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Abstract: Alarmins are innate cytokines, including thymic stromal lymphopoietin (TSLP), interleukin-
33 (IL-33), and interleukin-25 (IL-25), which are mainly produced by airway epithelium and exert a
prominent role in asthma pathobiology. In particular, several environmental factors such as allergens,
cigarette smoking, airborne pollutants, and infectious agents trigger the release of alarmins, which in
turn act as upstream activators of pro-inflammatory pathways underlying type 2 (T2-high) asthma.
Indeed, alarmins directly activate group 2 innate lymphoid cells (ILC2), eosinophils, basophils, and
mast cells and also stimulate dendritic cells to drive the commitment of naive T helper (Th) cells
towards the Th2 immunophenotype. Therefore, TSLP, IL-33, and IL-25 represent suitable targets
for add-on therapies of severe asthma. Within this context, the fully human anti-TSLP monoclonal
antibody tezepelumab has been evaluated in very promising randomized clinical trials. Tezepelumab
and other anti-alarmins are thus likely to become, in the near future, valuable therapeutic options for
the biological treatment of uncontrolled severe asthma.
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1. Introduction

Asthma is a chronic inflammatory disease of the respiratory tract, usually characterized
by variable airflow limitation and affecting more than 300 million people worldwide [1,2].
Asthma phenotypes are heterogeneous and include eosinophilic patterns, underpinned by either
allergic or non-allergic mechanisms, as well as neutrophilic and paucigranulocytic traits [3-5].
Eosinophilic asthma is driven by complex cellular and molecular pathways which shape the
so-called type 2 (T2-high) airway inflammation, a term based on the key pathogenic roles
played by T helper 2 (Th2) lymphocytes and group 2 innate lymphoid cells (ILC2), releasing the
interleukins 4 (IL-4), 5 (IL-5), 9 (IL-9), and 13 (IL-13) [6-8]. Within this pathobiological context,
the bronchial epithelium exerts pivotal functions by producing three innate cytokines named
alarmins, which include thymic stromal lymphopoietin (TSLP), interleukin-33 (IL-33), and
interleukin-25 (IL-25) [9-11]. The secretion of these cytokines occurs when airway epithelial cells
undergo injuries caused by several environmental triggers such as allergens, respiratory viruses,
bacteria, cigarette smoking, and airborne pollutants (Figure 1) [12]. Therefore, TSLP, IL-33, and
IL-25 provide alarm signals which solicit the immune system to react to bronchial epithelial
damage [9]. As a consequence, these alarmins behave as upstream activators of both innate and
adaptive immune responses involved in type 2 asthma (Figure 1). Indeed, alarmins are able to
induce conventional dendritic cells to drive the differentiation and expansion of Th2 cells, as
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well as to directly promote ILC2 activation and proliferation [13]. Moreover, by stimulating the
commitment of naive Th lymphocytes towards the Th17 cellular immunophenotype, TSLP can
also contribute to the pathogenesis of T2-low neutrophilic asthma [14].
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Figure 1. Pathogenic actions of alarmins in type 2 asthma. As a result of injuries caused by several noxious agents, airway

epithelial cells release alarmins (TSLP, IL-33, and IL-25). These cytokines induce the activation of the adaptive immune
system, thus driving dendritic cell-mediated differentiation of Th2 lymphocytes, leading to B cell-dependent production of
immunoglobulins E (IgE). Alarmins also elicit innate immune responses by directly stimulating group 2 innate lymphoid
cells (ILC2), eosinophils, basophils, and mast cells. Upon activation induced by alarmins, Th2 and ILC2 cells release high
amounts of IL-4, IL-5, and IL-13. This original figure was created by the authors using “BioRender.com” (accessed on 8

August 2021).

Because of their relevant pathogenic functions, alarmins represent suitable molecular
targets for emerging biological therapies of asthma [15-20]. In particular, neutralization of
alarmins via specific antibodies potentially provides an effective therapeutic strategy capa-
ble of interfering at a very upstream level with the complex immunopathologic cascades
leading to type 2 asthma. In fact, this approach can impact more broadly on asthma patho-
biology with respect to current downstream therapies targeting circumscribed pathways
mediated by single cytokines (IL-4, IL-5, and IL-13) or receptors (IL-4 receptor and IL-5
receptor) [21]. Among anti-alarmins, the most studied anti-TSLP monoclonal antibody in
clinical trials is tezepelumab [20,22,23]; some anti-IL-33 antibodies are under investigation,
whereas no anti-IL-25 drug has entered clinical evaluation so far [18]. In this regard, it
is noteworthy that anti-alarmins could induce effective therapeutic benefits for patients
with uncontrolled T2-high asthma by lowering disease exacerbations, as well as by im-
proving symptom control, lung function, quality of life, and oral corticosteroid (OCS)
dependence [18,20]. Furthermore, tezepelumab should also be evaluated in patients with
difficult-to-treat T2-low asthma.

