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Abstract: Terpenoids are natural plant-derived products that are applied to treat a broad range of
human diseases, such as airway infections and inflammation. However, pharmaceutical applications
of terpenoids against bacterial infection remain challenging due to their poor water solubility. Here,
we produce invasomes encapsulating thymol, menthol, camphor and 1,8-cineol, characterize them
via cryo transmission electron microscopy and assess their bactericidal properties. While control-
and cineol-invasomes are similarly distributed between unilamellar and bilamellar vesicles, a shift
towards unilamellar invasomes is observable after encapsulation of thymol, menthol or camphor.
Thymol- and camphor-invasomes show a size reduction, whereas menthol-invasomes are enlarged
and cineol-invasomes remain unchanged compared to control. While thymol-invasomes lead to
the strongest growth inhibition of S. aureus, camphor- or cineol-invasomes mediate cell death
and S. aureus growth is not affected by menthol-invasomes. Flow cytometric analysis validate
that invasomes comprising thymol are highly bactericidal to S. aureus. Notably, treatment with
thymol-invasomes does not affect survival of Gram-negative E. coli. In summary, we successfully
produce terpenoid-invasomes and demonstrate that particularly thymol-invasomes show a strong
selective activity against Gram-positive bacteria. Our findings provide a promising approach to
increase the bioavailability of terpenoid-based drugs and may be directly applicable for treating
severe bacterial infections such as methicillin-resistant S. aureus.
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1. Introduction

Terpenes are secondary plant metabolides with aromatic characters found in the oil
fraction of various plants, where they serve for protection against predators or pathogens [1,2].
Notably, the oxygenated derivatives of terpenes, so-called terpenoids, have strong antioxidant and
anti-inflammatory as well as antimicrobial properties [3,4]. For instance, the terpenoid thymol was
reported to attenuate allergic airway inflammation in mice [5] and inhibit lipopolysaccharide-stimulated
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inflammatory responses via down-regulation of the transcription factor NF-κB [6]. Additionally,
the terpenoid cineol was shown to inhibit pro-inflammatory signaling mediated by NF-κB [7], while
simultaneously potentiating IRF3-mediated antiviral responses [8]. In addition, cineol reduced
production of mucus in a human ex vivo model of late rhinosinusitis [9]. Regarding the antimicrobial
properties of terpenoids, thymol was reported to have direct bactericidal effects against S. aureus
and S. epidermidis [10]. The terpenoids menthol and camphor also showed anti-bacterial activity
against different bacterial species such as streptococci or mycobacteria [11,12]. Cineol was also
recently demonstrated to display antibacterial activities against pathogenic bacteria present in chronic
rhinosinusitis such as S. aureus [13]. Despite these promising anti-inflammatory and anti-bacterial
properties, pharmaceutical applications of terpenoids against bacterial infection remain challenging
due to their poor water solubility and high volatility.

Here, we address this challenge by utilizing liposomal packaging for drug delivery of terpenoids.
Liposomes are spherical vesicles of phospholipid bilayers, which are commonly used for encapsulation
of drugs and particularly for increasing or allowing their anti-microbial activity [14]. For instance,
Aravevalo and colleagues showed an increase in antibiotic activity of ß-Lactam against resistant
S. aureus after encapsulation within coated-nanoliposomes [15]. In addition, Moyá and coworkers
recently demonstrated a bactericidal activity of Cefepime encapsulated into cationic liposomes
against E. coli [16]. Engel and colleagues assessed the antimicrobial activity of thymol and carvacrol
encapsulated into liposomes by thin-film hydration and observed an inhibition of S. aureus and
S. enterica growing on stainless steel [17]. As recently reported by Usach and coworkers, pompia
essential oil (containing limonene and citral) as well as citral itself were successfully loaded into
liposomes via hydration followed by ultrasonic disintegration. The respective encapsulated terpenoids
had antimicrobial properties against different bacterial species such as S. aureus or P. aeruginosa [18].
A nanoemulsion comprising eucalyptus oil obtained by ultrasonic emulsification was also shown to
have antibacterial activity against S. aureus [19]. Cui and colleagues further observed an antibacterial
effect of cinnamon oil (with eugenol being its main compound) encapsulated into liposomes against
methicillin-resistant S. aureus (MRSA) alone or cultivated as a biofilm [20]. In addition to increasing
the anti-microbial activity of drugs, encapsulation into liposomal structures was already described to
enhance the anti-inflammatory capacity of terpenoids. In this regard, nanostructured lipid carriers
encapsulating thymol were shown to provide a sustained release of the terpenoid as well as an
increase in anti-inflammatory activity within mouse models of skin inflammation [21]. In addition
to nanostructured lipid carriers, terpenoids can also be delivered by encapsulation into polymeric
nanostructured systems or by molecular complexation [2]. In addition to increasing stability of
encapsulated compounds, terpenoid-encapsulation systems are widely accepted to be non-cytotoxic
and enhance the antioxidant and anti-inflammatory activities of terpenoids ([18,21–23] reviewed
in [2,24]). For instance, Manconi and colleagues reported the liposomal formulation of thymus
essential oil to be highly biocompatible and to counteract oxidative stress in keratinocytes [22]. Thymol
encapsulated in nanostructured lipid carriers further showed anti-inflammatory activity in different
mouse models of skin inflammation in vivo [21].

