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Abstract: Historically, the management of bilateral Wilms tumor (BWT) was non-standardized
and suffered from instances of prolonged chemotherapy and inconsistent surgical management
which resulted in suboptimal renal and oncologic outcomes. Because of the risk of end-stage renal
disease associated with the management of BWT, neoadjuvant chemotherapy and nephron-sparing
surgery have been adopted as the guiding management principles. This management strategy
balances acceptable oncologic outcomes against the risk of end-stage renal disease. A recent
multi-institutional Children’s Oncology Group study (ARENO0534) has confirmed the benefits of
standardized 3-drug neoadjuvant chemotherapy and the utilization of nephron-sparing surgery
in BWT patients; however, less than 50% of patients underwent bilateral nephron-sparing surgery.
The coordination of neoadjuvant chemotherapy and the timing and implementation of bilateral
nephron-sparing surgery are features of BWT management that require collaboration between
oncologists and surgeons. This review discusses the surgical management strategy in the context
of BWT disease biology, with an emphasis on timepoints during therapy at which surgical decision
making can greatly impact this disease and minimize long-term toxicities.
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1. Introduction

Wilms tumor (WT) is the most common kidney cancer in children and is the second most
common pediatric extracranial solid tumor, affecting approximately 650 children in the United States
annually [1]. Fascinatingly, 5-10% of patients present with bilateral Wilms tumor (BWT), which may
present as synchronous or metachronous bilateral tumors [2]. The median age of diagnosis for
BWT is 24 months, compared to 38 months for unilateral WT, which suggests a stronger underlying
genetic predisposition [2]. This predisposition is also underscored by the increased incidence of BWT
in patients with WT predisposition syndromes, including Beckwith-Wiedemann syndrome (BWS),
Denys—Drash, and WAGR (Wilms tumor, aniridia, genitourinary anomalies, range of developmental
anomalies) syndromes [3-5]. However, 85% of patients with BWS or WAGR syndromes who develop
WT get unilateral disease [5,6]. Under Children’s Oncology Group (COG) protocols, unilateral
WT is typically treated by up-front radical nephroureterectomy, with acceptable rates of long-term
end-stage renal disease (<1%) [1,7]. Application of this strategy to patients with bilateral disease
would render them anephric, and thus nephron-sparing approaches were developed and refined to
preserve kidney function [8,9]. However, the long-term rate of end-stage renal disease for BWT patients
still approaches 15%, necessitating strategies which achieve acceptable oncologic outcomes, but also
preserve the maximum volume of functioning nephrons [10]. This approach should also be extended
to syndromic patients who present with unilateral WT because of the risk of developing metachronous
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WT [11]. Historically, BWT management had not been standardized and has sometimes characterized
by prolonged chemotherapy and inconsistent surgical management [12]. A recently completed
multi-institutional COG study (AREN0534) has standardized the approach to neoadjuvant therapy
and timing of surgical resection, resulting in great benefit to patients with BWT [11]. This review aims
to detail the current, standardized approach to BWT in the context of disease biology and to emphasize
the critical importance of surgical input in the longitudinal management of BWT patients. We will also
emphasize critical aspects of the surgical and perioperative management of BWT.

2. Biology and Genetics

Surgeons must be familiar with the features of WT predisposition syndromes so that a
nephron-sparing approach can be selected when there is a high risk of metachronous WT. Furthermore,
differentiation of WT from nephrogenic rests (NRs), when possible, can avoid unnecessarily radical
surgery. The presence of bilateral or multifocal disease or the association of WT with congenital
anomalies suggests an underlying genetic predisposition for the development of WT. Overall,
congenital anomalies are found in 9% of patients with unilateral WT and 33% of patients with BWT [13].
The earliest clue into the genetic basis of bilateral WT was derived from the observation that patients
with WAGR syndrome often developed WT and had a higher incidence of BWT (15% of WAGR patients
get BWT) [3]. These patients were also found to have a high prevalence of intralobar nephrogenic rests.
It was later determined that WAGR was due to a germline deletion at 11p13 containing the PAX6 and
WTT1 genes [14-16]. The WT1 transcription factor was later cloned and determined to be a potent tumor
suppressor directly implicated in the development of WT [17]. Approximately 16% of BWT patients
have a WT1 germline mutation and 3% have affected family members [18]. BWT with WT1 mutations
are associated with early presentation (10 months versus 39 months for WT1 wild-type patients) [18].
Tumors containing WT1 mutations often also develop activating mutations in exon 3 of CTNNBI,
resulting in Wnt pathway activation [19,20]. Tumors with this constellation of genetic mutations
are prone to stromal differentiation during neoadjuvant therapy, which may preclude complete or
significant regression of tumor volume. In fact, tumors with WT1 mutation may paradoxically increase
in size during therapy due to rhabdomyoblastic differentiation [2,21].

The prevalence of BWT is also higher in patients with genetic predisposition syndromes
associated with somatic overgrowth including BWS and isolated hemihyperplasia [5]. BWS is
a somatic overgrowth disorder characterized by macroglossia, hemihypertrophy, omphalocele,
and a predisposition to develop embryonal tumors including WT, hepatoblastoma, embryonal
rhabdomyosarcoma, and adrenocortical carcinoma. Approximately one-fifth of BWS patients who
develop WT present with bilateral disease [22]. BWS is caused by a constellation of germline genetic
or epigenetic aberrations at chromosome 11p15, which contains a cluster of imprinted genes. IGF2,
which regulates organ growth in fetal development, is the most well-described imprinted gene at this
locus. IGF2 is normally imprinted such that it is only expressed from the paternal allele. The two most
common mechanisms for loss of the normal imprinting pattern at this locus are uniparental isodisomy
(copy neutral loss of heterozygosity by deletion of the maternal 11p15 and duplication of the paternal
allele) or epigenetic loss of imprinting (selective gain of methylation at imprinting control region
1 adjacent to H19 and IGF2), both of which result in biallelic expression of IGF2 [23]. Patients with these
molecular subtypes of BWS should undergo abdominal ultrasound every 3 months until age 8 [23].
Genetic testing for an 11p15 abnormality should be considered for patients exhibiting any features of
BWS, hemihyperplasia, or bilateral or familial WT. BWT patients without syndromic features have been
found to harbor germline constitutional abnormalities at 11p15 [24]. In nonsyndromic WT patients,
somatic aberrations at these loci occur in approximately 70% of WT and with higher frequency in BWT.
WT in patients with constitutional or somatic 11p15 anomalies are often associated with perilobar
nephrogenic rests. BWS can present with a subtle, incomplete phenotype due to mosaic distribution
of the 11p15 anomaly. Recent consensus guidelines detail the recommended molecular diagnostic
measures, tumor-screening algorithms, and clinical management of patients with BWS [25].
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2.1. Nephrogenic Rests and Nephroblastomatosis

