
biomedicines

Review

Tumor-Associated Macrophages in Oncolytic
Virotherapy: Friend or Foe?

Nicholas L. Denton, Chun-Yu Chen, Thomas R. Scott and Timothy P. Cripe *

Center for Childhood Cancer and Blood Diseases, Division of Hematology/Oncology/Blood and
Marrow Transplant, Nationwide Children’s Hospital, The Ohio State University, Columbus, OH 43205, USA;
Nicholas.Denton@nationwidechildrens.org (N.L.D.); Chun-Yu.Chen@nationwidechildrens.org (C.-Y.C.);
trscott1@crimson.ua.edu (T.R.S.)
* Correspondence: timothy.cripe@nationwidechildrens.org; Tel.: +1-614-722-3521

Academic Editor: Zong Sheng Guo
Received: 21 May 2016; Accepted: 4 July 2016; Published: 7 July 2016

Abstract: Cancer therapy remains a challenge due to toxicity limitations of chemotherapy and
radiation therapy. Oncolytic viruses that selectively replicate and destroy cancer cells are of increasing
interest. In addition to direct cell lysis, these vectors stimulate an anti-tumor immune response. A key
regulator of tumor immunity is the tumor-associated macrophage population. Macrophages can
either support oncolytic virus therapy through pro-inflammatory stimulation of the anti-tumor
response at the cost of hindering direct oncolysis or through immunosuppressive protection of
virus replication at the cost of hindering the anti-tumor immune response. Despite similarities
in macrophage interaction between adult and pediatric tumors and the abundance of research
supporting macrophage modulation in adult tumors, there are few studies investigating macrophage
modulation in pediatric cancers or modulation of immunotherapy. We review the current state of
knowledge regarding macrophages in cancers and their influence on oncolytic virotherapy.
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1. Introduction

Cancer was the cause of over half a million deaths in the United States (US) in the year 2013
alone [1]. Cancer is the leading cause of disease-related death in US children and is projected to catch
up to heart disease in becoming the leading cause of death in US adults as well [1]. The standard
therapies for treating solid tumors including surgery, chemotherapy, and radiation therapy are only
partly effective in treating patients with aggressive tumors and cause short-term and long-term
toxicities [2–4]. Therefore, there is urgent demand for more tumor-selective therapies that can treat
aggressive tumors while remaining safe for cancer patients.

One approach to cancer therapy that has gained significant traction recently is the use of
oncolytic viruses that selectively replicate in and destroy cancer cells. These oncolytic viruses are
capable of destroying tumors not only through their direct infection and oncolysis of tumor cells,
but also by activating the host’s anti-tumor immune response [4–8]. While tumor inflammation
is known to inhibit viral replication via an interferon response and therefore may impede direct
oncolysis of tumor cells, some cancers respond to a virus-induced activation of an anti-tumor immune
response [9,10]. A clinical example is melanoma injected with Talimogene laherparepvec (T-Vec, trade
name Imlygic; Amgen, Thousand Oaks, CA, USA), which is now approved by the US Food and Drug
Administration (FDA) as a therapy [11–13]. T-Vec is attenuated by deletions of the genes encoding
ICP34.5, a neurovirulence factor, and was designed to promote anti-tumor immunity by expressing
human Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF). To increase chances of tumor
antigen presentation, the virus is also deleted for ICP47, a protein that blocks peptide loading onto the
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major histocompatibility complex (MHC). In a phase III trial, over three quarters of lesions directly
injected with virus shrank. Although anti-tumor immunity was not directly measured, the fact that
over half of the uninjected skin and nearly a third of the visceral lesions also responded suggests
an immunologic effect. Other oncolytic viruses are being designed for anti-tumor immune stimulation
using other immune-stimulatory molecules [14]. Despite its success, there is still a need to understand
and circumvent the barriers to successful virotherapy because not all patients or injected lesions
respond to treatment.

