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Abstract: The reliability of wearable photoplethysmography (PPG) sensors to measure heart rate
(HR) in hospitalized patients has only been demonstrated in adults. We evaluated the accuracy of
HR monitoring with a personal fitness tracker (PFT) in children undergoing surgery. HR monitoring
was performed using a wrist-worn PFT (Fitbit Charge HR) in 30 children (8.21 ± 3.09 years)
undergoing laparoscopy (n = 8) or open surgery (n = 22). HR values were analyzed preoperatively and
during surgery. The accuracy of HR recordings was compared with measurements recorded during
continuous electrocardiographic (cECG) monitoring; HRs derived from continuous monitoring with
pulse oximetry (SpO2R) were used as a positive control. PFT-derived HR values were in agreement
with those recorded during cECG (r = 0.99) and SpO2R (r = 0.99) monitoring. PFT performance
remained high in children < 8 years (r = 0.99), with a weight < 30 kg (r = 0.99) and when the HR
was < 70 beats per minute (bpm) (r = 0.91) or > 140 bpm (r = 0.99). PFT accuracy was similar
during laparoscopy and open surgery, as well as preoperatively and during the intervention (r > 0.9).
PFT–derived HR showed excellent accuracy compared with HRs measured by cECG and SpO2R
during pediatric surgical procedures. Further clinical evaluation is needed to define whether PFTs
can be used in different health care settings.
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1. Introduction

The growing field of mobile health technologies has created a platform for innovation and new
trends in capturing patient health data [1]. Over the last five years, interest has grown regarding the
potential use of wearable devices to improve health care delivery [2–5].

Recently, wearable activity trackers have been developed that use optical blood flow sensing
(photoplethysmography, PPG) techniques to measure heart rates (HR) [6]. PPG is a non-invasive method
for the detection of HR and optically assesses vascular tissue using a probe, usually light-emitting diode
(LED). The PPG sensor probe (e.g., LED lights) shines directly into the skin, evidencing changes in
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the blood volume to measure HR. HR is determined based on the theory that blood flow through the
artery is inversely related to the amount of light refracted. PPG techniques using optical LED blood flow
sensors have increased the popularity of novel HR monitoring devices, with many new models entering
the market each year [6,7].

In the medical setting, the ability of wearable PPG sensors to reliably measure HR has been
extensively documented in the adult age [8–10], including hospital in-patients [11] but limited data
are available in pediatrics [12–14]. We evaluated the accuracy of HR monitoring with a personal
fitness tracker (PFT) in hospitalized pediatric patients undergoing elective surgery, in order to evaluate
its potential role in pediatric health care. The accuracy of HR recordings was compared with gold
standard measurements made with continuous electrocardiographic (cECG) monitoring.

2. Patients and Methods

We used the Fitbit Charge HR (Fitbit, San Francisco, CA, USA) PFT to monitor HRs in 30 patients
sequentially admitted to the Pediatric Surgery Unit for minor elective laparoscopic or open surgical
procedures. Surgery was performed under general or local anesthesia.

Participants were recruited between 1 February 2017 and 31 May 2017. The eligibility criteria
were: (a) 4–16-years of age; (b) males and females (c) no cutaneous anomalies or bone deformity of the
arm on which the device was to be placed. Auxological data (weight, height, body mass index and
pubertal stage according to Marshall and Tanner [15,16]) were recorded in all patients.

The personal fitness tracker device studied is a wrist-worn device resembling a watch, which uses
PPG to detect periodic changes in blood flow beneath the sensor, thereby measuring HR. The study
used one PFT (size small), which was assigned a unique email address and log-in credentials on the
Fitbit website; for each device an anonymous Fitbit user profile (online “dashboard”) was created.
Wristbands were placed on the arm in accordance with the manufacturer’s guidelines.

To test the accuracy and potential utilization in different pediatric surgical settings, HR values
were recorded every 5 min for 30 min at two intervals: anesthesia induction (T1) and during surgery
(T2) when surgical instruments were used.

For comparison, HR measurements were recovered from the Intensive Care Unit (ICU) bedside
monitors (Infinity Delta, Dräger, Lübeck, Germany). Data included heart rate values recorded during
cECG monitoring, as well as heart rate data derived from continuous monitoring with pulse oximetry
(SpO2R), as positive controls. We synchronized the bedside monitor data and PFT.

To assess the potential effects of heart rhythm disorders (although rare in pediatrics) on accuracy,
rhythm status was based on examination of cECG recordings both at the time of device application
and at device removal, with patients designated as being in sinus rhythm only if this was true at both
time points.

2.1. Ethical Considerations

The study was performed according to the Declaration of Helsinki and with the approval of
the Institutional Review Board of Children’s Hospital, Istituto Mediterraneo di Eccellenza Pediatrica,
Palermo, Italy (n.000551 on 31 March 2017). Parents and/or legal guardian, after receiving information
about the study, gave their written consent.