The majority of BWTs are associated with NRs, which are undifferentiated islands of embryonic
metanephric blastema that are thought to be premalignant WT precursor lesions. Perilobar NRs are
associated with 11p15 anomalies, while intralobar NRs are associated with variants in WT1/11p13.
A single patient can have both perilobar and intralobar NRs (combined NRs). NRs are associated with
higher rates of metachronous WT development. BWT exhibit NRs in 84% of cases, while unilateral WT
are associated with NRs in 38% of cases. BWT patients exhibit a higher proportion of perilobar
NRs (52%) when compared to intralobar or combined NRs (32%) [13,26]. NRs are most often
microscopic lesions that are not detected on imaging. However, expansile, multiple, or diffuse NRs
(nephroblastomatosis) may be detected on imaging. Differentiating nephroblastomatosis from WT
at the time of diagnosis is very difficult, but critical in deciding the correct treatment plan. This is
particularly important in cases of unilateral WT with contralateral nephroblastomatosis, or cases of
bilateral nephroblastomatosis, both of which can be mistaken for cases of BWT. WTs are generally
surrounded by a fibrous capsule that separates the lesion from the normal kidney while NRs are not.
However, percutaneous biopsy does not reliably distinguish nephroblastomatosis from WT, as the
interface of the WT and adjacent normal kidney is difficult to reliably capture. Molecular analysis
is also unreliable in a clinical setting, as NRs are WT precursor lesions and therefore contain genetic
variants that are also present in WT. Therefore, imaging is the most reliable, albeit an imperfect way
to distinguish WT from NRs. Prior to chemotherapy, NRs are homogeneous in appearance both
before and after contrast agent administration on a computerized tomography (CT) scan or magnetic
resonance imaging (MRI). After chemotherapy, MRI can distinguish NRs from WT because viable
WT enhance on T2 and STIR sequences while NR do not. WT should be strongly suspected when
the lesion in question enhances, is spherical, and exceeds 1 cm in diameter. Hyperplastic perilobar
nephrogenic rests (HPN) refers to a proliferation of NRs that is multifocal and often bilateral. Included
in the category of HPN is a subtype known as diffuse hyperplastic perilobar nephroblastomatosis
(DHPN), which describes a pattern of expansile NRs that extend along the periphery of the kidney.
The characteristic appearance of DHPN on CT or MRI scans is a homogenous, rind-like expansion of
tissue on the periphery of the kidney (Figure 1). The appearance maintains the overall architecture of
the kidney and can look like a “giant kidney” on imaging. This is generally distinguishable from the
round, heterogeneous appearance of WT which may distort the architecture of the kidney and result in
a “claw sign” in the instance of large lesions (Figure 1).

In the absence of WT, the management of HPN is non-operative. Chemotherapy is recommended
for HPN as a means of decreasing the cellular mass predisposed to the development of WT. Observation
without initiation of therapy is regarded as a non-standard option because the rate of malignant
transformation appears to be quite high and to persist for years after initial diagnosis. The current
recommended treatment for HPN is combination chemotherapy with actinomycin-D and vincristine
(EE-4A regimen used for the treatment of stage I/II WT), although treatment duration is sometimes
extended due to the variable timing of response [27]. However, prolonged courses of chemotherapy
may select for anaplastic transformation [28], which is much more common in patients with HPN
who develop WT (32%) than in patients with sporadic WT [29]. Perlman et al. published a large
series of 52 patients who presented with HPN from the National Wilms Tumor Study, 49 (94%)
of whom had bilateral disease. Forty-six (88%) patients presented with DHPN characterized by a
“rind-like” appearance on imaging [29]. Three (5.8%) patients in this series were observed without
initiation of chemotherapy and all three developed WT between 4-10 months after diagnosis (none died
from disease). Of the remaining 49 patients who received therapy, 33 patients underwent biopsy
and initiation of chemotherapy and 16 patients underwent unilateral nephrectomy followed by the
initiation of chemotherapy. Of the 33 patients who underwent biopsy and chemotherapy, 18 developed
WT and 15 did not (3 of these WT patients died from disease; 2 developed diffuse anaplasia). Of the
16 patients who underwent unilateral nephrectomy followed by chemotherapy, 13 patients did not
develop a subsequent lesion and 3 patients developed WT (none died from disease). Because patients
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with HPN are predisposed to the subsequent development of WT, even in radiographically normal
areas of kidney, a 3-month surveillance imaging interval is recommended, and the length of follow-up
should be continued for a minimum of 7 years following initial diagnosis. Any suspected tumors
increasing in size during chemotherapy in HPN patients should be promptly resected, if feasible,
as there is a stronger likelihood of diffuse anaplasia in this group. Thus, initiation of chemotherapy,
close imaging follow-up, and a higher index of suspicion for the development of diffuse anaplasia are
the guiding principles of HPN management [29]. Up-front nephrectomy should be avoided, but timely
nephron-sparing surgery (NSS) should be employed when there is suspicion for the development of
WT, which will occur in most cases.

When a patient with HPN develops a focus of Wilms tumor, a nephron-sparing approach is
generally recommended given the predisposition for metachronous disease. During the conduct of
this operation, the surgeon should focus on delineating the WT from surrounding tissue, whether that
be NRs or normal kidney. The distinction between normal kidney and NRs cannot always be readily
determined intraoperatively. Biopsies from areas of uncertainty can be obtained, however definitive
diagnosis of nephrogenic rests typically requires an adjacent area of normal kidney and requires
permanent section.

Figure 1. (a) Bilateral Wilms tumor (WT) demonstrating complex, ominous appearance of hilar
right-sided tumor (black arrow) and more straightforward left-sided upper pole mass; (b) 3D rendering
of bilateral tumors depicted in (a) assisted in delineating the vascular anatomy and bilateral nephron
sparing surgery was possible. Nk = normal kidney, rra = right renal artery, rrv = right renal vein,
ivc = inferior vena cava, ao = aorta; (c) bilateral diffuse hyperplastic perilobar nephroblastomatosis
is depicted with rind-like peripheral expansion of nephrogenic rests (black arrows); (d) a marginal
resection of bilateral WT is performed by developing the plane between the encapsulated tumor
and normal renal parenchyma; (e) after nephron sparing surgery is performed, the collecting system
(white arrows) is closed with monofilament suture. If possible, the redundant edges of normal renal
parenchyma (black arrows) can be approximated over the raw surface of the kidney; (f) Appearance of
the encapsulated WT following surgical resection.
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2.2. Diagnosis and Neoadjuvant Therapy

The diagnosis of BWT is typically confirmed by the presence of bilateral renal masses, in an
appropriately aged child, on ultrasound followed by contrast-enhanced CT abdomen/pelvis. A CT
chest should also be performed to evaluate for pulmonary metastases at diagnosis, the most common
site of metastatic disease in children with WT. Because other pediatric renal tumors are almost never
bilateral, neoadjuvant chemotherapy for presumed BWT should be initiated without first performing a
biopsy of any of the tumors [11]. In the recently completed first multicenter study specifically for BWT
patients, the COG AREN0534 trial, intensification of neoadjuvant chemotherapy to three-drugs with
vincristine, actinomycin-D, and doxorubicin (VAD) resulted in improved 3-year event free and overall
survival compared to historical BWT patients treated on the NWTS-5 protocol who were often treated
with only vincristine and actinomycin-D [11,30]. The rationale for up-front intensification of therapy
was to achieve improved tumor response to facilitate bilateral nephron-sparing surgery. The described
surgical management algorithm is identical for patients with syndromic or non-syndromic BWT.
For patients with syndromic unilateral WT, this management algorithm is also followed due to the
risk of metachronous WT. This management algorithm is not applicable to patients with unilateral,
non-syndromic WT.

