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Abstract: Osteopontin (OPN) is considered a clinical predictor of cardiovascular disease. We aimed
to evaluate the association of the OPN gene polymorphisms rs2728127 and rs11730582 with the
development of premature coronary artery disease (pCAD), cardiovascular risk factors, and car-
diometabolic parameters. We evaluated 1142 patients with pCAD and 1073 controls. Both poly-
morphisms were determined by Taqman assays. Similar allele and genotype frequencies were
observed in both groups; additionally, an association of these polymorphisms with CAD and car-
diometabolic parameters was observed in both groups. In patients with pCAD, the rs11730582
was associated with a high risk of hypoadiponectinemia (OR = 1.300, P additive = 0.003), low risk of
hypertension (OR = 0.709, P codominant 1 = 0.030), and low risk of having high non-HDL cholesterol
(OR = 0.637, P additive = 0.038). In the control group, the rs2728127 was associated with a low risk
of fatty liver (OR = 0.766, P additive = 0.038); while the rs11730582 was associated with a low risk of
hypoadiponectinemia (OR = 0.728, P dominant = 0.022), and risk of having elevated apolipoprotein
B (OR = 1.400, P dominant = 0.031). Our results suggest that in Mexican individuals, the rs11730582
and rs2728127 OPN gene polymorphisms are associated with some abnormal metabolic variables in
patients with pCAD and controls.

Keywords: osteopontin; coronary artery disease; polymorphic sites; biomineralization; metabolic ab-
normalities

1. Introduction

Coronary artery disease (CAD) is a complex and multifactorial pathology character-
ized by chronic vascular inflammation. In this disease, the accumulation of lipid material
within the layers of arteries causes endothelium damage, and as a final consequence, the
formation of atherosclerotic plaques [1–3]. During the progression of the disease, some
plaques are calcified mainly by deposits of calcium phosphate [2,4]. Therefore, vascular
calcification and coronary artery calcium (CAC) are of clinical relevance as risk markers for
CAD [5–7]. Several studies have reported the importance of cardiac calcification, and now
this process is considered an important marker to early detection of CAD, therefore useful
in primary preventive care and treatment of CAD [8–10].

Osteopontin (OPN) is an extracellular matrix protein, with diverse functions, includ-
ing growth factor, structural matrix protein, modulator of matrix-cell interactions, among
others. Besides, due to the different post-translational modifications, OPN participate in
several biological processes, mainly in the regulation of calcification, biomineralization

Biomedicines 2021, 9, 1600. https://doi.org/10.3390/biomedicines9111600 https://www.mdpi.com/journal/biomedicines

https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0003-4786-508X
https://orcid.org/0000-0001-8467-3488
https://orcid.org/0000-0001-7916-5163
https://orcid.org/0000-0003-2910-2548
https://orcid.org/0000-0002-3802-0897
https://doi.org/10.3390/biomedicines9111600
https://doi.org/10.3390/biomedicines9111600
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biomedicines9111600
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines9111600?type=check_update&version=2


Biomedicines 2021, 9, 1600 2 of 13

and proinflammatory response [11–14]. The human OPN gene is located on chromosome 4
(4q21-23) and is formed by seven exons [13]. This protein has pleiotropic effects, and it is ex-
pressed in several cell types such as osteocytes, osteoblasts, pre-osteoblasts, macrophages,
T-cells, endothelial cells and fibroblasts, and in different tissues including bone, cartilage,
vascular tissue, brain and kidney, with essential physiological and pathophysiological
functions [11,13–15]. OPN also plays a preponderant role in different pathologies such as
autoimmune disorders, chronic inflammatory diseases, distinct types of cancer, diabetes,
cardiovascular diseases, among others [15,16]. Under physiological conditions, low circu-
lating OPN levels as well as low OPN expression in vasculature are associated with various
pathologies, for instance, diabetes or non-small cell lung cancer [17,18]. Under injury
conditions, OPN is over-expressed and upregulated in different vascular cell types includ-
ing macrophages, vascular smooth muscle cells and endothelial cells [11]. Furthermore,
various studies have detected increased circulating serum levels of OPN in cardiovascular
diseases, associated particularly with severity of coronary atherosclerosis; high plasma
levels of OPN, associated with increased risk for cardiac events; and a high expression
of OPN gene in calcified carotid atheroma [10,19–22]. In the last decade, genetic studies
have helped to identify predisposition markers in the development of CAD; the single
nucleotide polymorphisms (SNPs) have been reported as genetic markers. Particularly,
the OPN gene contains various polymorphic sites in the promoter region, but despite the
important participation of the OPN molecule in the physiopathology of cardiovascular
diseases, few association studies between this gene and vascular diseases have been per-
formed. Mainly, there have been studies on coronary artery calcification or large artery
atherosclerosis; nonetheless, there is only one previous study of OPN gene polymorphisms
with CAD [23–25].

