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Abstract: Insects trigger plants to release volatile compounds that mediate the interaction 

with both pest and beneficial insects. Soybean aphids (Aphis glycines) induces soybean 

(Glycine max) leaves to produce volatiles that attract predators of the aphid. In this research, 

we describe the use of solid-phase microextraction (SPME) for extraction of volatiles from 

A. glycines-infested plant. Objectives were to (1) determine if SPME can be used to collect 

soybean plant volatiles and to (2) use headspace SPME-GC-MS approach to screen 

compounds associated with A. glycines-infested soybeans, grown in the laboratory and in the 

field, to identify previously known and potentially novel chemical markers of infestation.  

A total of 62 plant volatiles were identified, representing 10 chemical classes. 39 compounds 

had not been found in previous studies of soybean volatile emissions. 3-hexen-1-ol, dimethyl 

nonatriene, indole, caryophyllene, benzaldehyde, linalool, methyl salicylate (MeSA), 

benzene ethanol, and farnesene were considered herbivore-induced plant volatiles (HIPVs). 
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For reproductive field-grown soybeans, three compounds were emitted in greater abundance 

from leaves infested with A. glycines, cis-3-hexen-1-ol acetate, MeSA and farnesene. In 

summary, SPME can detect the emission of HIPVs from plants infested with insect herbivores. 

Keywords: herbivore-induced plant volatiles; SPME; GC-MS; Aphis glycines; soybeans; 

methyl salicylate (MeSA) 

 

1. Introduction 

Multitrophic interactions amongst host plants, herbivorous insects and natural enemies that feed on 

those herbivores can be tightly linked. Insect herbivores can produce a complex defensive response in 

their host plant [1]. A component of this response is the emission of volatiles that can play both a direct [1] 

and indirect defense [1] against plant pest. Such emissions are referred to as herbivore-induced plant 

volatiles (HIPVs). For insect herbivores, the indirect impact of HIPV involves attraction of the 

herbivores’ natural enemies and the volatile response of plants can be unique to the species of 

herbivorous insects [2,3]. For example, a component of this response is methyl salicylate (MeSA), which 

is released by soybean leaves when fed on by herbivores, such as spider mites (Tetranychus urticae 

Koch; [4]) and the soybean aphids (Aphis glycines Matsumura [5]). 

The invasion of A. glycines introduced a new, economic pest to soybean production in the United 

States [6]. Both seed-applied and foliar-applied insecticides are the primary tools for preventing yield 

loss from A. glycines in North America, resulting in a 130-fold increase in the their use for soybean 

production since the arrival of A. glycines in the U.S. However, a recent U.S. Environmental Protection 

Agency (EPA) review of the benefits associated with seed-applied insecticides suggest that this tool has 

no benefit for soybeans production and more specifically for protection from A. glycines. Natural 

enemies can be a significant source of mortality for early summer populations of A. glycines within the 

U.S. [7], but do not provide consistent biological control to completely replace insecticides. Recently, a 

field study using artificial sources of MeSA released in soybean fields resulted in a positive effect on the 

abundance of aphid predators and a negative impact on the abundance of A. glycines [8]. To what extent 

the positive impact of MeSA for the biological control of A. glycines can be further improved with 

additional HIPVs is not clear. Manipulating predators by combining HIPVs can increase the attraction 

of predaceous insects, though this increase may involve non-induced volatiles as well [9]. Therefore, a 

survey of the volatiles produced by soybeans, both induced and non-induced may play a significant role 

in future studies of HIPVs for management of A. glycines. 

Several classes of volatiles have been identified from soybeans [10–13] (Table 1) using either Tenax-GC 

adsorbent or solid phase microextraction (SPME). The use of SPME to sample plant volatiles is attractive 

for several reasons. Air sampling pumps and solvents are not needed, and the headspace around a 

material can be readily sampled without maceration or homogenization of the plant material [14]. SPME 

has been used to sample volatiles from various parts of the soybean plant. Boue et al. [10] used SPME 

to detect differences in volatiles emitted from soybean seeds collected at distinct developmental stages. 