The feasibility of bilateral nephron-sparing surgery should be assessed after six weeks of
VAD therapy by contrast-enhanced CT scan of the abdomen/pelvis (Figure 2). If more than 50%
volume reduction has been achieved for all tumors, but nephron sparing surgery is still not feasible,
neoadjuvant VAD should be continued for six more weeks. Surgical resection should be performed
regardless of tumor status at the 12-week timeframe. If less than 50% volume reduction has been
achieved after the six initial weeks of therapy for any tumor, and bilateral nephron-sparing surgery is
still not feasible, open surgical biopsy of all tumors should be performed to assess for the possibility of
alternative histologies such as diffuse anaplasia, blastemal predominance after neoadjuvant therapy,
differentiated tumor without remaining viable/proliferative elements, or an alternate diagnosis
(exceedingly uncommon). Core biopsy often misses the presence of diffuse anaplasia, which could
be responsible for treatment resistance, and should thus be avoided in this treatment algorithm [31].
The histology of the tumor at the time of open biopsy will direct 6 weeks of additional chemotherapy
(VAD, regimen I, or modified UH-1; Figure 2). Administration of neoadjuvant therapy beyond 12 weeks
should not occur, as it may impart significant long-term toxicity without discernible oncologic benefit
and will not facilitate an easier operation. Furthermore, prolonged neoadjuvant chemotherapy has been
associated with anaplastic transformation in BWT, particularly in patients treated for DHPN [12,28].

If a complete response for both kidney tumors is observed for patients without metastatic
disease after 6-weeks of VAD, then adjuvant regimen EE-4A is instituted (actinomycin-D, vincristine).
For BWT patients with metastatic disease who exhibit a complete response at the primary sites after
6-weeks of VAD, adjuvant regimen DD-4A (vincristine, actinomycin-D, and doxorubicin) is instituted.
Otherwise, the described surgical management algorithm is identical for patients with metastatic and
non-metastatic disease. A discussion of the management of pulmonary metastases or other metastatic
sites is beyond the scope of this review.
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Figure 2. Surgical management algorithm for bilateral Wilms tumor. NSS—Nephron-sparing surgery;
VAD—vincristine, actinomycin-D, doxorubicin; Revised UH-1—vincristine, dactinomycin, doxorubicin,
cyclophosphamide, carboplatin, etoposide; Regimen I—vincristine, dactinomycin, doxorubicin,
cyclophosphamide, etoposide.

2.3. Surgical Management

In our experience of more than 60 operations for BWT (42 patients have published long-term
follow-up), approximately 90% of patients can undergo successful bilateral nephron-sparing surgery,
despite occasionally ominous pre-treatment imaging (Figure 1) [9,32,33]. The surgical anatomy of
BWT is best delineated by a preoperative, multiphase contrast-enhanced CT scan of the abdomen
and pelvis. Three-dimensional reconstruction of cross-sectional images may help the surgeon better
understand the relationship of the tumor to the relevant renal vasculature and collecting system [34].
A three-dimensional appreciation of the tumor’s position relative to the surrounding normal renal
parenchyma may also facilitate the intraoperative approach to the tumor (Figure 1). Some authors have
experimented with 3D printed models of BWT anatomy to facilitate operative planning [35]. There are
no accepted, defined criteria for preoperative determination of bilateral NSS feasibility. Future studies
aim to determine imaging criteria associated with positive margins or the need for radical nephrectomy.
However, small tumor size, peripheral or polar location of the mass, and lack of invasion or encasement
of renal vessels are intuitive, encouraging features for a nephron-sparing approach. On the other
hand, large tumor size, central location, and proximity to the renal vessels should not be regarded
as absolute contraindications for NSS. We submit that these “ominous” imaging features warrant
referral to an experienced center for assessment of bilateral NSS rather than committing to radical
nephrectomy. BWT with associated tumor thrombus (renal vein, inferior vena cava (IVC), atrial
extension) will typically require radical nephrectomy for en bloc resection of the tumor thrombus
unless there is complete regression of the tumor thrombus during neoadjuvant chemotherapy.
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A laparotomy is performed through a bilateral subcostal incision to gain access to both kidneys and
associated tumors. Full medial visceral rotation is performed for large tumors, while mobilization of
the colon or colon and duodenum may suffice for smaller tumors, as is often the case after neoadjuvant
chemotherapy. The kidney and tumor(s) are completely mobilized. The main renal artery and vein are
dissected and encircled with vessel loops to be used for vascular control in cases of temporary bleeding.
Careful handling of the vascular pedicle is critically important, because traction injury with vascular
thrombosis or spasm can occur, especially in very young patients. We use manual compression of
the renal hilum rather than vessel loops if the hilum is readily accessible. We do not routinely utilize
vascular clamps or preemptively occlude the renal vasculature during the parenchymal dissection.
We do not routinely ligate branches of the renal artery or vein outside the renal parenchyma prior to
beginning transection. We often perform an enucleation technique (marginal resection) focused on
resecting the tumor with an intact capsule to preserve the greatest volume of residual normal renal
parenchyma. The dissection is performed with a right-angle clamp and electrocautery (Figure 1).
All discrete multifocal lesions are usually independently resected during the operation. If the WT is
arising in an extensive area of nephrogenic rests, the tumor can be resected and the rests biopsied to
rule out WT in these areas. Any multifocal lesions that have completely responded on preoperative
imaging should be biopsied intraoperatively if a visible scar is noted at the site of the original multifocal
lesion. Focal areas of bleeding corresponding to intraparenchymal renal vessels are controlled with
prolene suture. Violations of the renal collecting system are closed with a monocryl suture (Figure 1).
Hemostasis at the cut edge of renal parenchyma can be facilitated by applying temporary pressure,
followed by argon beam coagulation, and placement of an absorbable topical hemostatic agent. In about
half of cases, there is sufficient, redundant renal parenchyma to close over the collecting system with
silk suture (Figure 1). We do not routinely place ureteral stents or transperitoneal drains unless there
is intraoperative concern about tension on the collecting system closure. In general, post-operative
surgical complications are more common after nephron-sparing surgery when compared to radical
nephrectomy. In the event of postoperative urinoma, percutaneous drains can be placed using image
guidance and ureteral stents placed by cystoscopy. Paraaortic, aortocaval, paracaval, and parailiac
lymph nodes are sampled for local staging of each tumor when present.