One of the key regulators of cancer immunotherapy is the tumor-associated macrophage (TAM)
population [15–17]. Traditionally, macrophages are activated towards one of two polarization
states: the classically activated M1 pro-inflammatory macrophage or the alternatively activated
M2 immunosuppressive macrophage [17–24]. Classically activated M1 macrophages induced by
interferon γ (IFNγ) and lipopolysaccharides are considered anti-tumor macrophages due to the
expression of inducible nitric oxide synthase and the secretion of cytotoxic reactive oxygen species
and pro-inflammatory cytokines [17,22–24]. Inflammatory macrophages attract natural killer (NK)
cells and dendritic cells (DCs) to the tumor site through expression of chemokines CCL20, CXCL10
and CXCL11 while macrophage secretion of IFNα and IL-12 activates NK cells and DCs; activated
NK cells and DCs in turn secrete IFNγ, interleukin (IL)-12 and IL-15 which promote pro-inflammatory
macrophage, NK cell, and DC activation [4]. In addition to innate immune responses, M1-type
macrophages attract and stimulate T cells through secretion of CCL15, CCL20, CXCL9, CXCL10 and
CXCL11 [4]. Alternatively, macrophages activated by IL-4 are considered pro-tumorigenic due to
the expression of growth-promoting, pro-angiogenic, and extracellular matrix remodeling signals via
vascular endothelial growth factor (VEGF), IL-8, matrix metalloproteinase (MMP)-9, transforming
growth factor β (TGFβ) and T cell suppression molecules [17–24]. These so-called M2 macrophages
are also associated with a non-immune-stimulatory phagocytosis of apoptotic cancer cells known as
efferocytosis [17]. Recently, it has become clear there are intermediate states and macrophages cannot
always be classified so distinctly, and terms such as “M2a”, “M2b”, etc., “regulatory macrophage”
and “tumor-associated macrophage” have been used to define multiple activation states, causing
difficulties in research replicability. To harmonize across research groups, some have proposed
labeling macrophage subtypes based on factors to which they have been exposed or molecules they
express [21,22]. Regardless, it is clear that tumor macrophage activation states can greatly influence
the efficacy of tumor immunotherapy.

The role of tumor macrophages in oncolytic virus therapy is understudied and potentially
controversial in both adult and pediatric cancers. On the one hand, M1-like macrophages are
predicted to enhance virus-mediated activation of the anti-tumor immune response; however,
M1-like macrophages may also promote an anti-viral immune response with early clearance of virus.
M2-like macrophages are associated with tumor angiogenesis, metastasis, and suppression of the
anti-tumor immune response; however, M2-like macrophages may also suppress the anti-viral immune
response and promote oncolysis. Here we review evidence gathered so far on the role of macrophages
in modulating tumorigenesis and the anti-tumor efficacy of oncolytic virotherapy, summarized in
Table 1, to help determine when macrophages are “friend” or “foe”.
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Table 1. Summary of macrophage friend or foe outcomes. While tumor-associated macrophages
are generally associated with poor prognosis in human patients, the effect of tumor macrophages
on oncolytic virus immunotherapy varies by the tumor type and the applied oncolytic virus vector.
Despite similarities in the tumor macrophage effect on tumor progression between pediatric and adult
cancers, there is a paucity of research investigating macrophage modulation with oncolytic virus
immunotherapy in pediatric cancers.

Tumor Type Macrophage
Polarization Friend or Foe? Oncolytic

Viruses Tested Signaling Pathways Involved Reference
Number

Osteosarcoma M2 Foe none RAGE, CD24, NfκB, VEGF,
MCP-1, HMGB1, IL-10, pSTAT3 [14,20–22,25–28]

Ewing Sarcoma M2 Foe none
EWS/FLI1, STAT3, MMP-2,
CCND-2, VEGF, MCP-1, M-CSF,
RANKL, TNFα, IL-1, VEGF

[22,23,25–34]

Neuroblastoma M1 Friend none MYCN [24,35]

- M2 Foe none
MIF,
Cyclo-oxygenase–prostaglandin
E2 pathway, M-CSF

[22,35–37]

Colorectal
Cancer M1 Friend vaccinia virus

GCP-2, KC/GROα, IFNγ,
CXCL10, IL-3, IL-6, Lymphotactin,
M-CSF1, MIP-1 beta, MCP-1,
MCP-3, MCP-5, RANTES,
macrophage metallelastase