By inserting SPME fibers within sealed vials containing unprocessed soybean seeds, 49 compounds 

were recovered, 19 of which had not been reported previously from soybeans. Damiani et al. [13] 
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collected volatiles using both SPME fibers and Tenax-GC adsorbent exposed to homogenized soybean 

leaves. The compounds identified using SPME were similar to those collected with sorbent Tenax [13]. 

The potential to expand upon the use of SPME in laboratory studies to field studies makes this method 

of volatile sampling attractive. 

Table 1. Comparison of sampling and analytical methods used to characterize volatile 

organic compounds (VOCs) in soybean leaves and beans. 

Ref. Sampling Sample 

Preparation 

Analyses Matrix and 

# identified compounds 

This 

work 

SPME (85 µm Carboxen / PDMS); 

Extraction conditions: 25 °C, 24 h 

SPME GC-MS Soybean leaves 

(A. glycines-infested and non-infested), 

62 compounds 

Zhu and 

Park [11] 

 

Glass tube containing 100 mg 

Super Q (80/100 mesh) 

 

Solvent 

extraction. 

Direct injection 

 

GC-EAD  

(electro-antenno-

graphic detection) 

GC-MS 

Soybean leaves 

(A. glycines infested and non-infested), 

25 compounds 

Boue  

et al. [10] 

SPME (100 µm PDMS, 50/30 µm 

DVB/Carboxen/PDMS); 

Extraction conditions: 60 °C, 1 h 

SPME GC-MS Soybeans, 49 compounds 

Rosario  

et al. [12] 

Dynamic headspace sampling; 

Tenax-GC adsorbent 

Thermal 

desorption 

GC-MS Winged beans and soybeans, 

116 compounds 

Damiani 

et al. [13] 

1. Tenax-GC adsorbent, 

2. Purge and trap, 

3. SPME 100 µm PDMS; Extraction 

@ 45 °C, 20 min 

1.Thermal 

desorption 

2.SPME 

 

GC-MS 

GC-FTIR 

Soybean leaves, 9 compounds 

We investigated the volatile response of soybeans to A. glycines using Carboxen/polydimethylsiloxane 

(PDMS) 75 µm SPME fibers. Our objective was to determine if SPME could be used to identify 

compounds associated with A. glycines-infested soybeans grown in the laboratory and in the field. We 

hypothesize that SPME fibers can detect significant differences in the volatiles released in soybean plants 

that are non-infested or infested with A. glycines. We first focused on MeSA to determine if SPME fibers 

could detect if it was produced in greater amounts from A. glycines infested soybeans as previously 

documented. Then, we screened for potential new compounds that could serve as markers of infestation 

or improve the use of HIPV’s for A. glycines management. 

2. Experimental Section 

2.1. Aphis glycines Colony  

Aphids used within greenhouse-based experiments were from a colony maintained at the Soybean 

Entomology Lab at Iowa State University (ISU), Ames, Iowa. A. glycines were collected from soybean 

plants from multiple sites within Story County, Iowa. Aphids were kept on vegetation stage (V3-V6,  

3-6 fully open, mature trifoliate leaves) soybean plants within multiple growth chambers (16:8 

Light:Dark, 24 °C). Plants were replaced every 2–3 weeks, with foliage removed from infested plants 

and attached to non-infested plants. 
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2.2. Volatiles from Soybeans with and without A. glycines: Vegetative-Stage, Greenhouse Grown Soybean 

Individual soybean plants were grown in pots (13 cm diam.) with potting soil in a greenhouse (14:8 

L:D, 22 °C). Five plants were infested with 2 aphids placed on the youngest, mature leaf after plants 

reached the V3 stage. Plants were observed every 12 h to insure aphids successfully established, with an 

additional 10 aphids per plant added 2 days later. Infested plants were placed in a growth chamber (14:8 

L:D, 25 °C) and non-infested plants were kept in the greenhouse in which A. glycines were not present. 

Both sets of plants were watered every 2–3 days. On Day 15 and 16 we removed three leaflets of the 

youngest mature trifoliate from A. glycines infested and non-infested plants. All plants were in the early 

vegetative stage of growth (V5). Leaves were removed from one plant in 1 h intervals for a total of  

6 plants on the first day and 4 on the second. 