We utilize this marginal resection approach to nephron-sparing surgery for most lesions, including
large lesions or those with hilar involvement (Figure 1) [9]. Alternatively, techniques that involve
parenchymal renal transection, including longitudinal partial nephrectomy, have been described to
approach hilar lesions [34]. Although we have not found renal cooling or vascular clamping to be
necessary measures, Millar et al. reported a series of 23 patients in which this technique was commonly
used with good long-term preservation of renal function [36]. We have not found intraoperative frozen
section to be necessary.

The local stage of each tumor (margins, rupture, lymph node positivity) should be assessed
and documented by the pathologist. The post-treatment histology risk (originally derived from
International Society of Pediatric Oncology (SIOP) protocols in which up-front chemotherapy is
utilized for nearly all WT—unilateral or bilateral) should be assessed based on the percentage of
necrosis or blastemal predominance or frank anaplasia in the resected specimens. Both the local stage
and post-treatment histology will guide the selection of adjuvant therapies (Table 1) [37].

Nephron-sparing surgery should also be performed for unilateral WT in patients with a
solitary kidney, horseshoe kidney, or WT predisposition syndrome that makes the patient prone
to metachronous bilateral disease or eventual renal failure.
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Table 1. Determination of adjuvant therapy after surgical resection of bilateral Wilms tumor [11].

Histology Stage Adjuvant Regimen
Completely necrotic I-II EE-4A
Intermediate risk I EE-4A
Intermediate risk II DD-4A
Intermediate risk -1V DD-4A + XRT
Blastemal predominant I DD-4A
Diffuse anaplasia I DD-4A + XRT
Completely necrotic HI-1v DD-4A + XRT
Focal anaplasia I-1I1 DD-4A + XRT
Blastemal predominant II Regimen I
Blastemal predominant I-1v Regimen I + XRT
Focal anaplasia v Revised UH-1 + XRT
Diffuse anaplasia I-1v Revised UH-1 + XRT

EE-4A—vincristine and dactinomycin; DD-4A—vincristine, dactinomycin, doxorubicin; regimen I—vincristine,
dactinomycin, doxorubicin, cyclophosphamide, etoposide; revised UH-1 vincristine, dactinomycin, doxorubicin,
cyclophosphamide, carboplatin, etoposide; XRT—radiation therapy (flank radiotherapy in most cases). Reproduced
with permission from reference [11]: Ehrlich et al., Annals of Surgery; published by Wolters Kluwer Health, Inc, 2017.

2.4. Standardized Documentation of Nephron-Sparing Surgery

A review published by the SIOP Renal Tumors Study Group noted three critical deficiencies
in surgical operative notes, pathology reports, and the published literature pertaining to NSS:
(1) definitions of the surgical approach are unclear, confusing, and highly variable; (2) the subjective
surgical resection margin is often omitted from reports; and (3) an assessment of the remaining volume
of renal parenchyma is often not included. Therefore, consensus recommendations were developed
by SIOP pathologists and surgeons for the reporting of NSS, whether for bilateral or unilateral WT
(Table 2) [38]. The theoretical, but unproven, advantage of performing a partial nephrectomy over an
enucleation is a lower incidence of positive pathological margins. However, this would come at the
cost of leaving less remaining renal parenchyma. This standardized reporting could more consistently
determine associations between surgical technique and margin status or long-term renal outcomes [38].

2.5. Difficult Surgical Scenarios

2.5.1. Positive Margins

To preserve maximal residual renal parenchyma, a marginal resection or enucleation technique
is often used for bilateral nephron-sparing surgery [33]. Despite utilizing a marginal resection
technique, surgical margins are very often negative because WTs tend to grow within a surrounding
fibrous capsule that does not contain malignant cells. However, a positive margin at the time of
nephron-sparing surgery results in local stage 3 disease, for which flank radiotherapy is generally
recommended, according to the AREN0534 protocol [11]. In patients treated at St. Jude Children’s
Research Hospital, a positive margin in BWT patients undergoing NSS was not associated with local
disease relapse, with most patients receiving radiation therapy [32,39]. However, a positive margin in a
kidney tumor with diffuse anaplasia confers a poor prognosis and thus surgeons must have high index
of suspicion in tumors that have been completely unresponsive to induction therapy [32]. In cases
of a positive margin in tumors with diffuse anaplasia, completion nephrectomy followed by flank
irradiation should be strongly considered. A margin which contains nephrogenic rests has no bearing
on patient prognosis or local disease relapse.
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Table 2. International Society of Pediatric Oncology (SIOP) standardized reporting system for nephron
sparing surgery [38].

Reporting Component Format:
NSS(X)-SRM(n)-PRM(n)-RRP(n%)

1. Surgical Technique

Description

Resection of the tumor with a rim of
normal renal parenchyma

Resection of the tumor without a rim of
normal renal parenchyma

a. NSS(A)—partial nephrectomy

b. NSS(B)—enucleation (marginal resection)

2. Surgical Resection Margin (SRM) Surgeon’s impression of resection margin
a. Intact pseudo-capsule = (0)
b. Doubt intact pseudo-capsule = (1)
c. Definite tumor breach = (2)

3. Pathological Resection Margin (PRM) Microscopic resection margin on permanent pathology
a. Rim of normal renal parenchyma on resection margin (=0)  Exception for nephroblastomatosis
b. Intact pseudo-capsule along resection margin (=1)
¢.  Tumor breach (=2)

Surgeon’s assessment of the percentage of remaining

4. Remaining Renal Parenchyma (RRP) = (1%) normal renal parenchyma

NSS—nephron-sparing surgery, SRM—surgical resection margin, PRM—pathological resection margin,
RRP—remaining renal parenchyma. Table is adapted from reference [38].

2.5.2. Local Relapse

The estimated rate of local recurrence for WT patients is between 8.5% and 13.9% [40,41]. Although
all patients with WT must be monitored closely for local tumor recurrence, the multifocality of BWT,
the young age at which patients develop primary tumors, and the increased prevalence of syndromes
associated with renal compromise make the treatment of tumor recurrence in patients with BWT
especially challenging. In BWT patients, local disease relapse occurs with similar frequency whether
there was a positive margin associated with the original surgical resection or not [39]. Because BWT
patients often have multifocal disease, local relapse may often be due to small multifocal tumors
that are unrecognized at the time of the original surgery rather than true recurrence of a resected
tumor [39]. Positive margins are more frequent after redoing nephron-sparing surgery when compared
to initial nephron-sparing surgery because of increased technical difficulty in delineating the plane
between the tumor and normal kidney in this setting [42]. Local relapse with the development of
diffuse anaplasia confers an exceedingly poor prognosis in this patient population [32]. A biopsy of
local relapse is typically unnecessary if there is evidence of increasing volume on imaging. However,
a biopsy may be required if there is persistent uncertainty regarding the differentiation between disease
relapse and postoperative changes/scar. Salvage chemotherapy is typically instituted prior to redoing
nephron-sparing surgery, unless the relapse is suspected to be from a missed lesion and the redone
nephron-sparing surgery is deemed to be straightforward.