Therefore, the present review article focuses on the following topics: (i) elucidation
of alarmin roles in asthma pathobiology; and (ii) discussion of the potential therapeutic
effects of anti-alarmins in severe asthma. In order to write this narrative review, a literature
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search was carried out using the PubMed database, and as search words, we chose ‘asthma’,
‘alarmins’, “TSLP’, ‘IL-33/, “IL-25, “anti-alarmins’, and ‘tezepelumab’.

2. Pathogenic Roles of Alarmins in Asthma
2.1. TSLP

First discovered in thymic stromal cells, TSLP belongs to the interleukin-2 (IL-2) family,
and its structure is related to interleukin-7 (IL-7) [24]. Two TSLP isoforms exist, character-
ized by longer (159 amino acids) and shorter sequences (60 amino acids) [25]. The short
variant is constitutively expressed and exerts homeostatic functions, whereas the synthesis
of long TSLP can be stimulated by inflammatory triggers and is up-regulated in asthmatic
patients [26]. The positive charges of the long TSLP surface drive its interaction with the
negative charges of the TSLP receptor (TSLPR) [27,28]. As a consequence, the TSLP/TSLPR
complex incorporates the « subunit of IL-7 receptor (IL-7Rex), and the result of this sequen-
tial process is the assembly of the ternary molecular complex TSLP/TSLPR/IL-7Rx. The
latter activates an intricate network of signaling pathways, including Janus kinases 1 and 2
(JAK1/2), signal transducers and activators of transcription 3 and 5 (STAT3/5), and also
mitogen-activated protein kinases (MAPK), phosphoinositide 3 kinase (PI3K), and nuclear
factor kB (NF-kB), [26-28].

In asthmatic patients, TSLP is overexpressed in biopsy specimens from the bronchial
epithelium and also in induced sputum, exhaled breath condensate, bronchoalveolar
lavage fluid (BALF), and serum [29-32]. TSLP expression within the airways is correlated
with the severity of asthma and airflow limitation [29]. Furthermore, interesting studies
based on genome-wide association strategies have shown that some single-nucleotide
polymorphisms (SNPs) detected within the TSLP gene are coupled with the relevant
asthma risk [33,34]. It is also noteworthy that TSLP mRNA levels are elevated in nasal
polyp tissues taken from subjects with aspirin-exacerbated respiratory disease (AERD) [35].

Upon its release from injured airway epithelial cells, TSLP acts on several cellular
targets that co-express TSLPR and IL-7Ra (Figure 1). In particular, TSLP enhances the
survival of ILC2 and promotes the secretion of IL-4, IL-5, IL-9, and IL-13 from these
cells [29,36-38]. IL-4 drives Th2 cell differentiation and IgE synthesis, IL-5 is responsible for
eosinophilic inflammation, IL-9 stimulates mast cell growth, and IL-13 induces goblet cell
hyperplasia as well as both hyperresponsiveness and proliferation of airway smooth muscle
cells [36,39]. Within the airways, TSLP co-localizes with ILC2, and a direct relationship has
been shown between TSLP levels and ILC2 numbers in nasal biopsy samples taken from
patients with chronic rhinosinusitis and severe asthma [40,41]. Moreover, TSLP makes
airway ILC2 resistant to corticosteroids [42].

With regard to innate immunity and in addition to ILC2, eosinophils and eosinophil
progenitors also express TSLPR and IL17-R«, thus being subject to the biological effects of
TSLP, which provides a powerful anti-apoptotic signal for eosinophils thereby prolonging
their survival, as well as potentiates the secretion of eosinophilic cytotoxic proteins and
pro-inflammatory chemokines [43,44]. All these pro-eosinophilic effects of TSLP are driven
by signaling mechanisms mediated by MAPK and NF-kB activation [43,44]. Moreover, 24 h
after the aeroallergen challenge, TSLP expression co-localizes with airway eosinophilia
in asthmatic patients [45]. TSLP also induces the build-up of eosinophilic extracellular
traps, consisting of aggregates including eosinophilic cationic protein (ECP) and mitochon-
drial DNA, which are involved in innate immune responses inside asthmatic airways [46].
Eosinophil progenitors are further cellular targets of TSLP, which up-regulates the expres-
sion levels of the o subunit of the IL-5 receptor (IL-5Ra), thereby stimulating together with
IL-5 the maturation of eosinophils [47]. TSLP not only induces eosinophilopoiesis but also
promotes the trafficking of eosinophil progenitors by increasing their production of several
chemokines, including CXCLS8, CCL1, and CCL22 [29,48].