The human OPN gene is located on chromosome 4 (4q21-23) and is formed by seven
exons [13]. This gene contains various polymorphic sites, and despite the important
participation of the OPN molecule in the physiopathology of cardiovascular diseases,
few association studies between this gene and vascular diseases have been performed.
Therefore, more studies in different populations are needed to establish the possible role of
this gene in the susceptibility to develop CAD.

Thus, the purpose of this research was to analyze the association of OPN gene polymor-
phisms (rs2728127 and rs11730582) with the risk of developing premature coronary artery
disease (pCAD), cardiovascular risk factors, and cardiometabolic parameters in a represen-
tative sample of Mexican mestizo individuals. In addition, we performed bioinformatic
analyses to predict the possible functional role of these polymorphisms.

2. Materials and Methods
2.1. Study Individuals

This is a cross-sectional and case-control study of individuals included in the Genetics
of Atherosclerotic Disease (GEA) Mexican study. We included 2215 unrelated participants
(1142 patients with pCAD and 1073 healthy controls). All participants were consecu-
tively recruited during 2008 to 2013. For the present research, we considered as pCAD
the incidence of a clinical coronary event before 55 years of age in men and 65 years in
women [26,27]. The patient group was integrated by individuals diagnosed with pCAD
established through a previous clinical history of myocardial infarction, angioplasty, revas-
cularization surgery, or through the presence of coronary stenosis >50%, within the age
limits indicated above.

In the control group, we included individuals without a personal or family history of
CAD. Individuals from the blood bank at the Instituto Nacional de Cardiología Ignacio
Chavez (INCICh) in Mexico were invited to participate as controls. Additionally, through
brochures posted in social service centers in Mexico City and the INCICh, more individuals
were gathered. The exclusion criteria in this group were: thyroid disorders, renal or heart
failure, oncological and liver diseases.
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2.2. Clinical, Demographic, Biochemical Variables Assessment

Demographic, clinical and biochemical data of participants from the GEA study had
been previously reported [28–33]. Briefly, body mass index (BMI) was obtained as: weight
(kg)/height (m2), waist circumference was obtained in cm, and obesity was defined when
the BMI was ≥30 kg/m2. Type 2 diabetes mellitus (T2DM) was defined according to the
American Diabetes Association criteria, with a fasting glucose ≥126 mg/dL and was also
considered when participants informed the use of hypoglycemic drug treatment. Hyperten-
sion was considered when values of diastolic and systolic blood pressures were ≥90 mmHg
and ≥140 mmHg, respectively, or when individuals were using antihypertensive drugs.
Glucose, apolipoprotein B (ApoB), apolipoprotein A-I, lipoprotein (a) and lipid profiles
were quantified using conventional enzymatic colorimetric techniques in a Hitachi model
902 autoanalyzer (Hitachi LTD, Tokio, Japan). Hypoalphalipoproteinemia was considered
when HDL-cholesterol <50 mg/dL in women, and <40 mg/dL in men. Smoking habits
were determined when the individual self-reported a current use of cigarettes.