2.5.3. Diffuse Anaplasia

Histology remains the most important component of WT risk stratification, even more than stage.
Diffuse anaplasia (unfavorable histology) occurs in 6% of WT patients, is associated with significant
treatment resistance, and accounts for 50% of WT deaths. Diffuse anaplasia is defined by the multifocal
presence of large hyperchromatic nuclei with abnormal multipolar mitoses. The development of diffuse
anaplasia is likely a late event in tumorigenesis that is related to selection of a TP53 mutant clone
within an initially favorable histology WT [43]. In BWT with anaplasia, there is usually discordant
histology between bilateral tumors. In a series of 27 patients with BWT and diffuse anaplasia treated
on NWTS-4 protocol, only 4 had diffuse anaplasia in both kidney tumors. Furthermore, core needle
biopsy failed to identify diffuse anaplasia in all biopsied patients who were eventually found to have
anaplastic disease [31]. Diffuse anaplasia is more common in BWT than unilateral WT [11]. Diffuse
anaplasia is found in 32% of WT that develop in patients with DHPN [28]. In our series of 42 patients
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who underwent surgery for BWT, there were 6 deaths. Two of these patients were found to have diffuse
anaplasia in their original surgical resection specimens and three had diffuse anaplasia in local disease
relapse specimens [32]. Given these results, we do not advocate for a nephron-sparing approach
when anaplastic histology is known preoperatively by biopsies of tumors that fail to demonstrate
volumetric regression during the first six weeks of neoadjuvant therapy or in instances of anaplasia
detected in biopsy of local recurrence. If diffuse anaplasia is not known by biopsy or strongly suspected
preoperatively, it may be discovered from permanent pathology after NSS. If a positive margin with
diffuse anaplasia is discovered in this setting, we advocate for completion nephrectomy. If anaplasia is
detected, but the surgical margins are negative, we do not advocate for completion of the nephrectomy.

2.5.4. Repeat Nephron-Sparing Surgery

Of 42 patients treated for synchronous BWT in our series, 39 (92.9%) underwent initial bilateral
NSS. Thirteen (31.0%) patients had at least one surgical specimen with a positive margin at initial
operation; three more patients had a specimen with a positive margin at a subsequent surgery
(see below) [32]. Three patients required early repeat NSS within four months of their initial surgery
for suspected residual tumor; 7 patients (16.7%) experienced local tumor recurrence (greater than
four months from initial surgery); 6 of these 7 patients were managed with repeat NSS and 1 was
managed with completion unilateral nephrectomy. Thus, repeat NSS is a viable option for both residual
tumor and local relapse after bilateral NSS for BWT. The presence of diffuse anaplasia in a surgical
resection specimen should be regarded as a contraindication for repeat NSS [32].

2.6. Long-Term Follow-Up/Renal Outcomes

Renal function outcomes were assessed in 36 of 42 surviving patients from our institutional
series with a median follow up time of 3.7 years (range: 0.03-13.4 years). No patients required
chronic dialysis or kidney transplantation. Eleven (30.6%) patients were on an antihypertensive
medication at last follow-up. Of patients not taking anti-hypertensives, two were noted to have
persistent systolic or diastolic blood pressure readings which exceeded the 95th percentile for their
age group and 5 other patients were noted to have readings between the 90th and 95th percentiles for
their age group, considered pre-hypertensive. Five patients had >1+ proteinuria. 8.3% of patients had
stage-2 chronic kidney disease as defined by an estimated glomerular filtration rate (eGFR) less than
90 mL/min/1.73 m? and >1+ proteinuria [32,44]. Thus, acceptable long-term renal outcomes are
achievable with a bilateral nephron-sparing approach.

2.7. Renal Transplantation for Bilateral Wilms Tumor

Bilateral nephrectomy may be required in BWT patients because of disease relapse or
complications of surgical or medical therapy, necessitating hemodialysis and eventual renal
transplantation. Also, bilateral nephrectomy will likely eventually be required for WT patients
with Denys-Drash syndrome, who eventually develop nephropathy and end-stage renal disease.
Transplantation has historically been delayed until 1-2 years after cancer therapy because most WT
relapses occur within 2 years of diagnosis [45]. However, more recent data show WT patients,
even those who underwent early transplant, have outcomes similar to other renal transplant
patients [46]. Given the morbidity and mortality associated with chronic pediatric dialysis,
consideration of earlier transplantation should be made in WT patients with end stage renal disease
and no evidence of cancer.

3. Conclusions

The current treatment strategy for BWT balances acceptable oncologic outcomes with the goal
of maintaining the maximum amount of functioning renal parenchyma. It is imperative that the
pediatric surgeon be intimately aware of the treatment algorithm for BWT when managing such
patients. This algorithm is characterized by avoidance of initial tumor biopsy, three-drug neoadjuvant
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chemotherapy (VAD), assessment of tumor volumetric response at 6 weeks, a decision whether to
continue VAD, perform an open biopsy, or change chemotherapy for a subsequent six weeks, and then
to perform surgical resection in all cases at 12 weeks of therapy. Close collaboration between pediatric
surgeons and the multidisciplinary oncology team is necessary to negotiate this complex algorithm
and to maximize the chances that BWT patients have optimal long-term oncologic and renal outcomes.

Author Contributions: Conceptualization, A.J.M. and A.M.D.; Writing—Original Draft Preparation, A.J.M. and
AM.D.; Writing—Review and Editing, A.].M. and A.M.D.; Supervision, A.M.D.

Funding: This research was funded by the American Lebanese Associated Charities (ALSAC)/St. Jude Children’s
Research Hospital.

Conflicts of Interest: The authors declare no conflict of interest.

References

Davidoff, A.M. Wilms tumor. Adv. Pediatr. 2012, 59, 247-267. [CrossRef] [PubMed]
Charlton, J.; Irtan, S.; Bergeron, C.; Pritchard-Jones, K. Bilateral Wilms tumour: A review of clinical and
molecular features. Expert Rev. Mol. Med. 2017, 19, 8. [CrossRef] [PubMed]

3. Breslow, N.E.; Norris, R.; Norkool, P.A.; Kang, T.; Beckwith, ].B.; Perlman, E.J.; Ritchey, M.L.; Green, D.M.;
Nichols, K.E.; National Wilms Tumor Study Group. Characteristics and outcomes of children with the
wilms tumor-aniridia syndrome: A report from the national Wilms tumor study group. J. Clin. Oncol. 2003,
21, 4579-4585. [CrossRef] [PubMed]

4.  Pelletier, J.; Bruening, W.; Kashtan, C.E.; Mauer, S.M.; Manivel, ].C.; Striegel, ].E.; Houghton, D.C.; Junien, C,;
Habib, R.; Fouser, L.; et al. Germline mutations in the Wilms’ tumor suppressor gene are associated with
abnormal urogenital development in denys-drash syndrome. Cell 1991, 67, 437-447. [CrossRef]