Other cellular elements belonging to the innate immune system, whose functions are
affected by TSLP, include basophils and mast cells (Figure 1) [20]. At the level of basophils,
TSLP induces cell differentiation, stimulates histamine release, promotes cytokine produc-
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tion, and up-regulates the expression of the basophil activation marker CD203c [29,49].
In allergic asthmatic patients, TSLP enhances basophil surface levels of both IL-17RB
receptor of IL-25 and ST2 receptor of IL-33, thereby increasing the responsiveness of ba-
sophils to other alarmins [50]. Moreover, mast cell secretion of IL-5 and IL-13 can be
elicited by TSLP, which acting together with IL-33 also increments mast cell production of
prostaglandin D, (PGD3), a multifunctional eicosanoid implicated in the pathobiology of
type 2 asthma [35,51,52].

With regard to the pathophysiology of asthma, TSLP plays a very important role in
the complex interplay between the innate and adaptive branches of the immune system. In
particular, TSLP is significantly involved in the intercellular interactions occurring between
dendritic cells and Th2 lymphocytes (Figure 1). Upon release from damaged bronchial
epithelium, TSLP acts on TSLPR+ human myeloid dendritic cells by up-regulating the
expression of major histocompatibility complex class II (MHC-II) antigens, as well as
of co-stimulatory molecules, including CD40 and CD86 [53]. Furthermore, under TSLP-
dependent stimulation, dendritic cells increase the secretion of CCL17 and CCL22, two
chemokines that bind to CCR4 receptors expressed by Th2 lymphocytes, thus promoting
their migration from thoracic lymph nodes towards the bronchial tree [29,54]. A relevant
function is exerted by TSLP as a key inducer of Th2 cell differentiation driven by dendritic
cells [55]. Indeed, TSLP up-regulates the expression of OX40 ligand (OX40L) on dendritic
cells, which respond to this stimulation by promoting the commitment of naive CD4*
T cells towards the Th2 lineage [56]. Following TSLP-dependent activation, OX40L+
dendritic cells also induce the development in lung-draining lymph nodes of T follicular
helper cells (Tfh) releasing IL-4 [57], an essential cytokine for Th2 cell maturation and
IgE production [13]. In addition to dendritic cells, other cellular populations such as
CD11c* monocytes/interstitial macrophages can mediate the stimulatory effects of TSLP
on Th2 cell differentiation [58]. However, although T lymphocytes are often indirectly
regulated by TSLP through dendritic cells and monocytes/macrophages, this alarmin can
also directly affect the functions of CD4" T cells by inducing their polarization towards
the Th2 immunophenotype [59]. In allergic asthmatic patients, a further contribution to
the expansion of type 2 pro-inflammatory responses is given by TSLP via its inhibitory
effect on immune modulation provided by lung T regulatory (Treg) cells [60]. Indeed, TSLP
acts on Treg lymphocytes by down-regulating their biosynthesis of interleukin-10 (IL-10),
an anti-allergic and anti-inflammatory cytokine responsible for the suppression of Th2
cell-driven immune pathways [60].

In addition to being involved in the pathogenesis of T2-high bronchial inflammation,
TSLP seems to be also implicated in type 2-low neutrophilic asthma, which is highly
dependent on the pro-inflammatory mechanisms triggered by Th17 cells [61]. In fact, TSLP
can stimulate dendritic cells to secrete interleukin-6 (IL-6) and interleukin-23 (IL-23), whose
role is critical in the induction of Th17 cell signature [14,62]. Moreover, TSLP can also lead
to a dual concomitant amplification of Th2 and Th17 immune profiles, associated with the
production of IL-4 and IL-17A, respectively [62].