2.3. Reproductive-Stage, Field Grown Soybean 

In late July, we collected leaves from soybean-aphid infested and non-infested soybean plants from a 

field on the ISU Research Farm. Although aphid populations were above 1000 per plant (M.O. personal 

observation) no insecticides were applied. Leaf tissue was collected in the same manner as with the 

greenhouse-grown plants, with 4 leaves selected without aphids. Although many plants were infested 

with A. glycines, we did find 4 plants without aphids on the youngest mature leaf. Leaves were removed 

from soybean plants in the reproductive stage with pods formed along the stem of the plant (R4). 

2.4. Volatile Emissions Screening with SPME and GC-MS 

SPME extractions were performed with 75 µm Carboxen/PDMS fibers (Supelco, Bellefonte, PA, 

USA). Carboxen/PDMS coating is very efficient at extracting volatile organic compounds (VOCs) with 

molecular weight between 35 and 220. Other good SPME coating choices are PDMS/divinylbenzene 

(DVB) and DVB/Carboxen/PDMS. Screw-capped vials (40 mL), sealed with a PTFE-lined silicone 

septum, were used for storing soybean leaves and for HS-SPME sampling. Vials were placed at 25 °C and 

SPME sampling started within 5 min from delivery from the greenhouse or field. Headspace sampling 

time was 24 h and it was selected to increase the extracted mass of compounds of interest and the number 

of compounds that could be identified. After extraction, the SPME fiber was removed from the vial and 

immediately inserted into the GC injection port for complete thermal desorption and analysis. 

Multidimensional gas chromatography-mass spectrometry-olfactory (MDGC-MS-O) (from 

Microanalytics, Round Rock, TX, USA) was used for all analyses. The system integrates GC-O with 

conventional GC-MS (Agilent 6890N GC / 5973 MS from Agilent Inc., Wilmington, DE). The system 

was equipped with a non-polar pre-column (12 m × 0.53 mm ID (SGE BP-5+, SGE, Austin, TX, USA) 

and polar column (25 m × 0.53 mm ID polar analytical column (SGE BP20, SGE) in series, as well as 

system automation and data acquisition software (MultiTrax™ V. 6.00 and AromaTrax™ V. 6.61, from 

Microanalytics and Chemstation™, from Agilent). The general run parameters used were as follows: 

injector, 260 °C; FID, 280 °C, column, 40 °C initial, 3 min hold, 7 °C/min, 220 °C final, 10 min hold; 

carrier gas, He. m/z range was set between 33–280. Spectra were collected at 6 scans/s. The MS detector 

was auto-tuned weekly. 
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2.5. Chemical Analysis 

Compounds were identified using mass spectra and retention times of reference standards and/or mass 

spectra of Wiley library matches of greater than 70% using the BenchTop/PBM (Palisade Mass 

Spectrometry, Ithaca, NY) search system. Reference standards were purchased from Sigma-Aldrich and 

included hexanal (98%), 1-butanol, 3-methyl- (99%), 3-octanone (98%), 3-octanol (99%), acetic acid 

(99.7%), benzaldehyde (99%), beta-elemene (99%), methyl salicylate (99%), trans-Caryophyllene 

(99%), benzene ethanol (99%), phenol (99%), and indole (99%), respectively. Compounds were 

identified with 2 sets of criteria: (1) match of the retention time on the MDGC capillary column with the 

retention time of pure compounds run as standards and (2) matching mass spectrums of unknown 

compounds with BenchTop/PBM MS library search system and spectrums of pure compounds. We 

confirmed the presence of MeSA from soybean leaves using pure, synthesized compound (from Sigma-

Aldrich, St. Louis, MO, USA). Levels of MeSA were determined by monitoring ion 120 m/z at 19.7 min 

GC column retention time. We compared the abundance of MeSA for infested and non-infested plants 

using the integrated peak area for the characteristic MeSA (120) ion. 

