
biomedicines

Review

Dissecting the Immune Landscape of Acute
Myeloid Leukemia

Jan Davidson-Moncada 1, Elena Viboch 2, Sarah E. Church 2, Sarah E. Warren 2 and
Sergio Rutella 3,*

1 MacroGenics Inc., Rockville, MD 20850, USA; davidsonj@macrogenics.com
2 NanoString Technologies Inc., Seattle, WA 98109, USA; eviboch@nanostring.com (E.V.);

schurch@nanostring.com (S.E.C.); swarren@nanostring.com (S.E.W.)
3 John van Geest Cancer Research Center, School of Science and Technology, Nottingham Trent University,

Nottingham NG11 8NS, UK
* Correspondence: sergio.rutella@ntu.ac.uk; Tel.: +44-(0)-115-848-3205

Received: 2 October 2018; Accepted: 21 November 2018; Published: 25 November 2018
����������
�������

Abstract: Acute myeloid leukemia (AML) is a molecularly heterogeneous hematological malignancy
with variable response to treatment. Recurring cytogenetic abnormalities and molecular lesions
identify AML patient subgroups with different survival probabilities; however, 50–70% of AML
cases harbor either normal or risk-indeterminate karyotypes. The discovery of better biomarkers of
clinical success and failure is therefore necessary to inform tailored therapeutic decisions. Harnessing
the immune system against cancer with programmed death-1 (PD-1)-directed immune checkpoint
blockade (ICB) and other immunotherapy agents is an effective therapeutic option for several
advanced malignancies. However, durable responses have been observed in only a minority of
patients, highlighting the need to gain insights into the molecular features that predict response
and to also develop more effective and rational combination therapies that address mechanisms of
immune evasion and resistance. We will review the state of knowledge of the immune landscape of
AML and identify the broad opportunity to further explore this incompletely characterized space.
Multiplexed, spatially-resolved immunohistochemistry, flow cytometry/mass cytometry, proteomic
and transcriptomic approaches are advancing our understanding of the complexity of AML-immune
interactions and are expected to support the design and expedite the delivery of personalized
immunotherapy clinical trials.

Keywords: acute myeloid leukemia; tumor immunological microenvironment; immunotherapy;
immune checkpoint blockade; bispecific antibodies

1. Introduction

Acute myeloid leukemia (AML) is characterized by bone marrow (BM) and tissue infiltration with
proliferative, clonal, abnormally differentiated cells of hematopoietic origin [1–5]. Prognosis is currently
determined by increasing age, white blood cell counts at diagnosis, cytogenetic abnormalities, and
AML-specific molecular lesions. In particular, the broadly adopted 2017 ELN genetic risk stratification
classifies patients with AML as being at low, intermediate, or high risk [6]. Recently, 5234 driver
mutations across 76 genes or genomic regions were identified, with two or more drivers being detected
in 86% of the patients [4]. Patterns of co-mutation compartmentalized the cohort of 1540 AML
patients into 11 classes, each showing distinct diagnostic features and clinical outcomes. The Cancer
Genome Atlas (TCGA) consortium has analyzed the genomes of 200 clinically annotated adult cases
of de novo AML, using either whole-genome sequencing or whole-exome sequencing, along with
RNA and micro-RNA sequencing and DNA methylation analysis [2]. Although AML genomes were
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shown to harbor fewer mutations than most other adult cancers, nearly all AML samples had at
least 1 nonsynonymous mutation in one of nine categories of genes that are potentially relevant for
pathogenesis, including transcription-factor fusions, nucleophosmin (NPM1), tumor suppressor genes,
DNA methylation-related genes, and chromatin-modifying genes, suggesting that a complex interplay
of genetic events contributes to AML development in individual patients. Importantly, a re-analysis of
genetic data from 1540 patients with AML has shown that one-third of the patients may have survival
predictions that deviate more than 20% from their ELN risk category [7]. Considerable efforts are
thus underway to refine the accuracy of stratification algorithms and to integrate genomics findings
into transformative therapeutic approaches, especially for patients with high-risk and/or refractory
disease [8,9]. For example, gene expression signatures capturing leukemia stem cell-related biological
pathways have been reported to identify AML patients at risk of relapse [10].

Large, systematic big data efforts that make use of publicly available resources have dramatically
advanced our understanding of cancer biology and the immune landscape of solid tumors, and,
by identifying genes with a key role in patient survival, are paving the way to cancer precision
medicine. A systems-level, knowledge-based approach has enabled the analysis of the genome-wide
transcriptome of the protein-coding genes of 17 major cancer types with large numbers of patients
available in TCGA accompanied by clinical metadata (www.proteinatlas.org/pathology) [11]. Gene
expression varied considerably in individual tumors within a particular cancer subtype. Also, there
was a large overlap in gene expression among individuals with different cancer types. Shorter patient
survival was associated with up-regulation of genes involved in cell growth and with down-regulation
of genes mediating cellular differentiation. A detailed analysis revealed that no prognostic genes
were shared among more than seven of the solid tumor types. Furthermore, cancer patients showed
widespread metabolic heterogeneity. The observation that no general prognostic gene necessary
for clinical outcome was applicable to all cancers [11] further highlights the need to advance our
understanding of the specific genetic landscape of AML, with a view to inform personalised treatment
decisions. In silico approaches have also been used to dissect the immunogenomic features of 33 cancer
types and their therapeutic and prognostic implications, leading to the identification of six immune
subtypes, i.e., wound healing, IFN-γ-dominant, inflammatory, lymphocyte depleted, immunologically
quiet, and TGF-β-dominant, characterized by differences in macrophage or lymphocyte signatures,
T helper type 1 (Th1):Th2 cell ratio, extent of intratumoral heterogeneity and neoantigen load,
aneuploidy, cell proliferation, expression of immunomodulatory genes, and patient survival [12].
Another in silico approach relies on data from TCGA to examine immune phenomenon associated
with cytolic activity using gene expression measured by RNA-seq, as shown in analysis of 18 solid
tumor types [13]. The authors used two tightly co-expressed genes to identify cytolitic immune
effector activity, granzyme-A and perforin, and defined differences in cytolytic activities across tumor
types. The highest levels of cytolytic activity were detected in kidney clear cell carcinoma and
cervical cancers. Consistent with the hypothesis that an initial immune response to solid tumors is
subsequently suppressed, cytolytic activities and expression of IFN-stimulated chemokines (CXCL9,
CXCL10 and CXCL11) were associated with markers of immune resistance or an immuno-suppressive
TME, including IDO1, IDO2, PD-L2, and the C1Q complex. Increased cytolytic immune activity was
associated with a small survival benefit across solid tumor types examined in TCGA. The lack of
a more significant survival benefit may be associated with the compensatory immuno-suppressive
response [13].