TSLP not only regulates the bioactivities of immune/inflammatory cells but also
affects the functions of bronchial structural cells. Indeed, in asthmatic patients, TSLP is
overexpressed in airway epithelial cells, where this alarmin induces the production of IL-13,
thus eliciting a proliferative and reparative response, mediated by an IL-13-dependent
autocrine loop [63]. Additionally, TSLP promotes the release of IL-6 and IL-8 from airway
smooth muscle cells [64,65]. The latter are stimulated by adjacent activated mast cells to
produce TSLP itself, interleukin-13 (IL-1f3), and tumor necrosis factor-oc (TNF-c) [29,66].
Moreover, airway fibroblasts synthesize TSLP and, upon autocrine stimulation mediated
by TSLP, enhance their production of collagen, arginase 1, & smooth muscle actin, and
transforming growth factor 31 (TGF-f31) [67,68]. Therefore, these findings imply that TSLP
is significantly involved in the crosstalk between inflammatory and resident cells, leading
to the structural changes which characterize airway remodeling in asthma.
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2.2. IL-33

IL-33 belongs to the IL-1 family of cytokines and plays a pivotal role in the patho-
physiology of type 2 asthma [9,16]. The biological actions of IL-33 are mediated by its
binding to a heterodimeric receptor consisting of the ST2 (suppression of tumorigenicity
2) component, coupled to its co-receptor IL-1IRAcP (IL-1 receptor accessory protein) [18].
The interaction between IL-33 and its receptor is followed by the recruitment of a signaling
module including the adaptor protein MyD88 (myeloid differentiation primary response
protein 88), the IL-1 receptor-associated kinase (IRAK), and the TNF receptor-associated
factor 6 (TRAF6), which in turn activate downstream kinases and transcription factors such
as MAPK, PI3K, and NF-kB [69].

When compared to healthy subjects, the amounts of IL-33 and ST2 resulted in being
significantly elevated in serum and bronchial biopsies taken from asthmatic patients,
and the expression levels of this alarmin and its receptor are directly correlated with
asthma severity [70-72]. In particular, high serum levels of the soluble form of ST2 (sST2)
are reliable predictors of the occurrence of asthma exacerbations within 3 months [73].
Moreover, in comparison with T2-low asthma, type 2 disease is associated with higher IL-33
serum levels [74]. Additionally, inhaled allergen challenge enhances bronchial expression
of both IL-33 and ST2 receptors in allergic asthmatic patients [75,76].

After being released from the injured bronchial epithelium, IL-33 can affect the func-
tions of several immune/inflammatory and structural cells. With regard to the crosstalk
between innate and adaptive immune responses, underlying the pathobiology of type
2 asthma, IL-33 promotes the polarization and expansion of Th2 lymphocytes and also
stimulates ILC2 production of IL-5 and IL-13 (Figure 1) [77]. IL-33 favors the development
of allergic asthma by impairing the immunologic tolerance to inhaled allergens operated by
Treg cells, whose immunomodulatory action is suppressed by this alarmin [78,79]. More-
over, IL-33 activates eosinophils, prolongs eosinophil survival, and enhances the expression
of eosinophil adhesion molecules [77,80]. IL-33 induces the growth, maturation, and sur-
vival of mast cells and also elicits the production of IL-4 and IL-13 from basophils [81,82].
In addjition to recruiting mast cells, basophils, and eosinophils into the airways, IL-33 also
promotes the release of fibrogenic factors from these cells [83]. In particular, within the
context of chronic allergic/eosinophilic inflammation, this alarmin induces the production
of amphiregulin, which in turn promotes the synthesis of osteopontin and the consequent
fibrotic response of the airways [84]. IL-33 further contributes to the pathogenesis of airway
remodeling in asthma by activating the epithelial-mesenchymal trophic unit, as well as
by stimulating fibroblasts to produce extracellular matrix proteins, such as collagen type 1
and fibronectin [79,85].

2.3. IL-25

With respect to healthy subjects, asthmatic patients express higher serum levels of
IL-25, also known as IL-17E, which belongs to the IL-17 cytokine family and exerts its
biological effects by interacting with a dimeric complex consisting of the two receptor
subunits IL-17RA and IL-17RB [8,86,87]. Binding of IL-25 to IL-17RA /IL-17RB induces the
recruitment of the adaptor protein Actl (activator of NF-«kB) and the subsequent activation
of a signal transduction network, including TRAF4/TRAF6 and NF-«B, as well as the
JAK1/2-STAT3 module [87,88].

Although Th2 lymphocytes, mast cells, basophils, eosinophils, alveolar macrophages,
and fibroblasts can produce IL-25, the main cellular sources of this cytokine are airway
epithelial cells [10,87]. IL-25 is stored within the cytoplasm of bronchial epithelial cells,
which release it upon exposure to aeroallergens with intrinsic proteolytic bioactivity such as
house dust mite [89]. In comparison to non-allergic asthmatic patients, subjects with atopic
asthma have higher sputum levels of IL-25 [16]. Indeed, IL-25 exerts a relevant pathogenic
role in allergic asthma and virus-induced exacerbations of type 2 airway inflammation [90].
In particular, IL-25 is overexpressed in the airway epithelium of patients with type 2 asthma,
whose plasma IL-25 levels correlate with the therapeutic response to inhaled corticosteroids
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(ICS) [91]. The stimulatory action exerted by IL-25 on type 2 inflammation is associated
with the inhibitory effect of this alarmin on differentiation and activation of Th1l and Th17
lymphocytes [92].