In addition, we measured leaf area and the number of insects (aphids and thrips, Thysanoptera: 

Thripidae) on each excised leaf sampled. The number of insects (i.e., aphids, thrips) on the entire plant was 

also counted. Plants were co-infested with thrips within the greenhouse (common contamination) and 

therefore leaves with larger numbers of thrips (>9 per leaf) and no aphids were removed from the analysis. 

2.6. Statistical Analyses 

We determined if the amount of a volatile compound collected from A. glycines infested and  

non-infested plants differed with a students’ T-test. We used regression analysis to explain the variation 

in the amount of MeSA across all samples. Several independent variables were also incorporated within the 

regression analysis including leaf area, thrips per leaf, aphids per leaf and the total number of herbivores 

per plant. Outliers were identified, removed and the analysis repeated using a Satterthwaite correction 

for unequal variation between treatment groups. Outliers were identified as co-infested with thrips. 

3. Results and Discussion 

3.1. Volatile Emissions from Vegetative-Stage, Greenhouse Grown Soybean 

We observed the largest number of thrips on any of the plants that were not infested with A. glycines. 

Due to this secondary infestation, we performed statistical analyses to determine if the MeSa emissions 

were confounded. Based on regression analysis, we observed a significant relationship between the 

number of thrips on leaves and the amount of MeSA collected (F = 59.15, df = 1, 8; P < 0.001). When 

we combined samples, 87% of the variation in MeSA production was accounted for by a linear 

relationship to the number of thrips per leaf (R2 = 0.87, (y) = 9.0 × 105 (×) − 8.7 × 105). However, this 

relationship was consistent for both A. glycines infested and non-infested plants. Further regression 

analysis did not reveal significant relationships between MeSA and leaf area or aphids and thrips 

combined (analysis not shown). 
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Comparison of total ion chromatograms (TIC) and single ion (120) chromatogram of headspace of 

leaves from non-infested and infested soybean plants grown in laboratory sampled is shown in Figure 1. 

 

(A) Volatile emissions from greenhouse grown leaves. 

 

(B) Volatile emissions from field-grown leaves. 

Figure 1. Comparison of total ion chromatograms (TIC) and single ion (120) chromatogram 

of headspace of leaves from non-infested and infested and heavy infested soybean plants 

grown in greenhouse (A) and grown in field (B) sampled with 75 µm Carboxen/PDMS 

SPME fiber for 24 h at 25 °C. 

A total of 62 volatile compounds (Table 2) emitted from soybean leaves were tentatively identified 

using HS-SPME-GC-MS, representing 10 chemical classes including alcohols (15), aldehydes (5), esters 

and lactones (13), ketones (5), amines and N- containing compounds (8), hydrocarbons (11), acids (2), 

S-containing compounds (2), and pyranes (1). 
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Table 2. Preliminary identification of compounds emitted from soybean leaves growing in greenhouse. 

 

GC 

column 

RT 

(min) 

Compound CAS MS 

spectral 

match 

(%) 

Boue 

et al.
[10]

beans

Rosario 

et al. [12] 

beans 

Damiani 

et al. [13]

- 

beans 

Zhu and 

Park 

[11] 