In the present study, we took advantage of a liposome-based system, the so-called invasomes,
for encapsulating the terpenoids thymol, menthol, camphor and cineol (Figure 1). Invasomes are
liposomes composed of unsaturated phospholipids, small amounts of ethanol, terpenes and water [25].
In our present approach, terpenoid-invasomes were produced via extrusion of a solution comprising
the respective terpenoid solved in ethanol, while soybean lecithin served as a lipid source. We aimed to
characterize the produced invasomes in terms of their lamellarity, size and bilayer thickness using cryo
transmission electron microscopy (Cryo TEM). Although being commonly utilized for the formulation
of invasomes [26,27], terpenoids mostly serve as permeation enhancer for transdermal delivery and
bioavailability rather than being bioactive components [2]. In the present study, we focused on the
production of invasomes with terpenoids as the bioactive components to inhibit bacterial cell growth.
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With respect to pharmaceutical applications for treating bacterial infection, we therefore assessed
potential bactericidal effects of our produced terpenoid-invasomes against S. aureus and E. coli.Biomedicines 2020, 8, x FOR PEER REVIEW 3 of 18 

 

 
Figure 1. Structural formulas of the terpenoids thymol, menthol, camphor and cineol used for 
encapsulation into invasomes. 

2. Materials and Methods 

2.1. Preparation of Invasomes and Encapsulation of Terpeonoids 

For production of invasomes, 20 mg of the respective terpenoid thymol, menthol, camphor or 
cineol (Caesar and Loretz GmbH, Hilden, Germany) was solved in 1.32 mL of 99.6% Ethanol. This 
mixture was subsequently added to 40 mL of 0.9% saline to reach a final concentration of 0.5 mg 
terpenoid per mL. A quantity of 100 mg of soybean lecithin (Lipoid S 100, Batch 579000-1160713-
01/704, Lipoid GmbH, Ludwigshafen am Rhein, Germany) was added to 2 mL of this solution 
comprising the terpenoid, ethanol and saline followed by vortexing for 5 min to reach a homogenous 
solution. For control formulation, a solution without terpenoids was applied. Invasomes were formed 
by extrusion using the Avanti Mini-Extruder (Avanti Polar Lipids, Alabaster, AL, USA) by passing 1 
mL of final solution 10 times back and forth through a polycarbonate membrane with 100 nm pores. 

2.2. Cryo Transmission Electron Microscopy (Cryo TEM) 
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was placed on a TEM copper grid (Quantifoil Micro Tools GmBH, Großlöbichau, Germany). 
Plunging into liquid ethane using Leica EM GP (Leica Microsystems, Wetzlar, Germany) with 80% 
moisture, 10 s pre-blotting time, 3 s blotting time and 20 °C temperature was followed by transporting 
the samples to the cryo transfer station (Fischione Intruments, Export, PA, USA) in liquid nitrogen. 
Analysis was done at the OWL Analytic Center using Jeol JEM 2200 FS (JEOL Ltd., Tokyo, Japan) 
operated at 200 kV. 

2.3. Determination of Zeta Potentials 

Zeta potentials were measured using Beckmann Coulter Delsa Nano C Particle Analyzer 
(Beckman Coulter, Brea, CA, USA) in a flow cell after dilution of samples with water from 50 mg/mL 
to 500 µg/mL. Measurements were repeated ten times. 

2.4. Evaluation of Invasome Size and Bilayer Thickness 

Area and bilayer thickness of produced invasomes were measured using FIJI [28] by utilizing 
Cryo TEM images. Briefly, the area of every invasome was marked with the circular selection tool 
and the measurement function was applied to calculate the area of the selections followed by 
calculation of the radius. For assessing bilayers thickness, the segmented area selection tool of FIJI 
was used followed by the straighten function of FIJI to obtain straight selection and calculation of a 
line profile. Respective line profiles showed a clear dent at the bilayer position and thickness was 
measured at half maximum. A Gauss distribution was fitted to all histograms. 
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Figure 1. Structural formulas of the terpenoids thymol, menthol, camphor and cineol used for
encapsulation into invasomes.

2. Materials and Methods

2.1. Preparation of Invasomes and Encapsulation of Terpeonoids

For production of invasomes, 20 mg of the respective terpenoid thymol, menthol, camphor
or cineol (Caesar and Loretz GmbH, Hilden, Germany) was solved in 1.32 mL of 99.6% Ethanol.
This mixture was subsequently added to 40 mL of 0.9% saline to reach a final concentration of 0.5 mg
terpenoid per mL. A quantity of 100 mg of soybean lecithin (Lipoid S 100, Batch 579000-1160713-01/704,
Lipoid GmbH, Ludwigshafen am Rhein, Germany) was added to 2 mL of this solution comprising
the terpenoid, ethanol and saline followed by vortexing for 5 min to reach a homogenous solution.
For control formulation, a solution without terpenoids was applied. Invasomes were formed by
extrusion using the Avanti Mini-Extruder (Avanti Polar Lipids, Alabaster, AL, USA) by passing 1 mL
of final solution 10 times back and forth through a polycarbonate membrane with 100 nm pores.

2.2. Cryo Transmission Electron Microscopy (Cryo TEM)

For Cryo TEM analysis, 3 µL of the respective invasome-dispersion produced as described above
was placed on a TEM copper grid (Quantifoil Micro Tools GmBH, Großlöbichau, Germany). Plunging
into liquid ethane using Leica EM GP (Leica Microsystems, Wetzlar, Germany) with 80% moisture, 10 s
pre-blotting time, 3 s blotting time and 20 ◦C temperature was followed by transporting the samples to
the cryo transfer station (Fischione Intruments, Export, PA, USA) in liquid nitrogen. Analysis was
done at the OWL Analytic Center using Jeol JEM 2200 FS (JEOL Ltd., Tokyo, Japan) operated at 200 kV.