Cancer immunotherapy is revolutionizing the approach to human malignancies by showing that
immune cells can be harnessed to destroy cancer cells in a proportion of patients [14]. Adoptive cell
immunotherapy has been defined “Advance of the Year 2018” by the American Society of Clinical
Oncology [15]. A deeper understanding of baseline immunity, both in the periphery and in the
tumor microenvironment (TME), and of immune escape mechanisms is driving the identification of
biomarkers that are predictive of clinical outcomes. These approaches are expected to also elucidate
why cancer patients might fail to respond to immunotherapy [16,17]. Evidence from clinical trials
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indicates that pre-existing immunological features contribute to the ability of patients with solid
tumors to respond to immune checkpoint blockade (ICB) [18]. Three immune profiles have been
revealed by clinical studies in melanoma [19,20]. The immune-inflamed phenotype is characterized
by the presence of both CD4+ and CD8+ T cells, often accompanied by myeloid and monocytic cells,
and by staining for Programmed Death Ligand (PDL)-1 on tumor-infiltrating lymphocytes (TILs) and,
in some cases, on tumor cells [21]. In general, patients with ‘inflamed’ tumor lesions are more likely
to respond to ICB, suggesting that immunotherapies are effective by potentiating ongoing immunity
rather than generating de novo immunity against cancer [22]. In tumors with an immune-excluded
phenotype, which are unlikely to respond to immunotherapy, the adaptive immune cells do not reach
or infiltrate the tumor. Instead, the immune system is locally suppressed, the tumor is tolerant and
immune cells remains in the surrounding stroma. The third immune-desert phenotype lacks evidence
of an initial immune response or subsequent creation of an immunosuppressive microenvironment.
The absence of CD8+ T cells, myeloid-derived suppressor cells, M2 macrophages and regulatory T cells
characterized this profile. The immune-desert phenotype and the immune-excluded phenotype can
both be considered as non-inflamed tumors [19]. The importance of pre-existing, clonally restricted
CD8 T-cell responses and of physical proximity between PD-1+ and PD-L1+ cells in the TME for tumor
regression after immunotherapy with PD-1 blocking agents has again been demonstrated in patients
with metastatic melanoma [23].

One important mechanism of resistance to ICB in solid tumors is the up-regulation of PD-L1,
which can cause T-cell exhaustion. However, PD-L1-independent mechanisms of resistance to ICB
exist, as suggested by the observation that up to 50% of PD-L1-expressing tumors are either resistant
or relapse after PD-1/PD-L1 blockade [24]. Insensitivity to T-cell effector molecules, including
IFN-γ, is increasingly recognized as a mediator of immunotherapeutic resistance [24]. Loss of
IFN-γ signaling through inactivating mutations of JAK1 and JAK2 promotes resistance to PD-1
blockade in melanoma and mismatch repair-deficient colon cancer [25,26]. Intriguingly, prolonged
treatment of B16 melanoma cells with IFN-γ has been shown to confer resistance to radiotherapy and
anti-CTLA-4 immunotherapy as a result of STAT1-related epigenetic events leading to up-regulation of
immunosuppressive effectors and T-cell inhibitory receptors and their ligands [27]. After reviewing the
structure and functional features of the TME of patients with AML, this article will focus on recently
identified targets for immune intervention and will highlight how this knowledge could be used for
rational decision-making and for delivering personalized immunotherapies.

2. The Tumor Immunological Microenvironment

The TME is a complex milieu that is increasingly recognized as an essential determinant of
tumor progression and responses to therapy, including ICB targeting the PD-1/PD-L1 inhibitory
axis [28]. Tumor and stromal cells activate protein and gene expression patterns in the TME that
promote tumor growth and are intrinsically immune suppressive [16,29]. Across thousands of solid
tumors, RNA-seq gene expression data from TCGA indicates that a robust immune response and
immune infiltration by T cells and B cells, including CD8+ T cells and CD45RO+ memory T cells as
well as increased B-cell receptor (BCR) diversity are associated with an overall survival benefit. The
immune gene signatures with the greatest association with survival were in the leukocyte family and
macrophage signatures had a negative prognostic association. This is shown is a recent study where
the authors measured the presence or absense of various immune cell populations using numerous
gene expression signatures from previously published literature [30]. The geographic co-localization
of PD-1/PD-L1 expression with an “inflamed” TME suggests that PD-L1 is locally up-regulated by
IFN-γ in the context of an endogenous anti-tumor immune response [22]. Melanoma regression after
therapeutic ICB with pembrolizumab requires pre-existing CD8+ T cells and phosphorylated STAT1
expression at the invasive margin [23]. A non-inflamed melanoma TME has been correlated with
failed recruitment and activation of Batf3-lineage dendritic cells [31]. Immune exclusion might also be
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the result of tumor-intrinsic activation of specific oncogenic pathways, such as WNT/β-catenin, and
PTEN deletion/PI3K activation [32,33].

PD-L1 expression in response to cytokine stimuli, most importantly IFN-γ, has been termed
“adaptive or compensatory immune resistance” [34]. IFN-γ is predominantly produced by activated
T cells, NK cells and NKT cells, activates downstream signaling intermediates in macrophages/DCs,
including STAT1, and up-regulates MHC molecules and other components of the proteasome
and antigen-presenting cell machineries. However, IFN-γ also mediates feedback inhibition and
up-regulates PD-L1, PD-L2 and other checkpoint molecules such as IDO1, TIGIT, and LAG3, thus
allowing cancer cells to survive [35]. In addition to immune effects, high levels of IFN-stimulated
genes (ISGs), including STAT1, IFIT1, and ISG15, promote resistance to radiation and chemotherapy
in a variety of solid tumors [36,37]. Particular IFN-stimulated genes in the IRDS, such as ISG15,
have previously been involved in DNA repair [38]. This IFN-related DNA damage signature (IRDS)
specifically increased the accuracy of outcome prediction in breast cancer patients receiving adjuvant
chemotherapy but was not a prognostic marker [36]. Intriguingly, inflamed TMEs as defined by a
13-gene T-cell signature did not correlate with the number of mutational neoepitopes in melanoma
and in other 30 solid tumor types [31]. The lack of correlation of inflamed TMEs as defined by an
18-gene Tumor Inflammation Signature with mutational burden was shown in solid and hematologic
malignancies [39]. This analysis also highlighted the distinct behavior of certain immune genes in
cancers arising from “immune” cells included in the TCGA database, i.e., thymoma, AML and diffuse
large B-cell lymphoma (DLBCL). CD276, IDO1, and NKG7 in AML diverge from the pan-cancer trends
in intercept and slope of expression observed in non “immune” derived tumor types, highlighting the
need for AML-specific understanding of the TME.

The TME represents an emerging consensus view as an area with the potential for identifying
novel biomarkers [40,41]. In a study of colorectal carcinoma (CRC), tumors that lost IL-15 expression
had lower levels of immune activation as measured by T and B cell abudance. This immune-desert like
profile was associated with worse outcomes in this patient population [42]. Further work by this group
characterized immune cell types using mRNA transcripts to categorize the TME in CRC. They found
the immune landscape to be diverse and to vary based on disease stage, with the most active immune
response in earlier stage disease (T1) and the lowest level of immune response in advanced disease
(T4). The immune infiltrate in CRC has been observed to include both innate and adaptive immune
cells measured by gene expression [43]. As demonstrated in multiple prior studies of the majority
of solid tumors, the immune landscape is prognostic with an adaptive immune response associated
with a favorable prognosis as indicated by presence of T cells, including genes encoding molecules
expressed on γδ T cells, cytotoxic T cells and follicular helper T cells, as well as macrophages, mast
cell, and B cells. Immune tolerance is associated with a negative prognosis in CRC, particularly cell
types such as eosinophils, Th2 cells, Th17 cells, regulatory T cells (Tregs) and natural killer (NK) cells.