leaves 

1 2.06 Acetic acid, methyl ester 79-20-9 35 y y   

2 3.25 Butanal, 2-methyl- 96-17-3 74  y   

3 3.96 2,4-Hexadienal 142-83-6 63 y    

4 4.16 Propanenitrile, 2-methyl- 78-82-0 83     

5 4.36 Trimethylsilanol 1066-40-6 69     

6 4.81 1-Penten-3-one 1629-58-9 38   y  

7 5.45 
Butanoic acid, 2-methyl-,  

methyl ester 
868-57-5 88     

8 5.70 Propane, 1-chloro-2-methyl- 513-36-0 28     

9 6.01 Butanedinitrile, 2,3-dimethyl- 16411-13-5 82     

10 6.23 2-Propanol, 2-methyl- 75-65-0 35  y   

11 6.65 Hexanal * 66-25-1 88 y y y  

12 7.05 3,4-Dihydropyran 110-87-2 39     

13 7.23 1-Penten-3-ol 616-25-1 79  y   

14 8.13 1-Butanol-, acetate 123-92-2 85  y   

15 8.26 1-Butanol, 3-methyl- * 123-51-3 76  y   

16 9.21 cis-3-Hexenal 6789-80-6 68     

17 9.00 1-Butanol, 2-methyl- 137-32-6 31  y   

18 9.00 Cyclobutanone, 2, 2-dimethyl- 1192-14-9 68     

19 10.58 trans-2-Methyl-1, 3-pentadiene n/a 79     

20 11.16 3-Octanone * 106-68-3 93 y y   

21 11.48 cycloproane, propyl- 2415-72-7 74     

22 11.65 3-Hexen-1-ol 928-97-2 69 y y y  

23 11.98 cis-3-Hexen-1-ol 928-96-1 95   y  

24 12.15 cis-3-Hexen-1-ol, acetate 3681-71-8 76   y y 

25 12.58 1,3-Pentadiene, 2-methyl- 926-54-5 83     

26 12.88 3-Octanol * 589-98-0 83 y y   

27 13.30 Acetic acid * 64-19-7 74  y   

28 13.61 1-Octen-3-ol 3391-86-4 83 y y y  

29 14.21 Oct-1-en-3-one 50306-18-8 72     

30 14.58 Cyclopropene, 3,3-diethyl- 78578-86-6 33     

31 14.95 Benzaldehyde* 100-52-7 93 y y  y 

32 15.23 gamma, Heptalactone 105-21-5 24     

33 15.80 Linalool  78-70-6 31    y 

34 16.13 2 [5H]-Furanone, 5-ethyl- 2407-43-4 50     

35 16.41 Benzene, isocyano- 931-54-4 68     

36 16.40 
Malonic acid bis-( 2-trimethylsilanyl-ethyl 

ester) 
90744-45-9 31     

37 16.80 Thiophene, 2-pentyl- 4861-58-9 24     
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Table 2. Cont. 

 

GC 

column 

RT 

(min) 

Compound CAS MS 

spectral 

match 

(%) 

Boue 

et al. 
[10] 

beans 

Rosario 

et al. [12] 

beans 

Damiani 

et al. [13]

- 

beans 

Zhu and 

Park 

[11] 

leaves 

38 17.08 Benzoic, methyl ester 93-58-3 75     

39 18.13 gamma, Hexalactone 695-06-7 88     

40 18.6 2-Cyclohexene-1,4-dione 4505-38-8 63     

41 18.81 alpha -Copaene 3856-25-5 89     

42 18.96 2 [5H]-Furanone, 5-ethyl-, [R] 76291-90-2 72     

43 19.26 E-2-Methyl-2-butenoate 67883-79-8 72     

44 19.51 beta-Elemene * 515-13-9 98     

45 19.71 Methyl salicylate * 119-36-8 95    y 

46 20.03 trans-Caryophyllene * 87-44-5 93     

47 20.21 2-Clohexene-1, 4-dione 4505-38-8 72     

48 20.73 Benzenemethanol 100-51-6 95     

49 20.93 cis-Ocimene 3338-55-4 61     

50 21.36 Benzene ethanol * 60-12-8 85    y 

51 21.80 alpha, Farnesene 502-61-4 94    y 

52 22.06 Methyl ester of 2-oxo-hexanoic acid 6395-83-1 18     

53 22.68 Phenol * 108-95-2 91     

54 22.85 2-Methyl-3-phenythiopropene 702-00-1 24     

55 22.96 (E)-4,8-Dimethyl-1,3,7-nonatriene  54     

56 23.76 Ionol  4130-42-1 76     

57 24.01 Methyl anisate 606-45-1 93     

58 27.4 1-Dodecanamine, n,n-dimethyl-, 112-18-5 72     

59 28.25 4-Morpholineethanamine 2038-03-1 63     

60 28.83 Indole * 120-72-9 90     

61 30.98 5-Ethyl-1, 3-dihydro-1, 3-diiminoisoindole 134940-70-8 69     

62 31.66 Morpholine, 4-octadecyl- 16528-77-1 72     

Note: * Compounds confirmed by standards; y = reported in previous study; Bold – compounds found emitted 

from field-grown soybean leaves and significantly different between aphid infested and non-infested plants. 