2.3. Determination of Zeta Potentials

Zeta potentials were measured using Beckmann Coulter Delsa Nano C Particle Analyzer (Beckman
Coulter, Brea, CA, USA) in a flow cell after dilution of samples with water from 50 mg/mL to 500 µg/mL.
Measurements were repeated ten times.

2.4. Evaluation of Invasome Size and Bilayer Thickness

Area and bilayer thickness of produced invasomes were measured using FIJI [28] by utilizing
Cryo TEM images. Briefly, the area of every invasome was marked with the circular selection tool and
the measurement function was applied to calculate the area of the selections followed by calculation
of the radius. For assessing bilayers thickness, the segmented area selection tool of FIJI was used
followed by the straighten function of FIJI to obtain straight selection and calculation of a line profile.
Respective line profiles showed a clear dent at the bilayer position and thickness was measured at half
maximum. A Gauss distribution was fitted to all histograms.
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2.5. Growth-Inhibition Zone Assay

Overnight suspension cultures of S. aureus (Staphylococcus aureus Rosenbach 1884, DSM 24167,
German Collection of Microorganisms and Cell Cultures GmbH (DSMZ), Braunschweig, Germany) were
inoculated on Brain Heart Infusion Broth (BHI) agar plates (Sigma-Aldrich Corporation, Merck KGaA,
Darmstadt, Germany). Filter plates loaded with 10 µL of respective invasome-dispersion were placed
on the BHI agar plates followed by incubation overnight at 37 ◦C. Diameters of the growth-inhibition
zones were measured and calculated using FIJI [28].

2.6. Analysis of Encapsulation Efficiency and Loading Capacity

Encapsulation efficiency (EE %) was analyzed as described in [29]. EE% was calculated by (total
drug added − free non-entrapped drug) divided by the total drug added. Loading capacity (LC) was
calculated as the amount of drug loaded per unit weight of total invasomes (weight of lipids). Free drug
was separated from invasome preparation by ultrafiltration (1000× g for 30 min at 4 ◦C) using an
Amicon Centricon device with a molecular weight cut-off of 30,000. Drug stocks for measurement were
prepared in methanol for HPLC (VWR) at a concentration of 1 mg/mL. A linear dilution was prepared in
methanol and absorbance was measured at 276 nm using an Ultrasspec 2100 pro photometer (Amersham
Biosciences, Little Chalfont, UK). Linearity was proven between 0.0015 mg/mL and 0.025 mg/mL
thymol. EE% for thymol was calculated as (0.5 mg/mL−0.0041 mg/mL)/0.5 mg/mL = 0.9918 resulting
in 99.18% EE. LC% was calculated as (0.5 mg/mL−0.0041 mg/mL)/(50 + 0.5) mg/mL= 0.01, which
equals 1%.

2.7. Flow Cytometric Measurement of Cell Death

For flow cytometric measurement of cell death, S. aureus or E. coli (Escherichia coli DH5-Alpha)
were exposed to respective invasome-dispersions (0.5 mg/mL, 1 mg/mL, 2 mg/mL final terpenoid
concentration) for 24 h. Cells were fixed with 0.4% PFA for 20 min followed by staining with 1 µL/mL
propidium iodide (PI, Sigma Aldrich) for 10 min. PI-stained bacterial cultures were analyzed using a
Beckman Coulter Gallios Flow Cytometer (Beckman Coulter) followed by data analysis with Kaluza
software (Beckman Coulter).

2.8. Statistical Analysis

For assessment of lamellarity and size of invasomes encapsulating a distinct terpenoid, up to
200 invasomes per Cryo TEM image were measured in 3–4 representative Cryo TEM images.
For evaluation of bilayer thickness, up to 30 invasomes were measured in 3–4 representative Cryo
TEM images for each of the different terpenoid-invasomes. Examples of small representative sections
of original cryo electron micrographs used for measuring invasomes size are included within the
respective figures, details of measuring are described above. Statistical analysis was performed using
Graph Pad Prism (GraphPad Software, San Diego, CA, USA). The p value is a probability, with a value
ranging from zero to one. The first step is to state the null hypothesis, here that the terpenoids do not
affect the size of the invasomes and all differences in size are due to random sampling. The p-value is
the probability of obtaining results as extreme as the observed results of a statistical hypothesis test,
assuming that the null hypothesis is correct. The p-value is used as an alternative to rejection points to
provide the smallest level of significance at which the null hypothesis would be rejected. A smaller
p-value means that there is stronger evidence in favour of the alternative hypothesis. For analysis of
lamellarity, * p < 0.05 was considered significant (Mann–Whitney test, one-tailed). For analysis of
invasome size, p < 0.0001 was considered significant (unpaired t-test, one-tailed). Growth-inhibition
zone assay was performed as biological triplicate and Graph Pad Prism served for statistical analysis
with * p < 0.05 being considered significant (Mann–Whitney test, one-tailed).
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3. Results and Discussion