A growing body of clinical observations indicates that, in addition to increased tumor
immunogenicity as a result of higher mutational burden, single tumor-suppressor genes can be
associated with the immune landscape of the tumor [44]. The first tumor-intrinsic oncogene pathway
that can abrogate the induction of T-cell responses, prevent the establishment of a T-cell-inflamed
TME and generate resistance to ICB has been described in a mouse model of melanoma [32]. Tumors
expressing β-catenin showed lack of recruitment of the Batf3-lineage DCs expressing the surface
markers CD103 or CD8α as a result of insufficient production of the critical chemokine CCL4 by
the melanoma cells. Importantly, 50% of human non-T-cell-inflamed melanoma lesions showed
evidence for activation of WNT-β-catenin signaling specifically in the tumor cells [32,45]. Links
between distinct abnormalities in tumor drivers and composition of the immune cells in the TME
have recently been identified in patients with prostate cancer using in silico approaches [46]. PMN
and monocyte signatures derived from published papers clustered the TCGA samples into three
groups with high, mid and low gene expression levels. Additional analyses of a public dataset of
metastatic prostate cancer cases revealed that only 10% of patients with low PMN infiltrate harbor



Biomedicines 2018, 6, 110 5 of 24

altered PTEN and ZBTB7A expression. Similarly, only 10% and 5% of patients with PML deletions
clustered in the PMN-high and T-cell-high subtype, respectively. Mutations in the genes encoding
isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are associated with reduced T-cell infiltration in
lower-grade gliomas through diminished STAT1 signaling and lowered the expression of CXCL10,
an IFN-γ-inducible chemokine mediating T-cell recruitment [47]. In 2017, enasidenib, an IDH2
kinase inhibitor, was approved by the US Food and Drug Administration (FDA) for patients with
relapsed/refractory mutant IDH2 AML [48,49]. The impact of oncogenic pathways on the immune
landscape of AML has not been explored yet. It would be important to assess whether the quality of
T-cell infiltration in the AML TME is affected by the IDH2 inhibitors currently in clinical development.

3. High-Resolution Platforms to Decipher the Complexity of the TME

Innate and adaptive immune responses within the TME are increasingly being assessed by
gene expression profiling [50]. Immune gene signatures, especially those induced by IFN-γ, may be
powerful biomarkers of response to ICB. For instance, a 10-gene IFN-γ score, including genes encoding
IDO1, LAG3, PRF1, GZM and other immune-related genes, has been shown to correlate with best
overall response (OR) and PFS in patients with advanced melanoma and with other solid tumors,
and to be non-significantly associated with OS [51]. The Tumor Inflammation Signature (TIS) is an
28 gene assay (18 targets + 10 housekeepers) that measures the presence of an activated but suppressed
immune response in the TME by integrating transcriptional evidence of innate and adaptive immune
cells, IFN signaling, and T cell exhaustion [52]. The TIS was originally developed to enrich for response
to pembrolizumab in a variety of solid tumors, has since been deployed in a number of retrospective
studies and found to be predictive for other immunotherapies checkpoints (nivolumab, ipilimumab
plus IFN, nivolumab plus ipilimumab) [53–55]. The TIS has been analytically validated and developed
for investigation use only (IUO) deployment in clinical trials.

Immune gene co-expression patterns have been used to identify a subset of high-confidence
markers in 9986 solid tumor samples from TCGA [56]. Immune cell scores calculated by gene
expression were compared to standard immune cell measuring assays (flow cytometry and IHC). Sixty
genes were used to develop immune cell abundance scores for 14 immune cell types, where gene
expression scores were highly correlated with immune phenotypes measured by flow cytometry and
IHC assays in TMEs across different tumor types. A verification cohort consisting of samples collected
from patients receiving anti-CTLA-4 ICB confirmed the ability of immune cell typing gene signatures
to recapitulate phenotypes found by flow cytometry, emphasizing gene expression as a technique to
delineate cell types [56]. Additional verification of gene expression based immune cell typing was
observed in a longitudinal study comparing metastatic melanoma samples at multiple time points
from patients treated with anti-CTLA-4 followed by anti-PD-1 after progression on anti-CTLA4, using
a 12-marker immunohistochemistry panel and targeted gene expression profiling on the nCounter®

platform [57]. Interestingly, during early treatment, adaptive immune gene signatures in biopsies
displayed up-regulation of cytolytic genes, HLA molecules, IFN-γ pathway effector genes, and
chemokines, and were highly predictive of response to ICB. Importantly, unique gene expression
profiles observed in the TME of patients receiving monotherapy with anti-CTLA-4 or anti-PD-1
antibodies provided insights into the mechanisms of action ICBs targeted to different pathways, as
well as a compelling rational for designing combination immunotherapies.

Going beyond whole sample gene expression measurement of immune biology by interrogating
spatial distribution of immune, tumor and stromal cells in the TME provides a complementary
understating of how immune cell localization can be used as a biomarker. Spatial data can provide
a more complete picture of the behavior of immune cells to promote or reduce tumor growth, and
therefore help define mechanisms of excluded and desert TMEs [50]. Multiplexed immunofluorescence
allows the detection of up to 8 proteins in regions of interest within the TME. Multiple fluorophores
can be applied on a single tissue section and are interrogated using a multi-spectral microscope [41,58].
This technology enables a comprehensive characterization of the topography and spatial relationship
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between tumor cells and stromally located cells, including immune cells. Of relevance, the density
of CD8+ T cell infiltrates in the invasive margins of melanoma lesions has been associated with
expression of the PD-1/PD-L1 immune inhibitory axis and with clinical responses to anti-PD-1
immunotherapy [23]. Quantitative image analysis could also be valuable in dissecting the spatial
distribution of DCs at different maturation stages within the tumor-draining lymph nodes, thus
providing insights into actionable circuits of immune dysfunction [59]. NanoString Technologies Inc.
(Seattle, WA, USA) has recently developed a nondestructive multiplexed immune profiling approach
to measure the expression of up to 800 targets via antibodies and in situ RNA on a single FFPE
tissue slide [60]. The GeoMx™ Digital Spatial Profiling (DSP) platform allows the analysis of tumor
geography and quantitation of potential biomarkers from regions of interest (ROIs) identified from
tissue morphology [61]. The platform utilizes UV photocleavable oligos conjugated to a cocktail of
primary antibodies to stain FFPE tissue, and then ROIs are identified with fluorescent antibodies. UV
The tissue within the ROI is then exposed to UV light in precise patterns determined by masking
based on the fluorescent channels, and released oligos are captured and registered to a specific location
on the tissue before being enumerated by standard NanoString nCounter hybridization technology.
This enables digital quantitation of up to 800 proteins from a single tissue section. By exchanging the
primary antibodies for oligo labeled RNA binding probes, the same process can be used to spatially
resolve RNA targets as well. We used DSP to characterize the expression patterns of immuno-oncology
proteins in BM biopsies from patients with newly diagnosed AML [62]. Tissue architecture was
established with fluorescent antibodies to CD3 (to label T cells), CD123 (to label AML blasts), and
a DNA dye. ROIs were then selected and profiled from T cell enriched and AML blast enriched
areas of the tissue. T-cell infiltration was highly heterogeneous in AML patients and across distinct
ROIs from individual BM biopsies. Spatially-resolved profiling identified co-expression patterns of
immuno-oncology proteins in BM biopsies, including the co-localization of PD-L1- and CD8-expressing
cell types. As the DSP platform is launched commercially and becomes more widely available, it is
anticipated that the technologies will be extensively applied to the analysis of tumor geography and
location-specific biomarker expression.

