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Abstract: Background: Liver transplantation remains the treatment of choice for a selected group of
hepatocellular carcinoma (HCC) patients. However, the long-term benefit is greatly hampered by
post-transplant HCC recurrence. Our previous studies have identified liver graft injury as an acute
phase event leading to post-transplant tumor recurrence. Methods: To re-examine this acute phase
event at the molecular level and in an unbiased way, RNA sequencing (RNA-Seq) was performed on
liver graft biopsies obtained from the transplant recipients two hours after portal vein reperfusion
with an aim to capture frequently altered pathways that account for post-transplant tumor recurrence.
Liver grafts from recurrent recipients (n = 6) were sequenced and compared with those from
recipients without recurrence (n = 5). Results: RNA expression profiles comparison pointed to
several frequently altered pathways, among which pathways related to cell adhesion molecules were
the most involved. Subsequent validation using quantitative polymerase chain reaction confirmed
the differential involvement of two cell adhesion molecules HFE (hemochromatosis) and CD274 and
their related molecules in the acute phase event. Conclusion: This whole transcriptome strategy
unravels the molecular landscape of liver graft gene expression alterations, which can identify key
pathways and genes that are involved in acute phase liver graft injury that may lead to post-transplant
tumor recurrence.

Keywords: Liver transplantation; liver graft injury; intragraft gene expression profiles; cell adhesion
molecules; CD274; HFE

1. Introduction

Hepatocellular carcinoma (HCC) is a clinically challenging liver malignancy with a nearly equal
worldwide incidence and death. Among various treatments, liver transplant results in a favorable
survival in a well selected patient subgroup [1]. However, this treatment unavoidably accompanies
ischemia and reperfusion injury that can trigger acute phase graft injury, or even rejection [2]. Acute phase
liver graft injury is a hallmark event leading to late phase HCC recurrence in liver transplantation.
Our previous studies using a liver transplant animal model have revealed a deregulation of signaling
pathways related to inflammation, invasion and migration in the acute phase event and their associations
with late phase tumor recurrence [3,4]. Besides, various molecules, e.g., CXCL10 (C-X-C motif chemokine
ligand 10), and certain cells, e.g., endothelial progenitor cells, were found capable of promoting tumor
recurrence after liver transplantation in studies using relevant animal models and clinical specimens [5,6].
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These studies have unequivocally demonstrated that acute phase liver graft injury is an early event
leading to post-transplant tumor recurrence. A better understanding of the acute phase event is important
for developing new or prophylactic treatments for post-transplant tumor recurrence.

Despite the efforts that have been devoted to the study of acute phase liver graft injury and late
phase HCC recurrence in liver transplantation, the molecular mechanisms underlying these events were
not fully uncovered. Here, we revisited this theme by using RNA sequencing to capture intragraft gene
expression changes in acute phase liver graft injury that account for post-transplant tumor recurrence,
for which some of them are known for their effects on recipient outcomes. In a liver transplant animal
study, cDNA microarray results revealed a number of genes, especially those inflammatory genes,
were up-regulated in liver grafts that are more prone to develop tumors [4]. On the other hand, certain
genes, such as GPx3 (glutathione peroxidase 3), experienced down-regulation [7]. Apart from the
above effects, intragraft gene expression changes can also influence other post-transplant outcomes,
such as graft rejection. A preferential expression of genes related to signal transduction, inflammation,
and immune response was detected in liver grafts undergoing acute cellular rejection, which is
a common situation leading to graft loss in a specific recipient group [8]. Overall, these prior studies
have put forth the importance of studying intragraft gene expression patterns in acute phase liver
graft injury and their correlation with post-transplant outcomes. The derived results can enhance
the understanding of acute phase liver graft injury, for which the knowledge can improve patient
management in terms of risk stratification, prophylaxis and treatment of post-transplant tumor
recurrence. Our long-term goal is to improve the recipient outcomes after liver transplantation.