5. Porteus, M.H.; Narkool, P; Neuberg, D.; Guthrie, K.; Breslow, N.; Green, D.M.; Diller, L. Characteristics and
outcome of children with beckwith-wiedemann syndrome and Wilms’ tumor: A report from the national
wilms tumor study group. J. Clin. Oncol. 2000, 18, 2026-2031. [CrossRef] [PubMed]

. Hulff, V. Wilms tumor genetics. Am. ]. Med. Genet. 1998, 79, 260-267. [CrossRef]

7. Interiano, R.B.; Delos Santos, N.; Huang, S.; Srivastava, D.K.; Robison, L.L.; Hudson, M.M.; Green, D.M.;
Davidoff, A.M. Renal function in survivors of nonsyndromic Wilms tumor treated with unilateral radical
nephrectomy. Cancer 2015, 121, 2449-2456. [CrossRef] [PubMed]

8.  Cozzi, D.A,; Zani, A. Nephron-sparing surgery in children with primary renal tumor: Indications and results.
Semin. Pediatr. Surg. 2006, 15, 3-9. [CrossRef] [PubMed]

9.  Davidoff, AM.; Giel, D.W,; Jones, D.P,; Jenkins, ].J.; Krasin, M.].; Hoffer, F.A.; Williams, M.A.; Dome, J.S.
The feasibility and outcome of nephron-sparing surgery for children with bilateral wilms tumor. The st jude
children’s research hospital experience: 1999-2006. Cancer 2008, 112, 2060-2070. [CrossRef] [PubMed]

10. Breslow, N.E.; Collins, A.J.; Ritchey, M.L.; Grigoriev, Y.A.; Peterson, S.M.; Green, D.M. End stage renal disease
in patients with Wilms tumor: Results from the national wilms tumor study group and the united states
renal data system. J. Urol. 2005, 174, 1972-1975. [CrossRef] [PubMed]

11.  Ehrlich, P; Chi, Y.Y,; Chintagumpala, M.M.; Hoffer, FA.; Perlman, E.]J.; Kalapurakal, J.A.; Warwick, A.;
Shamberger, R.C.; Khanna, G.; Hamilton, T.E.; et al. Results of the first prospective multi-institutional
treatment study in children with bilateral Wilms tumor (aren0534): A report from the children’s oncology
group. Ann. Surg. 2017, 266, 470-478. [CrossRef] [PubMed]

12.  Shamberger, R.C.; Haase, G.M.; Argani, P.; Perlman, E.J.; Cotton, C.A.; Takashima, J.; Green, D.M.;
Ritchey, M.L. Bilateral Wilms’ tumors with progressive or nonresponsive disease. J. Pediatr. Surg. 2006,
41, 652-657. [CrossRef] [PubMed]

13.  Vujanic, G.M.; Apps, ].R.; Moroz, V.; Ceroni, F,; Williams, R.D.; Sebire, N.J.; Pritchard-Jones, K. Nephrogenic
rests in Wilms tumors treated with preoperative chemotherapy: The UK SIOP Wilms tumor 2001 trial
experience. Pediatr. Blood Cancer 2017, 64, €26547. [CrossRef] [PubMed]

14. Pritchard-Jones, K.; Fleming, S.; Davidson, D.; Bickmore, W.; Porteous, D.; Gosden, C.; Bard, J.; Buckler, A.;
Pelletier, J.; Housman, D.; et al. The candidate Wilms’ tumour gene is involved in genitourinary development.
Nature 1990, 346, 194-197. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/j.yapd.2012.04.001
http://www.ncbi.nlm.nih.gov/pubmed/22789581
http://dx.doi.org/10.1017/erm.2017.8
http://www.ncbi.nlm.nih.gov/pubmed/28716159
http://dx.doi.org/10.1200/JCO.2003.06.096
http://www.ncbi.nlm.nih.gov/pubmed/14673045
http://dx.doi.org/10.1016/0092-8674(91)90194-4
http://dx.doi.org/10.1200/JCO.2000.18.10.2026
http://www.ncbi.nlm.nih.gov/pubmed/10811666
http://dx.doi.org/10.1002/(SICI)1096-8628(19981002)79:4&lt;260::AID-AJMG6&gt;3.0.CO;2-Q
http://dx.doi.org/10.1002/cncr.29373
http://www.ncbi.nlm.nih.gov/pubmed/25832759
http://dx.doi.org/10.1053/j.sempedsurg.2005.11.002
http://www.ncbi.nlm.nih.gov/pubmed/16458840
http://dx.doi.org/10.1002/cncr.23406
http://www.ncbi.nlm.nih.gov/pubmed/18361398
http://dx.doi.org/10.1097/01.ju.0000176800.00994.3a
http://www.ncbi.nlm.nih.gov/pubmed/16217371
http://dx.doi.org/10.1097/SLA.0000000000002356
http://www.ncbi.nlm.nih.gov/pubmed/28795993
http://dx.doi.org/10.1016/j.jpedsurg.2005.12.004
http://www.ncbi.nlm.nih.gov/pubmed/16567171
http://dx.doi.org/10.1002/pbc.26547
http://www.ncbi.nlm.nih.gov/pubmed/28383760
http://dx.doi.org/10.1038/346194a0
http://www.ncbi.nlm.nih.gov/pubmed/2164159

Children 2018, 5, 134 12 0f13

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Compton, D.A.; Weil, M.M.; Jones, C.; Riccardi, V.M.; Strong, L.C.; Saunders, G.F. Long range physical map
of the wilms’ tumor-aniridia region on human chromosome 11. Cell 1988, 55, 827-836. [CrossRef]

Pelletier, J.; Bruening, W.; Li, EP; Haber, D.A.; Glaser, T.; Housman, D.E. WT1 mutations contribute to
abnormal genital system-development and hereditary Wilms-tumor. Nature 1991, 353, 431-434. [CrossRef]
[PubMed]

Huff, V. Wilms’ tumours: About tumour suppressor genes, an oncogene and a chameleon gene.
Nat. Rev. Cancer 2011, 11, 111-121. [CrossRef] [PubMed]

Hu, M.; Fletcher, J.; McCahon, E.; Catchpoole, D.; Zhang, G.Y.; Wang, Y.M.; Algar, E.M.; Alexander, S.I.
Bilateral Wilms tumor and early presentation in pediatric patients is associated with the truncation of the
Wilms tumor 1 protein. |. Pediatr. 2013, 163, 224-229. [CrossRef] [PubMed]

Koesters, R.; Niggli, F.; von Knebel Doeberitz, M.; Stallmach, T. Nuclear accumulation of beta-catenin protein
in Wilms’ tumours. J. Pathol. 2003, 199, 68-76. [CrossRef] [PubMed]

Maiti, S.; Alam, R.; Amos, C.I; Huff, V. Frequent association of beta-catenin and WT1 mutations in Wilms
tumors. Cancer Res. 2000, 60, 6288-6292. [PubMed]

Royer-Pokora, B.; Beier, M.; Brandt, A.; Duhme, C.; Busch, M.; de Torres, C.; Royer, H.D.; Mora, J.
Chemotherapy and terminal skeletal muscle differentiation in WT1-mutant Wilms tumors. Cancer Med. 2018,
7,1359-1368. [CrossRef] [PubMed]

