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Abstract: Neonatal abstinence syndrome (NAS) presents with a varying severity of withdrawal signs
and length of treatment (LOT). We examined the course and relevance of each of the NAS withdrawal
signs during treatment in a sample of 182 infants with any prenatal opioid exposure, gestational
age ≥ 35 weeks, without other medical conditions, and meeting the criteria for pharmacological
treatment. Infants were monitored using the Finnegan Neonatal Abstinence Scoring Tool. Daily
mean Finnegan scores were estimated using linear mixed models with random subject effects to
account for repeated withdrawal scores from the same subject. Daily item prevalence was estimated
using generalized estimating equations with a within-subject exchangeable correlation structure. The
median LOT was 12.86 days. The prevalence of withdrawal signs decreased from day one to day
three of treatment. However, certain central nervous system (CNS) and gastrointestinal (GI) signs
showed sporadic increases in prevalence notable around two weeks of treatment, accounting for
increases in Finnegan scores that guided pharmacotherapy. We question whether the resurgence of
signs with a prolonged LOT is mainly a consequence of opioid tolerance or withdrawal. Monitoring
CNS and GI signs throughout treatment is crucial. Future studies directed to better understand this
clinical phenomenon may lead to the refining of NAS pharmacotherapy and perhaps the discovery of
treatment alternatives.

Keywords: neonatal abstinence syndrome (NAS); neonatal opioid withdrawal syndrome (NOWS);
CNS/GI withdrawal signs trajectory; Finnegan neonatal abstinence scoring tool (FNAST); gut–brain
axis; length of treatment (LOT); withdrawal sign resurgence

1. Introduction

The incidence of infants born experiencing neonatal abstinence syndrome (NAS) has
increased with the continued rise in opioid use during pregnancy [1]. Between 2012 and
2016, the incidence of NAS rose from 4.6 to 7.3 per 1000 in in-hospital live births [2,3].
Because most reported NAS cases were associated with prenatal opioid exposure, NAS has
been referred to recently as neonatal opioid withdrawal syndrome (NOWS) [4]. However,
withdrawal manifestations could not be attributable solely to opioid exposure, since opioids
are often used with tobacco, alcohol, and/or other drugs, legal or illicit. Thus, NAS would
be a more appropriate term [5].

Infants with NAS often have a prolonged length of stay that is associated with the
duration of pharmacological treatment [6,7]. The syndrome occurs in a spectrum of severity
with its onset dependent on exposure type [6,8]. In a seminal article by Desmond, the careful
clinical monitoring of infants with withdrawal manifestations, primarily due to heroin,
methadone, or barbiturates, revealed different phases or variation in the clinical course of
NAS [8]. Some infants may have minimal transient signs of withdrawal undistinguishable
from typical newborn behavior. Others may have a delayed onset of a few days of overt
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signs, a step-wise increase in severity, an intermittent appearance of signs, or a bi-phasic
course that shows improvement at around two weeks followed by the resurgence of signs
that may last for several weeks to months [8]. With the similarity of newborn withdrawal
manifestation to those of drug-dependent adults as assessed by a scoring tool [9], Finnegan
and colleagues created a 21-item scoring tool to identify withdrawal signs involving the
central nervous system (CNS), as well as the metabolic, vasomotor and/or respiratory
(MVR), and gastrointestinal (GI) systems [10]. The identification of each observed sign
needed specific non-pharmacological interventions [11]. The Finnegan neonatal abstinence
scoring tool (FNAST) is now the most widely used tool for NAS assessment, and yet, it is
criticized for its length, complexity, and subjectivity [6]. The complexity of the FNAST led
to the development of alternatives [12–15] and a recommendation to abandon the FNAST
altogether [16].

The proposed alternatives to the FNAST [17] have included the shortened FNAST [12–15],
Eat, Sleep, Console (ESC) [18], skin conductance [19], infant pupillary diameter [20], and
acoustic characteristics of the infant cry [21]. The shortened tools, as summarized by Miller
et al. [22], were meant to either “optimize” covariance with the FNAST or predict the need
for pharmacological treatment.