Cytometry by time of flight (CyTOF) coupled to multiplex major histocompatibility complex
(MHC)-tetramer staining has been used to identify the antigen specificity of tumor-infiltrating
lymphocytes (TILs) in patients with colorectal and lung cancer [63]. TILs are not only specific for
tumor-associated antigens but also recognize a variety of epitopes unrelated to cancer, such as those
from Epstein-Barr virus, human cytomegalovirus, or influenza virus. The bystander CD8+ TILs
display overlapping phenotypic features with tumor-specific T cells, including the expression of the
inhibitory receptors TIGIT and PD-1, but lack expression of CD39, a transmembrane extracellular
ATPase catalyzing the conversion of ATP to adenosine [63]. In contrast, CD39 expression identified
tumor-specific CD8+ TILs with transcriptomic hallmarks of exhausted T cells that have undergone
tumor antigen-driven clonal expansion. Intriguingly, colorectal tumors with higher frequencies of
CD39+CD8+ TILs showed gene expression profiles consistent with a T-cell-inflamed TME, including
the expression of pathways associated with antigen processing and presentation. Moreover, the
frequency of CD39+CD8+ TILs was higher in epidermal growth factor receptor (EGFR)-mutated lung
cancers, a subgroup of patients showing low CD8+ T-cell densities and relatively poor responses to
ICB. Overall, this elegant study exemplifies how the use of high-dimensional technologies can advance
our understanding of the complex tumor-immune interactions and support the identification of novel
biomarkers [64,65].

4. Composition of the AML TME

The BM is a primary lymphoid organ and a distinctive immunologic microenvironment that
provides support for hematopoietic stem cells (HSCs) and contains most developing and mature
immune cell types [66]. Landmark populations of BM-resident immune cells have been recently
identified and described in mice [67]. The integration of mass cytometry data from healthy donors into
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this reference map revealed a similar overlay pattern between the two species [67]. In mice, clusters of
DCs co-localize with naïve B cells and T cells. Conditional deletion of macrophage migration-inhibitory
factor (MIF)-producing DCs translated into a profound reduction in recirculating mature B cells in the
TME, but left B-cell development unaffected [68]. Plasma cells can be detected in close proximity to CXC
chemokine ligand 12 (CXCL12)-abundant reticular (CAR) cells, a population of stromal cells in contact
with multipotent hematopoietic progenitors [69]. More than 80% of the surviving memory CD4+ T
cells translocate to the BM within 3–8 weeks after initiation of the immune response [70]. Memory
CD4+ T cells are maintained in a quiescent state by stromal cell-derived IL-7, but quickly respond to
activating signals and provide efficient help to B cells for affinity maturation of antibodies. In human
donors, polyfunctional CD4+ T cells with specificity for viral pathogens encountered in childhood, or
emerging after vaccination, are maintained exclusively in the BM [71]. The BM is also a niche for the
most actively dividing pool of memory CD8+ T cells [72]. Central-memory T cells constitute the largest
endogenous subset of CD8+ T cells in murine BM and are also prominent in human BM [73,74]. After
intravenous antigen injection, naïve T cells and central-memory T cells are more efficiently recruited
to the BM than effector T cells. Adoptively transferred CD8+ T cells specific for melanoma antigens
accumulate in tumor-draining lymph nodes at early time points after vaccination with peptide-pulsed
DCs and IL-2 immunotherapy, and subsequently in the BM and primary tumor site [75]. This study
suggests that the BM could replenish the supply of tumor antigen-specific CD8+ T cells homing to
primary tumors and/or primary and secondary lymphoid organs.

In light of their origin from primary and secondary lymphoid tissues, hematological malignancies
are poorly immunogenic and highly immune-suppressive [76]. AML, the main focus of this
review article, constrains protective anti-tumor immune responses through multiple mechanisms
(Figure 1), including the down-regulation of major histocompatibility complex (MHC) class I and
class II expression, the consumption of essential amino acids through arginase-2 (ARG2) [77] and
indoleamine 2,3-dioxygenase-1 (IDO1) [78], the induction of DC dysfunction, the expansion of Treg
cells [79] and the up-regulation of PD-L1 and other negative checkpoint molecules, such as Cytotoxic
T-Lymphocyte-associated Antigen-4 (CTLA-4) and Lymphocyte Activation Gene 3 (LAG-3) (reviewed
in reference [80]). Immune responses are defective in patients with AML due to the presence of
powerful immune suppressive circuits that are activated by soluble factors and immune checkpoint
molecules, including PD-L1, TIM-3, and IDO1 [78,81]. Serum kynurenine and tryptophan levels at
diagnosis, a measure of systemic IDO1 activity, correlate with patient outcome [82]. Importantly,
genetic mutations such as t(8;21) and inv(16) directly affect the expression of CD200 (a suppressor
of macrophage and NK cell function) and CD48 (the ligand for the activating NK receptor CD244),
respectively. We have recently used the NanoString immune gene expression profiling platform to
decipher the complexity of the AML BM microenvironment and to identify molecular determinants of
AML sensitivity to IFN-γ, patient response to chemotherapy and patient survival [83,84]. We showed
that AML patients with immune-enriched and IFN-γ-dominant TME, as defined by heightened
expression of CD8A, IFNG, FOXP3, T-cell chemoattractants CXCL9 and CXCL10, IDO1 and immune
checkpoints LAG3, CTLA4, and PD-L1, are less likely to respond to anthracycline-based cytotoxic
chemotherapy, or experience significantly shorter relapse-free survival, both indicative of primary
treatment refractory states [84].

Our in silico analysis of TCGA-AML cases (162 patients treated with curative intent) also
showed that abnormalities in IFN-γ-responsive genes, occurring in 30% of cases and including mRNA
up-regulation and gene amplification, correlated with shorter event-free survival and OS, suggesting
the hypothesis that IFN-γ-dominant TME profiles, while defining resistance to cytotoxic chemotherapy,
may predict response to immune based therapy [84].
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receptor for NK cells and T cells, is reduced and its ligands CD155 and CD112 are increased, indicating 
a tolerogenic phenotype [89]. Shedding of CD137L leading to increased serum levels correlates with 
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negative regulator of T-cell function that is frequently increased in AML and is associated with poor 
prognosis. CD200R immunomodulatory fusion proteins (IFPs) with the cytoplasmic tail replaced by 
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worse prognosis and may constitute an immune suppressive circuit in AML [90]. CD200 (OX2) is a
negative regulator of T-cell function that is frequently increased in AML and is associated with poor
prognosis. CD200R immunomodulatory fusion proteins (IFPs) with the cytoplasmic tail replaced by the
signaling domain of the costimulatory receptor CD28 have been recently engineered [91,92]. Adoptive
therapy with CD200R-CD28-transduced leukemia-specific CD8+ T cells has been shown to eradicate
murine AML more efficiently than wild-type T cells. Antibodies targeting CD47, an inhibitory receptor
preventing phagocytosis of AML cells [93], are currently being tested in a phase I, dose-escalation
clinical trial (ClinicalTrials.gov Identifier: NCT02678338). Antibodies targeting Tim-3 [94] are under
evaluation in combination with hypomethylating agents and immune checkpoint blockade (ICB)
for patients with AML and high-risk myelodysplastic syndrome (MDS) (ClinicalTrials.gov Identifier:
NCT03066648). Blue boxes denote therapeutic strategies already in the clinic. Yellow boxes highlight
therapeutic strategies that have been evaluated pre-clinically. ARG2 = arginase-2; Gal-9 = galectin-9;
NK = natural killer.