IL-25 stimulates ILC2 and Th2 cells to secrete IL-4, IL-5, IL-9, and IL-13 [10]. Other cellular
targets activated by IL-25 include dendritic cells, basophils, and eosinophils (Figure 1). With
regard to these latter cells, IL-25 inhibits the apoptosis of eosinophils, thus prolonging their
survival [93]. In addition to activating immune/inflammatory cells, IL-25 also affects the
functions of airway structural cells. In particular, IL-25 triggers an autocrine mechanism leading
to its increased biosynthesis from bronchial epithelial cells, induces airway smooth muscle cell
contraction, and contributes to remodeling changes by stimulating fibroblast proliferation and
the production of extracellular matrix proteins [86,87].

In addition to asthma, IL-25 plays an important pathogenic role also in nasal polyposis.
Indeed, IL-25 is highly expressed in nasal polyp tissues, where this alarmin amplifies the
activation of Th2 and ILC2 cells, thereby worsening both endoscopic nasal polyp score and
computed tomography score [94].

3. Anti-Alarmins
3.1. Anti-TSLP

Among the anti-TSLP biologics, the most extensively studied drug is tezepelumab, a
fully human monoclonal IgG2A antibody that interacts with TSLP at the level of its binding
site for TSLPR, thus preventing the access of TSLP to its receptor [95]. When tezepelumab
was firstly evaluated in comparison to placebo in subjects with mild allergic asthma, who
received three monthly intravenous injections (700 mg), this antibody inhibited allergen-
induced bronchoconstriction on days 42 and 84 [96]. In addition, tezepelumab prevented
the airway response to methacholine, reduced the levels of fractional exhaled nitric oxide
(FeNO), and lowered eosinophil counts in both blood and sputum, but it did not modify
serum concentrations of IgE [96]. No serious adverse reactions occurred during this
trial [96].

Later on, the phase 2b randomized, placebo-controlled, multicenter PATHWAY study
was performed from December 2013 to March 2017 at 108 sites widely spread throughout
12 countries [97]. The authors of this trial recruited patients with an age ranging from 18
to 75 years, who were current non-smokers complaining of uncontrolled asthma in spite
of a notable therapy, including medium-to-high doses of inhaled corticosteroids (ICS),
consisting of 250-500 g or more than 500 pg/day of dry powder fluticasone propionate
or equivalents, associated with a long-acting 3,-adrenergic agonist (LABA). Asthma was
defined as uncontrolled when, with regard to the screening phase, patients reported an
ACQ-6 (6-item Asthma Control Questionnaire) score of at least 1.5. During the 12 months
before recruitment, enrolled participants had either at least two asthma exacerbations
or at least one severe asthma exacerbation requiring hospitalization. Lung function was
characterized by reversible airflow limitation, documented by pre-bronchodilator FEV;
measurements ranging from 40% to 80% of predicted values, which after inhalation of
salbutamol (400 pg) improved by at least 12% and 200 mL with regard to baseline levels.
In particular, each of 584 admitted subjects was randomly assigned to one of four study
clusters comprising a placebo arm including 148 patients, as well as three groups of people
treated every 4 weeks with subcutaneous administrations of tezepelumab, consisting of
low (70 mg; 145 subjects), medium (210 mg; 145 participants), and high dosages (280 mg;
146 patients).

The main aim of the PATHWAY trial was to verify at week 52 the impact of teze-
pelumab on the annualized asthma exacerbation rate (AAER). When compared to placebo,
tezepelumab significantly (p < 0.001) lowered AAER by 61%, 71%, and 66% at the dosages
of 70, 210, and 280 mg, respectively, and also prolonged the time to first exacerbation [97].
These very important effects of tezepelumab on AAER occurred regardless of baseline
blood eosinophil numbers [97]. In addition, a post hoc analysis of this study demonstrated
that tezepelumab, when used at the dose of 210 mg, reduced AAER in patients with severe
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asthma independently of the eventual concomitance with nasal polyposis [98]. A further
post hoc analysis also showed that tezepelumab decreased asthma exacerbations during all
four seasons of the year [99]. With regard to secondary outcomes, at the 52nd week of treat-
ment, tezepelumab significantly improved the ACQ-6 score in the three different dosage
subgroups. Tezepelumab also increased pre-bronchodilator FEV; by 150 mL, 110 mL,
and 120 mL in the high-dose, medium-dose, and low-dose subgroups, respectively [97].
With regard to the biomarkers of type 2 asthma, tezepelumab significantly reduced serum
IgE concentrations, blood eosinophil counts, and FeNO levels, as well as blood levels of
periostin, IL-5, IL-13, and thymus and activation-regulated chemokine (TARC) [22,91].