Twelve of these compounds were positively identified with reference standards, all others were 

identified by spectra library matches with 25 of those compounds having spectral library matches of 

70% or more. Thirty-nine of the compounds in Table 2 have never been reported previously in studies 

of soybean volatile emissions [10–13]. Only 11 compounds were previously reported as those emitted 

from soybean leaves. Of the identified compounds, nine (3-hexen-1-ol, dimethyl nonatriene, indole, 

caryophyllene, benzaldehyde, linalool, MeSA, benzene ethanol, and farnesene) are considered 

herbivore-induced plant volatiles (HIPV). Of the compounds that are considered HIPV, only MeSA was 

more abundant on the A. glycines infested plants. Significantly more MeSA was produced by A. glycines 

infested than non-infested plants (Students T-test with Satterhwaite correction for unequal variances;  

t = 2.80, df = 4.2, P = 0.05). 
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3.2. Volatile Emissions from Reproductive-Stage, Field Grown Soybean 

Comparison of total ion chromatograms (TICs) and single ion (120) chromatograms characteristic of 

MeSA for the headspace of leaves from non-infested and A. glycines-infested soybean plants grown in 

the field is shown in Figure 1B. The TICs were similar to those obtained from the leaves grown in the 

greenhouse. No thrips were observed on soybean leaves collected from the field, on either aphid infested 

or non-infested leaves. Infested soybeans leaves had an average of 31.3 A. glycines (adults and nymphs) 

with a standard deviation of 7.5. We detected several compounds from these field grown soybeans that 

varied significantly between leaves infested and non-infested with A. glycines (Figure 2). There were 

four compounds that were found in greater abundance from non-infested leaves; acetone (t = 2.69, df = 6, 

P = 0.04), 2-methyl furan (t = 5.39, df = 6, P = 0.002), trans-caryophyllene (t = 3.38, df = 6, P = 0.02) 

and alpha-humulene (t = 4.31, df = 6, P = 0.005). Three compounds were found in greater abundance 

from leaves infested with A. glycines, cis-3-hexane-1-ol acetate (t = 2.95, df = 6, P = 0.03), MeSA  

(t = 12.33, df = 6, P = 0.0001) and trans-beta farnesene (t = 25.14, df = 6, P = 0.0001). Analysis of leaf 

area and MeSA revealed no significant relationship (analysis not shown). 

 

Figure 2. Mean (+SEM) abundance of several selected compounds per leaf on reproductive 

stage soybeans grown in the field with (gray bar) and without A. glycines (white bar). The 

concentration of each compound was significantly different between the two treatments 

(statistics reported in the text). 

  

1

1 × 103 

1 × 106 

acetone 2-methyl-

furan 

methyl
salicylate

trans-
caryophyllene 

trans-beta 

farnesene 
cis-3-hexen-
1-ol acetate

alpha- 
humulene
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3.3. Discussion 

The results are consistent with those reported by Zhu et al. [11], with soybeans infested with  

A. glycines produce a different profile of volatiles from non-infested leaves. Significant differences 

between our methods and those of Zhu et al. [11] include (a) the method of volatile collection (passive 

sampling of enclosed leaf headspace with SPME fibers instead of Super Q absorbent), sorbent tubes and 

pump-aided gas sampling [11]), (b) the stage of soybean plants tested (reproductive here versus early 

vegetative stage in [11]), and (c) the use of field-grown soybean (in this research). Regarding the first 

significant difference, Carboxen/PDMS 75 μm which targets compounds with a carbon number ranging 

from 2–12 was very useful in extracting a wide range of volatile and semivolative compounds emitted 

by leaves infested with A. glycines. We report 62 compounds that could be tentatively identified based 

on matching mass spectral profiles. More compounds could be detected and identified if different SPME 

coatings were used. Given their sensitivity and ease of use, experiments involving SPME to collect 

HIPVs in field conditions are warranted. 

Despite these differences, we also observed greater emissions of MeSA, farnesene and cis-3-hexen-

1-ol acetate from A. glycines infested soybean leaves. Like Zhu et al. [11], we did not observe more cis-

3-hexen-1-ol on vegetative stage (V1-4) plants infested with A. glycines. However, when plants were in 

the reproductive stage we did observe more emissions of cis-3-hexen-1-ol. 