5. Prognostic and Predictive Immune Biomarkers in the AML TME

The majority of predictive clinical biomarker studies of immune gene expression have been
conducted in solid tumors, with the most substantial work occurring in areas with the largest number
of approved immunotherapies and advanced clinical stage therapeutic agents in development, such as
melanoma, NSCLC, and CRC. In contrast, our understanding of the immune landscape and the role of
immune gene expression in prognosis and predictive biomarkers for hematological malignancies is still
emerging. Hematological malignancies represent a substantial opportunity to further deliver clinical
benefit, with the principal of therapeutic immune opportunities suggested by the well characterized
curative benefit from allogeneic hematopoietic stem cell transplantation (HSCT). Immune checkpoint
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blockade (ICB), most notably anti-PD-1 and anti-PD-L1 antibodies, have recently been studies as
therapeutic strategies for patients with Hodgkin and non-Hodgkin lymphoma [95,96], with nivolumab
being granted accelerated approval by the US FDA on 17 May 2016 for classical Hodgkin lymphoma,
and pembrolizumab being granted accelerated approval on 13 June 2018 for primary mediastinal large
B-cell lymphoma. There remains a substantial opportunity to improve our understanding of patient
benefit from ICB in order to exclude patients unlikely to benefit from ICB (negative predictive value)
and enroll patients likely to benefit from ICB (positive predictive value). ICB may play an important
role in the treatment of selected patients with leukemia, lymphoma and multiple myeloma, as well as
offer a potential for combination therapy for patients who are unlikely to benefit from a monotherapy
ICB approach. While numerous studies have identified promising associations with immune gene
expression and prognosis, as well as response to immunotheries, there are also substantial challenges
to identifying biomarkers that are clinically relevant and robust [97]. There have been some promising
studies of peripheral biomarkers at baseline that are associated with progression-free survival (PFS) in
the context of therapeutic vaccines for metastatic breast cancer and prostate cancer [98]. However, this
work has not been correlated with tumor site biopsies or generalized beyond these specific therapeutic
contexts. In addition, there are challenges with measuring peripheral immune gene expression due to
a lack of strong evidence linking the peripheral immune landscape to the immune infiltrate in solid
and hematological tumor sites including lymph nodes and bone marrow [41,99].

The availability of on-line tools and public collections of transcriptomic datasets has expanded
our predictive capabilities [100] and could accelerate the in-silico identification of immune gene
signatures and molecular drivers implicated in the progression of AML and in therapeutic responses
to chemotherapy and immunotherapy [101–103]. Prediction of Clinical Outcomes from Genomic
profiles (PRECOG; http://precog.stanford.edu) is a pan-cancer resource supporting the identification
of prognostic genes in 18,000 human samples across 39 cancer types with survival outcomes, including
hematological malignancies (Figure 2) [104]. One tool for evaluating the level of correlation with
response is as z-score. The z-score can be generated for survival or other clinical outcomes as a
measure of the correlation between the clinical outcome and gene expression, and is a normalized
measure, expressing a count of the number of standard deviations from the mean. Z-scores are a
powerful tool for meta-analysis because they can conveniently be combined and compared across
studies. The PRECOG study has identified immune gene signatures associated with negative prognosis
and identified potential mechanism of poor outcome, in this case cell proliferation [104]. The other
large tumor cluster was enriched in immunological processes and immune-response genes and was
associated with favorable survival. A new machine-learning tool, known as CIBERSORT [102], was also
applied to the PRECOG data to explore associations predictive of clinical outcomes. Gene expression
was used to characterize 22 cell types. The CIBERSORT method demonstrated abundant plasma
cells in multiple myeloma and an abundance of B-cells in B-cell malignancies, demonstrating the
utility of this approach in indentifying leukocyte subsets across various malignancy types [104]. When
conducting a pan-cancer analysis, overall prognostic patterns correlated with leukocytes emerged:
a relative abundance of T cells, particularly intra-tumor γδ T-cells, were associated with superior
survival. Negative prognostic factors also emerged, with polymorphonuclear cell fractions having the
most significant negative prognostic association. Finally, pro-inflammatory M1 macrophages were
associated with a better clinical outcome than polarized M2 macrophages.

http://precog.stanford.edu
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malignancies and accelerating the delivery of personalized immunotherapy approaches. BCP-ALL = 
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Figure 2. Identification of prognostic biomarkers in the AML TME. PREdiction of Clinical Outcomes
from Genomic profiles (PRECOG) is a pan-cancer resource supporting the identification of prognostic
genes in public datasets of human malignancies [104]. A machine-learning tool, known as
CIBERSORT [102], can be applied to PRECOG data to comprehensively map compositional differences
in tumor-infiltrating leukocytes (22 distinct subsets) in relation to patient outcome. (Panel A) shows
hierarchical clustering (Euclidean distance; complete linkage) of CIBERSORT-inferred immune cell type
fractions in a broad spectrum of hematological malignancies (1957 samples), including AML. Data were
analyzed using Morpheus (Broad Institute, MA; https://software.broadinstitute.org/morpheus/). Red
denotes an association with shorter survival times, whereas blue indicates an association with better
clinical outcomes. Each column represents an immune cell type and each row represents a disease type.
(Panel B) shows a similarity matrix (Pearson correlation) of CIBERSORT-inferred immune cell type
fractions in hematological malignancies. This unbiased approach could support the identification of
co-expression patterns of specific immune cell populations in the TME, thus providing unique insights
into the immuno-biology of hematological malignancies and accelerating the delivery of personalized
immunotherapy approaches. BCP-ALL = B-cell precursor acute lymphoblastic leukemia; CLL = chronic
lymphocytic leukemia; BL = Burkitt lymphoma; DLBCL = diffuse large B-cell lymphoma; FL = follicular
lymphoma; MM = multiple myeloma.

6. Immune Checkpoint Blockade and Novel Immunotherapies for “Inflamed” AMLs

Major successes with ICB are driving thousands of immunotherapy clinical trials worldwide [105].
PD-1 and CTLA-4 blockade is also being investigated in myeloid malignancies, especially MDS, as
reviewed elsewhere [106]. Although AML has a low mutational burden and often exhibits an immune
desert phenotype, the curative benefit of HSCT demonstrates the potential for immunotherapeutic
strategies including enhancing T-cell activation. This approach may be particularly viable in patients
who have an initial complete response following induction chemotherapy or have minimal residual
disease such that ICB and potentially other immunotherapeutic strategies could overcome the
AML-induced immune dysfunction. Ongoing trials with ICB for AML and MDS are summarized in
Table 1. A recent multi-center phase II clinical trial has evaluated the feasibility and efficacy of high-dose
cytarabine followed by pembrolizumab in 13 adult patients with relapsed/refractory AML [107].
In 10 evaluable patients (as of 1 July 2017), OR rates were 50%. Findings from small subgroups of

https://software.broadinstitute.org/morpheus/
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responders (n = 3) versus non-responders (n = 3) documented an increased diversity of TCR Vβ

repertoires in CD8+ T cells from responders. A recent case report documented disease-modifying
activity of pembrolizumab in an AML patient with synchronous cutaneous melanoma [108]. It is
presently unknown whether selecting tumors for PD-L1 expression is the best way to optimize PD-L1
blockade in hematological malignancies. Also, the definition of PD-L1 positivity depends on the
sensitivity of the diagnostic antibody and on the chosen threshold. The determinants of response and
resistance to ICB, including the composition and functional status of the BM TME, in AML remain to
be elucidated.