The Fitbit Charge HR is a commercially available PFT and is not currently regulated by the US
Food and Drug Administration. The study did not receive funding from the device manufacturer or
from any other source.

2.2. Statistical Analysis

To describe the agreement between continuous measures obtained by different devices, we
calculated Lin’s concordance correlation coefficient (CCC). This is expressed as the product of Pearson’s
r (the measure of precision) and the bias-correction factor (Cb, the measure of accuracy). CCC ranges
included values from 0 to +1. Agreement was classified as poor (0.00 to 0.20), fair (0.21 to 0.40),
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moderate (0.41 to 0.60), good (0.61 to 0.80), or excellent (0.81 to 1.00). The Bland and Altman limits of
agreement (LOA), with their 95% confidence interval (CI), within and between observers were reported
as well. These represent the interval within which the absolute difference between two repeated test
results, even with a high agreement or concordance, may be expected to lie with a probability of 95%.
If the differences within means ± 1.96 standard deviation (SD) (LOA) are not clinically important,
the two methods may be used interchangeably.

3. Results

We enrolled a sample of 30 children (16 male (M)/14 female (F), mean age 8.21 ± 3.09) that met our
enrollment criteria. Eight children underwent laparoscopic surgery (3M/5F, mean age 9.8 ± 3.3 years)
and 22 underwent traditional open surgery (13M/9F, mean age 7.6 ± 2.7 years). Indications for
surgery included abdominal-inguinal pathology (n = 18), gynecological mass (n = 2), excision of
cutaneous–subcutaneous lesions (n = 10). The clinical features of the patients are reported in Table 1.

Table 1. Patients’ clinical data.

Total (N = 30) Laparoscopy Group (n = 8) Open Surgery Group (n = 22)

Sex (Male/Female) 16/14 3/5 13/9

Age (years) 8.21 ± 3.09 9.8 ± 3.3 7.6 ± 2.7
>8 years 14 4 10
<8 years 16 4 12

Indication for surgery
Abdominal-inguinal pathology 18 6 12

Gynecological ovarian mass 2 2 0
Excision of cutaneous–subcutaneous lesions 10 0 10

Weight (kg) 31.3 ± 15.3 43.0 ± 20.1 27.0 ± 10.2
<30 kg (n) 16 3 13
>30 kg (n) 14 5 9

Height (cm) 132.2 ± 23.3 146.0 ± 16.5 118.5 ± 20.9

Body Mass Index (kg/m2) 20.5 ± 5.0 23.6 ± 5.2 17.0 ± 0.04

Pubertal Stage
Tanner stage 1 (n) 22 4 18

Tanner stage 2–3 (n) 3 0 3
Tanner stage 4–5 (n) 5 4 1

All children were in sinus rhythm. HR means during laparoscopy and open surgery groups were
not different (cECG 100.5 ± 21.1 beats per minute (bpm); PFT 100.6 ± 21.2; SpO2R 100.5 ± 21.3, p = 0.9).

PFT-derived HR values were in agreement with those recorded during cECG monitoring (r = 0.99;
average bias of −0.05 bpm, 95% CI −2.454–2.43 bpm and SpO2R (r = 0.99; average bias of −0.01 bpm,
95% CI −2.8–2.8 bpm), Figure 1.
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Figure 1. Agreement between personal fitness tracker (PFT) derived heart rate (HR) and HR derived 
from continuous electrocardiographic monitoring (cECG, Panel A) and from continuous monitoring 
with pulse oximetry method (SpO2R, Panel B). 

Figure 1. Agreement between personal fitness tracker (PFT) derived heart rate (HR) and HR derived
from continuous electrocardiographic monitoring (cECG, Panel A) and from continuous monitoring
with pulse oximetry method (SpO2R, Panel B).
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Agreement in PFT performance remained high in children aged less than 8 years (cECG r = 0.99;
−0.18 bpm, 95% CI −2.4–2.0; SpO2R r = 0.99; −0.13 bpm, 95% CI −2.4–2.1) and in subjects weighing
less than 30 kg (cECG r = 0.99, −0.12 bpm, 95% CI −2.4–2.1; SpO2R r = 0.99, −0.08 bpm, 95% CI
−2.8–2.7).

The limits of agreement were similar for the PFT method in comparison with the cECG and
SpO2R methods, even when HR was lower than 70 bpm (cECG r = 0.95, 0.26 bpm, 95% CI −1.6–2.1;
SpO2R r = 0.91; 0.54 bpm, 95% CI −2.0–3.1) or higher than 140 bpm (cECG r = 0.95, −0.26 bpm, 95% CI
−1.6–2.1; SpO2R r = 0.99, 0.08 bpm, 95% CI −2.2–2.0).

PFT accuracy was similar preoperatively (cECG r = 0.99; −0.1 bpm, 95% CI −2.7–2.5; SpO2R
r = 0.99; −0.06 bpm, 95% CI −2.9–3) and during surgery (cECG r = 0.99; −0.005 bpm, 95% CI −2.4–2.4;
SpO2R r = 0.99; −0.04 bpm, 95% CI −2.7–2.6), p = 0.4; there were no differences between laparoscopy
and traditional open surgery (p = 0.2).