The high-sensibility C-reactive protein was measured by immunonephelometry (BN
ProSpec Nephelometer, Date Behring, Marburgo, Germany). Levels of adiponectin were
quantified with ELISA protocols (Quantikine ELISA, R&D Systems Inc., Minneapolis, MN,
USA); specifically, hypoadiponectinemia was defined when adiponectin concentration
was ≤25th percentile (5.30 µg/mL in men and 8.67 µg/mL in women). High alkaline
phosphatase concentrations were defined when values were ≥75th percentile (83.00 IU/L in
men and 90.25 IU/L in women). Percentile values of adiponectin and alkaline phosphatase
were acquired from a representative subsample of the GEA participants [34,35].

2.3. Tomographic Evaluation

Visceral abdominal adipose tissue (VAT), liver and spleen attenuation, as well as
coronary artery calcium (CAC) were quantified using the computed axial tomography
system of 64 channel multidetector (Somaton Sensations, Siemens, Malvern, PA, USA).
Expert radiologists measured and interpreted the scans. Scans were read to determine CAC
scores using the Agatston method [36]. The specific area of VAT was determined following
the description by Kvist et al. [37]. The liver to spleen attenuation ratio was determined
in accordance with the report by Longo et al. [38]. Individuals in the control group with
evidence of subclinical atherosclerosis were excluded from this study (CAC with a value
greater than zero).

2.4. Estimation of Ancestry

All GEA project participants included (cases and controls) were unrelated and were
ethnically matched and of self-reported Mexican mestizo ancestry. A Mexican mestizo is
defined as someone born in Mexico, who is descendant from the original autochthonous
inhabitants of the region and/or from Caucasian and/or African origin, who came to
America during the sixteenth century. Further, we determined the genetic background of
the GEA participants on the basis of a 265-ancestry markers (AIMs) panel that distinguishes
Amerindian, European, and African ancestries [39]. This was assessed with specialized
software and the mean global ancestry did not show significant differences in the popula-
tion analyzed (55.8% vs. 54.0% Amerindian ancestry, 34.3% vs. 35.8% Caucasian ancestry
and 9.8% vs. 10.1% African ancestry for patients and controls respectively, with a p > 0.05).
Therefore, all GEA participants had a similar genetic background and thus, the population
stratification was no genetic bias in the present research [40].

2.5. SNPs Selection and Genetic Characterization

For this research, we chose polymorphic sites with a minor allele frequency (MAF) of
at least 5% percent reported in the International HapMap Project. Furthermore, the chosen
polymorphisms have been previously associated with some cardiovascular pathologies
and are located in the promotor region of the OPN gene.
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Genomic DNA was obtained from peripheral blood leukocyte samples using the
QIAamp DNA blood extraction kit (Qiagen, Germany). We analyzed two polymor-
phisms: rs2728127, ID: C___1840806_10, sequence AAATTTTGTTGTTTTTAGAATTTTC[A/
G]GACTTCCCTCCACTAAATTGACAAC, and rs11730582, ID: C___1840808_20, sequence
GAGTAGTAAAGGACAGAGGCAAGTT[T/C]TCTGAACTCCTTGCAGGCTTGAAC. Both
polymorphisms were determined using Taqman genotyping probes on a thermal cycler
(ABI Prism 7900-Real Time) according to the manufacture’s conditions (ThermoFisher
Scientific, Foster City, CA, USA).

2.6. Bioinformatic Analysis

To determine the possible functional effect of OPN gene polymorphisms, we used
the transcription factor affinity prediction (TRAP) software, available as a web server
(http://trap.molgen.mpg.de/, accessed on 23 September 2021), specialized in predicting
the transcription factor binding affinities to DNA sequences according to the specific
polymorphisms [41].