3.1. Succsessfull Preparation of Invasomes Encapsulating the Terpenoids Thymol, Menthol, Camphor
and Cineol

To encapsulate terpenoids into invasomes, we aimed to produce liposomes by extrusion of a
homogenous solution comprising the respective terpene solved in ethanol, 0.9% saline and soybean
lecithin. Extrusion of a solution without terpenoids served as control and resulted in the formation of
invasomes, as visualized by cryo transmission electron microscopy (Cryo TEM) (Figure 2A).
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Figure 2. Successful production of invasomes encapsulating thymol, menthol, camphor and cineol
by extrusion. (A) Cryo transmission electron microscopy (TEM) showing control invasomes without
terpenoids (small representative section of original micrograph). (B) Schematic view of terpenoids
encapsulated by invasomes. Localization of terpenoids within the aqueous phase of the invasome was
chosen only for visualization reasons and does not represent their natural localization. (C–F) Small
representative sections of original cryo electron micrographs revealed invasomes comprising thymol (C),
menthol (D), camphor (E) or cineol (F) after extrusion. TEM: Cryo transmission electron microscopy.

We next applied the terpenoids thymol, menthol, camphor or cineol for production of invasomes
(Figure 2B). Cryo TEM micrographs showed the presence of invasomes comprising thymol (Figure 2C),
menthol (Figure 2D), camphor (Figure 2E) or cineol (Figure 2F) after extrusion. Interestingly, Cryo TEM
allowed us to observe multilamellar membrane boundaries in all five approaches (Figure 2A,C–F).

During characterization of the newly produced invasomes via Cryo TEM, we observed that
encapsulation of thymol and camphor resulted in a significant shift towards unilamellar vesicles.
We suggest that terpenoids such as thymol might decrease membrane fluidity and thus lead to more
unilamellar liposomes. On the contrary, cineol-invasomes revealed a similar distribution between
unilamellar and bilamellar vesicles comparable to control. Furthermore, cineol-invasomes showed
a similar size to control-invasomes, while encapsulation of thymol and camphor led to significantly
smaller invasomes and menthol-comprising invasomes were significantly enlarged compared control.
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We suggest this observation to be based on the elevated water solubility of cineol (3500 mg/L) compared
to camphor (1600 mg/L), thymol (900 mg/L) and menthol (420 mg/L).

Analysis of Zeta potentials revealed approximately neutral potentials of control invasomes
(−2 ± 5 mV, Figure 3A). We also observed approximately neutral Zeta potentials for invasomes
encapsulating the terpenoids thymol (−3 ± 6 mV, Figure 3B), menthol (−1 ± 5 mV, Figure 3C), camphor
(−2 ± 5 mV, Figure 3D) or cineol (0 ± 5 mV, Figure 3E).Biomedicines 2020, 8, x FOR PEER REVIEW 6 of 18 
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camphor (D) or cineol (E) reveal neutral Zeta potentials.

In terms of invasomal stability, high Zeta potentials of at least ± 20 mV are generally considered
as an indicator for electrostatical and steric stabilization of invasomes [30,31]. Although all produced
terpenoid-invasomes showed neutral Zeta potentials in the present study, we observed the presence of
stable invasomes using Cryo TEM after extrusion. A limitation of our study was that the low values
of zeta potential could only be measured with low precision, e.g., 3 mV ± 6 for thymol-containing
invasomes. Furthermore, measurements of Zeta potentials in nano carrier systems such as invasomes
are hampered by measuring limitations arising in diluted samples. Hence, plenty of parameters which
influence zeta potentials such as viscosity, pH, and dielectric constant are not correctly reflected in
diluted samples [32]. Cryo TEM, to the best of our knowledge, does not have these limitations, since
samples with much higher concentrations of invasomes could be analysed in their native diluent.

In accordance with our findings, Sebaaly and colleagues reported neutral Zeta potentials of
−3.9 ± 1.9 mV for eugenol-loaded Lipoid S100-liposomes prepared by ethanol injection method.
Although the authors demonstrated an increase in liposome size and size distribution after storage
in aqueous suspension at 4 ◦C for 2 months, encapsulation efficiencies of eugenol (86.6%) were
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unchanged [33]. We suggest that encapsulation efficiencies of our produced invasomes may not be
affected over time, despite their neutral Zeta potentials.

In addition to providing an increased bioavailability and a more controlled drug release,
our approach may also facilitate topical administration of thymol-invasomes due to the high
permeability rate of invasomes through the skin [2,21,24].

Notably, extrusion of solution without addition of ethanol for solving the terpenoid of interest
did not result in the formation of invasomes (data not shown). In summary, we successfully prepared
invasomes encapsulating the terpenoids thymol, menthol, camphor and cineol.

3.2. Encapsulation of Terpenoids Significantly Changes Lamellarity and Size of Invasomes without Affecting
Bilayer Thickness

We next characterized the produced invasomes in more detail in terms of their lamellarity, size and
bilayer thickness. For investigation of lamellarity, we determined individual types of lamellar phase
lipid bilayers ranging from one lipid bilayer (MLV1) up to eight lamellar phase lipid bilayers (MLV8)
(Figure 4A). Cryo electron micrographs (see also Figure 2) served for determination of the individual
types of lamellar phase lipid bilayers, which we present in relation to their distribution. Notably,
we observed strong differences in lamellarity of invasomes depending on the added terpenoids and in
comparison to control. Without the addition of a terpenoid (control, Figure 4B), mostly unilamellar
(37 ± 8%) and bilamellar vesicles (37 ± 13%) were formed (* p < 0.05, Figure 4B) and showed almost
equal proportions (p = 0.4 was not considered significant, Mann–Whitney test, one-tailed).
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Figure 4. Characterization of lamellarity of the produced terpenoid-comprising invasomes.
(A) Schematic view of individual types of lamellar phase lipid bilayers. (B) Without the addition of a
terpenoid (control, B), mostly unilamellar and bilamellar vesicles were formed in equal proportions.
(C–E) Invasomes comprising of thymol or camphor showed mostly unilamellar vesicles and a
significantly smaller amount of bilamellar vesicles, while menthol-invasomes revealed no changes
between MLV1 and MVL2. (D) Cineol-invasomes revealed a similar distribution between unilamellar
and bilamellar vesicles. Distribution of the individual vesicle types is depicted in relation to their
lamellarity measured from respective cryo electron micrographs. * p 0.05 was considered significant
(Mann–Whitney test, one-tailed). MLV: Multilamellar vesicles. (n.s. means not significant)