[38–40]

Glioblastoma M1 Foe herpes simplex
virus

TNFα, CCN1, IL-1β, IFNγ,
CXCL10, MCP-1, MCP-3 [41–44]

- M2 Friend herpes simplex
virus TGFβ [45]

Breast Cancer M1 Friend paramyxovirus Human Monocyte-Derived [46]

- M2 Foe adenovirus TGFβ [47]

- M1 Foe vesicular
stomatitis virus JAK/STAT, IFNα, IFNβ [48]

Pancreatic
Cancer M2 Friend adenovirus TGFβR, TGFβ [49]

- - - herpes simplex
virus Nectin-1, TGFβ [41]

- M2 Foe herpes simplex
virus CSF1R [50]

- M1 Friend herpes simplex
virus GM-CSF [51]

2. Macrophages, Prognosis, and Immunotherapy

The presence of high levels of tumor-associated macrophages is associated with a poor prognosis
in patients with breast, prostate, bladder, cervical, ovarian, lung, brain, and skin cancers [22,23,48,52].
This finding makes sense, given the known functions of M2-like tumor macrophages. In the
context of some immunotherapies, however, macrophages may be favorable and contribute to
stimulation of the anti-tumor immunity [10]. Macrophages in the subcapsular sinus also have
anti-tumor functions in blocking extratumoral vesicles containing immunosuppressive cytokines
from reaching the tumor-draining lymph node, and then assist in presenting tumor-associated antigens
to the lymphoid cells and activating adaptive immunity to tumor-associated antigens [20,21,53].
Tumor macrophages are also vital for tumor-specific antibody therapy–mediated efficacy [54].
Investigators have also used macrophages as cell carriers for targeted delivery of oncolytic viruses into
the tumor microenvironment [55].

Osteosarcoma is the most common bone tumor, with an overall survival of 70% but a <30%
survival for those with metastatic disease. Osteosarcoma is replete with macrophages that express IL-10,
which inhibits the T-cell IFNγ expression necessary to maintain active T cell immunotherapy [14,56,57].
IL-10 signaling from immunosuppressive macrophages also induces PD1 and TIM-3 expression in
T cells, resulting in negative regulation of IFNγ and TNFα, leading to exhaustion and/or apoptosis of



Biomedicines 2016, 4, 13 4 of 9

T cells [20–22,56]. Osteosarcoma tumor macrophages also produce high motility group box 1 (HMGB1),
which interacts with the receptor for advanced glycation end products (RAGE), toll-like receptors,
and CD24, resulting in tumor proliferation, invasion and angiogenesis mediated by NFκB and VEGF
signaling [58]. Osteosarcoma secretion of MCP-1 attracts TAMs while stimulation from Th2 cytokines
IL-4 and IL-13 induces pSTAT3 activation of M2 TAMs [59]. These findings suggest macrophage
regulation may also be important in immunotherapy for osteosarcoma.

Ewing sarcoma is the second most common bone-derived tumor in pediatrics with an overall
survival of 70%, with only <30% surviving metastatic or recurrent tumors. These cancers harbor
a characteristic chromosomal translocation that creates a hybrid gene between EWS and a member of
the ETS gene family, most commonly FLI1 [23]. The poor prognosis appears to be caused in part by
macrophage influence. Tumor macrophage infiltration is abundant and correlated with poor prognosis
in Ewing sarcoma patients, similarly to adult tumors [23,25–27]. EWS/FLI1 suppresses miRNAs such
as let-7a, which normally suppresses transcriptional targets of STAT3, MMP-2 and CCND-2, leading
to increased macrophage infiltration, tumor proliferation, and metastasis [25]. VEGF is involved in
tumor angiogenesis and metastasis and is also upregulated by EWS/FLI1 and by tumor macrophages
expressing IL-1 and MCP-1 [23,28]. In a positive feedback loop, MCP-1 can also be expressed by Ewing
sarcoma xenograft tumors, leading to more macrophage recruitment and angiogenesis associated with
IL-8 secretion [29]. Depletion of tumor macrophages with liposome-encapsulated bisphosphonates
or their inhibition with the small molecule anti-inflammatory drug Samapimod inhibited tumor
proliferation and invasion in vivo [22,27]. In addition to immunosuppressive macrophage activation,
Ewing sarcoma also expresses macrophage colony stimulating factor (M-CSF), TNFβ, VEGF, and
receptor activator of nuclear factor kappa-B ligand (RANKL) which differentiate tumor macrophages
into pro-tumorigenic M2-like osteoclasts [22,27–34]. Overall, Ewing sarcoma EWS/FLI1 and MCP-1
expression promotes tumor development through immunosuppressive macrophage and M2-like
osteoclast activation.