2. Experimental Section

2.1. Clinical specimens

HCC patients that were included in this study received their liver transplant in Queen Mary
Hospital, Pokfulam, Hong Kong (March 2004 to April 2010). Written patient consents were obtained.
The last follow-up date was September 2013. The clinicopathological information between HCC
patients with and without HCC recurrence after liver transplantation including sex, age, type of liver
transplant, Milan criteria, vascular permeation, HBsAg before liver transplantation, new TNM stage,
AST level (24 h after liver transplantation), and ALT level (24 h after liver transplantation) were listed
in Supplementary Table S1. Among them, both the AST and ALT level in recurrence group were
significantly higher than the non-recurrence group (Supplementary Table S1). The recurrence period
and recurrence sites are listed in Supplementary Table S2. Liver graft biopsies collected 2 h after portal
vein reperfusion during liver transplantation were frozen immediately and stored at −80 ◦C. The use
of clinical specimens for research was approved by the Institutional Review Board of The University of
Hong Kong/Hospital Authority Hong Kong West Cluster (HKU/HA HKW IRB).

2.2. RNA sequencing (RNA-Seq) and data processing

RNA-Seq was performed on liver grafts from recipients with (n = 6) or without (n = 5)
post-transplant HCC recurrence. The 5 patients without post-transplant HCC recurrence are patients
treated with deceased donor liver transplant (DDLT). Total RNA was extracted from liver grafts using
TRIzol reagent (Life Technologies, Waltham, MA, USA) as before [9,10]. RNA quality was analyzed
in an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). RNA sequencing was
performed in a HiSeq 2500 System sequencer (Illumina, San Diego, CA, USA) in BGI, Hong Kong.
A total of eight billion bases of sequencing data (quality control passed) was produced. The data were
preprocessed using cutadapt version 1.1 to remove sequencing adapters. Then the data were mapped to
the human reference genome GRCh37 (hg19) using aligner BWA version 0.6.2 with default options and
then converted into BAM file format using SAMtools version 0.1.19. The gene expression level of each
sample was calculated using the method introduced by Mortazavi et al. [11]. More specifically, the gene
expression level difference between any given two samples was gauged by the number of sequencing
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data mapped to the gene, RPKM (reads per kilobase per million mapped reads). Each recurrence
sample was compared to each non-recurrence sample to identify the up-regulated and down-regulated
genes (Figure 1), together with their expression ratios. Using this method, a total of 30 differentially
expressed gene lists were generated, which were then merged. Genes with inconsistent expression
changes were removed. An average expression difference for each gene was calculated.

Figure 1. RNA-Seq data comparison method. RNA-Seq data of liver grafts from recipients with
(n = 6) or without (n = 5) post-transplant hepatocellular carcinoma (HCC) recurrence was individually
compared to identify differentially expressed genes, for which this result was used to map the frequently
altered pathways. Rc, recurrence; NRc, non-recurrence.

2.3. Bioinformatics analyses

Pathway enrichment analyses were performed using Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO). STRING database (http://string-db.org, version 9) was used to
find related molecules for the candidate genes [12]. High confidence level at 0.700 was used.

2.4. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR)

RT-qPCR was performed, as described [9,10]. Total RNA from liver graft biopsies were extracted
as above. Reverse transcription was performed using High-Capacity cDNA Reverse Transcription
kit (Applied Biosystems, Foster City, CA, USA). qPCR was performed using Power SYBR Green
PCR Master Mix (Applied Biosystems) and gene-specific primers (Supplementary Table S3). β-Actin
expression was used as an internal normalization control. The relative expression level of each gene
in each sample was normalized with the average expression level in healthy donor livers using
2-∆∆Ct method [13].

2.5. Statistical analyses

Continuous variables were compared by t-test or Mann-Whitney U test. The categorical variables
were compared by chi-square Fisher’s test. Gene expression level correlation was analyzed by Pearson
correlation analysis. p < 0.05 was considered statistically significant.

http://string-db.org
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3. Results

3.1. Cell adhesion molecules-related pathways in acute phase liver graft injury

Eleven sets of RNA-Seq data of liver grafts from recipients with (n = 6) or without (n = 5)
post-transplant HCC recurrence were subjected to pathway enrichment analyses based on the use of
differentially expressed genes between these two recipient groups. The top five pathways frequently
altered in our studied condition are those related to steroid hormone biosynthesis, retinol metabolism,
metabolism of xenobiotics by cytochrome P450, drug metabolism by cytochrome P450, and finally,
cell adhesion molecules (Supplementary Table S4). Among these pathways, we focused on pathways
related to cell adhesion molecules for further study, not only because of their diversified roles in liver
tumorigenesis, but also because of their expression in immune cells important for post-transplant
tumor recurrence [14–16].