On the contrary, a shift towards 63± 11% unilamellar vesicles (MLV1, Figure 4C) and a significantly
decreased amount of 26 ± 7% bilamellar vesicles (MLV2, * p < 0.05, Figure 4C) were observed for
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invasomes comprising of thymol. Production of invasomes with menthol resulted in a significantly
increased amount of unilamellar vesicles (54 ± 18%) compared to MLV3–8 (* p < 0.05), but no
significant changes between the amounts of MLV1 and MLV2 (p = 0.0571 was not considered significant,
Mann–Whitney test, one-tailed, Figure 4D). Similarly to thymol-invasomes, encapsulation of camphor
resulted in mostly unilamellar vesicles (59 ± 10%, * p < 0.05) and significantly decreased amounts of
bilamellar vesicles (32 ± 12%, * p < 0.05, Figure 4E). Interestingly, invasomes containing cineol revealed
a similar lamellarity as the control with a similar distribution between unilamellar (43 ± 3%) and
bilamellar vesicles (45 ± 2%, p = 0.2000 was not considered significant, Mann–Whitney test, one-tailed,
Figure 4F). In addition, no MLV6–8 were observable in invasomes encapsulating cineol (Figure 4F).

In addition to their lamellarity, we measured and calculated the size of the produced invasomes
(Figure 5A). All invasomes including the control showed a large distribution in size but also specific
changes according the encapsulated terpenoid. Compared to control invasomes showing a size
distribution from about 20 up to 80 nm radius and a mean of 40 ± 15 nm (Figure 5B), thymol-containing
invasomes revealed a significantly smaller radius of 33 ± 18 nm (Figure 5C, *** p < 0.0001 was
considered significant, unpaired t-test, one-tailed). Preparation of invasomes with camphor also
resulted in a significantly smaller invasomes size (30 ± 16 nm radius, Figure 5E) compared to control
(*** p < 0.0001, unpaired t-test, one-tailed). On the contrary, menthol-comprising invasomes revealed a
significantly increased radius of 58 ± 22 nm (Figure 5D) compared to all other terpenoid-encapsulating
invasomes and control invasomes (*** p < 0.0001, unpaired t-test, one-tailed). Interestingly, although
their distribution showed a peak at 35–40 nm radius, the size of invasomes with cineol (43 ± 17 nm
radius, Figure 5F) was similar to control (40 ± 15 nm, p = 0.13 was not considered significant, unpaired
t-test, one-tailed).
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Figure 5. Encapsulation of terpenoids directly affects invasomes size. (A) Example of a small
representative section of an original cryo-electron micrograph used for measuring invasomes’ size.
(B) Control invasomes without terpenoid showing a mean radius of 40± 15 nm. (C) Thymol-comprising
invasomes revealed a smaller radius of 33 ± 18 nm compared to control. (D) Production of
invasomes with menthol resulted in an increased invasome radius of 59 ± 22 nm. (E) Like thymol,
camphor-invasomes also shower a smaller invasome size (30 ± 16 nm radius) compared to control.
(F) With a mean radius of 43± 17 nm, the size of invasomes with cineol was similar to control. Frequency
plots of the radius distribution of the invasomes. A fit with the Gaussian function is displayed as a
red line.
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As a third parameter for characterization of our newly produced invasomes, thickness of the
liposomal bilayer was measured by evaluating cryo-electron micrographs (Figure 6A). We observed no
significant differences (Mann–Whitney test, one-tailed) in the liposomal bilayer thickness of control
invasomes (4 ± 0.5 nm, Figure 6B) compared to menthol-invasomes (4 ± 0.3 nm, p = 0.2482, Figure 6D)
and invasomes encapsulating camphor (4 ± 0.5 nm, p = 0.2987, Figure 6E). Invasomes produced
with thymol revealed a slightly but significantly increased bilayer thickness of 5 ± 1 nm (Figure 6C)
compared to control (** p < 0.01), camphor-invasomes (* p < 0.05) and cineol-invasomes (** p < 0.01,
Mann–Whitney test, one-tailed). In contrast, cineol-comprising invasomes showed a minor decrease in
bilayer thickness (4 ± 0.5 nm, Figure 6F) in comparison to the other approaches.
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Figure 6. Encapsulation of terpenoids does not affect the bilayer thickness of invasomes. (A) Example
of a small representative section of an original cryo-electron micrograph used for measurement of the
bilayer thickness. (B–F) A similar liposomal bilayer thickness was observable for control invasomes
(4 ± 0.5 nm), thymol-invasomes (5 ± 1 nm) menthol-invasomes (4 ± 0.3 nm), camphor-invasomes
(4 ± 0.5 nm) or cineol-invasomes (4 ± 0.5 nm). Frequency plots of the bilayer thickness distribution of
invasomes. A fit with the Gaussian function is displayed as a red line.