Flotetuzumab (MacroGenics Inc., Rockville, MD, USA) is a bispecific CD3 × CD123 DART®

molecule binding T lymphocytes and cells expressing CD123, an antigen up-regulated in AML.
Flotetuzumab therefore mediates AML blast killing and concomitantly activates and expands residual
T cells. In monkeys, continuous infusion of flotetuzumab depleted circulating CD123+ AML cells as
early as 72 h after treatment initiation [109]. Cytokine release, observed after the first flotetuzumab
infusion, was reduced after subsequent administrations. No T-cell exhaustion was evident in animals
after prolonged in vivo drug exposure. Flotetuzumab is currently being tested in hematological
malignancies, including AML, with clinical activity in relapsed and refractory AML [9]. We
previously reported that immune-enriched and IFN-γ-dominant gene expression profiles in the TME
predicted resistance to standard chemotherapy in AML patients [84]. Interestingly, immune-enriched
profiles were associated with heightened probability of response to flotetuzumab [110]. Moreover,
selecting patients by response to previous chemotherapy failure, which are associated with increased
IFN-γ-dominant scores, enriched complete response (CR) rates [111]. Interestingly, in responders
to flotetuzumab, IFN-γ signaling scores were significantly higher at baseline (3.31 ± 0.32) than in
non-responders (2.27 ± 0.11, p = 0.0005) and showed predictive ability (AUC = 0.815) [110]. Lastly,
treatment with flotetuzumab enhanced immune infiltration and activation in the TME [110,112].
Particulary, treatment with flotetuzumab led to increased immune cell infiltrate and immune activation,
as reflected by higher TIS (6.49 ± 0.20 versus 5.93 ± 0.12, p = 0.015), immunoproteasome (5.72 ± 0.07
versus 5.23 ± 0.10, p = 0.0002), and IFN-γ signaling (3.38 ± 0.23 versus 2.53 ± 0.14, p = 0.0015) [110],
as well as increase in PD-L1 expression [112]. Primary AML blasts with higher levels of PD-L1 on
malignant blasts were less susceptible to flotetuzumab-mediated killing in vitro and in vivo [113].
Hence, rational combination treatment between flotetuzumab and ICB may be an optimal design
strategy to synergize anti-leukemic activity of these two agents. To this end, a study of flotetuzumab
combined with MGA012, an anti-PD-1 antibody, is planned in patients with relapsed or refractory
AML. Multispectral immunohistochemistry analysis of BM samples revealed a ~2-fold increase in CD8+

T cells upon treatment with flotetuzumab, along with the up-regulation of PD-1 on both CD4+ and
CD8+ T cells [113]. Circulating levels of IFN-γ in flotetuzumab-treated patients correlated with PD-L1
expression on AML blasts. Intriguingly, primary blasts from AML cases with higher levels of PD-L1
were less susceptible to flotetuzumab-mediated killing in vitro. This study provides a compelling
rationale for combining flotetuzumab with anti-PD-1/PD-L1 ICB in selected patients with relapsed or
refractory AML.
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Table 1. Completed and ongoing clinical trials of ICB with anti-PD-1/PD-L1 antibodies in AML.

Disease Stage Therapeutic Agents Study Design Participants Estimated
Completion Date

Principal
INVESTIGATOR

Clinicaltrials Gov.
Identifier

Newly diagnosed AML
age ≥ 60 years not eligible
for intensive chemotherapy
or HR MDS

Azacitidine monotherapy (days 1–7 every 28 days),
or Azacitidine (days 1–7 every 28 days) +
Nivolumab (every 2 weeks) or Azacitadine
(days 1–7 every 28 days) ± Midostaurin (BID days
8–21 every 28 days), or Decitabine (days 1–5 every
28 days) and Cytarabine (days 6–11 every 28 days)

Randomized
(stratified by FLT3
mutational status)
Open-label
Phase 2–3

n = 1670 August 2023 Laura Michaelis, MD NCT03092674

Newly diagnosed AML
age ≥ 60 years in first CR not
eligible for HSCT

Pembrolizumab (200 mg every 3 weeks)
Non-randomized
Open-label
Phase 2

n = 40 October 2020 Michael Boyiadzis,
MD, MHSc NCT02708641

Previously untreated AML
age ≥ 65 not eligible for
HSCT or Previously
untreated MDS

Durvalumab (1500 mg day 1 every 4 weeks) and
Azacytidine (75 mg/m2 for 7 days every 4 weeks)
vs. Azacytidine monotherapy (75 mg/m2 for 7 days
every 4 weeks)

Randomized
Open-label
Phase 2

n = 213 April 2019 Not listed/Celgene NCT02775903

Previously untreated AML
not suitable for intensive
chemotherapy

Avelumab (10 mg/kg, day 1, every 14 days) and
Decitabine (20 mg/m2 IV days 1–5, every 28 days)

Non-randomized
Open-label
Phase 1

n = 15 December 2020 Hong Zheng, MD NCT03395873

HR AML
Pembrolizumab on day +1 following
lymphodepleting chemotherapy with FLU/MEL
and autologous HSCT

Non-randomized
Open-label
Phase 2

n = 20 June 2021 Scott Solomon, MD NCT02771197

Newly diagnosed AML
age ≥ 65 years or R/R AML

Azacitidine (75 mg/m2 days 1–7 every 28 days) +
pembrolizumab (200 mg every 3 weeks starting on
day 8 of cycle 1)

Non-randomized
Open-label
Phase 2

n = 40 July 2020 Ivana Gojo, MD NCT02845297

Newly diagnosed elderly
AML (≥65 years) or
R/R AML

Azacitidine + Nivolumab dose escalation starting at
75 mg/m2 (SQ) on days 1–7 of every 28 day cycle +
3.0 mg/kg on day 1 and day 14 every 28 days for
the first 4 cycles or until CR (whichever occurs
earlier) followed by a maintenance regimen
(one dose of nivolumab on day 1 of each cycle of
5-azacytidine). Dose expansion with maximum
tolerated dose (MTD)); or Azacitidine + Nivolumab
+ Ipilimumab dose escalation with Azacitidine +
Nivolumab doses per above and Ipilumab starting
at 1 mg/kg every 12 weeks. Dose expansion
with MTD.

Non-randomized
Open-label
Phase II

n = 182 April 2020 Naval Daver, MD NCT02397720
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Table 1. Cont.

Disease Stage Therapeutic Agents Study Design Participants Estimated
Completion Date

Principal
INVESTIGATOR

Clinicaltrials Gov.
Identifier

AML (newly diagnosed for
dose-expansion; newly
diagnosed or R/R for dose
escalation) and HR-MDS

Idarubicin (12 mg/m2 days 1–3 of 28 day cycle),
cytarabine (1.5 g/m2 days 1–4 of 28 day cycle) with
Solumedrol 50 mg; or Dexamethasone 10 mg for
3–4 days on days 1–4 and nivolumab (starting dose
of 1 mg/kg on day 24 of 28 day cycle and dose
escalated in successive cohorts to MTD)

Non-randomized
Open label
Phase 1/2

n = 75 July 2019
Farhad
Ravandi-Kashani,
MD

NCT02464657

AML (newly diagnosed
elderly AML unfit for
induction chemotherapy and
R/R for dose-expansion; R/R
for dose escalation)

Atezolizumab (840 mg on days 8 and 22 of every
28-day cycle) and guadecitabine (60 mg/m2 on
days 1–5 of every 28-day cycle)

Non-randomized
Open label
Phase 1b

n = 40 January 2019
Not
listed/Hoffmann-La
Roche

NCT02892318

AML (newly diagnosed AML
not suitable for standard
induction) or R/R AML or
HR-MDS or HR-MDS who
have failed hypo-methylating
agent therapy

Decitabine + PDR001 (anti-PD-1) or Decitabine +
MBG453 (anti-TIM3) or Decitabine + PDR001 +
MBG453 or MBG453 monotherapy or MBG453 +
PDR001

Non-randomized
Open label
Phase 1b

n = 175 April 2020 Andrew M. Brunner,
MD NCT03066648

AML in remission at HR for
relapse

Nivolumab (3 mg/kg days 1 and 15 every 28 days,
after cycle 6 day 1 every 28 days, after cycle 12
reduce to 1 time every 12 weeks)