Tezepelumab was characterized by a good safety and tolerability profile; indeed, in
the four trial subgroups, there were similar numbers of adverse reactions, which mainly
included bronchitis, nasopharyngitis, and headache [97]. In particular, similar percentages
of patients experienced at least one adverse event across the placebo arm (62.2%) and
the three subgroups treated with high (61.6%), medium (64.8%) and low (66.2%) doses
of tezepelumab. The numbers of skin reactions at injection sites were also similar among
the four study groups. No anaphylactic reactions occurred. Anti-drug antibodies were
found in 8.8% of subjects assigned to the placebo arm, as well as in 2.1%, 4.9%, and 0.7%
of recipients of high, medium and low tezepelumab doses, respectively. No neutralizing
antibodies were detected.

The program of clinical development of tezepelumab includes several other trials
named NAVIGATOR, SOURCE, DESTINATION, and CASCADE [22].

The phase 3 multicenter, randomized, placebo-controlled, and double-blind NAVIGA-
TOR trial was carried out in 1061 patients with severe asthma, aged from 12 to 80 years, who
experienced recurrent disease exacerbations [100]. In total, 532 subjects were randomly as-
signed to receive a placebo, and 529 participants were treated with subcutaneous injections
of 210 mg of tezepelumab, performed every 4 weeks for 52 weeks. The study population
included patients with both more and less than 300/uL blood eosinophil counts. With
regard to the primary study outcome, tezepelumab significantly reduced AAER, regardless
of blood eosinophil numbers [100]. Secondary endpoints included lung function, symp-
tom control, and health-related quality of life. When compared to placebo, tezepelumab
significantly increased pre-bronchodilator FEVy, as well as improved the scores of ACQ-6,
ASD (Asthma Symptom Diary), and AQLQ (Asthma Quality of Life Questionnaire) [100].
Moreover, tezepelumab decreased serum IgE concentrations, blood eosinophil counts, and
FeNO levels. The most frequent adverse events included nasopharyngitis, upper respira-
tory tract infections, and headache, which, however, did not differ between placebo and
tezepelumab subgroups. Reactions at the level of injection sites were observed in 2.6% of
subjects assigned to the placebo arm and in 3.6% of patients treated with tezepelumab [100].
Anti-drug antibodies were detected in 8.3% of participants randomized to receive placebo
and in 4.9% of patients undergoing treatment with tezepelumab. Neutralizing antibodies
were found in two subjects, including one patient for each subgroup [100].

SOURCE is a further phase 3 multicentre, 48-week, double-blind, randomized, and
placebo-controlled study, recruiting 150 patients with severe asthma, undergoing treat-
ment with medium-to-high doses of ICS/LABA associations, integrated by an adjunctive
chronic OCS therapy [101]. The primary endpoint of this trial is to verify the eventual OCS-
sparing effect of tezepelumab, administered subcutaneously at the dose of 210 mg every
4 weeks [101]. This study’s goal is very relevant because of the chronic OCS utilization by
many severe asthmatic patients, who can frequently experience the well-known systemic
adverse effects induced by these drugs, comprising adrenal insufficiency, diabetes, hyper-
tension, infections, gastrointestinal disorders, psychiatric disturbances, osteoporosis, bone
fracture, cataract, glaucoma, as well as decreased growth in children and adolescents [102].

Outside of the phase 3 PATHFINDER program, finalized to the clinical development
of tezepelumab in severe asthma and including both SOURCE and NAVIGATOR trials,
DESTINATION is another phase 3, 1-year study, enrolling 960 patients who have already
participated in one of the above two trials [103]. Hence, DESTINATION is a long-term ex-
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tension trial whose primary endpoint is the evaluation of the safety profile of tezepelumab
in severe asthmatic patients, comprehensively assessed for two years [103]. A secondary
outcome of DESTINATION regards the evaluation of the prolonged impact of tezepelumab
on AAER.