Taken together, invasomes with terpenoids showed a shift towards unilamellar vesicles, except
for cineol with a similar distribution between unilamellar and bilamellar vesicles comparable to
control. While the bilayer thickness of invasomes was comparable in all approaches, preparation of
invasomes with thymol and camphor led to significantly smaller invasomes compared control. On the
contrary, menthol-comprising invasomes were significantly enlarged and we observed the radius of
cineol-invasomes to be comparable to control.

3.3. Invasomes Encapsulating Thymol, Camphor and Cineol Show Bactericidal Activity against S. aureus in a
Growth-Inhibition Zone Assay

After successfully producing and characterizing terpenoid-comprising invasomes, we assessed
their potential bactericidal activity against S. aureus in a growth-inhibition zone assay. After exposure
of S. aureus to different terpenoid-invasomes overnight, we determined the size of the inhibitory
zones. Control invasomes without terpenoids did not result in growth inhibition of S. aureus
(Figure 7A). Compared to unaffected control, we observed a clearly visible growth inhibition of
S. aureus exposed to invasomes comprising thymol, camphor or cineol (Figure 7B,D,E). Interestingly,
invasomes encapsulating menthol did not affect growth of S. aureus (Figure 7C). Statistical evaluation
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of the measured areas of inhibition validated a strong and significant inhibition of bacterial growth
by thymol-containing invasomes compared to all other terpenoid-invasomes and control (Figure 7F).
However, invasomes comprising camphor or cineol still caused a significant increase in the zone
of inhibition compared to control and menthol-invasomes, which revealed no zone of inhibition
(Figure 7F).
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Figure 7. Invasomes encapsulating thymol, camphor and cineol show bactericidal activity against
S. aureus in a growth-inhibition zone assay. (A) Control invasomes without terpenoids did not
affect bacterial growth. (B) Strong growth inhibition of S. aureus exposed to invasomes comprising
thymol. (C) Invasomes encapsulating menthol did not affect growth of S. aureus. (D–E) Growth
inhibition of S. aureus exposed to invasomes comprising camphor and cineol. (F) Statistical evaluation
of the measured zones of inhibition validated the significant inhibition of S. aureus growth by
thymol-containing invasomes compared to all other terpenoid-invasomes and control. * p 0.05 was
considered significant (Mann–Whitney test, one-tailed). (n.s. means not significant)

In Table 1, the particle size of different terpenoid formulations is depicted as measured in Figure 5.
When the formulations are sorted from the highest antibacterial activity (thymol) to the lowest (cineol),
as measured in Figure 7, it becomes evident that the terpenoids with the highest antibacterial activity
have the highest polydispersity index also (Table 1).

Table 1. Invasome Particle Size and the Polydispersity Index.

Formulation Particle Size (nm) Polydispersity Index

Thymol 66 ± 36 0.3 ± 0.05
Camphor 60 ± 32 0.3 ± 0.04

Cineol 86 ± 34 0.2 ± 0.03
Menthol 118 ± 44 0.2 ± 0.03
Control 80 ± 30 0.1 ± 0.02
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3.4. Flow Cytometric Analysis of Cell Death Validate High Bactericidal Activity of Thymol-Loaded Invasomes
against Gram-Positive S. aureus

To validate the strong bactericidal activity of thymol-invasomes against S. aureus in the
growth-inhibition zone assay, we also assessed the anti-bacterial activity of thymol-invasomes
quantitatively using flow cytometry. Bacterial cell death was measured by the DNA-intercalating dye
Propidum Iodide (PI), which is incorporated only by dead cells. Prior to this analysis, we determined
the encapsulation efficiency and loading capacity of thymol-invasomes to ensure proper encapsulation
of the terpenoid. Here, we observed an encapsulation efficiency of 47 ± 13% as well as a loading
capacity of 0.5 ± 0.1% for invasomes encapsulating thymol. Compared to untreated negative control
(4–9% cell death), 0.5 mg/mL thymol packaged in invasomes resulted in a profound cell death of
70% (Figure 8A). Exposure of 1 mg/mL invasome-encapsulated thymol even resulted in 75% bacterial
cell death (Figure 8B). Since 2 mg/mL thymol packaged in invasomes resulted in only 9% PI-stained
S. aureus (Figure 8C), we additionally assessed the cell count per second during the flow cytometric
measurement. Here, only around 1000 cells/second were observed in the S. aureus population
treated with 2 mg/mL thymol-comprising invasomes, whereas the cell count for control conditions
ranged around 40,000 cells/second (Figure 8D). Treatment of S. aureus with 0.5 mg/mL or 1 mg/mL
invasome-encapsulated thymol resulted in cell flow of around 33,000 cells/second (Figure 8D). Thus,
we suggest that 2 mg/mL thymol packaged in invasomes already resulted in a nearly complete cell
death of S. aureus prior to PI-staining and following flow cytometric measurements. We conclude
invasomes encapsulating thymol to be strongly bactericidal against Gram-positive bacteria such as
S. aureus.
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Figure 8. Flow cytometric analysis of cell death validate invasomes encapsulating thymol to be strongly
bactericidal against Gram-positive bacteria like S. aureus. (A,B) Compared to untreated negative control,
0.5 mg/mL or 1 mg/mL thymol packaged in invasomes resulted in a profound cell death depicted
by PI-staining. (C) 2 mg/mL thymol packaged in invasomes resulted in only 9% PI-stained S. aureus.
(D) Assessment of cell flow revealed only around 1000 cells/second in the S. aureus population treated
with 2 mg/mL thymol-comprising invasomes, suggesting a nearly complete cell death prior to following
flow cytometric analysis. PI: Propidium iodide.
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3.5. Thymol-Loaded Invasomes Do Not Affect Survival of Gram-Negative E. coli