3.2. HFE and CD274 are two cell adhesion molecules with differential involvement in acute phase liver graft
injury

Cell adhesion molecules represent a broad class of membrane-associated molecules with
diversified functions in pathophysiological processes, ranging from cell adhesion, inflammation, tissue
injury, to tumorigenesis. In this category, seventy-five genes were differentially expressed in liver grafts
in the recurrence group compared to the non-recurrence group (Supplementary Table S5), implicating
their involvement in post-transplant HCC recurrence. Six genes with more than two-fold expression
level difference between these two groups, i.e., ITGA8, SELE, HFE, CDH26, HLA-DQA2, and CD274
(Figure 2 and highlighted in Supplementary Table S5), were subjected to RT-qPCR validation in a
sample set of seven recurrences and seven non-recurrences. Among the four genes down-regulated
in recurrence samples (ITGA8, SELE, HFE, and CDH26), only HFE maintained its down-regulation
(Figure 3). The CDH26 validation result was not shown due to its nearly undetectable expression level
in our current experimental setting. For the two genes up-regulated in recurrence samples (HLA-DQA2
and CD274), an up-regulation of CD274 was maintained (Figure 4). No validation experiment was
performed on HLA-DQA2 due to its ubiquitous nature.

Figure 2. RNA-Seq result shows cell adhesion molecules that had more than two-fold gene expression
level difference between recurrence and non-recurrence samples in acutely injured liver grafts. Six cell
adhesion molecules with intragraft gene expression level difference of more than two-fold when
recurrence samples were compared to non-recurrence ones. Four molecules (ITGA8, SELE, HFE,
and CDH26) have been down-regulated in recurrence samples, whereas two molecules (HLA-DQA2
and CD274) were found to have been up-regulated.
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Figure 3. HFE down-regulation in liver grafts from recipients with post-transplant HCC recurrence.
RT-qPCR result demonstrated a down-regulation of HFE, but not ITGA8 and SELE, in liver grafts from
recipients with post-transplant HCC recurrence. ** p < 0.01.

Figure 4. CD274 up-regulation in liver grafts from recipients with post-transplant HCC recurrence.
RT-qPCR result demonstrated an up-regulation of CD274 in liver grafts from recipients with
post-transplant HCC recurrence. * p < 0.05.

3.3. HFE- and CD274-related molecules in acutely injured liver grafts

STRING database result revealed four HFE-related molecules (B2M, TF, TFR2, and TFRC)
(Figure 5A and Supplementary Table S6) and two CD274-related molecules (CD80 and PDCD1)
(Figure 6A and Supplementary Table S6). Their gene expression level correlation with HFE and CD274
was performed in liver grafts from 43 transplant recipients (6 recurrence and 37 non-recurrence)
using RT-qPCR. Among the HFE-related molecules, B2M, TF, and TFR2, but not TFRC, demonstrated
positive gene expression level correlation with HFE (Figure 5B). Among the CD274-related molecules,
CD80, but not PDCD1, exhibited positive gene expression level correlation with CD274 (Figure 6B).
Collectively, our results revealed that the involvement of HFE and CD274 and their related molecules
in acute phase liver graft injury and their concurrent involvement in post-transplant tumor recurrence.
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Figure 5. Correlation analysis of HFE and its related molecules in liver grafts from transplant recipients.
(A) Bioinformatics analysis revealed B2M, TF, TFR2 and TFRC as HFE-related molecules; (B) Among
these molecules, B2M, TF and TFR2, but not TFRC, demonstrated a positive gene expression correlation
with HFE in liver grafts from 43 transplant recipients using RT-qPCR.