The phase 2 placebo-controlled, double-blind, and randomized trial CASCADE re-
cruited patients with inadequately controlled, moderate-to-severe asthma, treated with
subcutaneous injections of tezepelumab (210 mg) every 4 weeks for 28 weeks [104]. En-
rolment was independent of baseline eosinophilic inflammatory status. In particular,
CASCADE main goal was the assessment of the possible anti-inflammatory actions of
tezepelumab. In this regard, bronchoscopic biopsy samples were evaluated with the aim
of exploring the eventual changes in the inflammatory cellular infiltration of bronchial
walls, detectable with respect to baseline at the 28th week of add-on therapy with teze-
pelumab [104]. Moreover, the potential effects of this drug on airway remodeling were
investigated by measuring the thickness of the reticular basement membrane before and
after treatment with tezepelumab. A total of 48 patients in the tezepelumab group and
51 in the placebo arm completed this study, which showed that tezepelumab was able to
significantly decrease the eosinophilic submucosal infiltration of airways without affecting
other immune/inflammatory cell populations such as neutrophils, mast cells, and T lym-
phocytes [105]. Treatment with tezepelumab did not elicit any change in reticular basement
membrane thickness, whereas it reduced bronchial hyperresponsiveness to mannitol [105],
an indirect bronhoconstrictive stimulus that degranulates mast cells.

In addition to tezepelumab, another anti-TSLP biologic drug under clinical investi-
gation is CSJ117, a fully human IgG1/A antibody fragment developed for administration
through the inhalational route, whose therapeutic effects are not yet known [11,26,106].

3.2. Anti-IL-33

Several anti-IL-33 monoclonal antibodies are under clinical evaluation as potential
biological therapies for asthma [18]. REGN3500 has been tested in both phase 1 and phase
2a trials. When used alone, REGN3500 improved asthma control but was not more effective
than dupilumab [16]. Moreover, when used in combination with dupilumab, REGN3500
did not further improve the therapeutic effects induced by dupilumab alone [16]. An
eventual change in blood eosinophil count represents the main outcome evaluated by a
phase 2a study investigating the effects of etokimab (ANBO020) in patients with severe
eosinophilic asthma [16]. GSK3772847 is under ongoing clinical evaluation in subjects
with moderate-to-severe asthma in order to verify in a phase 2a trial the effects of this
antibody on asthma control [16]. This drug is also being tested in a phase 2b study enrolling
asthmatic patients with allergic fungal disease, aimed to check the eventual effects on FeNO
levels and blood eosinophils [16]. AMG282 is currently under investigation in a phase
2b study, whose primary endpoint is the impact of drug treatment on AAER [16]. At
present ongoing trials also focus on astegolimab, a monoclonal antibody targeting the ST2
receptor of IL-33 [4]. In this regard, the phase 2b randomized, double-blind, dose-ranging,
placebo-controlled study ZENYATTA has recently shown that astegolimab was able to
significantly decrease AAER in patients with severe asthma [107]. In addition to the use of
monoclonal antibodies, other therapeutic strategies are underway with the aim of inhibiting
the biological actions of IL-33. In particular, a fusion protein named IL-33 trap has been
developed, resulting from the assembly of the extracellular domains of the ST2 receptor
with the co-receptor IL-1RACcP [18,108]. Therefore, this molecular construct captures IL-
33 and prevents its binding to the ST2/IL-1RAcP receptor complex expressed by target
cells. The anti-inflammatory effects of the IL-33 trap have been shown in experimental
pre-clinical models of allergic airway inflammation [108].

3.3. Anti-IL-25

Pre-clinical experimental models of rhinovirus (RV)-induced exacerbations of allergic
asthma have been used to test the eventual therapeutic efficacy of an anti-IL-25 monoclonal
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antibody (ABM125) [109]. In particular, preliminary results suggest that ABM125 can
suppress the type 2 cytokine response elicited by RV infection in bronchial epithelial cells
obtained from patients with eosinophilic asthma, and these RV-infected cells respond to
ABM125 by increasing their production of anti-viral interferons [109].