4. Discussion

In hospitalized pediatric patients undergoing elective surgery, PFT–measured HR showed
excellent accuracy in comparison with HR measured during cECG and SpO2R monitoring. Accuracy
remained high in children aged less than 8 years and weighing less than 30 kg. These preliminary data
will be helpful in defining the potential role of PFT in the pediatric surgical setting.

Advances in wireless technologies and low-power electronics associated with health care are
driving innovations in wearable medical devices [17]. Wearable health-related technologies refer to
electronic tools that may be worn or inserted onto the body. A main feature of wearable health-related
technologies is that they have a hands-free function that enables the user to access his/her own
health data while performing daily routine tasks. Other features include accessibility, wearability,
comfortability, portability, multi-functionality, usefulness, reliability and practicability [18].

With the inclusion of sophisticated PPG technology, new generation wearable devices, such as
Fitbit Charge HR, are useful in monitoring the heart rate and HR-derived algorithms may be used to
estimate energy expenditure [19–21]. Although many wearable devices for monitoring and tracking
physical activity are available to consumers, relatively few research studies have been conducted
to determine their efficacy in promoting health and their actual use within clinical populations
remains limited. To date, clinical studies have included patients with chronic diseases, such as
osteoarthritis, chronic heart failure, diabetes, peripheral neuropathy, or chronic obstructive pulmonary
disease [22–26] and have mostly been limited to outpatient and ambulatory settings. More recently,
Kroll et al. described the accuracy of PFT heart rate monitoring in adult hospitalized in-patients [11].

The ability of wearable FTP to reliably measure HR in the pediatric age has been reported in
outpatients with cancer [14], congenital heart disease [12], visual impairment [27] and to promote
and/or measure physical activity. At present, no data are available on the role of wearable sensors to
monitor HR in hospitalized children.

In this study, we directly evaluated the accuracy of the HR data and inferred conclusions regarding
other concerns such as small wrist size in young patients and possible electrical/electro-magnetic
interference by the surgical environment. With a comparison to HRs measured during cECG and
SpO2R monitoring, we have shown that Fitbit PFT-derived HR measurements are accurate in young
patients undergoing surgery. In children less than 8 years of age, the diameter of the wrist on which
the device is to be placed is smaller than wristband size; however, correct positioning of the optical
sensor allowed correct measurement of HRs. Moreover, no previous studies have evaluated potential
sources of interference caused by surgical instrumentation, such as metal objects with a high iron
content that could produce ferromagnetic interference and materials conducting an electric current that
could produce their own magnetic field [28]; but in this study, PFT performance remained high during
surgery. This result supports the feasibility of wearable technology in a surgical setting. However,
more testing of devices under real-life conditions and in different clinical settings are needed to provide
objective evidence regarding the accuracy of HR monitoring capabilities among hospitalized children.
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Physiological parameters such as HR, blood pressure, and body temperature can provide critical
information about the patient’s physical health status. Changes in HR have been shown to predict
impending clinical deterioration [29–33]. We chose to test the accuracy of PFT in the operating room in
order to make a comparison with data collected by standard measurements and evaluate two different
surgical conditions: anesthesia induction and actual operating conditions. In surgical scenarios,
wrist-worn heart sensing devices have the potential to enhance inpatient safety by identifying
episodes of clinical deterioration during the acute phase immediately after the intervention, faster
than current nurse-driven vital signs monitoring practices allow. Additionally, PFT could provide
continuous postoperative benefit by providing enhanced HR monitoring and tracking of mobility
during convalescence, providing feedback to both the patient and clinician [11].

PFT facilitates the transfer of information without the use of electrical conductors and the
transmission of real-time data helps clinicians detect, prevent, and extend care efficiently and
ubiquitously. Increased adoption of mobile health technologies should help continuous monitoring
of patient progress, identify individuals most in need of prevention and treatment, and streamline
patient–doctor communication [34].

We recognize that there are some limitations to this study starting with the relatively small sample
size. Secondly, all children in this study were in sinus rhythm and accuracy would differ in patients not
in sinus rhythm. Additionally, we synchronized bedside monitored data and PFT, thus HR values were
obtained from different devices with separate internal clocks and, consequently, a shorter time interval
between the measurements of separate HR cannot be excluded [11]. Finally, the correct positioning of
the optical sensor allowed the measurement of HRs in young children in a stable position; however,
it is possible that during activity the signal may not be adequate. Therefore, studies using devices
appropriate for children are mandatory.

In conclusion, our preliminary findings indicate that wrist-worn devices utilizing PPG are
a potentially useful method to monitor HR in hospitalized children. Further clinical studies are
needed to confirm the practicality of these wearable trackers in the pediatric health care setting.
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