Not all infants with NAS require pharmacologic treatment. Roughly 40–80% will
require medication, usually with morphine [6,23], with the dosage titrated based on the
severity of the clinical signs as guided by the total FNAST score (FS), the sum of items’
scores during each FNAST assessment. The response to therapy or length of treatment
(LOT) varies from a few days to several weeks, or even months, but it is unclear whether the
treatment response relates to the differences in the patterns or course of NAS as described
several decades ago [8], the type of pharmacotherapy notwithstanding.

The importance of individual FNAST items at the point of treatment initiation has been
studied [22]. However, the trajectory of each of the infant’s signs as indicated by FS, assessed
at 3 to 4 h intervals over the course of treatment, is unknown. We aimed to identify what
we may miss if we forgo the FNAST altogether. We therefore determined how relevant each
FNAST item is after infants start pharmacological treatment and how this relates to serial
FS determinations. Specifically, we looked at mean FS over time and prevalence trajectories
to determine which items or signs seem to diminish with treatment, which items do not,
and which items tend to still be important weeks after treatment initiation. We explored
if the LOT is associated with item prevalence trajectories. Knowledge of the trajectories
of an infant’s NAS manifestations during pharmacological treatment could be useful as
facilities decide which alternatives to consider by solidifying the understanding of the
pertinent manifestations to be included in any alternative assessment [24]. By identifying
specific signs that are commonly present in infants requiring long-term treatment for NAS,
there is a potential for personalized clinical management focused specifically on those
important signs.

2. Materials and Methods
2.1. Study Methods

This study was approved by the Institutional Review Board at the University of
Kentucky. Using electronic medical records, we collected data on infants diagnosed with
NAS between 2018 and 2020 using ICD-10 codes P96.1 or P04.9. The infants for this
study were a part of a retrospective cohort (n = 369) to evaluate the different shortened or
simplified FNAST [22]. Only those that met treatment criteria (n = 182) were included in
this current study in addition to the following: any prenatal opioid exposure, gestational
age ≥ 35 weeks, FS assessed during hospital stay, and with no other medical conditions.
The criteria for initiating treatment were an FS score of ≥8 over three consecutive time
periods or an FS score of ≥12 over two consecutive time periods. Infants had FS assessed
every 3 h by trained registered nurses. The standard hospital treatment protocol included
the initiation of oral morphine at 0.05 mg/kg per dose given every 3 h. If there was no
response after 12 to 24 h, there were subsequent dose escalations by 0.0125 mg/kg/dose
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until a maximum dose of 0.12 mg/kg/dose was reached. In cases with no improvement,
adjunctive treatment with phenobarbital or clonidine was given. The FS guided the dosage
titration. All infants received non-pharmacological interventions to mitigate withdrawal
signs; rooming-in and breastfeeding were encouraged [11,25–27].

2.2. Statistical Analyses

Using the dataset collected from a previous study that addressed the potential clinical
utility of four shortened scores relative to the FNAST [22], this study calculated days of
treatment as the time elapsed since treatment initiation in a more refined approach. All
available observations during the first 24 h post-treatment initiation period were considered
the first day of treatment. The second day of treatment would be greater than 24 h and up
to 48 h post-initiation and so on. The analyses included the daily mean FS scores and item
prevalence through the first 36 days of treatment, corresponding approximately to the 95th
percentile of our sample’s LOT. For comparisons, we created two groups of infants based
on our sample’s median LOT and compared their mean scores and item prevalence. We
then asked if the LOT was associated with item prevalence trajectories.

