∫ t

0

rEx0 [Xπ
s ] + (b− r1)>πsds+ (c− νm)t
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This is an ordinary differential equation for f(t) := Ex0 [Xπ
t ] of the form:

ḟ(t) = rf(t) + (b− r1)>πt + c− νm

with boundary condition f(0) = x0. The solution is given by:

f(t)e−rt = x0 +

∫ t

0

e−rs
(
(b− r1)>πs + c− νm

)
ds =: x(t)

In order to compute the variance, we need the second moment of Xπ
t .Using partial integration, we get:

(Xπ
t )2 = x20 + 2

∫ t

0

Xπ
s−dX

π
s + [Xπ, Xπ](t)

= x20 + 2

∫ t

0

r(Xπ
s−)2 +Xπ

s−(b− r1)>πsds+ 2

∫ t

0

Xπ
s−π

>
s σdWs

+2

∫ t

0

cXπ
s−ds−

∫ t

0

∫
R+

Xπ
s−yM(ds, dy) +

∫ t

0

π>s Σπsds+

∫ t

0

∫
R+

y2M(ds, dy)

Taking the expectation yields:

Ex0 [(Xπ
t )2] = x20 + 2

∫ t

0

[
rEx0 [(Xπ

s−)2] + Ex0 [Xπ
s−]
(
(b− r1)>πs + c

)]
ds

+

∫ t

0

π>s Σπsds+m2νt− 2

∫ t

0

Ex0 [Xπ
s−]νm ds

which is an ordinary differential equation for g(t) := Ex0 [(Xπ
t )2] of the form

ġ(t) = 2rg(t) + 2f(t)
(
(b− r1)>πt + c− νm

)
+ π>t Σπt +m2ν

with the boundary condition given by g(0) = x20. When we define the variance as a function of time
h(t) := Varx0 [X

π
t ] = Ex0 [(Xπ

t )2]− (Ex0 [Xπ
t ])2 = g(t)− f 2(t), it follows:

ḣ(t) = ġ(t)− 2f(t)ḟ(t) = 2rh(t) + π>t Σπt +m2ν

with boundary condition h(0) = 0. Thus, we get:

h(t)e−2rt =

∫ t

0

e−2rs
(
π>s Σπs +m2ν

)
ds =: y(t)

The target function of PD(λ) can be written as:

Varx0 [X
π
T ] + 2λ

(
µ− Ex0 [Xπ

T ]
)

= e2rTy(T ) + 2λ(µ− erTx(T ))

and we obtain the deterministic control problem:

PD(λ)



e2rTy(T ) + 2λ(µ− erTx(T ))→ min

ẋ(t) = e−rt
(
c− νm+ (b− r1)>πt

)
ẏ(t) = e−2rt

(
π>t Σπt +m2ν

)
πt ∈ Rd
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which is the same as in Section 5, where we have to set ρ := (0, . . . , 0)> and replace α by c − νm and
β2 by m2ν. We use, again, the Ansatz:

v(t, x, y) = e2rT (y + g(t)) + 2λ
(
µ− erT (x+ f(t))

)
(28)

The minimizer of the HJB Equation (18) is determined by:

π∗t = Σ−1(b− r1)λe−r(T−t) (29)

and the value function is given by Equation (28) with:

f(t) =

∫ T

t

e−rs
(
c− νm+ (b− r1)>π∗s

)
ds (30)

g(t) =

∫ T

t

e−2rs
(
(π∗s)

>Σπ∗s +m2ν
)
ds (31)

We summarize our results in the following theorem. A verification is straightforward.

Theorem 8 The value function of problem PD(λ) is given by

V (t, x, y) = e2rT (y + g(t)) + 2λ
(
µ− erT (x+ f(t))

)
with f, g being solutions of Equations (30) and (31), respectively. The optimal investment strategy (π∗t )

is given by Equation (29).

Finally, we solve the problem (MVD). Note that:

Ex0 [X∗T ] = erTx0 + aλT +
c− νm

r
(erT − 1)

From Ex0 [X∗T ] = µ, we obtain:

λ∗ = (aT )−1
(
µ− erTx0 +

c− νm
r

(1− erT )
)

(32)

which is positive, due to condition Equation (25). Thus, we obtain the following result:

Theorem 9 The optimal investment strategy, π∗, for problem (MVD) is determined by Equation (29)
with λ∗ given by Equation (32).

As a result, we see that the optimal control depends only on the drift of the risk reserve (here, c−νm),
and it is not important whether the process has jumps or not.

8. Conclusions

We have shown that stochastic control problems with deterministic investment strategies lead to
deterministic control problems that are, in general, easier to solve. In particular, in the case of a Brownian
setting, the terminal wealth has a normal distribution under any admissible deterministic investment
strategy. This leads to some very favorable properties, like the insensitivity of the optimal control
w.r.t. to a class of target functions. Moreover, there are some interesting links between these problems.
Optimal deterministic investment strategies for mean-variance problems, for example, correspond to
optimal investment strategies for an insurance company with exponential utility. Finally, we also show
that the current approach works in the setting of Lévy processes.



Risks 2013, 1 117

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Christiansen, M.; Steffensen, M. Deterministic mean-variance-optimal consumption and
investment. Stochastics 2013, 85, 620–636.

2. Browne, S. Optimal investment policies for a firm with a random risk process: Exponential utility
and minimizing the probability of ruin. Math. Oper. Res. 1995, 20, 937–958.

3. Zeng, Y.; Li, Z. Optimal time-consistent investment and reinsurance policies for mean-variance
insurers. Insur. Math. Econom. 2011, 49, 145–154.

4. Fleming, W.H.; Soner, H.M. Controlled Markov Processes and Viscosity Solutions; Springer:
New York, NY, USA, 2006.

5. Zhou, X.Y.; Li, D. Continuous-time mean-variance portfolio selection: A stochastic LQ framework.
Appl. Math. Optim. 2000, 42, 19–33.

6. Antolin, P.; Payet, S.; Yermo, J. Assessing default investment strategies in defined contribution
pension plans. OECD J.: Financ. Mark. Trends 2010, 1, 1–29.

7. Korn, R.; Trautmann, S. Continuous-time portfolio optimization under terminal wealth constraints.
ZOR—Math. Methods Oper. Res. 1995, 42, 69–92

8. Li, D.; Ng, W.L. Optimal dynamic portfolio selection: Multiperiod mean-variance formulation.
Math. Financ. 2000, 10, 387–406.

9. Delong, Ł.; Gerrard, R. Mean-variance portfolio selection for a non-life insurance company.
Math. Methods Oper. Res. 2007, 66, 339–367.

10. Guo, W.; Xu, C. Optimal portfolio selection when stock prices follow a jump-diffusion process.
Math. Methods Oper. Res. 2004, 60, 485–496.
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