2.7. Statistical Analysis

Both studied polymorphisms were in Hardy-Weinberg equilibrium (p > 0.05). Data are
presented as median (interquartile range), mean (standard deviation) or frequencies as re-
quired. The analysis of categorical and continuous variables in the population studied was
performed using chi-square, Student t, and Mann-Whitney U tests. The genetic associations
of both polymorphisms with pCAD were evaluated using logistic regression analysis using
the inheritance models: additive, dominant, recessive, heterozygote, codominant 1 and
codominant 2. These models were adjusted by age, sex, body mass index, systolic blood
pressure, diastolic blood pressure, visceral and abdominal fat, triglycerides, apolipoprotein
B, serum calcium, adiponectin, and alkaline phosphatase activity. The associations of the
OPN gene polymorphisms with cardiovascular risk factors and metabolic abnormalities
were adjusted by sex, age and body mass index. All statistical analyses were performed
using the SPSS software, version 24.0. Values of p < 0.05 were considered significant
in this study.

3. Results
3.1. Evaluation of Anthropometric, Clinical and Metabolic Parameters and Prevalence of
Cardiovascular Risk Factors

Anthropometric, clinical and metabolic variables of the population studied are shown
in Table 1. Compared with the control group, patients with pCAD showed higher val-
ues for: body mass index, waist circumference, systolic blood pressure, visceral adipose
tissue, triglycerides and glucose. In addition, prevalence of hypoalphalipoproteinemia,
hypertriglyceridemia, obesity, hypertension, visceral abdominal adipose tissue and hy-
poadiponectinemia were also higher in patients with pCAD when compared with the
control group (Table 2).

http://trap.molgen.mpg.de/
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Table 1. Clinical and metabolic characteristics of the individuals studied.

Characteristics Control
(n = 1073)

pCAD
(n = 1142) * p

Age (years) 51 ± 9 54 ± 8 <0.001
Sex (male %) 42.3 80.8 <0.001

Body mass index (kg/m2) 27.9 [25.5–30.9] 28.3 [25.9–31.1] 0.007
Waist circumference (cm) 94 ± 11 98 ± 10 <0.001

Systolic blood pressure (mmHg) 113 [104–123] 116 [106–127] <0.001
Diastolic blood pressure (mmHg) 71 [65–77] 71 [66–78] 0.046

Visceral abdominal fat (cm2) 141 [106–181] 168 [129–218] <0.001
High-density lipoprotein cholesterol (mg/dL) 45 [36–55] 37 [32–44] <0.001
Low-density lipoprotein cholesterol (mg/dL) 116 [95–134] 91 [68–116] <0.001

Triglycerides (mg/dL) 145 [108–202] 162 [119–219] <0.001
Apolipoprotein B (mg/dL) 94 [76–113] 79 [63–102] <0.001
Apolipoprotein A (mg/dL) 134 [115–156] 120 [101–138] <0.001

Lipoprotein (a) (mg/dL) 5.2 [2.3–11.5] 4.8 [2.4–14.1] 0.478
Glucose (mg/dL) 90 [84–97] 95 [87–117] <0.001

High-sensitivity C-reactive protein (mg/L) 1.5 [0.8–3.1] 1.2 [0.6–2.6] <0.001
Adiponectin (µg/mL) 8.1 [5.0–12.8] 5.2 [3.2–8.1] <0.001

Alkaline phosphatase (IU/L) 81 [68–96] 76 [63–95] <0.001
Serum calcium (mg/dL) 9.7 ± 0.6 9.7 ± 0.7 0.278

Data are shown as mean ± standard deviation, median [interquartile range] or percentage. Student’s t-test, Mann Whitney U test or
Chi-square test. pCAD = Premature Coronary Artery Disease. * p value.

Table 2. Prevalence of cardiovascular risk factors the individuals studied.

Characteristics Control
(n = 1073)

pCAD
(n = 1142) * p

LDL-cholesterol ≥ 130 mg/dL (%) 29.6 16.1 <0.001
Hypoalphalipoproteinemia (%) 52.1 66.9 <0.001

Hypertriglyceridemia (%) 47.5 56.2 <0.001
Non-HDL cholesterol > 160 mg/dL (%) 28.0 19.6 <0.001

Obesity (%) 30.5 35.0 0.024
Hypertension (%) 19.2 68.0 <0.001

High visceral abdominal adipose tissue (%) 54.8 64.5 <0.001
Current smoking (%) 22.4 11.6 <0.001

Hypoadiponectinemia (%) 42.5 57.5 <0.001
Alkaline phosphatase > p75 (%) 37.6 38.9 0.569

Data are shown as percentages. * Chi-square test. pCAD = Premature Coronary Artery Disease,
LDL = low-density lipoprotein, HDL = high-density lipoprotein.