Green, D.M.; Breslow, N.E.; Beckwith, J.B.; Norkool, P. Screening of children with hemihypertrophy, aniridia,
and beckwith-wiedemann syndrome in patients with Wilms tumor: A report from the national wilms tumor
study. Med. Pediatr. Oncol. 1993, 21, 188-192. [CrossRef] [PubMed]

Mussa, A.; Molinatto, C.; Baldassarre, G.; Riberi, E.; Russo, S.; Larizza, L.; Riccio, A.; Ferrero, G.B. Cancer risk
in beckwith-wiedemann syndrome: A systematic review and meta-analysis outlining a novel (EPI)genotype
specific histotype targeted screening protocol. J. Pediatr. 2016, 176, 142-149. [CrossRef] [PubMed]

Scott, R.H.; Douglas, J.; Baskcomb, L.; Huxter, N.; Barker, K.; Hanks, S.; Craft, A.; Gerrard, M.; Kohler, J.A;
Levitt, G.A,; et al. Constitutional 11p15 abnormalities, including heritable imprinting center mutations,
cause nonsyndromic Wilms tumor. Nat. Genet. 2008, 40, 1329-1334. [CrossRef] [PubMed]

Brioude, E,; Kalish, J.M.; Mussa, A.; Foster, A.C.; Bliek, J.; Ferrero, G.B.; Boonen, S.E.; Cole, T.; Baker, R.;
Bertoletti, M.; et al. Expert consensus document: Clinical and molecular diagnosis, screening and
management of beckwith-wiedemann syndrome: An international consensus statement. Nat. Rev. Endocrinol.
2018, 14, 229-249. [CrossRef] [PubMed]

Lange, J.; Peterson, S.M.; Takashima, J.R.; Grigoriev, Y.; Ritchey, M.L.; Shamberger, R.C.; Beckwith, ]J.B.;
Perlman, E.; Green, D.M.; Breslow, N.E. Risk factors for end stage renal disease in non-WT1-syndromic
wilms tumor. J. Urol. 2011, 186, 378-386. [CrossRef] [PubMed]

Stabouli, S.; Printza, N.; Dotis, J.; Matis, A.; Koliouskas, D.; Gombakis, N.; Papachristou, F. Perilobar
nephroblastomatosis: Natural history and management. Case Rep. Pediatr. 2014, 2014, 756819. [CrossRef]
[PubMed]

Furtwangler, R.; Schmolze, M.; Graber, S.; Leuschner, I.; Amann, G.; Schenk, J.P; Niggli, F; Kager, L.; von
Schweinitz, D.; Graf, N. Pretreatment for bilateral nephroblastomatosis is an independent risk factor for
progressive disease in patients with stage V nephroblastoma. Klin. Padiatr. 2014, 226, 175-181. [CrossRef]
[PubMed]

Perlman, E.J.; Faria, P.; Soares, A.; Hoffer, F.; Sredni, S.; Ritchey, M.; Shamberger, R.C.; Green, D.; Beckwith, J.B.;
National Wilms Tumor Study Group. Hyperplastic perilobar nephroblastomatosis: Long-term survival of
52 patients. Pediatr. Blood Cancer 2006, 46, 203-221. [CrossRef] [PubMed]

Hamilton, T.E.; Ritchey, M.L.; Haase, G.M.; Argani, P.; Peterson, S.M.; Anderson, J.R.; Green, D.M,;
Shamberger, R.C. The management of synchronous bilateral Wilms tumor: A report from the national
wilms tumor study group. Ann. Surg. 2011, 253, 1004-1010. [CrossRef] [PubMed]

Hamilton, T.E.; Green, D.M.; Perlman, E.J.; Argani, P.; Grundy, P.; Ritchey, M.L.; Shamberger, R.C. Bilateral
Wilms’ tumor with anaplasia: Lessons from the national Wilms’ tumor study. J. Pediatr. Surg. 2006,
41,1641-1644. [CrossRef] [PubMed]

Davidoff, A.M.; Interiano, R.B.; Wynn, L.; Delos Santos, N.; Dome, J.S.; Green, D.M.; Brennan, R.C;
McCarville, M.B.; Krasin, M.J.; Kieran, K.; et al. Overall survival and renal function of patients with
synchronous bilateral Wilms tumor undergoing surgery at a single institution. Ann. Surg. 2015, 262, 570-576.
[CrossRef] [PubMed]


http://dx.doi.org/10.1016/0092-8674(88)90138-9
http://dx.doi.org/10.1038/353431a0
http://www.ncbi.nlm.nih.gov/pubmed/1654525
http://dx.doi.org/10.1038/nrc3002
http://www.ncbi.nlm.nih.gov/pubmed/21248786
http://dx.doi.org/10.1016/j.jpeds.2012.12.080
http://www.ncbi.nlm.nih.gov/pubmed/23403252
http://dx.doi.org/10.1002/path.1248
http://www.ncbi.nlm.nih.gov/pubmed/12474228
http://www.ncbi.nlm.nih.gov/pubmed/11103785
http://dx.doi.org/10.1002/cam4.1379
http://www.ncbi.nlm.nih.gov/pubmed/29542868
http://dx.doi.org/10.1002/mpo.2950210307
http://www.ncbi.nlm.nih.gov/pubmed/8095320
http://dx.doi.org/10.1016/j.jpeds.2016.05.038
http://www.ncbi.nlm.nih.gov/pubmed/27372391
http://dx.doi.org/10.1038/ng.243
http://www.ncbi.nlm.nih.gov/pubmed/18836444
http://dx.doi.org/10.1038/nrendo.2017.166
http://www.ncbi.nlm.nih.gov/pubmed/29377879
http://dx.doi.org/10.1016/j.juro.2011.03.110
http://www.ncbi.nlm.nih.gov/pubmed/21683387
http://dx.doi.org/10.1155/2014/756819
http://www.ncbi.nlm.nih.gov/pubmed/25114825
http://dx.doi.org/10.1055/s-0034-1371840
http://www.ncbi.nlm.nih.gov/pubmed/24819388
http://dx.doi.org/10.1002/pbc.20386
http://www.ncbi.nlm.nih.gov/pubmed/15816029
http://dx.doi.org/10.1097/SLA.0b013e31821266a0
http://www.ncbi.nlm.nih.gov/pubmed/21394016
http://dx.doi.org/10.1016/j.jpedsurg.2006.05.053
http://www.ncbi.nlm.nih.gov/pubmed/17011261
http://dx.doi.org/10.1097/SLA.0000000000001451
http://www.ncbi.nlm.nih.gov/pubmed/26366536

Children 2018, 5, 134 13 0f 13

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Kieran, K.; Davidoff, A.M. Nephron-sparing surgery for bilateral Wilms tumor. Pediatr. Surg. Int. 2015,
31, 229-236. [CrossRef] [PubMed]