These data indicate that insect herbivores, in this case A. glycines and possibly thrips, are associated 

with greater MeSA volatile production from soybean leaves. From field-grown soybeans, we observed 

a greater difference in MeSA abundance between A. glycines infested and non-infested soybean leaves. 

Although the two experiments were conducted under very different growing conditions, it is interesting 

to note that the average abundance of MeSA from soybean leaves was greater from vegetative stage 

soybeans grown within the greenhouse (~5.0 × 106) than from reproductive stage soybeans grown in the 

field (~0.45 × 106). This order-of-magnitude difference may have been due to the absence of thrips, 

which were not found on any of the soybean leaves selected from the field. In addition to MeSA, we 

also collected several other compounds that are considered components of plant defense against 

herbivores; cis-3-hexen-1-ol acetate, farnesene, caryophyllene and humulene. Only cis-3-hexen-1-ol 

acetate and farnesene were produced by leaves with A. glycines. Curiously, caryophyllene and humulene 

were produced in greater abundance by leaves without aphids. 

Our observations are consistent with a similar study of soybean response to T. urticae (‘red spider’ 

mite) [4], in which the headspace was sampled from non-infested and infested leaves removed from 

greenhouse grown soybean plants. Overall volatile production was greater on T. urticae infested leaves 

than non-infested leaves, with MeSA comprising 13% of the total volatile output. MeSA was produced 

by mechanically damaged leaves, but the response was 50× as great on T. urticae infested leaves. This 

difference suggests that MeSA is an indirect defensive compound with limited direct impact, based on 

the acceptance of T. urticae for soybean [4] and the attractiveness of the predator Phytoseiulus persimilis 

to MeSA producing plants. 

Rasmann et al. [15] has shown that the volatile response of corn to herbivore injury is not optimized 

in commercial varieties. To what extant breeding has removed or reduced the volatile response of 

soybeans to A. glycines is not known. Our results were accumulated with a commercially available 

cultivar (Syngenta NK S24-K4 RR) that has not been breed for A. glycines resistance. A greater response 
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both in terms of amount and variety of volatiles produced could vary with lines that are either resistant 

our more closely related to the ancestral line of soybean. Our results suggest that soybean defenses 

against A. glycines may not be limited to antibiosis, which has been identified within soybean 

germplasm. An intriguing hypothesis is then posed: could soybean resistance or tolerance to A. glycines 

be selected for through a multitrophic interaction mediated by a kairomone like MeSA? Adding artificial 

sources of MeSA to soybean fields can increase the mortality of A. glycines [8]. It is not clear if selection 

for MeSA production through breeding could contribute to the suppression of A. glycines outbreaks. 

Furthermore, it is not clear if the additional compounds we identified as being produced on A. glycines 

infested leaves (cis-3-Hexen-1-ol acetate and farnesene, Figure 2) can be added to artificial sources of 

MeSA to improve upon the biological control of A. glycines population in North America. 

4. Conclusions 

Passive air sampling and screening of volatiles emitted by infested and non-infested soybean leaves 

with SPME was successful. We identified 62 compounds, i.e., adding significantly more to the list of 

compounds emitted by soybean leaves. We detected several compounds that varied significantly 

between leaves infested and non-infested with A. glycines. We observed greater emissions of MeSA, 

farnesene and cis-3-hexen-1-ol acetate from A. glycines infested soybean leaves. Like Zhu et al. [11], 

we did not observe more cis-3-hexen-1-ol on vegetative stage (V1-4) plants infested with A. glycines. 

However, when plants were in the reproductive stage we did observe more emissions of cis-3-hexen-1-

ol. There were four compounds that were found in greater abundance from non-infested leaves; i.e., 

acetone, furan, caryophyllene, and humulene. These compounds are considered HIPVs. Both these 

induced compounds, as well as the non-induced ones, described herein should be considered as 

candidates for future improvements on the attractiveness of MeSA to increase predators of A. glycines. 
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