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S1. Development of the ISELA-V2 model

The ISELA-V1 model is composed of three pillars: (i) a disease model, (ii) a treatment
model ; (iii) a virtual population. Each of these pillars was expanded to broaden the context
of use of the model: this new model version is named ISELA-V2.

• The disease model was enhanced to bring credibility to the model: as detailed in
L’Hostis et al. [1], neoangiogenesis was identified through sensitivity analysis as a
phenomenon that impacts tumor growth. For this reason, we decided to detail it more.
The paper also identified the immune system as phenomena that impacts the model,
this is an additional improvement that could be added in the future

• Cell cycle and cell death was also added to represent in greater detail the link between
EGFR downstream activation and tumor cell growth and survival.

• An osimertinib PBPK model was added, as detailed in the paper and in the supple-
mentary data.

• The virtual population was expanded to consider patients with metastasis

S1.1. Disease model enhancement

Mechanistic models of the following phenomena were plugged in ISELA-V1 disease
model to enhance it:

• A cell cycle and cell death model was implemented to represent the evolution of the
layer of proliferative cells in LUAD tumor tissues

• A neo-angiogenesis model was developed to follow the dynamic evolution of tumor-
induced vascular network, allowing the study of individual endothelial cell subpopu-
lations and their contribution to the overall tumor carrying capacity.

S1.1.1. Cell cycle and cell death

The scope of the model is to represent the evolution of the layer of proliferative cells
in a LUAD tumor tissue. Cancer proliferation through the cell cycle is governed by cyclin-
dependent kinases (Cdks), with their activities regulated by a complex network sensitive
to internal and external factors [2].

• G1 phase progression is triggered by D- and E-type cyclins partnering with CDKs,
amplifying cyclin expression through positive feedback, while regulatory proteins like
p16, p21, and p27 halt CDK activity if DNA damage occurs [3].

• S phase requires CDK2 activation for DNA replication, influenced by Cyclin A and
regulated by the ATR/CHK1 pathway in response to replication issues [4].

• G2 phase advances to M phase via the CDK1/CyclinB complex, with CHK1 and WEE1
ensuring no progression in case of DNA issues [5].

• M phase involves CDK1 activation by CDC25 phosphatase, with the APC/C complex
finalizing cell division post-SAC, signaling cyclin degradation [6].

This phenomena is represented in Figure S1.
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Figure S1. Schema of the cell cycle and cell death in ISELA-V2. Created with Biorender.com, 2024.

S1.1.2. Neoangiogenesis

The neoangiogenesis submodel aims at modeling the dynamic evolution of tumor-
induced vascular networks. Mechanistic models allow the study of individual endothelial
cell subpopulations and their contribution to the overall tumor carrying capacity and
metastases dynamics. It considers three main phenomena:

• Local dynamics of tumor angiogenesis factors: indeed, while under normal conditions,
a balance between pro-angiogenic and anti-angiogenic functions is maintained by
endothelial cell receptors, hypoxic tumors disrupt this balance by releasing tumor
angiogenic factors (TAFs), including VEGF, leading to increased neoangiogenesis [7].
VEGF, the most studied pro-angiogenic factor, is mainly produced by tumor and
endothelial cells, promoting cell proliferation, migration, and increased vascular per-
meability, with a self-amplifying loop observed in non-small cell lung cancer (NSCLC),
particularly lung adenocarcinoma (LUAD), where high VEGF levels correlate with
poor prognosis [8][9]. VEGF expression is primarily regulated by hypoxia through
hypoxia-inducible transcription factors (HIFs), with the ERK and AKT pathways
modulating HIF-1α in NSCLC, indicating a critical role for hypoxia in neoangiogenesis
induction [10].

• Endothelial cells (EC) dynamics: the EC pool can be either functional (mature) or
non-functional (immature), with their development driven by TAFs, which can inde-
pendently increase, decrease, or stabilize the EC pool based on their effective step and
interactions.

• Impact on the tumor: neoangiogenesis governs the amount of tumor cells that may
receive enough oxygen to survive. In this submodel, we consider this aspect, by
assuming that a constant fraction of these receive enough oxygen to proliferate. The
carrying capacity or maximal load is defined as the maximum tumor cell population
size that can be sustained by the environment given the resources and in particular
oxygen. SInce proliferative cells need more resources, two carrying capacities could
be defined, one for survival and one for proliferation.
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Figure S2. Schema of the neoangiogenesis in ISELA-V2. One tumor is able to synthesize both VEGF,
through the EGFR downstream pathway, and other TAFs, described by hypoxia. These TAFs have
several impacts on the endothelial cells dynamics (synthesis, maturation, stabilization and deletion).
Also, the mature endothelial cells pool modifies the carrying capacities of the tumor. Metastases are
impacted by the main tumor TAF but also have their own neoangiogenesis processes. Created with
Biorender.com, 2024.