Neuroblastoma is the most common solid tumor outside of the brain in children. MYCN-amplified
neuroblastoma is particularly difficult to treat, attributed in part to the immunosuppressive tumor
macrophage inhibition of DCs, NK cells, and T cells [24,35]. Neuroblastoma has decreased
expression of miR-451, which inhibits macrophage migration inhibitory factor (MIF), resulting in
increased macrophage infiltration [36]. There is also evidence that immunosuppressive macrophages
(CD206/CD163) induce the cyclo-oxygenase–prostaglandin E2 pathway in aggressive MYCN+
neuroblastoma stromal cells, contributing to proliferation, invasion, angiogenesis, chemotherapy
resistance, and immunosuppression [22,37]. In a preclinical model, an M-CSF blockade with the small
inhibitor molecule BLZ945 decreased immunosuppressive macrophage (CD14/CD206) activation and
increased inflammatory macrophage (HLA-DR/CD86) activation as well as DC and T cell infiltration,
resulting in inhibition of tumor progression [35]. While it is difficult to generalize, these mechanisms
of immunosuppressive macrophage activation and the resulting resistance to immunotherapy appear
to be shared by adult and pediatric cancers.

3. The Tumor Macrophage Influence on Oncolytic Virus Efficacy

Colorectal cancer models generally benefit from inflammatory macrophage activation in
combination with oncolytic virus therapy. In preclinical studies, oncolytic poxvirus vvDD-CCL11
enhanced immunogenic programmed necrosis in colorectal cancer; the anti-tumor adaptive immune
response correlated with increased IFNy expression following virus infection [38]. Another oncolytic
vaccinia virus, GLV-1h68, was associated with increased NK and macrophage infiltration and increased
levels of many pro-inflammatory cytokines and chemokines involved in both antiviral and anti-tumor
immune response (GCP-2, KC/GROα, IFNγ, CXCL10, IL-3, IL-6, Lymphotactin, M-CSF1, MIP-1β,
MCP-1, MCP-3, MCP-5, RANTES) [39]. Aside from activation of the anti-tumor immune response,
inflammatory macrophages also express macrophage metallelastase, which has anti-angiogenic
effects and improved oncolytic adenovirus spread in colorectal tumors [40]. While the presence
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of inflammatory macrophages has been shown to benefit colorectal and some pediatric cancers, their
friend role in response to oncolytic viruses in pediatric tumors has not yet been studied.

Glioblastoma multiforme is the most common and lethal brain tumor in adults. In contrast to
studies in other tumor types, oncolytic virus therapy efficacy for glioblastoma is improved with the
suppression of the innate immune response. This suggests that glioblastoma anti-tumor efficacy is
more reliant on direct oncolysis than inflammatory stimulation. While activation of inflammatory
macrophages (CD86/LYSC) in other tumors improved OV anti-tumor efficacy, inflammatory
macrophage activation inhibited oncolytic herpes simplex virus (oHSV) anti-tumor efficacy in glioma
in part through the TNFβ-mediated inhibition of virus replication [41,42]. Activation of Cysteine-rich
61 protein (CCN1) also inhibited the oncolytic virus anti-tumor efficacy in glioblastoma through
activation and infiltration of inflammatory TAMs and NK cells expressing IL-1β, IFNγ, CXCL10,
and MCP-1/3 [43,44]. Antibody neutralization of CCN1 improved the glioma response to oncolytic
virus therapy most dramatically in glioblastoma models with high macrophage infiltration [43,44].
The activation of immunosuppressive macrophages with TGFβ was also shown to inhibit innate NK
cells, inflammatory macrophages, and microglia, resulting in increased virus replication and oHSV
anti-tumor efficacy in glioblastoma [45].