Figure 6. Correlation analysis of CD274 and its related molecules in liver grafts from transplant
recipients. (A) Bioinformatics analysis revealed that CD80 and PDCD1 were CD274-related molecules;
(B) CD80, but not PDCD1, demonstrated a positive gene expression correlation with CD274 in liver
grafts from 43 transplant recipients using RT-qPCR.
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4. Discussion

Our previous studies have identified that the acute phase liver graft injury is a key event leading
to post-transplant HCC recurrence. In this study, we adopted a more comprehensive and unbiased
approach using RNA sequencing to analyze differentially expressed genes in this acute phase event,
with an aim to identify key players. The sequencing data revealed a subset of cell adhesion molecules
differentially expressed in liver grafts from recipients with or without post-transplant tumor recurrence.
Cell adhesion molecules belong to a class of cell surface molecules with diversified functions from
adhesion, migration, to inflammation [16]. In liver transplantation, inflammation is initiated in the
hallmark event of ischemia and reperfusion injury resulting from hepatic surgery. Massive recruitment
of immune cells, which express various cell adhesion molecules, takes place during acute phase liver
graft injury that can eventually lead to post-transplant tumor recurrence [17]. Certain cell adhesion
molecules, e.g., MHC molecules [18], are involved in ischemia and reperfusion liver injury. In addition,
our previous studies have demonstrated that certain molecules, e.g., aldose reductase and repressor
and activator protein, are capable of regulating hepatic ischemia and reperfusion injury through their
effects on inflammation [19,20]. Collectively, our and other findings have exemplified the key roles
of cell adhesion molecules in inflammation, ischemia, and reperfusion liver graft injury, as well as
post-transplant tumor recurrence. However, due to the small sample size that was used, findings
that were derived from this study should be further validated in a separate cohort of large sample
size. To minimize variations between patients, we tried to analyze specimens from patients that were
selected based on the Milan criteria.

HFE (hemochromatosis) is a cell adhesion molecule that was identified in this study to have
down-regulated gene expression level in liver grafts from recipients with post-transplant HCC
recurrence. It is an atypical MHC class I molecule with diversified cellular functions, such as iron
homeostasis maintenance and immune function regulation [21,22]. Mutation of this gene can lead
to iron overload, which is a predisposing factor for HCC [21,23]. Besides, two studies have reported
the close link between hepatic iron overload and poor survival of liver transplant recipients [24,25].
In this study, we have also established a positive correlation in the intragraft gene expression of HFE
and its related molecules (B2M/β2-microglobulin, TF/transferrin, and TFR2/transferrin receptor 2) in
liver transplant recipients, for which these molecules are known iron metabolism regulators with close
interaction with HFE [21,26]. Taken together, it is convincing to believe that HFE down-regulation
in liver grafts, as observed in this study, can lead to iron overload and eventually post-transplant
tumor recurrence.

In contrary to HFE, we have demonstrated a high intragraft gene expression level of CD274
from recipients with post-transplant tumor recurrence. CD274, also known as PD-L1, is expressed
on immune cells, as well as non-hemopoietic cells [27]. In addition to its general immunoregulatory
functions, CD274 is also involved in tumorigenesis, as reflected by its high expression level in tumor
tissues rather than in adjacent non-tumor tissues of various cancers [27,28]. The tumor-related function
of CD274 can also help to explain for its high intragraft gene expression level in transplant recipients
with tumor recurrence as observed in this study. The tumor-inducing effect of CD274 may also involve
other immunoregulatory molecules, such as CD80, whose intragraft gene expression level correlated
positively with CD274 in transplant recipients as reported here. Like CD274, CD80 is also found on
immune cells and is involved in an array of immune pathways [29]. Indeed, both molecules are known
to participate in transplantation immunity [30]. In view of these interesting observations from this and
other studies, it is plausible that CD274 may work with its related molecule, e.g., CD80, in triggering
acute phase liver graft injury and post-transplant tumor recurrence.

Taken together, we have successfully used RNA sequencing to unravel the molecular landscape
of acute phase liver graft injury that accounts for post-transplant tumor recurrence. Certain cell
adhesion molecules, e.g., HFE and CD274, were found to have differential roles in our studied
condition. These molecules have potential function as a prognostic marker for risk assessment to
identify transplant recipients more prone to tumor recurrence and to guide them for prophylactic
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treatment for prevention. Apart from the preventive measure, the identified molecules can also form
a basis for research on new treatment targets.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9059/6/2/41/s1.
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