Fuchs, ].; Szavay, P; Seitz, G.; Handgretinger, R.; Schafer, J.F.; Warmann, S.W. Nephron sparing surgery for
synchronous bilateral nephroblastoma involving the renal Hilus. J. Urol. 2011, 186, 1430-1436. [CrossRef]
[PubMed]

Giron-Vallejo, O.; Garcia-Calderon, D.; Ruiz-Pruneda, R.; Cabello-Laureano, R.; Domenech-Abellan, E.;
Fuster-Soler, ].L.; Ruiz-Jimenez, ].I. Three-dimensional printed model of bilateral Wilms tumor: A useful tool
for planning nephron sparing surgery. Pediatr. Blood Cancer 2018, 65, €26894. [CrossRef] [PubMed]

Millar, A.J.; Davidson, A.; Rode, H.; Numanoglu, A.; Hartley, P.S.; Desai, F. Nephron-sparing surgery for
bilateral Wilms’ tumours: A single-centre experience with 23 cases. Afr. |. Paediatr. Surg. 2011, 8, 49-56.
[CrossRef] [PubMed]

Dome, ].S.; Graf, N.; Geller, ].I; Fernandez, C.V.; Mullen, E.A.; Spreafico, F.; Van den Heuvel-Eibrink, M.;
Pritchard-Jones, K. Advances in Wilms tumor treatment and biology: Progress through international
collaboration. J. Clin. Oncol. 2015, 33, 2999-3007. [CrossRef] [PubMed]

Godzinski, J.; Graf, N.; Audry, G. Current concepts in surgery for Wilms tumor—The risk and
function-adapted strategy. Eur. J. Pediatr. Surg. 2014, 24, 457-460. [PubMed]

Kieran, K.; Williams, M.A.; Dome, ].S.; McGregor, L.M.; Krasin, M.].; Davidoff, A.M. Margin status and tumor
recurrence after nephron-sparing surgery for bilateral Wilms tumor. . Pediatr. Surg. 2013, 48, 1481-1485.
[CrossRef] [PubMed]

Shamberger, R.C.; Guthrie, K.A.; Ritchey, M.L.; Haase, G.M.; Takashima, J.; Beckwith, ].B.; D’Angio, G.J.;
Green, D.M.; Breslow, N.E. Surgery-related factors and local recurrence of Wilms tumor in national Wilms
tumor study 4. Ann. Surg. 1999, 229, 292-297. [CrossRef] [PubMed]

Dome, J.S.; Liu, T.; Krasin, M.; Lott, L.; Shearer, P.; Daw, N.C; Billups, C.A.; Wilimas, ].A. Improved survival
for patients with recurrent wilms tumor: The experience at St. Jude children’s research hospital. J. Pediatr.
Hematol. Oncol. 2002, 24, 192-198. [CrossRef] [PubMed]

Kieran, K.; Williams, M.A.; McGregor, L.M.; Dome, ].S.; Krasin, M.J.; Davidoff, A.M. Repeat nephron-sparing
surgery for children with bilateral Wilms tumor. J. Pediatr. Surg. 2014, 49, 149-153. [CrossRef] [PubMed]
Ooms, A H.; Gadd, S.; Gerhard, D.S.; Smith, M.A.; Guidry Auvil, ].M.; Meerzaman, D.; Chen, Q.R.; Hsu, C.H;
Yan, C.; Nguyen, C.; et al. Significance of TP53 mutation in wilms tumors with diffuse anaplasia: A report
from the children’s oncology group. Clin. Cancer Res. 2016, 22, 5582-5591. [CrossRef] [PubMed]

Interiano, R.B.; McCarville, M.B.; Santos, N.D.; Mao, S.; Wu, J.; Dome, J.S.; Kieran, K.; Williams, M.A.;
Brennan, R.C.; Krasin, M.J.; et al. Comprehensive renal function evaluation in patients treated for
synchronous bilateral Wilms tumor. J. Pediatr. Surg. 2017, 52, 98-103. [CrossRef] [PubMed]

Kist-van Holthe, J.E.; Ho, P.L.; Stablein, D.; Harmon, W.E.; Baum, M.A. Outcome of renal transplantation
for Wilms’ tumor and denys-drash syndrome: A report of the north American pediatric renal transplant
cooperative study. Pediatr. Transplant. 2005, 9, 305-310. [CrossRef] [PubMed]

Grigoriev, Y.; Lange, J.; Peterson, S.M.; Takashima, ].R.; Ritchey, M.L.; Ko, D.; Feusner, ].H.; Shamberger, R.C.;
Green, D.M.; Breslow, N.E. Treatments and outcomes for end-stage renal disease following Wilms tumor.
Pediatr. Nephrol. 2012, 27, 1325-1333. [CrossRef] [PubMed]

® © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1007/s00383-015-3668-1
http://www.ncbi.nlm.nih.gov/pubmed/25633157
http://dx.doi.org/10.1016/j.juro.2011.05.068
http://www.ncbi.nlm.nih.gov/pubmed/21855944
http://dx.doi.org/10.1002/pbc.26894
http://www.ncbi.nlm.nih.gov/pubmed/29230948
http://dx.doi.org/10.4103/0189-6725.78669
http://www.ncbi.nlm.nih.gov/pubmed/21478587
http://dx.doi.org/10.1200/JCO.2015.62.1888
http://www.ncbi.nlm.nih.gov/pubmed/26304882
http://www.ncbi.nlm.nih.gov/pubmed/25478666
http://dx.doi.org/10.1016/j.jpedsurg.2013.02.033
http://www.ncbi.nlm.nih.gov/pubmed/23895958
http://dx.doi.org/10.1097/00000658-199902000-00019
http://www.ncbi.nlm.nih.gov/pubmed/10024113
http://dx.doi.org/10.1097/00043426-200203000-00007
http://www.ncbi.nlm.nih.gov/pubmed/11990305
http://dx.doi.org/10.1016/j.jpedsurg.2013.09.048
http://www.ncbi.nlm.nih.gov/pubmed/24439600
http://dx.doi.org/10.1158/1078-0432.CCR-16-0985
http://www.ncbi.nlm.nih.gov/pubmed/27702824
http://dx.doi.org/10.1016/j.jpedsurg.2016.10.027
http://www.ncbi.nlm.nih.gov/pubmed/27856008
http://dx.doi.org/10.1111/j.1399-3046.2005.00311.x
http://www.ncbi.nlm.nih.gov/pubmed/15910385
http://dx.doi.org/10.1007/s00467-012-2140-x
http://www.ncbi.nlm.nih.gov/pubmed/22430485
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Biology and Genetics 
	Nephrogenic Rests and Nephroblastomatosis 
	Diagnosis and Neoadjuvant Therapy 
	Surgical Management 
	Standardized Documentation of Nephron-Sparing Surgery 
	Difficult Surgical Scenarios 
	Positive Margins 
	Local Relapse 
	Diffuse Anaplasia 
	Repeat Nephron-Sparing Surgery 

	Long-Term Follow-Up/Renal Outcomes 
	Renal Transplantation for Bilateral Wilms Tumor 

	Conclusions 
	References