3.2. Association of rs2728127 and rs11730582 Polymorphisms with pCAD

A similar distribution of the two polymorphisms was observed in patients with pCAD
and controls (Table 3). The inheritance models were adjusted for age, sex, body mass index,
systolic and diastolic blood pressure, visceral adipose tissue, concentrations of triglycerides,
apolipoprotein B, serum calcium, adiponectin and alkaline phosphatase activity.
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Table 3. Association of OPN gene polymorphisms with premature coronary artery disease.

Polymorphism Genotype Frequency MAF Model OR [95% CI] p

rs2728127 AA AG GG

Additive 0.967 [0.804–1.164] 0.726
Control (n = 1073) 0.679 0.281 0.039 0.160 Dominant 1.027 [0.829–1.271] 0.807

Recessive 0.595 [0.333–1.064] 0.080
pCAD (n = 1142) 0.681 0.293 0.025 0.194 Heterozygous 1.108 [0.890–1.381] 0.359

Co-dominant 1 1.085 [0.869–1.354] 0.471
Co-dominant 2 0.610 [0.339–1.095] 0.098

rs11730582 CC CT TT

Additive 0.990 [0.863–1.137] 0.891
Control (n = 1073) 0.301 0.469 0.247 0.464 Dominant 1.046 [0.841–1.303] 0.684

Recessive 0.923 [0.729–1.168] 0.503
pCAD (n = 1142) 0.282 0.486 0.232 0.475 Heterozygous 1.100 [0.901–1.342] 0.350

Co-dominant 1 1.159 [0.828–1.623] 0.389
Co-dominant 2 1.288 [0.875–1.896] 0.199

The inheritance models were adjusted for age, sex, body mass index, systolic blood pressure, diastolic blood pressure, visceral abdominal
fat, triglycerides, apolipoprotein B, serum calcium, adiponectin and alkaline phosphatase activity. pCAD = Premature Coronary Artery
Disease, OR = Odds Ratio, CI = confidence interval, MAF= Minor Allele Frequency.

3.3. Association of rs2728127 and rs11730582 Polymorphisms with Cardiovascular Risk Factors
and Metabolic Parameters

The association of OPN gene polymorphisms with cardiovascular risk factors and
metabolic parameters was assessed separately in patients with pCAD and controls. In pa-
tients with pCAD and under different inheritance models, we observed that rs11730582 was
associated with an increased risk of hypoadiponectinemia (OR = 1.300, 95% CI = 1.096–1.543,
P additive = 0.003; OR = 1.462, 95% CI = 1.117–1.912, P dominant = 0.006; OR = 1.375, 95%
CI = 1.027–1.840, P recessive = 0.032; OR = 1.371, 95% CI = 1.301–1.824, P codominant 1 = 0.031;
OR = 1.678, 95% CI = 1.191–2.365, P codominant 2 = 0.003), with a decreased risk of hyperten-
sion (OR = 0.728, 95% CI = 0.543–0.976, P dominant = 0.034; OR = 0.709, 95% CI = 0.519–0.967,
P codominant 1 = 0.030), and low risk of having increased levels of non- HDL cholesterol
(OR = 0.803, 95% CI = 0.652–0.989, P additive = 0.039; OR = 0.637, 95% CI = 0.415–0.976,
P codominant 2 = 0.038). These outcomes are depicted in Figure 1.