To estimate daily mean scores and to obtain corresponding 95% confidence intervals,
linear mixed models with random subject effects were used to account for repeated scores
from the same subject [28]. To estimate daily item prevalence and to obtain corresponding
95% confidence intervals, generalized estimating equations with a within-subject exchange-
able correlation structure were used [29]. The 95% confidence intervals are presented in
the figures for estimates to provide a measure of precision, as the results were meant to be
descriptive with respect to the remaining infants on the given day. Confidence intervals
were also presented for the plots comparing the two groups of infants by LOT ≤ 13 and
>13 days. For convenience, we presented a select few within the manuscript, including two
plots of prevalence corresponding to a combination of select CNS and GI signs. Figures
were created using base graphics in R 4.2.1 [30,31] and PRISM GraphPad [32].

Since mean FS scores notably decreased from the first to the third day of treatment,
an exploratory analysis was done to determine how strongly mean daily FS during the
first three days of treatment were associated with the LOT by using correlations and
multiple linear regression. Specifically, bivariate associations were assessed using Pearson’s
correlations between the daily mean scores and the natural log of the LOT. To determine
the most significant of the first three treatment days for predicting the natural log of the
LOT and how strongly these days are associated with the LOT, we used multiple linear
regression and backward elimination at the 0.05 significance level with two-sided t-tests.
The natural log of the LOT was used to ensure statistical assumptions were met. Analyses
were conducted in SAS version 9.4 [33].

3. Results
3.1. Sample of Infants Studied

We utilized data from a total of 182 unique infants having a median LOT of 12.86 days
(Figure 1). Rounding to 13 days as our cutoff for creating treatment groups for comparison,
one infant had a LOT between 12.86 and 13 days, and therefore 92 infants were treated for
fewer than 13 days, and 90 were treated for more than 13 days. The number of infants and
the total number of FS contributed per day are given in Figure 2A,B, respectively.
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of Finnegan Scores of treated infants analyzed per day, with plots separated by LOT ≤ 13 days or
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3.2. Mean FS and Prediction of the LOT

Overall mean FS decreased from the 1st to the 3rd day of treatment, followed by a
slight increase, and stayed relatively constant through the first 13 days regardless of the
duration of treatment. Figure 3A provides plots of estimated daily mean FS scores for all
infants. The mean scores were lower in the group treated for less than 13 days (Figure 3B),
while those requiring longer a duration of treatment beyond 13 days showed sporadic
increases in mean scores and tended to be of greater value. However, the decreases in
scores within the first 3 days of treatment did not strongly predict the LOT. For any of the
mean scores on each of the first three days of treatment, Pearson’s correlations with the
natural log of the LOT ranged from 0.41 to 0.43 and were statistically significant (p < 0.001).
Linear regression results show that, once mean scores on day 1 and day 3 were accounted
for, day 2 mean scores were neither statistically (p > 0.05) nor clinically (change in R2 of
≤0.01) significant. Models incorporating both day 1 and day 3 mean scores as predictors
(p < 0.05) resulted in R2 values ranging from 0.23 to 0.29, p < 0.05.
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Figure 3. (A,B) The means (95% CI) of the Finnegan scores (FNAS Score) are plotted over time
(duration or day of treatment) for all infants in the sample in panel A, while in panel B, the means
(95% CI) of the Finnegan scores are plotted separately for those with a LOT ≤ 13 and a LOT > 13 days.

3.3. FNAST Item Prevalence and LOT

In general, as mean FS decreased in the first three days of treatment, most notable
drops in prevalence in many items were observed. Subsequently, prevalence varied across
items; some with sporadic increases over time, while some decreased or had no apparent
pattern. Specific clinical signs showed sporadic prevalence among infants with an extended
need for treatment.

Among CNS signs, the items cry and/or sleep showed dynamic and sporadic changes,
as shown in Figure 4A,B. The initial prevalence of continuous high-pitched crying (Supple-
mental Figure S1A–D) was greater than 25% and dropped to 10% by the third day, with a
more marked decrease in those with a short LOT. About 2 weeks after the start of treatment,
prevalence increased to about 15%, with slight variation. Sleep duration (Supplemental
Figure S2A–F) less than one or two hours after feeding followed a similar pattern as cry
and with sporadic increases in prevalence with a longer LOT.
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Figure 4. (A,B) Daily mean prevalence (95% CI) of excessive or continuous high-pitched crying
and/or sleep < 1 h in all infants (A) and when infants were grouped as to length of treatment (B).
Note the sporadic increases in prevalence in infants with a LOT > 13 days.