In models of breast cancer, macrophage infiltration correlates with poor patient prognosis,
but there is a mixed response in terms of the influence of macrophages on oncolytic viruses.
Oncolytic paramyxoviruses’ (measles/mumps) anti-tumor efficacy was enhanced by human
monocyte-derived macrophages, independent of the initial macrophage polarization state and virus
replication [46]. However, the inhibition of TGFβ in breast cancer bone metastases with an oncolytic
adenovirus-expressing soluble TGFβ receptor II fused with human immunoglobulin Fc fragment
reduced M2-like osteoclast activity and tumor progression [47]. In a study using vesicular stomatitis
virus (VSV), macrophage secretion of interferons activated JAK/STAT anti-viral pathways in the cancer
cells; IFN-α/β antibodies or a JAK inhibitor diminished this anti-viral response and improved VSV
anti-tumor efficacy [48].

Pancreatic cancer also has a mixed response with macrophage-induced inflammation or
immunosuppression in oncolytic virus therapy. While TGFβ-expressing macrophage infiltration
correlates with poor prognosis in pancreatic carcinomas, the epithelial-mesenchymal transition by
E-cadherin displacement of TGFβ stimulation exposes Nectin-1, which increases oHSV entry in
pancreatic cancer cells [41]. High TGFβRII expression on pancreatic carcinomas also provides
a selective entry receptor with the addition of the TGFβR binding peptide, CKS17, to modified
oncolytic adenovirus while evading inflammatory macrophage engulfment via IgM binding to the
unmodified adenovirus hexon [49]. Similar to neuroblastoma, the CSF1R blockade in pancreatic
cancers inhibited macrophage infiltration and activated the remaining macrophages into inflammatory
antigen-presenting subtype (decreased CD206, PD1, PDL2), resulting in T cell activation and synergistic
tumor progression inhibition with immune checkpoint inhibition [50]. GM-CSF-expressing oHSV
infection of pancreatic carcinomas had a dose-dependent anti-tumor effect and activated inflammatory
macrophages [51]. Taken together, these findings suggest that in different tumor types, the polarization
of inflammatory or immunosuppressive macrophages can enhance oncolytic virus therapy through
anti-tumor immune activation or enhanced oncolysis, respectively.

4. Conclusions

While macrophages are generally correlated with poor prognosis in cancer patients, the role of
macrophages on oncolytic virus anti-tumor efficacy varies between different tumor models. In most
cases, M2-like macrophages seem to be a foe as they may promote tumor growth which trumps any
effect on preventing immune clearance of the virus (Figure 1). In contrast, M1-like macrophages are
most often a friend, despite their potential for enhancing virus clearance, as they also promote tumor
shrinkage (Figure 1). Despite the similarities in macrophage activity between adult and pediatric
tumors and an abundance of research supporting macrophage modulation in adult oncolytic virus
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therapy, there are a limited number of studies that investigate the benefits of macrophage modulation in
pediatric oncolytic virus therapy. Some of the few studies investigating oncolytic herpes simplex virus
in Ewing sarcoma have shown virus infection induces TNFα and IFNβ in the tumor microenvironment,
which have been shown to synergistically kill Ewing sarcoma cells [60]. Oncolytic herpes simplex
virus–resistant Ewing sarcoma tumors that express IL-1β, IL-6, and CXCL1 induce CD11b+ cell
expression of VEGF after virus infection [28]. Therefore, macrophages may play a significant role in
oHSV resistance in Ewing sarcoma because macrophages are the predominant CD11b+ population in
the majority of tumor models [10,16]. These studies suggest macrophages likely influence oncolytic
virus therapy in pediatric tumors, but further investigation is required in different models to determine
if macrophages are friend or foe.
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