S1.2. Treatment model additions

As detailed in the Material & Methods section, osimertinib and gefitinib PBPK treat-
ment models were then added, as well as the emergent mechanisms of resistance observed
following osimertinib administration (the mechanisms of resistance to gefitinib were al-
ready implemented in ISELA-V1). Osimertinib and gefitinib submodel are respectively
detailed in Figure S3 and Figure S4.
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S1.2.1. Osimertinib

Figure S3. Representation of the osimertinib treatment submodel.(A) Pharmacokinetic model of
osimertinib. (B) Metabolization of osmertinib in AZ5104. (C) Mechanism of action of osimertinib and
AZ5104. Created with Biorender.com, 2024.
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S1.2.2. Gefitinib

Figure S4. Representation of the gefitinib treatment submodel.(A) Pharmacokinetic model of gefitinib.
(B) Mechanism of action of gefitinib. Created with Biorender.com, 2024.

S1.3. Virtual population expansion

Finally, the virtual population of the ISELA-V1 model was expanded to overcome
a limiting hypothesis: that the metastatic state of the patients remains the same. By
duplicating the disease model enhanced from ISELA-V1 for each potential metastase,
ISELA-V2 can describe the emergence and growth of LUAD metastases in parallel to the
primary lung tumor, and the impact of EGFR-TKIs on secondary tumors. The driving
hypothesis is that the growth of each modeled metastasis (MT) follows the same model as
the primary tumor (PT), with specific adaptations related to local distinctive characteristics
and initial size.

Biorender.com


S6 of S10

Figure S5. Schema of the metastases in ISELA-V2. Created with Biorender.com, 2024.

S1.4. Graphical illustration of the ISELA-V2 model

ISELA-V2 model is illustrated hereafter:

Figure S6. Structure of the ISELA-V2 model: the different submodels are labeled and their connecting
variables are represented in light blue. The two main model outputs are also represented (i) the
biological one, corresponding to the radius of the primary & metastases tumors; (ii) the clinical
one, corresponding to the time at which the disease progressed, as defined according to the RECIST
(Response Evaluation Criteria In Solid Tumors) guidelines (version 1.1) [11].

Biorender.com


S7 of S10

S2. Structure of the PBPK model

Figure S7. Representation of the PBPK structure used to build osimertinib and gefitinib PBPK models.
Created with Biorender.com, 2024.

PBPK models are pharmacokinetic models which predict the concentration over time
of a drug in multiple tissues and fluids by explicitly taking into consideration tissue
physiology and anatomy as well as drug physico-chemical properties and biochemistry.
This knowledge is used to predict the drug’s interactions with the organism in terms of its
absorption, distribution, metabolism and excretion (ADME). Once those phenomena are
modeled using a mechanistic representation of physiological processes, the concentration-
time profile of the drug can be established in multiple compartments, including the one
where the drug elicits its pharmacodynamic action. The PBPK model is composed of
a number of organs where the drug can be distributed. Each organ is represented as a
compartment with its anatomical and physiological properties. To each compartment of
the model is associated a blood flow rate, a volume and a tissue partition coefficient. The
compartments in the model are linked by the arterial and venous compartments. The
Figure S7 represents the different organs modeled and their impact on the drug. To include
the differences observed in physiology across age and gender, the weight of the organs and
their associated blood supply are age and sex dependent with the values being taken from
the ICRP 23 [12].
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S2.1. Absorption

Mechanisms regulating absorption after oral administration are multiple, including
diverse mechanisms as drug disintegration and dissolution, degradation, gastric emptying,
intestinal transit, intestinal permeation, intestinal and hepatic metabolism, and can be quite
complex, as they are governed by the properties of both the compound (pKa, lipophilicity)
and the gastrointestinal tract (gastrointestinal pH, gastric metabolism, etc.) [13]. However,
in our approach, as we already have the pharmacokinetic data in humans and it is not the
objective to predict the drug concentration in a different context than the recommended
dose, we implemented a simple absorption model inspired by classical PK models. We
added a symbolic compartment called “Administration” where the drug is placed at time
of administration. This amount of drug is equal to the drug dose multiplied by a factor
called kFractionAbsorbed to account for the known bioavailability of the drug. Then the drug
will diffuse to the gut compartment modeled with a mass action kinetic law.