The other CNS signs, i.e., increased tone, hyperactive Moro reflex, and tremors when
disturbed, had the greatest prevalence and were estimated initially at 95%, 75%, and 85%,
respectively, but were not associated with the LOT. (Supplemental Figure S3A–F). Undis-
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turbed tremors, myoclonic jerks, and generalized convulsions had a very low prevalence or
were extremely rare.

As to GI signs, the initial prevalence of regurgitation or projectile vomiting of around
10% and loose or watery stools of around 15% demonstrated small decreases initially
(Figure 5A,B and Supplemental Figure S4A–D). However, after 2 weeks, those still requiring
treatment showed sporadic increases, having prevalences that were close if not higher than
the initial prevalence. Excessive sucking and poor feeding (Supplemental Figure S5A–D)
followed similar patterns in trajectories; these were more prevalent initially (20%), but
subsequent peak increases were at values lower than at the initiation of treatment in those
with a longer LOT.

Children 2024, 11, x FOR PEER REVIEW  6  of  12 
 

 

 

Figure 4.  (A,B) Daily mean prevalence  (95% CI) of excessive or  continuous high-pitched  crying 

and/or sleep < 1 h in all infants (A) and when infants were grouped as to length of treatment (B). 

Note the sporadic increases in prevalence in infants with a LOT > 13 days. 

As to GI signs, the initial prevalence of regurgitation or projectile vomiting of around 

10% and loose or watery stools of around 15% demonstrated small decreases initially (Fig-

ure 5A,B and Supplemental Figure S4A–D). However, after 2 weeks, those still requiring 

treatment  showed  sporadic  increases, having prevalences  that were close  if not higher 

than  the  initial prevalence. Excessive  sucking  and poor  feeding  (Supplemental Figure 

S5A–D) followed similar patterns in trajectories; these were more prevalent initially (20%), 

but subsequent peak increases were at values lower than at the initiation of treatment in 

those with a longer LOT. 

 

Figure 5. (A,B) Daily prevalence (95% CI) of loose or watery stools and/or regurgitation or projectile 

vomiting in all infants over the course of treatment (A) and in infants separated by shorter versus 

longer length of treatment group (B). 

Among metabolic, vasomotor, and respiratory (MVR) signs, initial prevalence varied 

from around 3%  to 35%—lowest with  sweating and highest with mottling. These  two 

signs showed either slight or marked but steady  increase over the course of treatment, 

with sporadic increases after two weeks (Supplemental Figure S6A–D). The prevalence of 

tachypnea and  fever  (Supplemental Figures S6E,F and S7A,B) decreased slightly at  the 

initial days of treatment, followed by an increase in the first week, and plateaued thereaf-

ter; sporadic increases were also evident later through treatment duration (Supplemental 

Figures S6D and S7B). 

   

Figure 5. (A,B) Daily prevalence (95% CI) of loose or watery stools and/or regurgitation or projectile
vomiting in all infants over the course of treatment (A) and in infants separated by shorter versus
longer length of treatment group (B).

Among metabolic, vasomotor, and respiratory (MVR) signs, initial prevalence varied
from around 3% to 35%—lowest with sweating and highest with mottling. These two
signs showed either slight or marked but steady increase over the course of treatment,
with sporadic increases after two weeks (Supplemental Figure S6A–D). The prevalence
of tachypnea and fever (Supplemental Figures S6E,F and S7A,B) decreased slightly at the
initial days of treatment, followed by an increase in the first week, and plateaued thereafter;
sporadic increases were also evident later through treatment duration (Supplemental
Figures S6D and S7B).