In the control group, the rs2728127 polymorphism was associated with a low risk
of fatty liver (OR = 0.766, 95% CI = 0.596–0.985, P additive = 0.038). The rs11730582
polymorphism was associated with a lower risk of hypoadiponectinemia (OR = 0.728, 95%
CI = 0.556–9.555, P dominant = 0.022; OR = 0.728, 95% CI = 0.544–0.974, P codominant
1 = 0.032), and high risk of having increased apolipoprotein B levels (OR = 1.222, 95%
CI = 1.014–1.473, P additive = 0.035; OR = 1.400, 95% CI = 1.031–1.901, P dominant = 0.031;
OR = 1.487, 95% CI = 1.019–2.170, P codominant 2 = 0.039). These results are shown in
Figure 2. All genetic models were adjusted for age, sex, and body mass index.
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4. Discussion

Despite the importance of OPN as a clinical predictor of cardiovascular disease, to
date, few genetic association studies have been performed to determine its involvement as a
risk marker for coronary artery disease. This genetic approach is necessary in order to have
a better understanding of this complex and multifactorial disease. Thus, in this research,
we evaluated two polymorphisms (rs2728127 and rs11730582) of OPN gene, in 1073 healthy
individuals and 1142 patients with pCAD, in order to establish their association with
the presence of pCAD, cardiovascular risk factors and cardiometabolic parameters in a
Mexican population. This study was nested in the GEA Project, a prospective and one of
the largest cohorts in Mexican population.

Our results indicate that the studied polymorphisms were not associated with the
presence of pCAD. This outcome agrees with the report of Lin et al., who evaluated
the rs11730582 polymorphism in 536 patients with CAD, 86 patients with peripheral
artery disease (PAD) and 617 controls and did not find a significant association between
this polymorphism and the presence of CAD [24]. In the same line, Hou et al., studied
the association between four OPN gene polymorphisms (including, rs11730582) and left
ventricular hypertrophy (LVH) in 1092 patients with essential hypertension; they did
not find significant differences between the groups analyzed [41]. However, Jing et al.,
reported that rs11730582 polymorphism was associated with an increased risk of ischemic
stroke [42]. The discrepancies found between the report by Jing et al. and our study could
be due to different aspects: (a) Jing et al., included only 377 patients, while we analyzed
1142 individuals with pCAD; (b) Jing et al., studied patients with ischemic stroke (IS) which
is a type of vascular disease, but is not specifically CAD, as in our report; (c) the study by
Jing et al., was conducted in an Asian population, while our research was performed in
Mexican mestizo population [43–45].

The OPN gene polymorphisms have been associated with several pathologies includ-
ing Crohn’s disease [46], urolithiasis [47,48], knee osteoarthritis [49], breast cancer [50]
and diabetic nephropathy [51]. As far as we know, only the study performed by Lin et al.,
and ours have analyzed the association between OPN gene polymorphisms and CAD.
Any other previous research was performed evaluating non-cardiovascular pathologies.
Therefore, the association of the OPN genetic variants with susceptibility to cardiovascular
diseases remains to a great extent unknown.

We also analyzed the association of rs2728127 and rs11730582 polymorphisms with
cardiovascular risk factors and metabolic parameters in both groups. In patients with
pCAD, the rs11730582 polymorphism was associated with an increased risk of hypoad-
iponectinemia. Adiponectin is an essential protein secreted by adipocytes; currently, this
adipokine is a marker for several metabolic pathologies and atherosclerotic cardiovascular
disease [52,53]. For instance, Hui et al., reported that hypoadiponectinemia is related to
the progression of carotid atherosclerosis [54]; while Di Chiara et al., found that hypoad-
iponectinemia was associated with an increased risk of left ventricular [55].

Additionally, the rs11730582 polymorphism was associated with a lower risk of
hypertension, and a decreased risk of having high non-HDL-cholesterol levels. This
outcome seems contradictory; nonetheless, it is important to mention that patients with
pCAD included in our study received lipid-lowering and antihypertensive therapies, which
probably explains these results [56–59]. Therefore, more studies are needed in this field to
elucidate the complete role of this biomolecule.