Non-randomized
Open-label
Phase 2

n = 30 October 2020 Tapan Kadia, MD NCT02532231

AML in remission after
chemotherapy Nivolumab (every 2 weeks for 46 courses)

Randomized
Open-label, with
cross-over upon
relapse
Phase 2

n = 80 June 2019 Hongtao Liu, MD,
PhD NCT02275533

Eldery AML (≥ 60 years)
with CR or CRI after
induction/consolidation and
MRD positive status not
planned for HSCT

Atezolizumab (1200 mg every cycle) and BL-8040
(1.25 mg/kg days 1–3 of cycle)

Randomized
Open label
Phase 1b/2 60
participants

n = 60 March 2022 Not listed/BioLineRx NCT03154827

Refractory AML Pembrolizumab (200 mg every 3 weeks)
Non-randomized
Open-label
Phase 0 pilot study

n = 10 August 2022 Michael Boyiadzis,
MD, MHSc NCT03291353

R/R AML
Decitabine (20 mg/m2 day 8 through 12 and 15
through 19 on alternative cycles) + pembrolizumab
(200 mg; every cycle (21 days))

Non-randomized
Open-label
Phase 1–2

n = 15 July 2019 Christopher S
Hourigan, MD NCT02996474
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Table 1. Cont.

Disease Stage Therapeutic Agents Study Design Participants Estimated
Completion Date

Principal
INVESTIGATOR

Clinicaltrials Gov.
Identifier

R/R AML
HiDAC salvage induction therapy followed by
pembrolizumab monotherapy on day 14 (200 mg)
and every 3 weeks

Non-randomized
Open-label
Phase 2

n = 37 September 2025 Joshua F Zeidner, MD NCT02768792

Elderly AML age ≥ 55

Cytarabine (500–1000 mg/m2 bid days −4, −3, −2)
+ G-CSF mobilized HLA-haploidentical donor
peripheral blood stem cells (day 0) + Nivolumab
(40 mg day +5 for 2–3 cycles) or Cytarabine
(500–1000 mg/m2 bid days +1, +2, +3) +
Nivolumab (40 mg day +1 for 2–3 cycles)

Randomized
Open-label
Haploidentical T cells,
cytarabine and
nivolumab vs.
cytarabine and
nivolumab
Phase 2

n = 52 October 2020
Boris Afanasyev, MD,
Prof. & Anna
Smirnova, PhD

NCT03381118

AML, ALL, or MDS with
relapse after allogeneic HSCT Pembrolizumab (200 mg every 3 weeks)

Non-randomized
Open-label
Phase 1b

n = 20 October 2021 John M Magenau, MD NCT03286114

AML and other
hematological malignancies
with relapse after
allogeneic HSCT

Pembrolizumab (200 mg every 3 weeks for up to
24 months)

Non-randomized
Open-label
Phase 1 pilot study

n = 26 February 2020 Justin Kline, MD NCT02981914

AML and MDS after
allogeneic HSCT at HR for
post-transplant recurrence

Nivolumab (1 or 3 mg/kg every 3 weeks for up to
34 weeks) or Ipilimumab (0.3 mg/kg, 1 mg/kg or
3 mg/kg every 3 weeks for up to 16 weeks) or
Nivolumab + Ipilimumab (3 mg/kg every 3 weeks
for up to 34 weeks and 0.3 mg/kg, 0.6 mg/kg or
1.0 mg/kg every 3 weeks for up to 16 weeks
respectively)

Non-randomized
Open-label
Phase 1

n = 21 July 2023

Andrew Pecora, MD
& James McCloskey,
MD & Jamie
Koprivnika, MD

NCT02846376

HR R/R AML following
allogeneic HSCT

Nivolumab (days 1 and 15 every 28 days) up to
6 courses or Ipilimumab (day 1 every 21 days) up to
6 courses or Nivolumab (days 1 and 14 every 28
days) + Ipilumab (day 1 every 28 days) up to
6 courses

Non-randomized
Open-label
Phase 1

n = 55 January 2020 Gheath Al-Atrash,
DO, PhD NCT03600155
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Table 1. Cont.

Disease Stage Therapeutic Agents Study Design Participants Estimated
Completion Date

Principal
INVESTIGATOR

Clinicaltrials Gov.
Identifier

R/R AML and HR-MDS

Cyclophosphamide (50 mg orally) + nivolumab
(3 mg/kg (or if prior alloHSCT, 1 mg/kg) every
14 days on Days 1 and 15 for up to four 28-day
courses) or Cyclophosphamide (350 mg orally) +
nivolumab (3 mg/kg (or if prior alloHSCT,
1 mg/kg) every 14 days on Days 1 and 15 for up to
four 28-day courses)

Randomized
Open-label
Phase 2

n = 32 February 2023 Daniel J Weisdorf,
MD NCT03417154

R/R AML

PF-04518600 (anti-Ox40) monotherapy (dose
escalation starting dose of 0.3 (units not given) on
days 1 and 14 of a 28 day cycle) or PF-04518600
(dose escalation per above) and avelumab
(10 mg/kg on days 1 and 14 of a 28 day cycle) or
PF-04518600 (dose escalation per above) +
Azacitidine (75 mg/m2 on days 1–5 or 1–7) or
PF-04518600 (dose escalation per above) +
Utomilumab (anti-CD137) (100 mg on days 1 and
14 of a 28 day cycle) or Avelumab (10 mg/kg on
days 1 and 14 of a 28 day cycle) + Utomilumab
(100 mg on days 1 and 14 of a 28 day cycle) or
PF-04518600 (dose escalation per above) +
Avelumab (10 mg/kg on days 1 and 14 of a 28 day
cycle) + Azacitidine (75 mg/m2 on days 1–5 or 1–7)
or Gemtuzumab Ozogamicin (3 mg/m2 on Days 1,
4, and 7 of each 28 day cycle) + Glasdegib
(smoothened inhibitor) (100 mg oral daily) or
Avelumab (10 mg/kg on days 1 and 14 of a 28 day
cycle) + Glasdegib (100 mg oral daily)

Non-randomized
Open-label
Phase 1b/2

n = 138 December 2024 Naval G. Daver, MD NCT03390296

R/R AML

Avelumab (starting dose for dose escalation
3.0 mg/kg on days 1 and 14 of 28 day cycle) and
Azacytidine (75 mg/m2 days 1–7 or days 1–5,
8–9 of 28 day cycle)

Non-randomized
Open-label
Phase 1b/2

n = 58 February 2021 Naval G. Daver, MD NCT02953561

Legend: R/R = relapsed/refractory; ALL = acute lymphoblastic leukemia; AML = acute myeloid leukemia; MDS = myelodysplastic syndrome; HR = high risk; HSCT = hematopoietic stem
cell transplantation.
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7. Conclusions and Translational Outlook

As reviewed herein, research efforts are being devoted to the identification of ICB-responsive
TME in patients with solid tumors [100]. Immune gene signatures are an emerging area with great
promise for enhancing clinical decision making in patients with hematologic malignancies. As the field
advances our knowledge of immunology, the dynamic and complex nature of patients’ immunological
profiles has become increasingly of interest, with factors as diverse as tumor genetics, epigenetics,
mRNA expression, micro-RNA expression, patient age, microbiome composition, pharmacological
agents and environmental factors, including infections and exposure to sunlight, affecting patients
immunologic profiles [19]. Compelling evidence now indicates patients with solid tumors who
benefit from ICB typically have an inflamed immune status, with a pre-existing immune response and
cytolytic markers with subsequent establishment of immune suppression by various molecular circuits
that may be targeted with rational combinations of therapeutics to address distinct mechanism of
immune silencing and immune escape (for example IDO1) [87]. Studies in melanoma and other
solid tumors have clearly shown that IFN-γ-related mRNA profiles predict clinical response to
pembrolizumab [52]. IFN-γ signatures could also identify AML patients with greater likelihood of
responding to immunotherapies, including flotetuzumab, and could reveal novel targets for converting
ICB-resistant tumors to a state of responsiveness.