4. Discussion

Studies have associated certain items in the FNAST with the need to start treatment [14,22].
Through the use of the FNAST in monitoring infants with NAS, we were able to extend our
findings to the characterization of each of the many withdrawal signs as they relate to the
LOT. We noted the heterogeneity in the prevalence trajectories of these signs, which became
prominent with the longer duration of treatment. The mean FS decreased initially from
day one to day three day of treatment, then leveled out to a mean FS score of around seven
at least through the first two weeks of treatment. In infants needing prolonged treatment,
this initial overall improvement was followed by sporadic changes in the presentation of
CNS (sleep and cry) and GI (regurgitation/vomiting and loose stools) signs. Thus, the
improvement in withdrawal signs noted within a few days of pharmacological treatment
initiation was a weak predictor of the LOT.

The changes in mean FS during the first few days into treatment were consistent with
the decreased prevalence of most of the withdrawal signs, except for the MVR disturbances
(fever, mottling, sweating, nasal stuffiness, sneezing, and increased respiratory rate), which
were more common than other signs but were likely to increase over the course of treatment
with less variability in prevalence. Although the prevalence of each MVR sign increased,
the contribution of each of these less severe signs to the FS, if present, was small (one
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point). On the other hand, signs such as prolonged crying and decreased sleep duration
contributed two to three points to the FS. Therefore, changes in treatment dosing in the
management of NAS based solely on total FNAST scores as done for treatment initiation
would discount the impact of the severity and sporadic resurgence of certain signs. It is
vital that the treatment monitoring of NAS not be based solely on the total FNAST scores.

Considering the interest in using an alternative tool rather than the FNAST, it would
make sense that such a tool would include the items that notably change in prevalence over
time. Skin conductance [19], infant pupillary diameter [20], and acoustic characteristics of
the infant cry [21], while potentially useful in identifying exposure to substances or need
for pharmacological management, do not monitor for the pertinent manifestations showing
resurgence during prolonged treatment. It appears that the shortened FNAST tools of
Gomez et al. and Chervoneva et al. provide an attractive option in the clinical setting, not
only in determining a need to initiate treatment but also for monitoring NAS manifestations
during treatment [13,15]. Alternatively, there has been an increased interest in using ESC in
infants with NAS [34–37]. Unlike the FNAST-based shortened tools, ESC does not address
the manifestations we found pertinent over time while monitoring therapy; thus, its use
may fail to identify items of clinical importance. Furthermore, while this approach has
gained popularity, long-term outcome studies are still needed, and the tool may not be
applicable for the clinical monitoring of all populations [37,38].

We can only speculate on the possible underlying basis of our findings. Morphine
is commonly used as the drug of choice to treat NAS [23], with clonidine or phenobarbi-
tal as an adjunct medication if morphine alone cannot control withdrawal signs [39,40].
Morphine was the primary treatment in our NAS patients. When considering the infants
who required medications to treat withdrawal signs for greater than the median 13 days in
our study, there is a possibility that the resurgence of symptoms may have been related
to opioid tolerance, and improvement in manifestations would be thereby noted when
increasing the morphine dose [41]. Alternatively, rather than withdrawal itself, an opioid
effect such as in hyperalgesia, a decrease in dose may be an option [41–43]. Other than
tolerance or withdrawal, differences in drug clearance due to organ maturation may con-
tribute to these differences in the LOT [44,45]. Furthermore, pharmacogenetic variability
in genes mediating drug transport, metabolism, and response could be involved [46–50].
Opioids affect multiple organ systems, and, for example, a high number of µ-receptors
are expressed on neurons of the enteric nervous and GI systems [51]. It is possible that
what we have observed could be related to the opioid effect on the histamine system and
the microbiome [52]. We speculate that the regurgitation or vomiting may be related to
opioid-induced vomiting with suggested mechanisms of histamine release, activation of
the mu-receptors in the chemoreceptor trigger zone, and delayed gastric emptying [52,53],
suggesting that patients may benefit from Histamine-1 and Histamine-2 receptor blockers.
Interestingly, Maguire et al. suggested that opioid exposure during gestation and the devel-
opment of NAS at birth may lead to a dysbiotic gut [54]. This concept was also raised by
Sealschott and colleagues [55]. Consistent with crying as a manifestation in NAS, prolonged
crying is also noted in colicky babies with a dysbiotic microbiome [56]. Thus, it is possible
that the opioid effects on the gut–brain axis could explain some of our findings [54,56,57];
these speculations warrant further investigation.