DrugAdministration
kAbsorption∗DrugAdministration→ DrugGut (1)

S2.2. Distribution

Drug distribution is the reversible partitioning of a drug from the systemic blood
circulation into the different tissues of the body. It is driven by blood flow rates or the
ability of drugs to cross membrane barriers. It leads to defined proportions in the different
tissues at steady-state. Drug distribution occurs for each and every administration route.
There seems to be a consensus on distribution models emerging from the literature. The
subsequent equations take into account the hypothesis that organs are considered well-
stirred compartments. A well-stirred compartment is a compartment in which the drug
concentration is uniform and any incoming drug is instantaneously distributed. Under
the well-stirred assumption, distribution of a drug into a compartment can be modeled
as rate-limited by one of two processes: perfusion or permeability. In every organ, the
hypothesis that the rate was limited by perfusion was made. Perfusion-rate limited kinetics
occur for many small-molecules and lipophilic drugs and mean that the rate of distribution
is only limited by blood flow. It is assumed that drugs can diffuse easily and rapidly into
the interstitial and intracellular spaces and that unbound drug concentrations are equal on
each side of the cell membrane [14].

DrugArterial

QCompartment∗
DrugArterial
vol(Arterial)→ DrugCompartment (2)

DrugCompartment

QCompartment∗
DrugCompartment

vol(Compartment)∗CorrectedKp
∗R

→ DrugVenous (3)

With
CorrectedKp = f X

VS + KS
p ∗ KX

p ∗ (1 − f X
VS) (4)

And

• R: blood to plasma concentration ratio
• f X

VS: fractional volume of vascular space in organ X
• KX

p : tissue-to-plasma ratio in organ X, calculated following the distribution theory
proposed by Rodgers And Rowland [15]

• KS
p : Kp scalar which is a fitted factor common to all Kp
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The exception to those equations being the liver as it receives blood from 
the arterial circulation as well as the gut, pancreas and spleen: 

dDrugLiver
dt

= QLiverIn ∗
DrugArterial

vol(Arterial)
+ QGut ∗ DrugGut ∗ R

vol(Gut) ∗ CorrectedKpGut

+ QSpleen ∗
DrugSpleen ∗ R

vol(Spleen) ∗ CorrectedKpSpleen

+ QPancreas ∗ DrugPancreas ∗ R
vol(Pancreas) ∗ CorrectedKpPancreas

− QLiverOut ∗
DrugLiver ∗ R

vol(Liver) ∗ CorrectedKpLiver

(5)

S2.3. Elimination/Metabolism

The general goal of metabolism is to render molecules more polar and hydrophilic
to make them more easily excreted in urine [16]. In our PBPK models, we grouped the
metabolism and elimination of the drug under a venous plasmatic clearance of the drug.

DrugVenous
kClearance∗DrugVenous→ ∅ (6)

The only exception is osimertinib for which one of its metabolites (AZ5104) is active and
present in a non-negligible concentration with respect to osimertinib and for which the
metabolization was modeled. The following reaction represents the metabolization of
osimertinib to AZ5104:

OsimertinibVenous
kClearance∗OsimertinibVenous∗ f ractionMetabolisation→ AZ5104Venous (7)

Note that to conserve the quantity of drug, the plasmatic clearance of osimertinib has been
multiplied by (1-fractionMetabolisation). The fraction of metabolization to AZ5104 has
been informed by the literature and is equal to 0.25 in humans [17] and 0.7 [18] in mice.

The parameters that have been calibrated in order to reproduce the pharmacokinetic
data are: kclearance, kabsorption, kFractionAbsorbed and KS

p for gefitinib, osimertinib and AZ5104.

Abbreviations
The following abbreviations are used in this manuscript:

ADME Absorption Distribution Metabolism Elimination
AKT Protein Kinase B
DNA Deoxyribonucleic acid
EGFR Epidermal Growth Factor Receptor
ERK Extracellular signal-regulated kinase
ISELA In Silico EGFR Lung Adenocarcinoma
LUAD Lung Adenocarcinoma
MT Metastasis
PK Pharmacokinetics
PBPK Physiologically based pharmacokinetics
PT Primary tumor
RECIST Response Evaluation Criteria In Solid Tumors
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