High-dimensional technologies are enhancing our understanding of TME interactions and
have the undisputed potential to support the prediction of therapeutic benefit from immune-based
interventions. Because of inherent limitations of gene expression profiles, other approaches, such
as flow cytometry, quantitative immunohistochemistry and next-generation sequencing for T cell
antigen receptors or similar technologies (multiplex quantitative PCR, spectratyping and immune
phenotyping) are recommended to thoroughly characterize the immunological landscape of the TME
and to establish predictive models [23], as recently reviewed by the Immune Biomarkers Task Force
of the Society for Immunotherapy of Cancer (SITC) [41]. Conceivably, systems biology approaches
using multi-dimensional data analysis will be instrumental to generating the complete picture of the
immunological contexture of hematological malignancies, to revealing potential immune biomarkers
and informing the rational design of immune therapies. A combination of personalized transcriptomic
and proteomic measurements are likely to be required to develop accurate immune signatures to give
patients optimal clinical outcomes.

The integration of immune gene expression profiles into current algorithms for risk-stratification,
which predominantly rely on ELN cytogenetic risk categories, may allow the identification of patient
subgroups with “inflamed” or hot AML, who could be amenable to ICB and other immunotherapy
approaches, incuding the use of bispecific CD3 × CD123 molecules and small-molecule IDO1 inhibitors
(Figure 3). By contrast, AML patients with a “non-inflamed” or cold TME, or with inherent insensitivity
to IFN-γ and other effector molecules, should be offered other immunotherapeutic options, such as
the infusion of leukemia antigen-specific T cells and genetically-modified (chimeric antigen receptor)
CAR T cells. Pharmacological strategies are also being developed to convert “cold” TMEs to “hot”
TMEs. In this respect, hypomethylating agents can induce the expression of tumor-associated antigens
and anti-viral cytokines, re-induce the expression of silenced endogenous retroviruses that provoke
immune responses [114], and also enhance T-cell infiltration in the AML TME [110].
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Figure 3. Selection of immunotherapy approaches in AML with inflamed versus non-inflamed TMEs. 
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probabilities. Patients with T-cell inflamed profiles, indicative of adaptive resistance-driven immune 
dysfunction, could be considered for immunotherapy approaches that incorporate IDO1 inhibitors 
[86], either as monotherapy or in combination with PD-1/PD-L1 ICB [87], or other immunotherapy 
agents that deliver an activation signal to T cells, including CD3 × CD123 DART proteins [9], and/or 
revert MDSC- and Treg-mediated immune dysfunction in the TME. In contrast, AML cases with a 
non-T-cell inflamed TME, and/or blast cells lacking IFN-γ responsiveness as a result of abnormalities 
in intracellular signaling pathways, could be candidates for therapeutic strategies that enhance T-cell 
trafficking into the BM (STING agonists, β-catenin inhibitors [31]) and/or passive immunotherapy 
approaches such as the infusion of leukemia antigen-specific T cells or CD123-CAR T cells [115]. 
Pharmacological approaches, including the use of hypomethylating agents, could enhance T-cell 
infiltration to the BM, thus converting a “cold” TME into a “hot” TME [110]. IDO1 = Indoleamine 2,3-
dioxygenase-1; L-TRP = L-tryptophan; 1MT = 1-methyl-tryptophan; CAR = chimeric antigen receptor; 
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within the TME that can be developed into predictive biomarkers for monotherapies and 
combination ICB therapeutics in hematolagic malignancies, an area that is expected to flourish during 
the next few years [50]. For example, gene expression profiling approaches, such as NanoString’s 
digital barcoding platform [60], coupled with multiplexed immunohistochemistry techniques, can be 
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Figure 3. Selection of immunotherapy approaches in AML with inflamed versus non-inflamed TMEs.
Messenger RNA (mRNA) profiles and spatially-resolved expression of immune checkpoints could be
integrated with conventional AML prognosticators, such as patient age, presenting white blood cell
count and ELN cytogenetic risk, to stratify patients into categories with different survival probabilities.
Patients with T-cell inflamed profiles, indicative of adaptive resistance-driven immune dysfunction,
could be considered for immunotherapy approaches that incorporate IDO1 inhibitors [86], either
as monotherapy or in combination with PD-1/PD-L1 ICB [87], or other immunotherapy agents
that deliver an activation signal to T cells, including CD3 × CD123 DART proteins [9], and/or
revert MDSC- and Treg-mediated immune dysfunction in the TME. In contrast, AML cases with
a non-T-cell inflamed TME, and/or blast cells lacking IFN-γ responsiveness as a result of abnormalities
in intracellular signaling pathways, could be candidates for therapeutic strategies that enhance T-cell
trafficking into the BM (STING agonists, β-catenin inhibitors [31]) and/or passive immunotherapy
approaches such as the infusion of leukemia antigen-specific T cells or CD123-CAR T cells [115].
Pharmacological approaches, including the use of hypomethylating agents, could enhance T-cell
infiltration to the BM, thus converting a “cold” TME into a “hot” TME [110]. IDO1 = Indoleamine
2,3-dioxygenase-1; L-TRP = L-tryptophan; 1MT = 1-methyl-tryptophan; CAR = chimeric antigen
receptor; TAM = tumor-associated macrophage; Treg = regulatory T cell; MDSC = myeloid-derived
suppressor cell; WT1 = Wilms’ tumor 1; PRAME = preferentially expressed antigen in melanoma.
Green arrows denote stimulation; red arrows denote inhibition.

Integretion of multiple biomarker strateges will be imperative to capturing immune signatures
within the TME that can be developed into predictive biomarkers for monotherapies and combination
ICB therapeutics in hematolagic malignancies, an area that is expected to flourish during the next
few years [50]. For example, gene expression profiling approaches, such as NanoString’s digital
barcoding platform [60], coupled with multiplexed immunohistochemistry techniques, can be used
to quantify pertinent IO genes and large numbers of proteins expressed in cell populations within
localized compartments in the TME, providing crucial topography and spatial localization of immune
cells at different tumor stages or after treatment with immunotherapies. High-resolution data on the
composition and quality of the intra-tumor immunological infiltrate are expected to bring the next
generation of immuno-oncology biomarkers to the clinic and to propel the development of novel
immunotherapies [110]. For instance, a web application that has recently been developed to predict
response, and intrinsic resistance, to ICB using transcriptomic profiles (http://tide.dfci.harvard.edu)
may support oncologists in the selection of patients who are more likely to benefit from ICB [116].
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In conclusion, recent integrative analyses of multiple human solid tumor studies comprising
thousands of samples have uncovered meaningful effects of tumor-infiltrating immune cell types on
patient survival and on response to ICB and other immunotherapies [117]. Future studies will evaluate
whether these approaches help predict immunotherapy responses also in acute myeloid leukemia,
lymphoma and other hematological malignancies, as sufficiently large patient series and datasets are
accumulated and analyzed. It will also be highly relevant to assess how tumor cell-intrinsic factors,
including the expression of cancer driver genes, shape the composition and quality of the TME, thus
potentially influencing immunotherapy outcomes.
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