Next to Gram-positive bacteria such as S. aureus, we assessed the potential anti-bacterial activity of
thymol-invasomes against Gram-negative species such as E. coli. Notably, 0.5 mg/mL thymol packaged
in invasomes resulted in only 0.2% PI-stained dead cells (Figure 9A). Treatment of E. coli with 1 mg/mL
or 2 mg/mL invasome-encapsulated thymol only led to 6% or 5% cell death (Figure 9B,C). With regards
to the low amount of PI-stained cells, we also assessed the cell count per second during the flow
cytometric measurement. Here, we observed no relevant effects of the different concentrations of
invasome-encapsulated thymol on the growth of E. coli (cell count per second, Figure 9D). In summary,
the invasomes comprising thymol produced in this study are highly bactericidal to Gram-positive
S. aureus, but do not affect survival of Gram-negative E. coli.
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Figure 9. Invasomes encapsulating thymol are not bactericidal against Gram-negative bacteria such as
E. coli. (A–C) Compared to untreated negative control, treatment of E. coli. with 0.5 mg/mL, 1 mg/mL or
2 mg/mL thymol packaged in invasomes did not result in elevated amounts of cell death. (D) Assessment
of cell flow revealed no relevant effects of the different concentrations of invasome-encapsulated thymol
on the growth of E. coli.

3.6. Growth-Inhibition Zone Assay Shows Strong Bactericidal Activity of Cineol Invasomes against E. coli

In addition to thymol-invasomes, we assessed the potential bactericidal activity of invasomes
encapsulating menthol, camphor and cineol against E. coli. In line with our flow cytometric analysis
of cell death, thymol-invasomes revealed no elevated growth inhibition of E. coli, similarly to
control-invasomes without encapsulated terpenoids (Figure 10A,B). While menthol-invasomes led
to a slight growth inhibition of E. coli (Figure 10C), invasomes encapsulating camphor showed no
bactericidal activity against E. coli (Figure 10D). Notably, exposure of E. coli to invasomes loaded with
cineol resulted in a strong and significant growth inhibition (Figure 10E,F).
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Figure 10. Invasomes encapsulating cineol reveal bactericidal activity against E. coli in a
growth-inhibition zone assay. (A,B) Control invasomes without terpenoids or thymol invasomes
did not affect bacterial growth. (C,D) While menthol-invasomes led to a slight inhibition of E. coli
growth, camphor-invasomes did not affect growth of S. aureus. (E) Strong growth inhibition of E. coli
exposed to invasomes comprising cineol. (F) Statistical evaluation of the measured zones of inhibition
validated the significant inhibition of E. coli growth by cineol-containing invasomes compared to
all other terpenoid-invasomes and control. * p 0.05 was considered significant (Mann–Whitney test,
one-tailed). (n.s. means not significant)

We next determined the potential bactericidal activity of non-extruded terpenoids as a control
to our encapsulation approach. In contrast to terpenoids encapsulated in invasomes (Figures 7–10),
application of non-extruded terpenoids did not result in growth inhibition of E. coli or S. aureus (data
not shown). In summary, the invasomes comprising thymol produced here are highly bactericidal
to Gram-positive S. aureus, while cineol-invasomes affect the survival of Gram-negative E. coli
(Figures 7–10).

Potential antibacterial mechanisms of invasome formulations with terpenoids are depicted in
Figure 11.