4. Potential Therapeutic Advantages of Anti-Alarmins with Respect to Currently
Available Biologics

In regard to the management of type 2 severe asthma and due to their peculiar mecha-
nisms of action, anti-alarmins could potentially provide relevant advantages with respect
to currently available biologics. For instance, IL-5 inhibitors such as mepolizumab and
reslizumab, as well as the IL-5 receptor blocker benralizumab, are very effective for treat-
ment of patients with refractory eosinophilic asthma [39], who however remain exposed to
the pro-allergic and pro-remodeling effects of IL-4 and IL-13. On the other hand, the dual
IL-4/1L-13 receptor antagonist dupilumab may even worsen blood eosinophilia [110,111].
Hence, it would be strategically better to switch off the alarmins-emanated signals, leading
to activation of downstream pro-inflammatory pathways mediated by IL-5, IL-4, and IL-13.
Moreover, in spite of an add-on therapy with one of the above mentioned monoclonal
antibodies, severe asthmatic patients can still experience the need of high dosages of ICS,
and they might also be obliged to continue to take OCS [102]. In this regard, it is noteworthy
that TSLP is a potent inducer of the corticosteroid resistance of immune-inflammatory
cells [42]. It can thus be argued that anti-alarmins could promote the restoration of corticos-
teroid responsiveness. Finally, the partial therapeutic activity of currently licensed biologics
is limited to type 2 asthma, thereby not interfering with the pathogenic mechanisms under-
lying T2-low disease [17,19]. Therefore, the potential usefulness of anti-alarmins should
be also tested in patients with non-type 2 asthma, given the important pathobiologic role
played by TSLP in neutrophilic airway inflammation [20].

5. Conclusions

Alarmins are suitable molecular targets for prospective biological therapies of asthma.
Indeed, these innate cytokines act at an upstream pathogenic level, thus triggering complex
cascades of downstream pro-inflammatory pathways [112]. Preliminary trials, especially re-
ferring to the evaluation of the TSLP-antagonist tezepelumab, have yielded very promising
results with regard to the experimental treatment of type 2 asthma. Moreover, tezepelumab
should also be investigated for its potential therapeutic effects in T2-low neutrophilic
asthma, possibly due to the interferences with the pathophysiologic actions exerted by
TSLP- in IL-17-mediated airway inflammation. In addition to TSLP, IL-33 and IL-25 may
also represent further emerging targets for novel anti-asthma treatments. In particular, all
these new therapies would be especially suitable for patients with severe allergic asthma,
not fully responsive to anti-IgE treatment with omalizumab. Indeed, acting at an upstream
pathogenic level by disrupting alarmin-mediated interactions between innate and adaptive
immunity, anti-alarmins might be more effective than inhibitors of downstream effectors of
allergic responses such as IgE. Therefore, in the future, anti-alarmins might be properly
positioned as add-on drugs at step 5 of GINA (Global Initiative for Asthma) guidelines for
the stepwise treatment of asthma [113], recommending the use of biologics when asthmatic
patients are not adequately controlled by standard therapies. Indeed, because of their
specific mechanisms of action anti-alarmins should be superior to anti-IgE, as well as to
anti IL-5, anti-IL-5 receptor, and anti-1L-4/IL-13 receptor monoclonal antibodies. Nev-
ertheless, head-to-head comparisons between these biologics and anti-alarmins lack in
current scientific literature. To our knowledge, in this regard only the anti-IL-33 monoclonal
antibody REGN3500 has been comparatively evaluated, without exhibiting any evident
superiority to the dual IL-4/IL-13 receptor blocker dupilumab [16]. However, this study
appears to be limited and quite inconclusive. Therefore, further and larger investigations
are needed to eventually demonstrate the theoretical superiority of anti-alarmins with
respect to the currently available biologics, which target specific downstream effectors, but
do not interfere with the upstream pathobiologic circuits activated by alarmins.
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The main studies aimed to explore the effects of anti-alarmins in asthma treatment are
summarized in Table 1.

Table 1. Anti-alarmins: summary of the main studies.

Drug—Trial Name Target Duration Main Results or Endpoints
Fewer asthma exacerbations, higher
Tezepelumab—PATHWAY [97] TSLP 52 weeks ACQ-6 score, FEV] increase.
Fewer asthma exacerbations, higher
Tezepelumab—NAVIGATOR [100] TSLP 52 weeks ACQ-6 score, FEV increase.
Tezepelumab—SOURCE [101] TSLP 48 weeks OCS-sparing effect.
Tezepelumab—DESTINATION [103] TSLP 52 weeks Safety profile, impact on asthma
exacerbations.
Tezepelumab—CASCADE [105] TSLP 28 weeks Suppression of airway eosinophilic
inflammation.
REGN3500 [16] 1L-33 36 weeks Improvement of asthma control.
AMG282 [16] 1L-33 20 weeks Impact on asthma exacerbations.
GSK3772847 [16] 1L-33 16 weeks Improvement of asthma control.
Etokimab [16] 1L-33 9 weeks Reduction of blood eosinophil count.
Astegolimab—ZENYATTA [107] ST2 54 weeks Fewer asthma exacerbations.
ABM125 [109] IL-25 . Suppression of type 2 cytokine

response induced by rhinovirus.
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