As for clinical implications, our findings support the importance of optimizing the
treatment management of NAS in the neonatal period. Attributing the signs during pro-
longed treatment strictly to substance withdrawal may overlook the possible biological
factors that may need to be addressed by interventions other than dose titration. Maternal
emotional or psychological situations while caring for the infant during in-hospital treat-
ment could affect the infant’s neurobehavioral state. The CNS signs of prolonged crying
and sleep disturbances may render caring for an infant with NAS stressful, which may
affect caretaker–child interaction and bonding. GI signs, if severe, may lead to sub-optimal
growth and failure to thrive.
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Parents or caretakers need education regarding the possibility of resurgence or per-
sistence of manifestations post-discharge especially after a short hospital stay, a common
primary outcome for many NAS quality care initiatives. Unfortunately, the length of stay
or LOT may not be an ideal outcome measure. Multiple issues have been raised in NAS
beyond discharge even as early as the first year of life, such as the risk of sudden unex-
pected deaths, maltreatment, frequent hospitalization, and emergency room visits [58]. The
encounter between the clinician and child in the newborn period provides early opportu-
nities not only to improve the management of NAS but also to promote the plan of safe
care, enhance post-discharge outcomes, and minimize and/or prevent morbidities from a
multifactorial interplay of risk factors [5,58].

Our study had limitations. First, the data were collected retrospectively at a single
center. Second, there was increased variability in the prevalence of signs over time that
might be explained by attrition after about half of the infants had completed treatment.
We were not able to analyze the effects of the maternal use of other drugs or types and
quantities of opioids, as the information was not included in the deidentified dataset used
in this study. Lastly, the LOT may have been affected by maternal lifetime experiences,
access to treatment [59–61], and other biological and genetic factors [62–67] that were not
addressed in this study.

5. Conclusions

From our retrospective study, the finding of the sporadic recurrence of signs over
time is new and could pave the way for future research on the effects of prenatal opioid
exposure that may also be heightened by postnatal treatment exposure. Furthermore, it
is important to fully understand why and how infants with NAS differ in response to
pharmacologic treatment. More attention needs to be directed to individual withdrawal
signs, any relationship between signs, the variable trajectory from one sign to the other,
and the careful consideration for possible opioid effects when observing a resurgence of
these signs in the course of treatment. The use of a comprehensive tool such as the FNAST,
beyond the calculation of total scores, offers the advantage of a careful and thorough
assessment of infants with NAS, before, during, and at the completion of treatment. Until
we have a better understanding of why and when the resurgence of certain manifestations
occurs during treatment, it may not be time to abandon the FNAST. Lastly, our findings
do call for future studies to explore prenatal and postnatal opioid exposure effects on the
gut–brain axis and microbiomes. Research on the underlying mechanisms that may explain
CNS and GI manifestations in NAS has the potential to discover treatment that will prevent
or mitigate the manifestations related to opioid dysbiosis.
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//www.mdpi.com/article/10.3390/children11020203/s1. Figure S1: Trajectory of high-pitched
crying and continuous crying for all infants and by treatment groups; Figure S2: Trajectory of
sleep < 1 h, <2 h, and <3 h overall and by treatment groups; Figure S3: Prevalence of tremors when
disturbed, tremors when undisturbed, and increased tone in all infants and by treatment groups;
Figure S4: Prevalence of regurgitation/vomiting and loose/watery stools in all infants and by
treatment groups; Figure S5: Prevalence of excessive suck and poor feeding for all infants and by
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