Although terpenoids such as limonene, cineole or beta-citronellene have been widely used for
formulation of invasomes [26,27], they were mostly applied as permeation enhancer for transdermal
delivery and bioavailability and not as bioactive components [2]. In the present study, we focused on the
production of invasomes with terpenoids as the bioactive components to inhibit bacterial cell growth.
We found our terpenoids-invasomes to be bactericidal against Gram-positive S. aureus, with increasing
efficiency from cineol- and camphor-invasomes (moderate bactericidal activity) to thymol-invasomes
showing the strongest bactericidal effects. These findings are in line with the commonly reported
bactericidal activity of thymol, camphor and cineol [10,12,13]. Interestingly, Mulyaningsih and
colleagues reported that exposure of MRSA even to high concentrations of cineol does not inhibit
multi-resistant S. aureus. However, a combination of the terpene aromadendrene with cineol resulted
in reduced bacterial cell growth [34]. Extending these findings, we show that encapsulation of
cineol into invasomes alone is sufficient for inhibiting growth of S. aureus without the application of
additional terpenes. In accordance to the strong bactericidal effects of thymol-invasomes observed here,
encapsulation of thymol into other nanocarriers such as ethylcellulose/methylcellulose nanospheres
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was also reported to preserve its anti-bacterial activity against S. aureus [35]. In contrast to invasomes
encapsulating thymol, camphor and cineol, we observed no anti-bacterial effects for menthol-invasomes
against S. aureus, which is contrary to the already described bactericidal activity of menthol [11,12].
With regard to the very low water-solubility of menthol, we suggest the invasomal packaging of
menthol to be challenging, in turn, affecting its bactericidal activity. In this line, we observed an
increased average size of menthol-invasomes compared to all other terpenoid-invasome preparations
and control-invasomes lacking terpenoids. In addition polydispersity index as a measurement of
the uniformity of invasome size distribution, with a higher value resulting in a broader distribution,
was highest with thymol (0.3) and camphor (0.3), suggesting a correlation to antibacterial activity.
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Next to Gram-positive bacterial species such as S. aureus, we also investigated potential
anti-bacterial properties of our invasomes and particularly, thymol-invasomes on Gram-negative E. coli.
Here, cineol-comprising invasomes led to a strong inhibition of E. coli growth, which is in line with our
previous observations [13]. In contrast to the strong bactericidal effects against S. aureus, cell growth
of Gram-negative E. coli was not affected by thymol-invasomes. These observations are contrary
to the findings by Salvia-Trujillo and colleagues reporting a bactericidal activity of essential oils of
thyme (containing thymol) after incorporation into nano-emulsions [35]. In particular, nano-emulsions
comprising essential oils of thyme with heterogeneous droplets sizes between 10 nm to 500 nm were
shown to reduce growth of E. coli [36]. However, the authors applied unfractionated essential oils,
suggesting a synergistic action of many terpenes to be necessary for bactericidal activity against
Gram-negative species. Interestingly, Trombetta and coworkers demonstrated that S. aureus appears to
be far more sensitive to thymol than E. coli [37], which is in line with our present data. The authors
reported a minimal inhibiting concentration of 5.00 mg/mL thymol for E. coli [37], suggesting the
concentration of up to 2 mg/mL thymol in the invasomes applied here to be not sufficient for inhibition
of E. coli growth. Furthermore, S. aureus is known to secrete pore-forming toxins (PFTs), which
were shown to mediate the release of encapsulated clove oil from liposomes. In particular, Cui and
coworkers reported that PFTs form pores within the liposome membranes, allowing release of the
encapsulated clove oil and facilitating its antibacterial activity. On the contrary, liposomal packaged
clove oil had no bactericidal effects on E. coli, which does not secrete PFTs and thus prevents the
release of antibacterial essential oil from the invasome [38]. Our present observations may suggest a
similar mechanism for thymol-invasomes leading to its selective activity against S. aureus (Figure 11).
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In addition, electrophoretic mobility measurement revealed a harder surface of E. coli compared to
S. aureus [39]. The softer surface of S. aureus mainly comprising peptidoglycan may facilitate entry of
thymol-invasomes into the bacterial cells more easily compared to Gram-negative E. coli (Figure 11).
Accordingly, we achieved a highly efficient killing of S. aureus with only 0.5 mg/mL thymol encapsulated
in invasomes in the present study (Figure 11).

In summary, we demonstrate the successful production of invasomes encapsulating thymol,
menthol, camphor or cineol and show a strong selective activity of thymol-invasomes against
Gram-positive S. aureus. As a further benefit of our approach, encapsulation of terpenoids into
nanocarrier systems such as invasomes is suggested to increase stability and protect against
environmental factors causing degradation [2,33,40]. Here, liposomes composed of lipoid S100
and cholesterol were reported to retain considerable concentrations of isoeugenol, pulegone, terpineol,
and thymol liposomes even after 10 months [29]. The application of soy lecithin liposomes comprising
cinnamon oil was further shown to improve stability of the essential oil and extend the bactericidal
action time [20]. In addition, the application of invasomes was particularly found to elevate the stability
of the encapsulated compounds (reviewed in [24]).

There are several nanocarrier systems, encapsulating terpenoids, which are systematically
reviewed in [2]. The formulation systems encapsulating terpenoids include polymer-based systems
such as nano-capsules, nano-particles, nano-fibers and nano-gels. Furthermore, lipid-based systems
are frequently used (67% of the formulations), presumably due to the low toxicity. A subgroup of
lipid systems are the vesicular systems, which include invasomes. The most investigated biological
activity of terpenoids in nano carrier systems is the anti-inflammatory action. Invasomes were used as
anti-acne treatments, hypertension treatment and photosensation therapy [2].

Antimicrobial activity was reported with nano capsules with essential oils from lemon grass,
nano emulsions with tea tree oil and penetration-enhancing vehicles with essential oil from Santolina
insularis. Here, we report a novel antimicrobial application of invasome formulations with terpenoids.

We conclude that our findings might provide a promising approach to increase the bioavailability
of terpenoid-based drugs and might be applicable for treating severe bacterial infections such as MRSA
in the future. In this regard, the major treatment aims of our formulations include a broad spectrum
of applications, ranging from mucosal infections in airway diseases to systemic infections such as
sepsis. In this direction, we have previously shown that patients with chronic rhinosinusitis have
increased levels of S. aureus-containing biofilms in the nose [13]. Growth of S. aureus biofilms on the
nasal mucosa could be inhibited by 1,8-cineol. Here, we extend these findings to thymol-containing
invasomes, which have superior antibacterial activity than formulations with 1,8-cineol (see Figure 7).
Taken together, an invasome formulation as described here, containing thymol might be useful as
an aerosol spray for pre-operative nose cleaning and might have fewer side effects in comparison to
disinfectants directly applied on the mucosa. As a general use, it might be envisaged that invasomes
containing thymol or other terpenoids could be employed to treat infected surfaces as in nose, lung and
skin wounds. Finally, invasomes containing terpenoids might be used in addition or as an alternative
to antibiotics.
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