In our control group, the rs2728127 polymorphism was associated with a decreased
risk of having fatty liver. Evidence suggests that OPN plays an essential role in liver
diseases [60,61], including fatty liver, which is linked to atherosclerotic cardiovascular
pathology [62], as well as subclinical atherosclerosis [63]. Recently, this molecule has also
been associated with the presence of cardiac arrhythmias [64]. On the other hand, the
rs11730582 polymorphism was associated with a low risk of having hypoadiponectinemia.
Some studies have analyzed adiponectin plasma levels in apparently healthy adults and
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found that hypoadiponectinemia was associated with cardiovascular risk factors leading
to a pro-atherogenic condition [65–67].

Also in the control group, we detected an association of rs11730582 polymorphisms
with a risk of having high apolipoprotein B concentrations. ApoB has been related to
dyslipidemia processes and it is considered a significant predictor of cardiovascular dis-
eases such as myocardial infarction [68]. In this sense, our control group was not under
a lipid-lowering treatment, this was probably why we found an association between the
rs11730582 polymorphism and elevated ApoB levels [69].

It is important to consider that genetic variation reported in other populations may
not extrapolate to the Mexican genetic background, i.e., Europeans are closely related, and
their genome have had fewer recombination events than Mexicans. Various genetic studies
of the Mexican population have reported the proportion of Indian and White genes is 56%
and 44%, respectively, in the dihybrid model and 56%, 41% and 4% from Indian, White and
Blacks in the trihybrid model [44,70–72]. Therefore, the analysis of OPN polymorphisms
warrants other studies in populations with different genetic backgrounds.

Another important point to consider in the genetic variability is the Hardy-Weinberg
Equilibrium (HWE) in the population analyzed. However, different factors such as a small
number of participants can alter the HWE, thus influencing the inappropriate distribution
of genotypes in the population. For this reason, we have included an important number
of patients that warrants the HWE and supports that the population of cases and controls
was ethnically well-matched.

The in-silico analysis showed that variations in the rs2728127 polymorphism could
generate binding sites for the heat shock transcription factor 1 (HSF1) and the Kappa-
light-chain enhancer of activated B-cells (NFκB). However, both rs2728127 and rs11730582
polymorphisms produced binding sites for the tumor suppressor Trp53 (P53) and all of
them were implicated in vascular disorders. HSF1 is a transcriptional factor that interacts
with heat shock element (HSE), a specific regulatory element located in promoter regions
of the heat shock protein (HSP) genes [73]. The abnormal expression of HSF1 can promote
cardiac injury in vascular pathologies; however, HSF1 has an important role in cellular
protection from stress conditions [74]. NFκB is a nuclear transcription factor that regulates
differential gene expressions affecting a broad spectrum of biological reactions including
inflammation states, migration, apoptosis and cell proliferation [75–77]. With regards
to P53, this transcription factor has a critical regulatory role in several essential genes
associated with transactivation and transrepression processes. P53 has been related to
angiogenesis, a process with important effects in cardiovascular diseases such as heart
failure, myocardial ischemia/reperfusion, and atherosclerosis among others [78].

Some limitations in our research should be taken into consideration. First, we did
not measure circulating levels of OPN in the participants; therefore, we did not establish
if there were different concentrations of this protein between groups. For this reason, the
association between OPN gene polymorphisms and the concentration of OPN was not
reported. Second, we could not verify with experimental evidence if the polymorphisms
had a functional impact, as we just used an in-silico approach. Third, most of the coronary
risk factors were different between patients and controls; even if they were considered to
adjust the statistical analyses, the possibility remains of a lower contribution of OPN gene
polymorphisms to pCAD than that reported in this study. Nonetheless, our report also has
significant strengths: (1) we used a large cohort of Mexican individuals with and without
pCAD, with demographic, clinical, tomographic and biochemical variables; (2) our control
group only included individuals without subclinical atherosclerosis (CAC score = zero), so
there was no bias in selecting the comparison group. As far as we know, this is the first
study to report the associations OPN gene with other cardiovascular risk factors.

5. Conclusions

Our results suggest an association of OPN gene polymorphisms with metabolic
abnormalities and cardiovascular risk factors in Mexican patients with pCAD and healthy
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controls. These findings support the participation of OPN polymorphisms as metabolic
markers in our population.
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